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Abstract. In this note we describe efficient algorithms for generating
tests that cover a prescribed set of combinations of a software system’s
input parameters. Our methods for obtaining uniform ¢-wise coverage
are based on repeatedly coloring the vertices of a graph such that
the vertices in each t-subset have different colors in at least one of
the colorings. The resulting algorithm is compared to other known
algorithms for uniform coverage, a greedy algorithm and a randomized
algorithm, in particular. The size of its output test suite is then related
to a new lower bound that we obtain on the minimal size of a test suite.
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1 Introduction

Development and production of high-quality software at a reasonable price is a
critical issue for today’s society, when the safety and quality of life is increasingly
dependent on software systems. Software testing is an important but expensive
part of the software development process, as it often consumes between 1/3 and
1/2 of this cost [7].

In this note, we address black-box testing, which ensures that a program
meets its specification from a functional perspective. The number of possible
black-box test cases is equal to the number of all possible valid settings of the
input parameters of the system and thus in general is extremely large. Conse-
quently testers have resorted to restricting the number of input combinations
fed into the system under test, by only requiring that all pairwise (and more
generally t-wise) combinations of input parameters are covered. For example,
covering all pairwise combinations means that for any two parameters P; and
P, and any valid values v; for P; and vy for Py, there is a test in which P is
set to v; and P, is set to vs.

The efficient construction of combinatorial covering suites has important ap-
plications in the process of testing software and hardware systems. A short exam-
ple (cf. [I7]) is as follows. Before shipping new machines to customers, running
some final tests is desired. There are 16 switches on the back of each machine,
that have to be set, each with two positions. Testing all possible 26 = 65,536
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possible combinations is infeasible, but testing all 23 combinations for each sub-
set of three switches is possible. Not more than 17 test vectors are necessary:
0000000000000000 and all the cyclic shifts of 0000101101110111 are sufficient for
this task [I7]. The same principle (and test sequence) can be applied for testing
a software system with 16 inputs if every output of the software system depends
on at most three input parameters (or one wants to test the interactions of all
triples of parameters). A higher degree of testing of interactions between input
parameters can be achieved using t-wise coverage (for some ¢ > 2): the test se-
quence will discover all errors if each output of the system depends on at most
t input parameters.

A technical challenge that remains in applying this technique in software
testing is the issue of efficiently constructing the covering test suite. This issue
is important, because the number of test cases, as well as the time necessary to
obtain them directly influences the amount of resources needed to test a software
system.

1.1 Covering Suites

Throughout this note, let [m] denote the set {1,2,...,m}, and logz stand for
log, x . We follow some of the terminology in [I0]. Consider a software system
with k parameters whose domains are the finite sets Dy,... , Dy. We write [; =
|D;|, i=1,...,k. The actual domains are in fact not important, but only their
sizes; we will therefore assume that D; = {0,1,... ,l; — 1}. A test suite with NV
test vectors is a matrix A = (a;; : 1 < i < N,1 < j <k), where a;; € D; for all
1 and j. The rows of the matrix are called test vectors, or simply tests. A test
suite A can be also viewed as a sequence T of N test vectors.

We say that a test suite A is a t-wise covering suite with parameters Iy, ... , lx,
(t < k), if for any subset {ji,...,j:} of t columns of A, and for any t-tuple of
values T' € D, x ... x Dj,, there exists at least one row 7 in A, such that
(@rjyy---5ar;,) = T. We speak in this case of uniform coverage. The covering
suite number hy(ly, ... 1) is then defined as the minimum integer N such that
there exists a t-wise covering suite with N tests for k domains of sizes l1,... , k.
Other names used in the literature for t-wise covering suites are covering arrays,
(k, t)-universal sets, and t-surjective arrays. If all k& domains are of the same size
| — which we refer to as the uniform range case — we write h;(I*) instead of
h(l,...,1). Similarly, we write h (1%, m3) instead of h(l,l,m, m,m) for example.
We call the matrix of a t-wise covering suite with & domains of size [ a (k,t,1)-
universal test matriz. If the domains are ordered by their size, say i1 > ... > [,
then clearly hi(ly,... ,lx) > 1y ... 1 [10].

The uniform case | = 2 (all the domains are binary) and t = 2 (pairwise
coverage), was solved by Rényi [15], Katona [11], Kleitman and Spencer [12]: for
all k > 2, hy(2F) = N, where N is the smallest integer such that

(Th) 2%
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A test suite of this size may be constructed as follows: the first test is the 0 vector
in all coordinates. The columns of the remaining N — 1 rows each contain exactly
[N/2] ones, and each column is constructed by choosing a different [ N/2]-subset
of the rows [10]. Asymptotically ho(2¥) satisfies

hy(2%) = logk + %loglogk-i—O(l). (1)

For the uniform case | = 2 and t = 3 (3-wise coverage), the best known
bounds are

3.21256. .. log k(1 + o(1)) < h3(2%) < 7.56444 .. .log k(1 + o(1)),

where the lower bound is due to Kleitman and Spencer [12], while the upper
bound is due to Sloane [17].

An extensive literature is devoted to constructing covering suites using or-
thogonal arrays, intersecting codes, or algebraic techniques — see [I0JI7] and the
references therein. However these methods are complicated and in many cases
do not work for an arbitrary given number of parameters, or of domain-size.

Seroussi and Bshouty [16] have shown that a generalized version of the prob-
lem of finding a minimal ¢-covering suite — where only a prescribed collection
of t-sets of parameters needs to be covered — is N P-complete, using a reduc-
tion from graph 3-coloring. We refer to this case as non-uniform coverage. Thus
finding polynomial time algorithms for generating optimal covering suites in the
general case remains unlikely. However, to efficiently compute covering suites
whose sizes are close to optimal remains a topic of continued interest.

In our note we present algorithms for efficient generation of combinatorial
covering suites, and whose modular design allows for the resulting covering suites
to be stored in a compact form. In Section Pl we address pairwise coverage,
we continue with ¢t-wise coverage in Section Bl and we conclude with a short
discussion of non-uniform ranges and post-processing in Section [

The non-uniform coverage demand comes also from practical considerations,
since outputs of the software system seldom depend on the same number of input
parameters. A technique which in many cases reduces a given testing problem
to one with a smaller number of parameters (and thus easier to solve) appears
in [2].

2 Pairwise Coverage

The reported effectiveness of test sets with a low degree of coverage (such as
pairwise or triple) is a major motivation for the combinatorial design approach
[B]. In this section we outline a simple algorithm for generating covering suites
in the uniform case (with k domains of size [) and ¢ = 2 (pairwise coverage),
and then implicitly get an upper bound on hy(I¥). We however note that better
constructions are known for this case and that we feature our algorithm only
for its simplicity and to illustrate the simplest case (for ¢ = 2 colors) of our
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coloring approach detailed in Section Bl For example, Kobayashi et. al. proposed
an algebraic method for pairwise coverage which yields a good upper bound on
ho(1¥) and which works well even in the non-uniform range case.

We next outline the algorithm. The following fact is probably well known.

Lemma 1. The edge set of the complete graph on the k vertices {0,...  k — 1}
can be expressed as a union of the sets of edges of m = [log k] complete bipartite
graphs (A;, B;), i =1,... ,m on the same set of vertices. More precisely for each
edge (j1,72), 0 <j1 < jo <k —1, there exists i, such that j1 € A;, jo € B; and
(j1,42) € E(A;, B;). Moreover, each such bipartition can be generated in linear
time.

Proof. Put m = [logk]; m represents the number of bits necessary to represent
in binary all integers in the range {0,...,k — 1}. For any such integer j, let
Ji be the i-th bit in the binary representation of j. We assume that the vertex
set of the complete graph is {0,... ,k —1}. Fori = 1,... ,m, let A; = {j €
{0,...,k—1} | ji = 0} and B; = {j € {0,...,k — 1} | j; = 1} specify the
bipartitions. It is easy to see that each edge (j1,J/2), 0 < j1 < jo < k—11s
covered as required. All edges of these bipartite graphs are also present in the
complete graph, which concludes the proof. a

Set m = [logk]. The algorithm — which we refer to as A; — generates
the following tests. For each pair of parameters values (u,v), u,v € [l], u # v,
output m vectors, each corresponding to a bipartition of the vertex set (of k
parameters) in Lemma [} if (A4;, B;) is the i-th bipartition, the j-th component
(1 < j < k) of the i-th output vector w is set as follows. If j € A4, set w[j] « u,
and if j € By, set w[j] < v. For each pair of parameters values (u,u), u € [{],
output a vector w all of whose components are equal to u.

The resulting sequence of vectors is a pairwise covering suite, as we show
next. Take any pair of parameters (j1,72), j1 < j2, and any pair of values
(u,v) € [[]%. The case u = v is taken care in the second part of the algorithm. In
the case u # v, there exists a bipartition (A;, B;), such that j; € A; and j, € B;,
thus the parameter j; is set to u and the parameter js is set to v in the vector
corresponding to this bipartition, which is generated when the value pair (u,v)
is considered in the first part of the algorithm.

For instance, the covering suite generated for [ = 3, k& = 7 is shown in
Table[dl, and corresponds to the bipartite graphs A; = {0,1,2,3}, B; = {4, 5,6},
A ={0,1,4,5}, By ={2,3,6}, and A3 ={0,2,4,6}, B3 ={1,3,5}.

The size of the output covering suite is

Ny =1(1—1)[logk] +1,

which also provides an upper bound on hy(I¥). Incidentally, the upper bound Ny
(see below) on the number of tests derived in [3] using the greedy algorithm is
at least twice ours, although their algorithm may output shorter covering suites.

k
N, =12 x [log (2) + log 1?].
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Table 1. Pairwise coverage for seven parameters with three values each

>
J
.
.
3
>
>
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N~ O NNONNNRFR RO RN, OO
N = O~ NN ONEFE N PP ORFRONOIO—~O
N = Ol = NOONNNRFROORFNDNO|IF = O
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N = OIN R~ RFNOOIFNNFEOOIONNO ==

We note that for [ = 2, the size of the covering suite is roughly twice the size of
the optimal in (1). We also note that Gargano, Kérner and Vaccaro have shown
that for very large values of k, the minimal number of test cases is ~ L logk [8],
although their methods are non-constructive and the linear dependence on [ for
moderate k is unlikely [36].

3 t-Wise Coverage

In this section we show how the approach in Section[Z can be extended to obtain
t-wise coverage in the uniform case (with k domains of size [). This approach
can be used for any ¢ > 2, so we can obtain an alternative method for pairwise
coverage (t = 2).

The algorithm — which we refer to as Ay — has two phases. Fix a palette of
t colors, say [t] = {1,...,t}. In the first phase, repeatedly color uniformly and
randomly the vertices of the complete graph on k vertices, until each unordered
t-tuple is multicolored in at least one such coloring, i.e, each element of the t-
tuple is colored by a different color in that coloring. Say n colorings have been
used to achieve this property. In the second phase, for each ordered t-tuple of
parameter values (vq,... ,v;) € [I]!, output n vectors, each corresponding to one
of the above colorings. For a given coloring ¢, the j-th component (1 < j < k)
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of the output vector w is set according to its color: if ¢(j) = 4, set w[j] « v;,
i=1,...,t

The next lemma shows that the resulting sequence of vectors is a t-wise
covering suite.

Lemma 2. For each t-tuple of values (v1,...,v;) € [I]', and each t-tuple of
parameters i1 < ... < i, there exists a test vector w such that w[i;] = vj, j =
1,... 1.

Proof. Take a coloring ¢ (which gives a test in the output suite) for which all
parameters i1, ... ,4; have different colors, i.e., {c(i1),...,c(is)} = [t]. Let 7 =
(T1,...,7) be a permutation of [t], such that ¢(i;) = 7;, j = 1,...,t. Let
o = (01,...,04) = 71 be the inverse of 7. Consider the t-tuple of values
(Voys -+ Vg, ). In the output vector w corresponding to coloring ¢ and the above
t-tuple of values,

wli;] = Voo, = Uy,

since by definition of o, o, = j. O

Next we estimate n so that the resulting sequence is a t-wise covering suite.
Fix a t-tuple U of parameters. The probability that U is not multicolored is

tt — ¢
A

P, = Prob[U is not multicolored] =

The probability that U is not multicolored in any of the n colorings is P,
so the expected number of such t-tuples is (f) PJ'. Requiring this to be < 1, and

since (/z) < kt, for t > 2, it is enough to take

’thogk—‘
n= | -
1ogﬁ

The size of the test sequence output by our algorithm is not more than
Ny = {tlogﬂ I*. Thus

log P%

tlog k
he(1F) < { %8 l It.
logﬁt

For fixed ¢ (which holds for most practical applications), this becomes
Ny = O((log k) - 1), 2)

A different randomized algorithm for ¢-wise coverage — which we refer to
as A" — is presented in [T4]9]. That algorithm selects instead a collection of N’
random vectors € [I]*: for each vector, each component is selected uniformly and
randomly from [[]. Via the probability 'union bound’, if

N Ftlogk+tlogl—‘
N R T
logltlf1
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t-wise coverage is obtained [14]. For fixed ¢, this becomes N’ = O((logk +
log 1) - It). The size of the test sequence given by our algorithm As is (under the
same assumption) a slight improvement for large ! over the above bound, since
the logarithmic dependence on [ is removed. Besides that, the space and time
requirements of Ay are much smaller that those of A’: the former only needs to
verify that all (lf) t-tuples of parameters have been covered (i.e., multicolored),
while the latter needs to check that all (]:)lt value t-tuples have been covered.
Notice that (’:)lt > (]z) !

In addition, if one wants to store enough information for obtaining covering
suites for a large family of (k,t,[) instances, this becomes very easy to do using
As, and it uses very small space. Indeed, once a set of colorings is obtained for a
given pair (k,t), it can be used as a seed to obtain covering suites for all (k,¢,1)
instances (i.e., for any value of [). Moreover, the space needed to store a set of
colorings for a given (k,t) instance is much smaller than that needed for storing
a complete covering suite for a (k,t,[l) instance for a single [: the number of
colorings is much smaller than the number of test vectors in a covering suite,
and the number of bits per entry is usually smaller ([logt| versus [log!]).

Next, we give a (straightforward) extension of the lower bound in [16] on the
size of minimal ¢-wise covering suites for the binary case [ = 2 to arbitrary [. We
note that for fixed ¢ and [ and large k, the covering suite output by algorithm
A is within a multiplicative constant factor of the optimal (cf. (2) above).

Theorem 1. Forallk>t>2 andl > 2,
he(1F) > max(1t, 1172 - [log (k — t + 2)]).

Proof. The first term in the maximum is justified by the trivial lower bound
he(1¥) > It. To justify the second, let M be a (k,t,l)-universal test matrix of
dimensions m x k. For any = € [I]*~2, denote by M, the matrix of rows of M
whose last ¢ — 2 coordinates agree with z. If m, is the number of rows of M,,

then
m = Z My

zel]t—2

The minimum m,,, corresponding to some & = £1&y ... & o € [I]'72, satisfies
m

Let ¥ = k —t+ 2, and let M’ be the m¢ x k' matrix consisting of the first
k' columns of M. We claim that M’ is (k’,2,[)-universal. Indeed, assuming
that for two column indices j1,j2 < k', a value pair (vy,vs) is missing, then
the t-tuple viv2€1&s ... &_o is missing from M at indices ji,j2,k" +1,... ,k,
contradicting the assumption that M is (k,,[)-universal. Hence M’ is (k’,2,1)-
universal, thus also (', 2,2)-universal. By [1] (and also implied by [12], see also
(1)), me > [log k'] = [log (k — t + 2)]. Combining with (3), we obtain

m > 1""?me > 172 [log (k — t +2)],

which completes the proof. a
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Corollary 1. If k —t = kM| then

hi(1F) = (1'% log k).

4 Other Aspects and Concluding Remarks

4.1 Non-uniform Ranges

Applications having large variations in the domain-size of the input parameters
are a rule rather than an exception in software [4]. Two algorithms A3 and A4
are obtained by adapting algorithms A, and A’ respectively.

Algorithm A3 reduces the non-uniform case to the uniform one. It first sets

I = max(ly,...,lx), and then uses algorithm A (or A’) to generate a t-wise
covering suite for k domains of size [. Then for each test vector in this suite,
and for each i = 1,... , k, arbitrarily assigns its i-th entry to a value in its valid

range if it lies outside its range. Clearly the result is a t-wise covering suite of
the same size.

An algorithm similar to A’ is algorithm A4: random vectors € Dy X ... X Dy,
are chosen until coverage is obtained: i.e., for each vector, its i-th component is
selected uniformly and randomly from D;.

4.2 Post-processing: The Greedy Algorithm

Cohen et. al. have presented a greedy algorithm for test generation which for a
fixed ¢, shows that the size of the test suite which provides t-wise coverage grows
logarithmically in the number of parameters k [4J3]. As remarked in [3], the proof
of the logarithmic growth for the greedy algorithm assumes that at each step, it
is possible to find a test vector that covers the maximum number of uncovered
t-tuples. Since there are an exponential number of test vectors ({*), this may be
computationally unfeasible. Therefore they outlined a heuristic random greedy
variant of the algorithm to get around this problem, by using a random order in
setting parameter values in their algorithm.

A different approach is to make use of the greedy algorithm in a post-
processing optimization step. Once a covering suite 7 is obtained, it is fed as
input to the greedy algorithm. Since the size of T is “small”, the greedy al-
gorithm can efficiently find a test vector that covers the maximum number of
uncovered t-tuples, and thus in the end, it may produce as output only a subset
T’ of the covering sequence 7. This optimization step can be applied to any of
the suites output by our algorithms Ay, Ao, As, A4 presented earlier, or obtained
by any other method.

4.3 Concluding Remarks

In this note we have outlined alternative algorithms for generating test suites
which achieve uniform coverage of the software’s input parameters. Our algo-
rithms are efficient and extremely simple to implement. In addition, their design
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does not use sophisticated mathematical techniques, and the number of tests
generated favorably compares with a general lower bound we have given. More-
over, their modular design allows for the resulting covering suites to be stored
in a compact form. In combination with the use of the greedy algorithm as a
post-processing optimization step, they provide a practical tool in the software
testing process.
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