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Abstract. A mapping of unit vectors onto a 5D hypersphere is used
to model and partition ODFs from HARDI data. This mapping has a
number of useful and interesting properties and we make a link to in-
terpretation of the second order spherical harmonic decompositions of
HARDI data. The paper presents the working theory and experiments
of using a von Mises-Fisher mixture model for directional samples. The
MLE of the second moment of the HvMF pdf can also be related to frac-
tional anisotropy. We perform error analysis of the estimation scheme in
single and multi-fibre regions and then show how a penalised-likelihood
model selection method can be employed to differentiate single and mul-
tiple fibre regions.

1 Introduction

The directional dependence of diffusion of water molecules in brain white matter
is the basis of DWI and a widely adopted non-invasive method for elucidating
white matter fibre directions and, through tractography, inferring connectivity
between brain regions [1]. DWI involves the acquisition of a set of images, in a
small number of directions, and reconstructing the Gaussian diffusion by esti-
mating the diffusion tensor. For regions containing a bundle of fibres all oriented
in the same direction, the diffusion tensor model can characterise local apparent
diffusion with as few as 6 directions. In the regions where the fibres bifurcate,
cross or are adjacent to white-matter surfaces, the single tensor model is insuf-
ficient. High angular resolution diffusion imaging (HARDI) [2] can detect more
precisely the variation of diffusion along different directions. For a given (larger)
set of gradient directions, HARDI imaging can be analysed to produce samples
of a pdf of diffusion over the surface of a sphere – the radial marginal of the pdf
of the particle displacements. However, characterisation of the local geometry
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given such measurements, called the orientation distribution function or ODF,
is much less clear than in diffusion tensor imaging.

Frank [3] proposed the use of spherical harmonics (SH) to characterize the
local geometry of the diffusivity. A notable finding of his was that single fibre re-
gions show up in the 2nd order harmonics set: Y −2

2 , Y −1
2 , Y 0

2 , and Y 1
2 , Y 2

2 , whilst
the order 4 functions can add further information about multiple fibre regions.
He made proposals for the separation of these regions according to the promi-
nence of a particular channel. In this work, we show the relationship between
the projection of ODF samples on to the same basis set and that a particular
linear combinations of the second order projections are just components of the
rank tensor mapping. Thus a way to determine the principal diffusion direction
(PDD) when using SHs to model and reconstruct the HARDI data is revealed.

Since the ODF is a distribution function, a natural way to model it is by
pdfs. However, commonly used Gaussian models do not extend to the sphere
in a straightforward way because of the problem of “wrapping” of 3D angles
modulo π and 2π. McGraw [4] used the von Mises-Fisher (vMF) distribution to
parameterise the ODF. To capture the structure of multiple fibre voxels, they
fitted a mixture of vMF density functions with pairs of antipodal modes, with
directions {μ1, −μ1, μ2, −μ2}, and went on to give expressions for scalar metrics
of the parameterization (entropy), and distance metrics between pairs of mix-
tures using Riemannian Exp and Log maps for the purposes of interpolation. We
build on this work by considering only unimodal and bimodal mixtures through
a mapping of samples drawn from the ODF to a 5D representation which is free
from the ambiguities associated with sign flips of vectors direction in 3D. This
alleviates the need for introducing pseudo-modes into the fit. Such a represen-
tation of orientation was originally proposed by Knutsson [5] and has been used
for filtering and optical flow analysis in vision. Recently Rieger and van Vliet [6]
presented new insights into such orientation spaces and their properties. We
show that these properties are important to measurements in diffusion imaging.

2 Theory

2.1 Hyperspherical von Mises-Fisher Distributions (HvMF)

The von Mises-Fisher (vMF) is the analog of the Gaussian distribution on a
sphere and is parameterised by a principal direction (the mean direction μ) and a
concentration parameter, κ. These distributions extends to arbitrary dimensions,
p, though rarely are hyperspherical vMFs considered:

gp(x|μ, k) = c(κ)eκµT x, c(κ) =
κp/2−1

((2π)p/2Ip/2−1(κ))
, (1)

where the normalisation factor, c(κ), contains a Bessel function of the first kind
to a fractional order. gp is bell-shaped with the general form eb cos(ψ), where the
exponent will have the range [−b, b] and ψ is the angle difference between the
direction of the sample x and the mean direction μ. A set of vectors which point
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more or less in the same direction would have a vMF pdf which is unimodal and
symmetric around the mean direction. The relationship between the spread, b,
and the variance or second-moment of the samples is less straightforward and
non-linear. However, larger b values concentrate the probability mass around the
mean direction.

2.2 A Double-Angle Representation for 3D Orientation

In directional statistics, antipodal vectors are regarded as the same. This ambi-
guity is elegantly removed in 2D by angle doubling or, in general, by taking outer
products to form 2nd order tensors i.e. x → xxT where x = (x1, x2, x3) ∈ R

3.
The dimensionality of this space can be reduced by restricting the trace of this
tensor to be 1 to produce the 5D mapping [5,6]. In spherical polar coordinates,

M5(r, θ, φ) → r(s, t, u, v, w), (2)

s = sin2 θ cos 2φ, t = sin2 θ sin 2φ,

u = sin 2θ cosφ, v = sin 2θ sin φ, w =
√

3(cos2 θ − 1
3
).

Although not explained in [6], we cannot robustly solve for (θ, φ) given any
two coefficients in M5. To accurately invert the mapping therefore, we have to
reconstitute the implied tensor, xxT , and calculate the direction of its principal
eigen vector:

M−1
5 : r(s, t, u, v, w) → r(θ, φ), xxT =

⎛
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(3)

We note also that the above 5D mapping is equivalent to weighted amounts of
selected 2nd order spherical harmonic basis functions:

(s, t, u, v, w) = (
1
3
Y 2

2 , 8Y −2
2 ,

2
3
Y 1

2 , 4Y −1
2 ,

2√
3
Y 0

2 ). (4)

This is used below to estimate PDD directly from projections of HARDI samples.

2.3 Maximum Likelihood Estimates of HvMF Parameters

HvMF pdfs are parameterised by two parameters: the mean μ and the con-
centration parameter κ. These can be used to model the apparent diffusion of
homogeneous fibre regions.

Given a set of independent sample vectors, xi, i = 1..n, believed to be from
gp(x|μ, κ), the maximum likelihood estimate of the mean is obtained by the sum
of the vectors divided by the length of the sum. It can be shown that the MLE
of the concentration parameter, κ, is then obtained as follows:

r =
n∑
i

xi, μ̂ =
r

‖ r ‖ , κ̂ = A−1(R̄) ≈ R̄p − R̄3

1 − R̄2 , R̄ =
1
n

μ̂T r (5)
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where A(κ) = Ip/2(κ)/Ip/2−1(κ), is the ratio of modified Bessel functions of the
first kind to fractional orders (see Sra [7]).

2.4 Mixture Modelling: Fitting by EM and Model Selection

A HvMF mixture allows the modelling of more than one principal direction but
an algorithm such as Expectation Maximization (EM) is needed to perform the
parameter estimation. If we now assume that a set of samples, xi, i = 1...n, are
now drawn from a m-mode mixture distribution,

Gp(x|w, Θ) =
m∑
j

wjgp(x|Θj) (6)

with a convex set of weights,
∑m

j wj = 1 and each mode is parameterised by
Θj = {μj , κj}, then it can be shown that MLE for the mixture are given by the
update equations (abbreviating notation for brevity):

μ̂t+1
j =

∑n
i P t

ij κ̂
t
ijxi

‖
∑n

i P t
ij κ̂

t
jxi ‖ A(κ̂t+1

j ) =

∑n
i P t

ijx
T
i μt

j∑n
i P t

ij

ŵt+1
j =

1
n

n∑
i

P t
ij (7)

The posterior value at step t, P t
ij , is calculated in the usual way for an EM

algorithm from the expectation of the data, xi given the current weights and
parameter estimates, wj , Θ

t.
Given a MLE fit to the samples, a parsimonious way to determine what num-

ber of modes m is best, is to use a model selection criterion such as the Akaike
information criterion (AIC). The AIC is a number based on the log-likelihood of
the data penalised by the number of parameters used to model the distribution.
Thus, for the HvMF, for m modes, we have m(p + 2) parameters altogether
(remembering the mean is p-dimensional). To select the model, we minimize for
m

AIC(m) = −2
n∑
i

log Gp(xi|ŵ, Θ̂) + 2m(p + 2). (8)

For our purposes, only AIC(1) and AIC(2) need be compared to select between
single or multi-fibre regions.

2.5 Relationships Between Variance of ODF and a Measure of
Anisotropy

The ML estimate of variance of the transformed set of samples, Xi ∈ S
5, can

be used to characterise the anisotropy of the a Rank 1 tensor estimate. The ML
estimate of variance in S

5 is given by 1− R̄ (from equation 5). R̄ is the variation
along the mean μ, while the spread is the perpendicular projection of the vector
of length nR̄ along μ̂ (figure 1):

r = nR̄μ, var(X) =‖ I − rrT ‖ . (9)
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Fig. 1. This figure relates the common tensor diffusion model (left) with the mapping
from the ODF (middle) and the 5D orientation mapping (right). Notice we have the
ambiguity resulting from vectors in R

3 being used to describe diffusion. The reason this
is problematic is that diffusion requires a tensor quantity for its correct characterisation.
The sign problem is resolved in the 5D space where all the vectors are concentrated
around one direction.

We can define a modified fractional (FA) anisotropy related to standard FA:

FA =

√
3
2

‖ D − traceD
3 I ‖

‖ D ‖ , FA� =
‖

∑n
i xxT − λ1e1e

T
1 ‖

‖
∑n

i xxT ‖ . (10)

where ‖ . ‖ is the tensor norm. The geometric interpretation of FA� is that in
FA the average diffusion in all directions is removed from the tensor to make it
traceless, whereas only the diffusion in the principal direction, λ1eie

T
1 is taken

away in FA�. So, FA∗ will be larger than FA when λ1 � λ2, λ3 but smaller when
λ1 ≈ λ2, λ3

1.

3 Experiments and Discussion

We synthesized noisy ODFs from apparent diffusion of a tensor model with
S0 = 1 and b = 700 s/mm2 with the approximate q-ball reconstruction technique
outlined in [8]. These ODFs were then randomly sampled to give xi, i = 1..1024.
Then having used M5, we performed 10 iterations of EM according to the ML
update steps outlined above. In the illustrative results in figure 2 and the error
analyses (figure 2), we used the same number of modes (m) as the number of
synthesizing tensors used (ie. m = 1 or m = 2). For moderate SNR ratios, e.g.
SNR = 64, the fitting is robust. Error analysis for m = 1 indicates that even
in low SNRs the average estimation stays below 10o. For the two tensor case,
we plotted the minimum angle error between either principal axis and either
HvMF modal direction (4 possible correspondences are tried). The average of
the minimum and maximum errors, which is an upper bound on this error, was
then plotted.

We used HARDI data containing 120 gradient directions with b = 700s/mm2

for further experiments. The ML estimates of the M5 mean (of the HvMF eqn. 5)
was used to create a PDD map (by decomposing the reconstituted tensor eqn. 3).
1 � as it symbolises the spread of the vectors.
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Fig. 2. HvMF fitting to samples drawn from noisy single and two tensor diffusion
models (1024 samples used for EM estimation with SNR = 64dB). Tensor eccentricity
is fixed at (1, 1

3 , 1
3 ). Left figure depicts the single and muti-tensor voxels. Centre figure

shows vHMF pdfs as isosurface: xG(x|Θ). Right figure, angle errors plot between two
closest matching directions.

(a) (b) (c)

Fig. 3. Comparison of FA maps and PDDs obtained in different ways: (a) Standard FA
with PDD shown in colours from a tensor fit to data (roi region used used below); (b)
FA� produced using rank 1 spread measure (see equation 10); (c) FA from reconstituted
tensor given 2nd order spherical harmonic basis expansion. Data contains 120 HARDI
measurements (b is 700 s/mm2). Note the similarities of all three maps which are
obtained in different ways.

This map was weighted by the FA� and compared with coloured PDD and FA
obtained by a standard least-squares tensor fitting (figures 3(a) and (b)). The
resultant maps are indistinguishable other than, as expected, FA� being slightly
greater in isotropic regions. Figure 3(c) shows estimates of PDD and FA obtained
from HARDI data by the identity in equation 4. The HARDI measurements were
interpolated using a cosine weighting kernel and then integrated with the 2nd
order SH basis set, Y m

2 , by Monte Carlo integration. The coefficient images were
then combined and a tensor reconstituted using the inverse M5 mapping to yield
the PDD and FA. The results are identical to FA of a standard tensor fit.

The images in figure 4 show 3D visualisations of a region from 1 slice of
HARDI data showing the HvMF model selected fits to each voxel in comparison
with single tensor fitting near the ventricle boundary. Qualitatively the results
appear to be satisfactory but it is hard to judge whether the model selection is
sensible. The HvMF is detecting planar and isotropic diffusion but by generally
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(a) (b)

Fig. 4. Model selection by AIC on HvMF mixtures: (a) Single tensor estimates in small
region on white-matter/CSF boundary; (b) HvMF estimates in same boundary region
as in (a)

(a) (b) (c)

Fig. 5. (a) 2D synthetic example using vMF model selection (white=2) (yellow=1).
(b) Log-likelihood of unimodal fit of H-vMF. (c) Log-likelihood of bimodal fit of H-
vMF weighted by normalised squared difference in weights of two modal amplitudes
(see text).

under fitting the data and preferring bimodal fits over a unimodal fit with small
κ (note for κ = 0, the distribution is uniform). The AIC might be responsible
as it less severe at penalising free parameters than say the Bayesian Information
Criterion (BIC). It might be also that including a single parameter uniform
component, w0

4π , as part of the mixture to model will filter out the background
low probabilities. 2D synthetic data was proceed in figure 5 where each region
was labelled as either unimodal (yellow) or bimodal (white): all crossing regions
are correctly labelled white. In figures 5(a) and (b) the voxel log-likelihoods after
HvMF fitting are shown for the two cases. As expected, in (a), the fit is good in
places where the fibre bundles generally lie and the map resembles a map of FA.
In figure 5(b), we weighted the log-likelihood by the amplitudes of the normalised
squared difference between the two principal modes: (w0−w1)2/(w0+w1)2 which
will weight down those regions where their is a dominant mode. The results
show that complementary regions to (a) are favoured by the bimodal fitting.
Overall, the results indicate that some form of decision based selection may be
necessary for better discrimination than achieved here, as reported recently by
Peled et al. [9], if HvMF fitting was to be used in multi-tensor tractography.
Such investigations are on-going.
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4 Conclusions

We have described a probability model for high angular diffusion data. A 5D
orientation mapping which resolves the inherent ambiguities in describing di-
rectional samples on a sphere is employed. This enables us to describe general
ODFs in a natural and continuous way. In other words, we take advantage of the
tensor mapping that respects that diffusion is bidirectional without having to
resort to a Gaussian model. We also outlined the connection between spherical
harmonic analysis of HARDI samples and our orientation space and how PDD
calculations are equivalent. Our analyses indicate that this could be a fruitful
approach for partitioning single and multi-fibre diffusion from HARDI data.
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