
High Degree Vertices and Eigenvalues in the

Preferential Attachment Graph

Abraham Flaxman�1, Alan Frieze��1, and Trevor Fenner2

1 Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

abie@cmu.edu, alan@random.math.cmu.edu
2 School of Computer Science

Birkbeck College, University of London
Malet Street, London WC1E 7HX

trevor@dcs.bbk.ac.uk

Abstract. The preferential attachment graph is a random graph formed
by adding a new vertex at each time step, with a single edge which
points to a vertex selected at random with probability proportional to its
degree. Every m steps the most recently added m vertices are contracted
into a single vertex, so at time t there are roughly t/m vertices and
exactly t edges. This process yields a graph which has been proposed as
a simple model of the world wide web [BA99]. For any constant k, let
∆1 ≥ ∆2 ≥ · · · ≥ ∆k be the degrees of the k highest degree vertices.
We show that at time t, for any function f with f(t) → ∞ as t → ∞,
t1/2

f(t)
≤ ∆1 ≤ t1/2f(t), and for i = 2, . . . , k, t1/2

f(t)
≤ ∆i ≤ ∆i−1 − t1/2

f(t)
,

with high probability (whp). We use this to show that at time t the
largest k eigenvalues of the adjacency matrix of this graph have λk =
(1 ± o(1))∆

1/2
k whp.

1 Introduction

Recently there has been much interest in understanding the properties of real-
world large-scale networks such as the structure of the Internet and the World
Wide Web. For a general introduction to this topic, see Bollobás and Rior-
dan [BR02], Hayes [Hay00], or Watts [Wat99]. One approach is to model these
networks by random graphs. Experimental studies by Albert, Barabási, and
Jeong [ABJ99], Broder et al [BKM+00], and Faloutsos, Faloutsos, and Faloutsos
[FFF99] have demonstrated that in the World Wide Web/Internet the propor-
tion of vertices of a given degree follows an approximate inverse power law i.e.
the proportion of vertices of degree k is approximately Ck−α for some constants
C, α. The classical models of random graphs introduced by Erdős and Renyi
[ER59] do not have power law degree sequences, so they are not suitable for
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modeling these networks. This has driven the development of various alternative
models for random graphs.

One approach to remedy this situation is to study graphs with a prescribed
degree sequence (or prescribed expected degree sequence). This is proposed as
a model for the web graph by Aiello, Chung, and Lu in [ACL00]. Mihail and
Papadimitriou also use this model [MP02] in their study of large eigenvalues, as
do Chung, Lu, and Vu in [CLV].

An alternative approach, which we will follow in this paper, is to sample
graphs via some generative procedure which yields a power law distribution.
There is a long history of such models, outlined in the survey by Mitzenmacher
[Mit01]. We will use the preferential attachment model to generate our random
graph. The preferential attachment random graph has been the subject of re-
cently revived interest. It dates back to Yule [Yul25] and Simon [Sim55]. It was
proposed as a model for the web by Barabási and Albert [BA99], and their de-
scription was elaborated by Bollobás, Riordan, Spencer, and Tusnády [BRST01]
who proved that the degree sequence does follow a power law distribution. Bol-
lobás and Riordan obtained several additional results regarding the diameter
and connectivity of such graphs [BR]. We use the generative model of [BRST01]
(see also [BR02]) and build a graph sequentially as follows:

– At each time step t, we add a vertex vt, and we add an edge from vt to some
other vertex u, where u is chosen at random according to the distribution:

Pr[u = vi] =

{
dt(vi)
2t−1 , if vi �= vt;
1

2t−1 , if vi = vt;

where dt(v) denotes the degree of vertex v at time t. This means that each
vertex receives an additional edge with probability proportional to its current
degree. The probability of choosing vt (and forming a loop) is consistent with
this, since we’ve already committed “half” an edge to vt and are deciding
where to put the other half.

– For some constant m, every m steps we contract the most recently added m
vertices to form a supervertex.

Let Gm
t denote the random graph at time step t with contractions of size m.

Note that contracting each set of vertices {im + 1, im + 2, . . . , (i + 1)m} of G1
t

yields a graph identically distributed with Gm
t .

It is worth mentioning that there are several alternative simple models for
the World Wide Web and for general power law graphs. A generalization of the
preferential attachment model is described by Drinea, Enachescu, and Mitzen-
macher in [DEM01], and degree sequence results analogous to [BRST01] are
proved for this model by Buckley and Osthus in [BO01]. A completely different
generative model, based on the idea that new webpages are often consciously or
unconsciously copies of existing pages, is developed by Kleinberg et al and Ku-
mar et al in [KKR+99], [KRRT99], [KRR+00b], [KRR+00a]. Cooper and Frieze
analyze a model combining these approaches in [CF01].
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The results in previous papers on preferential attachment graphs concern low
degree vertices. For example the results in [BRST01] concern degrees up to t1/15.
Our firt theorem deals with the highest degree vertices:

Theorem 1. Let m and k be fixed positive integers, and let f(t) be a function
with f(t) → ∞ as t → ∞. Let ∆1 ≥ ∆2 ≥ · · · ≥ ∆k denote the degrees of the k
highest degree vertices of Gm

t . Then

t1/2

f(t))
≤ ∆1 ≤ t1/2f(t)

and for i = 2, . . . , k,
t1/2

f(t)
≤ ∆i ≤ ∆i−1 − t1/2

f(t)
,

whp3.

The next theorem relates maximum eigenvalues and maximum degrees. It mir-
rors results of Mihail and Papadimitriou [MP02] and Chung, Liu and Vu [CLV]
for fixed degree expectation models and at a high level, the proof follows the
same lines as these two papers. Experimentally, a power law distribution for
eigenvalues was observed in “real-world” graphs in [FFF99].

Theorem 2. Let m and k be fixed positive integers, and let f(t) be a function
with f(t) → ∞ as t → ∞. Let λ1 ≥ λ2 ≥ · · · ≥ λk be the k largest eigenvalues of
the adjacency matrix of Gm

t . Then for i = 1, . . . , k we have λi = (1 ± o(1))∆1/2
i

whp.

Our proofs of these theorems require two lemmas.

Lemma 1. Let dm
t (s) denote the degree of vertex s in Gm

t . Then for any positive
integer k,

E
[
(dm

t (s))k
]
≤ 8mk2k6

(
t

s

)k/2

.

To simplify the exposition, we speak of a supernode, which is simply a col-
lection of vertices viewed as one vertex. So the degree of a supernode is the sum
of the degrees of the vertices in the supernode, and an edge is incident to a
supernode if it is incident to some vertex in the supernode.

Lemma 2. Let S = (S1, S2, . . . , S�) be a collection of disjoint supernodes, and
let pS(r;d, t0, t) denote the probability that each supernode Si has degree ri + di

at time t conditioned on dt0(Si) = di. Let d =
∑�

i=1 di and r =
∑�

i=1 ri. If
d = o(t1/2) and r = o(t2/3), then

pS(r;d, t0, t) ≤
(

�∏
i=1

(
ri + di − 1

di − 1

))(
t0 + 1

t

)d/2

exp
{

2 + t0 − d

2
+

2r

t1/2

}
.

In the next section we prove Theorems 1 and 2. The proofs of Lemmas 1 and
2 are too long to fit in here and we leave them for the final version.
3 In this paper an event E is said to hold with high probability (whp) if Pr[E ] → 1 as

t → ∞.
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2 Proof of Theorems

2.1 Proof of Theorem 1

We partition the vertices into those added before time t0, before t1, and after t1
and argue about the maximum degree of vertices in each set. Here

t0 = log log log f(t) and t1 = log log f(t).

We break the proof of Theorem 1 into 5 Claims.

Claim. In Gm
t the degree of the supernode of vertices added before time t0 is at

least t
1/3
0 t1/2 whp.

Proof Let A1 denote the event that the supernode consisting of the first t0
vertices has degree less than t

1/3
0 t1/2. We bound the probability of this event

using Lemma 2 with � = 1. Since at time t0 the supernode of all vertices added
by this time has all of the edges, we take d = d1 = 2t0. Then

Pr[A1] ≤
t
1/3
0 t1/2−2t0∑

r1=0

(
r1 + 2t0 − 1

2t0 − 1

)(
t0 + 1

t

)d/2

e2+t0−d/2+2r/t1/2

≤ (t1/3
0 t1/2)

(t1/3
0 t1/2)2t0−1

(2t0 − 1)!

(
t0 + 1

t

)t0

e2+t0+2t
1/3
0

≤ t
2t0/3
0

e2t0−1

(2t0 − 1)2t0−1
(t0 + 1)t0e2+t0+2t

1/3
0

≤ e3t0+2t
1/3
0 +2

(2t0 − 1)t0/3−1

= o(1).

�
Claim. In Gm

t no vertex added after time t1 has degree exceeding t−2
0 t1/2 whp.

Proof Let A2 denote the event that some vertex added after time t1 has degree
exceeding t−2

0 t1/2. Then we have

Pr[A2] ≤
t∑

s=t1

Pr[dt(s) ≥ t−2
0 t1/2] =

t∑
s=t1

Pr
[
(dt(s))

3 ≥
(
t−2
0 t1/2

)3
]

≤
t∑

s=t1

t60t
−3/2E[dt(s)3]

Using Lemma 1 this bound becomes

Pr[A2] ≤
t∑

s=t1

t60t
−3/28m32729

(
t

s

)3/2

= m32735t60

t∑
s=t1

s−3/2

≤ m32736t60t
−1/2
1 = o(1).

�
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Claim. In Gm
t no vertex added before time t1 has degree exceeding t

1/6
0 t1/2 whp.

Proof Let A3 denote the event that some vertex added before t1 has degree
exceeding t

1/6
0 t1/2. Then by using Lemma 1 for a third moment argument as

above we have

Pr[A3] ≤
t1∑

s=1

(t1/6
0 t1/2)−38m32729

(
t

s

)3/2

= m32732t
−1/2
0

t1∑
s=1

s−3/2 ≤ m32734t
−1/2
0 = o(1).

�

Claim. The k highest degree vertices of Gm
t are added before time t1 and have

degree ∆i bounded by t−1
0 t1/2 ≤ ∆i ≤ t

1/6
0 t1/2 whp.

Proof

(Upper bound on ∆i) By Claim 2, all vertices added after time t1 have degree
at most t−2

0 t1/2 whp. Combining this with Claim 3 we have ∆1 ≤ t
1/6
0 t1/2

whp.
(Lower bound on ∆i) The conditions from Claims 1,2, and 3 imply the lower

bound. To see this, suppose the conditions of these claims are satisfied, but
assume for contradiction that at most k − 1 vertices added before t1 have
degree exceeding t−1

0 t1/2. Then the total degree of vertices added before t0

is less than k(t1/6
0 t1/2) + t0(t−1

0 t1/2) ≤ 2kt
1/6
0 t1/2. But this contradicts the

condition of Claim 1, which says the total degree of vertices added before t0
at least t

1/3
0 t1/2.

(Added before t1) By Claim 2 all vertices added after time t1 have degree
at most t−2

0 t1/2 whp. So the lower bound on ∆i shows the k highest degree
vertices are added before time t1 whp.

�

Claim. The k highest degree vertices of Gm
t have ∆i ≤ ∆i−1 − t1/2/f(t) whp.

Proof Let A4 denote the event that there are 2 vertices among the first t1
with degrees exceeding t−1

0 t1/2 and within t1/2/f(t) of each other.
Let p�,s1,s2 = Pr[dt(s1) − dt(s2) = � | A3], for |�| ≤ √

t/f(t). Then

Pr[A4 | A3] ≤
∑

1≤s1<s2≤t1

t1/2/f(t)∑
�=−t1/2/f(t)

p�,s1,s2 .
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Since

p�,s1,s2 ≤
t
1/6
0 t1/2∑

r1=t−1
0 t1/2

2t1∑
d1,d2=1

p(s1,s2)((r1, r1 − �); (d1, d2), t1, t)

≤ t
1/6
0 t1/2

2t1∑
d1,d2=1

(
2t

1/6
0 t1/2

d1 − 1

)(
2t

1/6
0 t1/2

d2 − 1

)(
t1 + 1

t

)(d1+d2)/2

et0+2+2t
1/6
0

≤ t
1/6
0 t1/2

2t1∑
d1,d2=1

(
2t

1/6
0 t1/2

)d1+d2−2

(t1 + 1)2t1t−(d1+d2)/2e3t0

≤ t
1/6
0 (2t1)224t1t

2t1/3
0 (t1 + 1)2t1e3t0t−1/2

= o(t−2
1 t−1/2f(t)),

we have

Pr[A4 | A3] ≤
∑

1≤s1<s2≤t1

t1/2/f(t)∑
�=−t1/2/f(t)

p�,s1,s2 = o(1).

So

Pr[A4] = Pr[A4 | A3] Pr[A3]+Pr[A4 | A3] Pr[A3] ≤ Pr[A3]+Pr[A4 | A3] = o(1).

�

2.2 Proof of Theorem 2

We partition the vertices into 3 sets; let Si be the vertices added after time ti−1

and at or before time ti, for

t0 = 0, t1 = t1/8, t2 = t9/16, t3 = t.

To reduce the number of subscripts necessary, we use G to denote the graph Gt.
For any graph H , we let MH denote the adjacency matrix of H , and we

let λi(H) denote the i-th largest eigenvalue of MH . We will use the identity
(Rayleigh’s Principle)

λi(H) = min
L

max
v∈L,v �=0

vT MHv

vT v
(1)

where L ranges over all (n−i+1)-dimensional subspaces of R
n. (See, for example,

[Str88]).
Our approach, as in [MP02], [CLV], is to show that whp G contains a star

forest F with stars of degree asymptotic to the maximum degree vertices of G.
Then we will show G \ F has small eigenvalues, and conclude that the large
eigenvalues of G cannot be too different from the large eigenvalues of F .

To do this, we need reasonable bounds on the degrees and codegrees in G.
Recall that dm

s (r) is the degree at time s of the vertex added at time r with
contractions of size m.
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Claim. For any ε > 0 and any f(t) with f(t) → ∞ as t → ∞ the following holds
whp: for all s with f(t) ≤ s ≤ t, for all vertices v ∈ Gm

s , if v was added at time
r, then dm

s (v) ≤ s1/2+εr−1/2.

Proof We use Lemma 1 and the union bound. Let � = �3/ε	.

Pr


 t⋃

s=f(t)

s⋃
r=1

{dm
s (r) ≥ s1/2+εr−1/2}




≤
t∑

s=f(t)

s∑
r=1

Pr[dm
s (r) ≥ s1/2+εr−1/2]

=
t∑

s=f(t)

s∑
r=1

Pr[(dm
s (r))� ≥

(
s1/2+εr−1/2

)�

]

≤
t∑

s=f(t)

s∑
r=1

s−�(1/2+ε)r�/2E[(dm
s (r))�]

≤
t∑

s=f(t)

s∑
r=1

s−�(1/2+ε)r�/28m�2�6(s/r)�/2

= 8m�2�6
t∑

s=f(t)

s1−ε�.

Since � ≥ 3/ε,

t∑
s=f(t)

s1−ε� ≤
∫ ∞

f(t)−1

x1−ε�dx =
1

ε� − 2
(f(t) − 1)2−ε� = o(1).

�

Claim. Let S′
3 be the set of vertices in S3 which are adjacent to more than 1

vertex of S1 in G. Then |S′
3| ≤ t7/16 whp.

Proof Let B1 be the event that the conditions of Claim 2.2 hold with f(t) = t2
and ε = 1/16. Then for a vertex v ∈ S3 added at time s,

Pr[|N(v) ∩ S1| ≥ 2 | B1] ≤
(

m

2

)(
s1/2+εt1
2s − 1

)2

≤ m2s−7/8t1/4.

Let X denote the number of v ∈ S3 adjacent to more than 1 vertex of S1. Then

E[X | B1] ≤
t∑

s=t2+1

m2s−7/8t1/4 ≤ m2t1/4

∫ t

t2

x−7/8dx ≤ 8m2t3/8.
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We finish the claim with Markov’s inequality,

Pr[X ≥ t7/16 | B1] ≤ E[X | B1]/t7/16 = o(1).

�
Now, let F ⊆ G be the star forest consisting of edges between S1 and S3 \S′

3.

Claim. Let ∆1 ≥ ∆2 ≥ · · · ≥ ∆k denote the degrees of the k highest degree
vertices of G. Then λi(F ) = (1 − o(1))∆1/2

i whp.

Proof Let H be the star forest H = K1,d1 ∪ K1,d2 ∪ · · · ∪ K1,dk
, with

d1 ≥ d2 ≥ · · · ≥ dk. Then for i = 1, . . . , k, λi(H) = d
1/2
i . So it is sufficient to

show that ∆i(F ) = (1 − o(1))∆i(G) for i = 1, . . . , k.
Claim 2.1 shows that the k highest degree vertices of G are added before

time t1, so these vertices are all in F . The only edges to these vertices that are
not in F are those added before time t2 and those incident to S′

3. By Theorem
1 we have ∆1(Gm

t2 ) ≤ t
7/9
2 = t7/16 and, also by Theorem 1, ∆i(G) ≥ t1/2/ log t

for i = 1, . . . , k, whp. Claim 7 says that whp |S′
3| ≤ t7/16, and so whp

∆i(F ) ≥ ∆i(G) − t7/16 − mt7/16 = (1 − o(1))∆i(G).

�
Let H = G \F . We complete the proof of Theorem 2 by showing that λ1(H)

is small.

Claim. λ1(H) ≤ 6mt15/64 whp.

Proof We bound the eigenvalues of H in 6 parts. Let

Hi = H [Si], Hij = H(Si, Sj),

where H [S] is the subgraph of H induced by the vertex set S, and H(S, T ) is
the subgraph containing only edges with one vertex in S and the other in T .

To bound λ1(Hi) we use the fact that the maximum eigenvalue of a graph is
at most the maximum degree of the graph. This is easily verified from (1).

We use Claim 6 with f(t) = t1 and ε = 1/64 to conclude that whp

λ1(H1) ≤ ∆1(H1) = max
v≤t1

{dm
t1 (v)} ≤ t

1/2+ε
1 = t33/512,

λ1(H2) ≤ ∆1(H2) ≤ max
t1≤v≤t2

{dm
t2 (v)} ≤ t

1/2+ε
2 t

−1/2
1 = t233/1024,

λ1(H3) ≤ ∆1(H3) ≤ max
t2≤v≤t3

{dm
t3 (v)} ≤ t

1/2+ε
3 t

−1/2
2 = t15/64.

To bound λ1(Hij), we begin by considering the case m = 1. Then, for i < j,
each vertex in Sj has at most 1 edge in Hij , so Hij is a star forest. As observed
in Claim 8, the eigenvalues of a star forest are directly related to the degrees of
the stars.
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When m > 1, we let G′ denote a preferential attachment graph with t edges
and m = 1. Recall that by contracting vertices {(i − 1)m + 1, . . . , im} into a
single vertex i, we obtain a graph identically distributed with G. There is a
simple representation of this observation in terms of linear algebra: we can write
the adjacency matrix of G in terms of the adjacency matrix of the graph G′:

MG = CT
mMG′Cm,

where Cm is the t × t/m matrix with i-th column

[ 0 · · · 0︸ ︷︷ ︸
(i−1)m

1 · · · 1︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
(t/m−i)m

]T .

Similarly, we can write the adjacency matrix of Hij in terms of the adjacency
matrix of H ′

ij using this “contraction matrix” Cm.
Note that for w = Cmv we have wT w = m(vT v). So

λ1(Hij) = max
v �=0

vT MHij v

vT v
= max

v �=0

vT CT
mMH′

ij
Cmv

vT v
= max

w : w=Cmv �=0
m

wT MH′
ij

w

wT w

≤ m max
w �=0

wT MH′
ij

w

wT w
= mλ1(H ′

ij).

We use Claim 6 with f(t) = t1 and ε = 1/64 as above to conclude that whp

∆1(H ′
12) = max

v≤t2
{d1

t2(v)} ≤ t
1/2+ε
2 = t297/1024

∆1(H ′
23) = max

t1≤v≤t3
{d1

t3(v)} ≤ t
1/2+ε
3 t

−1/2
1 = t29/64

Finally, all edges in H ′
13 are between S1 and S′

3, so Claim 7 shows that ∆1(H ′
13) ≤

t7/16 whp.
We now conclude that whp

λ1(Hij) ≤ mλ1(H ′
ij) ≤ m∆1(H ′

ij)
1/2 ≤ mt15/64,

and so whp

λ1(H) ≤
3∑

i=1

λ1(Hi) +
∑
i<j

λ1(Hij) ≤ 6mt15/64.

�
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