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Abstract. For classification problems with ordinal attributes very often
the class attribute should increase with each or some of the explanatory
attributes. These are called classification problems with monotonicity
constraints. Standard classification tree algorithms such as CART or
C4.5 are not guaranteed to produce monotone trees, even if the data set is
completely monotone. We look at pruning based methods to build mono-
tone classification trees from monotone as well as nonmonotone data sets.
We develop a number of fixing methods, that make a non-monotone tree
monotone by additional pruning steps. These fixing methods can be com-
bined with existing pruning techniques to obtain a sequence of monotone
trees. The performance of the new algorithms is evaluated through ex-
perimental studies on artificial as well as real life data sets. We conclude
that the monotone trees have a slightly better predictive performance
and are considerably smaller than trees constructed by the standard al-
gorithm.

1 Introduction

A common form of prior knowledge in data analysis concerns the monotonic-
ity of relations between the dependent and explanatory variables. For example,
economic theory would state that, all else equal, people tend to buy less of a
product if its price increases. The precise functional form of this relationship is
however not specified by theory.

Monotonicity may also be an important model requirement with a view to-
ward explaining and justifying decisions, such as acceptance/rejection decisions.
Consider for example a university admission procedure where candidate a scores
at least as good on all admission criteria as candidate b, but a is refused whereas
b is admitted. Such a nonmonotone admission rule would clearly be unaccept-
able. Similar considerations apply to selection procedures for applicants for e.g.
a job or a loan.

Because the monotonicity constraint is quite common in practice, many data
analysis techniques have been adapted to be able to handle such constraints. In
this paper we look at pruning based methods to build monotone classification
trees from monotone as well as nonmonotone data sets. We develop a number
of fixing methods, that make a non-monotone tree monotone by further pruning
steps. These fixing methods can be combined with existing pruning techniques
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to obtain a sequence of monotone trees. The performance of the new algorithms
is evaluated through experimental studies on artificial as well as real life data
sets.

This paper is organised as follows. In section 2 we define monotone classi-
fication and other important concepts that are used throughout the paper. In
section 3 we shortly review previous work in the area of monotone classifica-
tion trees. Then we discuss a number of methods to make a non-monotone tree
monotone by additional pruning steps in section 4. These methods are evalu-
ated experimentally in section 5 on real life and artificial data sets. Finally, in
section 6 we end with a summary, and some ideas for further research.

2 Monotone Classification

In this section we define the problem of monotone classification and introduce
some notation that will be used throughout the paper. Notation is largely based
on [15].

Let X be a feature space X = X1 × X2 × . . . × Xp consisting of vectors
x = (x1, x2, . . . , xp) of values on p features or attributes. We assume that each
feature takes values xi in a linearly ordered set Xi. The partial ordering ≤ on
X will be the ordering induced by the order relations of its coordinates Xi:
x = (x1, x2, . . . , xp) ≤ x′ = (x′

1, x
′
2, . . . , x

′
p) if and only if xi ≤ x′

i for all i.
Furthermore, let C be a finite linearly ordered set of classes.

A monotone classification rule is a function f : X → C for which

x ≤ x′ ⇒ f(x) ≤ f(x′)

for all instances x,x′ ∈ X . It is easy to see that a classification rule on a feature
space is monotone if and only if it is non-decreasing in each of its features, when
the remaining features are held fixed.

A data set is a series (x1, c1), (x2, c2), . . . , (xn, cn) of n examples (xi, ci) where
each xi is an element of the instance space X and ci is a class label from C. We
call a dataset consistent if for all i, j we have xi = xj ⇒ ci = cj . That is, each
instance in the data set has a unique associated class. A data set is monotone if
for all i, j we have xi ≤ xj ⇒ ci ≤ cj . It is easy to see that a monotone data set
is necessarily consistent.

The classification rules we consider are univariate binary classification trees.
For such trees, at each node a split is made using a test of the form Xi < d for
some d ∈ Xi, 1 ≤ i ≤ p. Thus, for a binary tree, in each node the associated
set T ⊂ X is split into the two subsets T� = {x ∈ T : xi < d} and Tr = {x ∈
T : xi ≥ d}. The classification rule that is induced by a decision tree T will be
denoted by fT .

For any node or leaf T of T , the subset of the instance space associated with
that node can be written

T = {x ∈ X : a ≤ x < b} = [a,b) (1)
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for some a,b ∈ X with a ≤ b. Here X denotes the extension of X with infinity-
elements −∞ and ∞. In some cases we need the infinity elements so we can
specify a node as in equation (1).

Below we will call min(T ) = a the minimal element and max(T ) = b the
maximal element of T . Together, we call these the corner elements of the node T .
There is a straightforward manner to test the monotonicity using the maximal
and minimal elements of the leaves of the classification tree [15]:

for all pairs of leaves T, T ′:
if

(
fT (T ) > fT (T ′) and min(T ) < max(T ′)

)
or(

fT (T ) < fT (T ′) and max(T ) > min(T ′)
)

then stop: T not monotone

Fig. 1. Algorithm to test the monotonicity of a classification tree

3 Previous Research

In this section we briefly describe previous work on monotone classification trees.
Ben-David [1] was the first to incorporate the monotonicity constraint in classi-
fication tree construction. He proposed a measure for the quality of a candidate
split that takes into account both the impurity reduction that the split achieves,
as well as the degree of non-monotonicity of the resulting tree. The degree of
non-monotonicity is derived from the number of nonmonotonic leaf pairs of the
tree that is obtained after the candidate split is performed. The relative weight
of impurity reduction and degree of non-monotonicity in computing the quality
of a candidate split can be determined by the user. Ben-David shows that his
algorithm results in trees with a lower degree of nonmonotonicity, without a
significant deterioration of the inductive accuracy.

Makino et al. [10] were the first to develop an algorithm that guarantees
a monotone classification tree. However, their method only works in the two
class setting, and requires monotone training data. Potharst and Bioch [11,12]
extended this method to the k-class problem, also accommodating continuous
attributes. Both Makino as well as Potharst and Bioch enforce monotonicity by
adding the corner elements of a node with an appropriate class label to the exist-
ing data whenever necessary. While their results are encouraging, applicability
of the algorithms is limited by the requirement of monotone training data. In
actual practice this is hardly ever the case.

Bioch and Popova [4] extend the work of Potharst to nonmonotone data sets
by relabeling data if necessary. While their approach is certainly interesting, a
potential disadvantage is that the algorithm may have to add very many data
points to the initial training sample. This may result in highly complex trees
that have to be pruned back afterwards. Bioch and Popova, in another recent
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paper [5], perform some experiments with an alternative splitting criterion that
was proposed by Cao-Van and De Baets [6]. This number of conflicts measure
chooses the split with the least number of inconsistencies or conflicts, i.e. the
number of non-monotone pairs of points in the resulting branches. An important
conclusion of Bioch and Popova [5] is that with the increase of monotonicity noise
in the data the number of conflicts criterion generates larger trees with a lower
misclassification rate than the entropy splitting criterion.

Feelders [8] argues that the use of a measure of monotonicity in determining
the best splits has certain drawbacks, for example that a nonmonotone tree may
become monotone after additional splits. He proposes not to enforce monotonic-
ity during tree construction, but to use resampling to generate many different
trees and select the ones that are monotone. This allows the use of a slightly
modified standard tree algorithm. Feelders concludes that the predictive per-
formance of the monotone trees found with this method is comparable to the
performance of the nonmonotone trees. Furthermore, the monotone trees were
much simpler and proved to be more stable.

Daniels and Velikova [7] present an algorithm to make the training sample
monotone by making minimal adjustments to the class labels. They combine this
idea with the resampling approach described above. Their results show that the
predictive performance of the trees constructed on the cleaned data is superior
to the predictive performance of the trees constructed on the raw data.

Finally, Potharst and Feelders [13] give a short survey of monotone classifi-
cation trees.

4 Pruning Towards Monotone Trees

The objective of our work is to develop an algorithm that produces a monotone
tree with good predictive performance from both monotone and nonmonotone
training data. In order to construct a monotone tree, we initially grow a large
overfitted tree, and then prune towards monotone subtrees. For growing the
initial tree we implemented an algorithm that is very similar to CART [2]; the
only major difference is that our implementation records the corner elements of
each node during tree construction.

Central to our approach are a number of so-called fixing methods. The basic
idea of all our fixing methods is to make minimal adjustments to a nonmonotone
tree in order to obtain a monotone subtree. To quantify the degree of nonmono-
tonicity, we count the number of leaf pairs that are nonmonotone with respect to
each other. If a leaf participates in one or more nonmonotone leaf pairs, we call
it a nonmonotone leaf. Hence the goal of all fixing methods is to obtain a tree
without any nonmonotone leaves. They do so by pruning in a parent node that
has at least one nonmonotone leaf for a child; this is repeated until the resulting
tree is monotone. The fixing methods differ in the heuristic that is used to select
the parent node to be pruned.

In figure 2 we have depicted a nonmonotone tree that we use to illustrate
the different heuristics. Each node is numbered (the italicized numbers to the
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left of each node); the associated split is to the right of each node; and inside
each node the classlabel is given. A node is always allocated to the class with
the highest relative frequency in that node.

Below each leaf node we have listed the number of observations in that leaf.
As the reader can verify, the nonmonotone leaf pairs of this tree are [9,10],
[9,12], [9,14], [11,12], [11,14] and [13,14]. For example, the leaf pair [9,10] is
nonmonotone because fT (9) > fT (10) and min(9) < max(10), that is

(−∞,−∞, 0,−∞,−∞) < (0,∞,∞, 0,∞).

The leaf pair [8,13] is monotone however, since fT (13) > fT (8) but min(13) �<
max(8).
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��
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��
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�
�� �

��
15 1

7

Fig. 2. Example nonmonotone decision tree

The first method prunes in the parent whose children participate in the most
nonmonotone leaf pairs. Note that it may be the case that only one of the two
children is a leaf node. In that case we only count the number of nonmonotone
leaf pairs in which this single child participates. This way of counting aims to
discourage pruning in nodes higher up in the tree. We call this heuristic the most
nonmonotone parent (MNP) fixmethod. In our example we first count for each
parent of a leaf the number of nonmonotonic leaf pairs its children participate
in. For node 4 this number is 3 ([9,10],[9,12],[9,14]), node 5 also gives 3 ([9,10],
[11,12], [11,14]), and for node 6 and 7 this number is 3 as well. We now face the
problem what to do in case of a tie. Apart from choosing one of the equally good
fixes at random, we will also consider the alternative of choosing the node with
the least number of observations. Henceforth, this rule will be referred to as the
LNO tie breaker. The rationale behind this rule is that if the data generating
process is indeed monotone, then nonmonotonicity is likely to be due to small
erratic leaf nodes. Application of this rule leads to pruning in node 6 since it
contains the least observations (5) of the candidates.
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A potential disadvantage of the MNP heuristic is that it ignores the fact
that after pruning in a node, new nonmonotone leaf pairs, involving the newly
created leaf, may appear. Therefore we tested a second method that prunes
in the parent of a nonmonotone leaf that gives the biggest reduction in the
number of nonmonotone leaf pairs. To prevent pruning too high in the tree too
early, we do this levelwise, i.e. we first consider the set of parent nodes with
minimal number of descendants for an improvement before we consider parent
nodes with higher numbers of descendants. This fixmethod is called the best fix
(BF). In our example we first note that all parent nodes have the same number
of descendants and consequently will all be considered at the same time. Now,
we need to know how many nonmonotone leaf pairs remain after each possible
prune action, thus how big the improvement is. To determine this, we need to
know with which leaves the candidate leaf nodes 4, 5, 6, and 7 are nonmonotone.
These are the pairs [5,12], [5,14], [6,9] and [6,11]; nodes 4 and 7 are monotone
with all other leaves, as the reader can verify. We can now compute the number
of nonmonotone leaf pairs left after each possible prune. If we prune in node 4
we lose [9,10], [9,12] and [9,14], and are left with [11,12], [11,14] and [13,14], i.e.
3 pairs. If we prune in node 5 we lose [9,10], [11,12] and [11,14], but get [5,12]
and [5,14] and still have [9,12], [9,14] and [13,14], i.e. 5 pairs. If we prune in node
6 we are left with 5 pairs and if we prune in node 7 only 3 pairs remain. Thus,
we have two best fixes, namely nodes 4 and 7, and node 4 is selected by the LNO
tie breaker.

The fixing methods discussed can be combined in different ways with existing
pruning techniques. We study how they can be combined with cost-complexity
pruning ([2]). An elementary cost-complexity pruning step works as follows. Let
R(T ) denote the fraction of cases in the training sample that are misclassified
by tree T . The total cost Cα(T ) of tree T is defined as

Cα(T ) = R(T ) + α|T̃ |. (2)

The total cost of tree T consists of two components: resubstitution error R(T ),
and a penalty for the complexity of the tree α|T̃ |. In this expression T̃ denotes
the set of leaf nodes of T , and α is the parameter that determines the complexity
penalty. Depending on the value of α (≥ 0) a complex tree that makes no errors
may now have a higher total cost than a small tree that makes a number of
errors. When considering a tree T , for each node T we can compute the value of
α for which the tree obtained by pruning T in T has equal cost to T itself. By
pruning in the node for which this α-value is minimal, we obtain the tree that
is the first to become better than T , when α is increased.

Now, the first way to combine pruning and fixing is to alternate between cost-
complexity pruning steps and fixing steps. This proceeds as follows. If the initial
tree is monotone we add it as the first tree in the sequence; otherwise we first
fix it, i.e. make it monotone. Once we have a monotone tree, a cost-complexity
pruning step is performed. Subsequently, we check again if the resulting tree is
monotone, add it to the sequence if it is, or first fix it otherwise. We continue
alternating the pruning and fixing steps until we eventually reach the root node.
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A second possibility is to simply take the sequence of trees produced by cost-
complexity pruning, and apply the fixing methods to all trees in that sequence.
Finally, one could simply take the best tree (in terms of predictive accuracy
on a test sample) from the cost-complexity sequence and fix that tree. In the
experiments we discuss in the next section we only consider the strategy that
alternates between pruning and fixing.

5 Experimental Evaluation

In this section we discuss the experimental results we obtained on real life data
sets and artificially generated data. For the real life data (see table 1) we selected
a number of data sets from domains where monotonicity is either a plausible
assumption or requirement. The bankruptcy data set was used by Pompe in [14].
The class label indicates whether or not a company has gone bankrupt within one
year of the annual report from which the attributes were taken. These attributes
are 11 financial ratios that are indicative for the profitability, activity, liquidity
and solvency of the company. The Windsor housing data set was used as an
example by Koop [9]. It contains data on 546 houses sold in Windsor, Canada.
The dependent variable is the sales price of the house in Canadian dollars. This
was converted into a class label by taking the quartiles of the sales price.

All other data sets, adult income, Australian credit approval, Boston housing
and cpu performance were taken from the UCI machine learning repository [3].
Whenever necessary, attributes with no monotonicity relation with respect to
the class label were removed from the data sets. Also, some negative monotone
attributes were inverted to make them positive monotone. For example, in the
cpu performance data set the machine cycle time in nanoseconds was converted
to clock speed in kilohertz. The class labels of Boston housing and cpu perfor-
mance were created in the same way as for Windsor housing.

Table 1 gives a number of important characteristics of the data sets. The
column Error gives the misclassification error of the rule that assigns every
observation to the majority class. With regard to this study, the degree of non-
monotonicity of the data sets is of special interest. This can be quantified in
various ways. In the column NmDeg, for degree of nonmonotonicity, we give the
ratio of the number of nonmonotone pairs of datapoints to the total number of
pairs. However, we require a measure that allows the meaningful comparison of
the degree of nonmonotonicity for data sets with highly different characteristics.
Important characteristics in this regard are: the number of attributes and class
labels, and the fraction of incomparable pairs of points (FracInc in table 1). To
this end we take the ratio of the observed number of nonmonotone pairs to the
number of nonmonotone pairs that would be expected if the class labels were
assigned randomly to the observed attribute vectors. This last number is approx-
imated by taking fifty permutations of the observed class labels and computing
the average number of nonmonotone pairs of the resulting fifty data sets. The
resulting number is given in table 1 in the column NmRat. If the ratio is close to
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zero, then the observed number of nonmonotone pairs is much lower than would
be expected by chance.

Table 1. Overview of real life data sets and their characteristics

Description Classes Size Attr. Error FracInc NmDeg NmRat
Adult Income 2 1000 4 0.500 0.610 0.020 0.21

Aus. Credit Approval 2 690 4 0.445 0.284 0.034 0.19
Boston Housing 4 506 6 0.745 0.678 0.006 0.05

CPU Performance 4 209 6 0.732 0.505 0.007 0.04
Windsor Housing 4 546 11 0.747 0.726 0.009 0.08

Bankruptcy 2 1090 11 0.500 0.877 0.003 0.08

Table 2. Misclassification rate averaged over twenty trials; MNP = Most Nonmonotone
Parent, BF = Best Fix, BF-LNO = Best Fix with Least Number of Observations tie
breaker

Dataset Standard Default MNP BF BF-LNO
AdInc 0.263 0.263 0.260 0.261 0.260
AusCr 0.146 0.146 0.147 0.146 0.146
BosHou 0.331 0.332 0.335 0.336 0.330
CpuPerf 0.394 0.406 0.391 0.388 0.388
DenBHou 0.181 0.191 0.190 0.181 0.181
WindHou 0.531 0.534 0.534 0.533 0.536

Bankr 0.225 0.224 0.223 0.223 0.223
Total 2.071 2.096 2.080 2.068 2.064

For all data sets we follow the same procedure. The data sets are randomly
partitioned into a training set (half of the data), a test set (a quarter of the
data) and a validation set (also a quarter of the data). This is done twenty
times. Each of those times the training set is used to build a tree sequence with
the different algorithms considered, and for each algorithm the tree with the
lowest misclassification rate on the test set is selected. Subsequently, we test for
statistically significant differences in predictive accuracy between the methods
using the validation set. The results of these experiments are reported in table 2
and table 3.

The column labeled Standard contains the results of a standard CART-like
algorithm that we implemented. It uses cost-complexity pruning to create a
sequence of trees from which the one with the smallest error on the test set
is selected. The resulting trees may be either monotone or nonmonotone. The
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Table 3. Tree size averaged over twenty trials; MNP = Most Nonmonotone Parent,
BF = Best Fix, BF-LNO = Best Fix with Least Number of Observations tie breaker

Dataset Standard Default MNP BF BF-LNO
AdInc 16.40 10.00 13.00 13.95 14.15
AusCr 4.05 3.55 3.95 4.6 4.60
BosHou 13.55 7.65 9.60 10.85 10.65
CpuPerf 15.80 7.40 10.35 10.50 10.50
DenBHou 4.80 2.55 3.75 3.65 3.65
WindHou 44.00 13.15 18.85 19.70 20.10

Bankr 9.15 7.10 8.45 6.65 6.75
Total 107.75 51.40 67.95 69.90 70.40

column Default was computed by taking the best monotone tree from the tree
sequence produced by the standard algorithm. The last three columns contain
the results of the different fixing methods discussed in section 4 combined with
the alternating pruning strategy.

From table 2 we conclude that the BF-LNO method performs best, even
better than the standard method. However, the differences are not statistically
significant: in a total of 140 experiments (20 per dataset) the standard method
was significantly better 2 times and significantly worse 1 time, at the 5% level.
The default method performs worst, but, again, this is not statistically signifi-
cant: the standard method is significantly better only once. The slightly worse
performance of the default method can be explained by looking at table 3, which
contains the tree sizes measured in number of leafs. We see that the trees pro-
duced by the default method are somewhat smaller than the trees produced by
the MNP, BF and BF-LNO methods: it seems that the default method slightly
overprunes. More importantly, we see that the trees produced by the standard
method are much larger than the trees produced by the other methods. To take
an extreme example: on the Windsor housing data set the standard algorithm
produces trees with an average of 44 leaf nodes, against an average of 13.15 for
the default method, and an average of 18.85 for the MNP heuristic.

Table 4. Average misclassification rate and tree size of all artificial data sets per
ratio of nonmonotonicity. The column Frac. Mon. gives the fraction of monotone trees
generated by the standard algorithm.

NmRat Standard Frac. Mon. Default MNP BF BF-LNO
0 0.096 / 6.0 0.775 0.103 / 5.3 0.102 / 5.6 0.103 / 5.5 0.101 / 5.6

0.05 0.163 / 6.1 0.825 0.164 / 5.5 0.165 / 5.6 0.168 / 5.4 0.167 / 5.4
0.20 0.324 / 5.5 0.850 0.321 / 4.6 0.320 / 4.7 0.324 / 4.6 0.324 / 4.6
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Table 4 summarizes the results of our experiments with the artificial data
sets. Each artificial data set was generated by making random draws from a pre-
specified tree model. The results were averaged along the dimensions number
of class labels (2 and 4), number of observations (100 and 500), and twenty
random partitions into training and test data. We generated data sets with
differing degrees of nonmonotonicity (0, 0.05 and 0.2 respectively). As with the
real life data, the differences between the predictive accuracy of the different
fixing heuristics are not significant. Furthermore, we conclude that the predictive
accuracy of the standard trees and the monotone trees is comparable.

Also note that the performance of the different methods is comparable for all
levels of nonmonotonicity considered. More detailed results (not presented here),
show that the relative performance is not affected by the other characteristics
(the size of the data set and the number of class labels) either. Hence, we conclude
that the proposed methods are quite robust.

Another interesting, perhaps somewhat counterintuitive observation is that
the fraction of monotone trees produced by the standard algorithm seems to
increase with the nonmonotonicity ratio. An attempt to explain this in terms of
average tree size is not entirely satisfactory, even though the trees at NmRat =
0.20 are somewhat smaller than the trees constructed from completely monotone
data. A final observation is that on all real life and artificial data sets, the fixing
methods at most had to be applied once, namely to the initial tree. This means
that, although we described the algorithm as an alternation of fixing and pruning
steps, it turns out that in practice no fixing steps were required once a monotone
tree had been constructed.

6 Conclusions and Future Research

We have presented a number of fixing methods, that make a non-monotone
tree monotone by pruning towards a monotone subtree. We have shown that
these fixing methods can be combined with cost-complexity pruning to obtain
a sequence of monotone trees. The performance of the new algorithms has been
evaluated through experimental studies on artificial as well as real life data sets.
We conclude that in terms of predictive performance the monotone trees are
comparable to the trees produced by the standard algorithm; however, they are
considerably smaller.

We summarize the strong points of our pruning based methods as we see
them. First of all, the methods proposed are guaranteed to produce a monotone
tree. Secondly, the algorithm works on nonmonotone as well as monotone data
sets and therefore has no problems with noisy data. Thirdly, for the problems
considered the monotone trees predict slightly, though not significantly, better
than the standard trees. Finally, the monotone trees are much smaller than those
produced by the standard algorithm.

We see a number of issues for further research. In this study we only applied
the the strategy that alternates between pruning and fixing, as presented in
section 4. We intend to investigate the other options that we described there.
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Preliminary experiments suggest however, that the differences in performance
are negligible. Another issue for further research is to extend our work in a
different direction. Currently, our algorithm can only be applied to problems for
which there is a monotonicity constraint on all variables. For many problems
this requirement is too strong: usually there are one or more variables for which
the constraint does not apply. We intend to extend the algorithm to handle
such cases. Yet another interesting extension would be to consider monotone
regression trees. In fact, some data sets we used in the experiments are more
naturally analysed with regression trees, for example the housing data.

Finally, it seems worthwhile to further investigate the relation between the
degree of nonmonotonicity of the data and the fraction of monotone trees gen-
erated by a standard algorithm.

Acknowledgements. The authors would like to thank Paul Pompe for the kind
donation of the bankruptcy data set, and Eelko Penninkx for helpful suggestions
on earlier drafts of this paper.

References

1. Arie Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19:29–43, 1995.

2. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Re-
gression Trees (CART). Wadsworth, 1984.

3. C.L. Blake and C.J. Merz. UCI repository of machine learning databases
[http://www.ics.uci.edu/∼mlearn/mlrepository.html], 1998.

4. Jan C. Bioch and Viara Popova. Monotone decision trees and noisy data. ERIM
Report Series Research in Management, ERS-2002-53-LIS, 2002.

5. Jan C. Bioch and Viara Popova. Induction of ordinal decision trees: an MCDA
approach. ERIM Report Series Research in Management, ERS-2003-008-LIS, 2003.

6. Kim Cao-Van and Bernard De Beats. Growing decision trees in an ordinal setting.
Submitted to International Journal of Intelligent Systems, 2002.

7. H.A.M Daniels and M. Velikova. Derivation of monotone decision models from
non-monotone data. Technical Report 2003-30, Center, Tilburg University, 2003.

8. A.J. Feelders. Prior knowledge in economic applications of data mining. In D.A.
Zighed, J. Komorowski, and J. Zytkow, editors, Principles of Data Mining and
Knowledge Discovery, Lecture Notes in Artificial Intelligence 1910, pages 395–400.
Springer, 2000.

9. Gary Koop. Analysis of Economic Data. John Wiley and Sons, 2000.
10. Kazuhisa Makino, Takashi Susa, Hirotaka Ono, and Toshihide Ibaraki. Data anal-

ysis by positive decision trees. IEICE Transactions on Information and Systems,
E82-D(1), 1999.

11. R. Potharst and J.C. Bioch. A decision tree algorithm for ordinal classification.
In D.J. Hand, J.N. Kok, and M.R. Berthold, editors, Advances in Intelligent Data
Analysis, Lecture Notes in Computer Science 1642, pages 187–198. Springer, 1999.

12. R. Potharst and J.C. Bioch. Decision trees for ordinal classification. Intelligent
Data Analysis, 4(2):97–112, 2000.

13. Rob Potharst and Ad Feelders. Classification trees for problems with monotonicity
constraints. SIGKDD Explorations, 4:1–10, 2002.



12 A. Feelders and M. Pardoel

14. Paul P.M. Pompe. New developments in bankruptcy prediction. PhD thesis, Uni-
versity of Twente, 2001.

15. Rob Potharst. Classification using Decision Trees and Neural Nets. PhD thesis,
Erasmus University Rotterdam, 1999.


	Introduction 
	Monotone Classification 
	Previous Research 
	Pruning Towards Monotone Trees 
	Experimental Evaluation 
	Conclusions and Future Research 

