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Abstract. This work gives new insight into two well-known approximation algo-
rithms for the uncapacitated facility location problem: the primal-dual algorithm
of Jain & Vazirani, and an algorithm of Mettu & Plaxton. Our main result answers
positively a question posed by Jain & Vazirani of whether their algorithm can be
modified to attain a desired “continuity” property. This yields an upper bound of
3 on the integrality gap of the natural LP relaxation of the k-median problem, but
our approach does not yield a polynomial time algorithm with this guarantee. We
also give a new simple proof of the performance guarantee of the Mettu-Plaxton
algorithm using LP duality, which suggests a minor modification of the algorithm
that makes it Lagrangian-multiplier preserving.

1 Introduction

Facility location problems have been widely studied in both the operations research
and computer science literature We consider the two most popular variants of facility
location: the k-median problem and the uncapacitated facility location problem (UFL).
In both cases, we are given a set C of clients who must be served by a set F of facilities,
and distances c;; for all 4,5 € F UC. When i € F and j € C, ¢;; is the cost of
serving client j from facility . We assume that these distances form a semi-metric; that
is, ¢i; = ¢ji, and ¢; < ;5 + ¢ forall 4, 5, k € FUC. The goal is to open some subset
of facilities S C F in order to minimize the total connection cost of serving each client
from its closest facility, subject to some limitations on .S. Whereas k-median imposes
the hard constraint |\S| < k, in UFL we have facility costs f; for all i € F, and we aim
to minimize the sum of the facility and connection costs.

Both problems are NP-hard, so we are interested in obtaining approximation algo-
rithms. An a-approximate solution is one whose objective function is within a factor of
« of the optimal solution. An a-approximation algorithm is one that runs in polynomial
time and always returns an a-approximate solution. One primary theme of this line of
research is to exploit a classical linear programming (LP) relaxation of the problem,
initially proposed by Balinski [4]. We contribute to this vein by shedding new light on
two existing UFL algorithms, the primal-dual algorithm of Jain & Vazirani (JV) [[15],
and the algorithm of Mettu & Plaxton (MP) [21].
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We show that the JV algorithm can be made "continuous," resolving a question
posed in [15]]. Because of their results connecting the k-median and UFL problems via
Lagrangian relaxation, our result proves that the integrality gap of the most natural LP
relaxation for k-median is at most 3, improving the previous best upper bound of 4 [[7].
Since our algorithm involves solving the NP-hard maximum independent set problem,
it does not lead directly to a polynomial-time 3-approximation algorithm; nonetheless,
we believe that it is a significant step in that direction.

Mettu & Plaxton [21] prove that their algorithm achieves an approximation factor of
3, but their analysis never explicitly mentions an LP. Because the MP and JV algorithms
appear superficially to be very similar and both achieve a factor of 3, many researchers
wondered whether there was a deeper connection. We exhibit a dual solution that proves
the MP primal solution is within a factor of 3 of the LP optimum. Interpreting their
algorithm within an LP framework yields an additional benefit: it highlights that a slight
modification of MP also satisfies the Lagrangian-multiplier preserving (LMP) property,
which was not previously known. We note that P4l & Tardos independently constructed
the same dual solution for use in creating cross-monotonic cost-sharing methods for
facility location in a game-theoretic context [22].

The UFL problem has been studied from many perspectives since the 1960’s, but the
first approximation algorithm was given much later by Hochbaum [13], who achieved
an O(log|C|) factor using a method based on greedy set cover. Shmoys, Tardos &
Aardal [23]], gave the first constant factor of 3.16. A series of papers have improved this
to 1.52, by Mahdian, Ye & Zhang [19]. In the process, many and varied techniques have
been brought to bear on the problem, and the insights gained have been applied elsewhere.
Most prominent among the algorithmic and analytical techniques used have been LP
rounding, filtering, various greedy algorithms, local search, primal-dual methods, cost-
scaling, and dual fitting [[7I9/T2/T4115/1712324]. Guha & Khuller [12] showed that UFL
cannot be approximated to a factor better than 1.463 unless P = N P.

K -median seems to be more difficult. The best hardness bound known is 1 + % [14],
and the standard LP relaxation has an integrality gap of at least 2. Lin & Vitter [18]
gave a constant-factor bicriterion approximation algorithm, and Bartal [56] achieved a
near-logarithmic factor via probabilistic tree-embeddings, but the first constant factor of
6% was given by Charikar, Guha, Tardos & Shmoys [8], who used LP rounding. This
factor was improved to 6 by Jain & Vazirani [[13], 4 by Charikar & Guha [[7]], and (3 +¢)
by Arya et al. [3]. The factor of 4 is attained via a refinement of the work of Jain &
Vazirani, while the (3 + ¢) is completely different, using local search.

Basic economic reasoning shows a connection between UFL and k-median. Consider
a uniform facility cost z in the UFL. When z = 0, the best solution opens all facilities.
As z increases from zero, the number of open facilities in the optimal solution decreases
monotonically to one. Suppose some value of z causes the optimal UFL solution to open
exactly k facilities S. Then S is also the optimal k£-median solution.

Jain & Vazirani [15] exploit this relationship by interpreting the standard LP re-
laxation of UFL as the Lagrangian relaxation of the LP for k-median. Their elegant
primal-dual UFL algorithm achieves a guarantee of 3, and also satisfies the LMP prop-
erty. They then show how to convert any LMP algorithm into an approximation algorithm
for k-median while losing an additional factor of 2 in the guarantee. More importantly
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for us, they show that the solution S output by their UFL algorithm is a 3-approximate so-
lution for the |.S|-median problem. Thus, if one can find, in polynomial time, a value of z
such that the JV algorithm opens exactly £ facilities, this constitutes a 3-approximation
algorithm for the k-median problem. Sadly, there are inputs for which no value of z
causes the JV algorithm (as originally stated) to open exactly k facilities.

We modify the JV algorithm to attain the following continuity property. Consider the
solution S(z) output by the algorithm, as a function of the uniform facility cost z. As z
changes, we ensure that |.S(z)| never jumps by more than 1. Since the algorithm opens
all facilities when z = 0 and only one when z is sufficiently large, there is some value
for which it opens exactly k. By standard methods (either binary search or Megiddo’s
parametric search [20]), we can find the desired value using a polynomial number of
calls with different values of z. This appears to answer the question posed in [[I5].
Unfortunately, our algorithm involves finding maximum independent sets, which is NP-
hard. This leaves the open question of whether one can achieve a version of JV that has
the continuity property and runs in polynomial time.

There are two rays of light. First, our algorithm does prove that the integrality gap
of the standard k-median LP is at most 3. This was not known before, and it is novel
because most proofs that place upper bounds on the integrality gaps of LP relaxations
rely on polynomial-time algorithms. (For an interesting exception to this rule, see [2].)
Second, it is enough to compute maximal independent sets that are continuous with
respect to certain perturbations of the graph. The only types of sets that we know to be
continuous are maximum independent sets, but we are hopeful that one could compute,
in polynomial time, some other type of continuous maximal independent set.

2 Ensuring Continuity in Jain-Vazirani

The JV algorithm for UFL is based on the following standard LP relaxation for the
problem (originally proposed by Balinski [4]), and its dual.

Primal LP: Dual LP:

min o fivi+ YD cijx max >
ieF ijeFxC jec

suchthat: ) z;; =1 VjeCl suchthat: > w;; < f; VieF
ieF jec
y,foZOVZ]GTXC vj—wijgcijVijG}'xC
yi,xijZO VZ]G}-XC vj7wij20 VZ]G]‘-XC

Adding constraints y;, ;; € {0, 1} gives an exact IP formulation. The variable y; indi-
cates whether facility ¢ is open, and x;; says whether client j is connected to facility 7.
Intuitively, v; is the total amount of money that client j is willing to pay to be served:
wj; 18 its share towards the cost of facility 4, and the rest pays for its connection cost.
The JV algorithm operates in two phases. Phase I consists of growing the dual
variables, maintaining dual feasibility, and gradually building a primal solution until

"' The class of perturbations needs to be defined carefully; an earlier version of this abstract
proposed one that was more general than necessary, and implied that the only possible realization
of this approach required a maximum independent set.
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that solution is feasible. Phase II is a cleanup phase in which we keep only a subset of
the facilities opened in phase 1. This results in the following theorem.

Theorem 1 (Jain-Vazirani 2001) The Jain-Vazirani facility location algorithm yields
a feasible integer primal solution and a feasible dual solution to the UFL LP, satisfying
C+3F<3 Zjec v; < 30PT, where OPT is the value of the optimal UFL solution.

We now describe the algorithm precisely but conceptually, motivating each step but
ignoring the implementation details. We envision dual and primal solutions changing
over time. At time zero, we set all primal and dual variables to zero, so the dual is
feasible and the primal is infeasible. Throughout phase I, we maintain dual feasibility
and work towards primal feasibility. We also enforce primal complementary slackness,
meaning that we never open a facility ¢ unless it is fully paid for by the dual variables
(i.e., 3°; wi; = f;) and we connect client j to facility ¢ only if v; = ¢;; + wyj, ie., j's
dual variable fully pays for connection cost and its share of facility 7’s cost.

We initially designate all clients as active, and raise their dual variables at unit rate.
Eventually, some edge ij goes tight, meaning that v; = c¢;5, i.e., client j’s dual variable
has completely paid for its connection cost to facility . We continue raising the v;
variables at unit rate for all active clients j, but now we must also raise the w;; cost
shares for all tight edges ¢5. Eventually, we pay for and open some facility ¢ when the
constraint » jWij < fi goes tight. Now we must freeze all of the cost shares w;; in
order to maintain dual feasibility, so we must also freeze the dual variable v; for every
client j with a tight edge to facility i. Fortunately, facility ¢ is now open, so we can assign
client j to be served by facility ¢ and declare it inactive. We refer to facility ¢ as client j’s
connecting witness. Conveniently, v; exactly pays for j’s connection cost plus its share
of facility 4’s cost, since v; = ¢;; + w;;. We continue in this manner. It can also occur
that an active client gains a tight edge to a facility that is already open. In this case, the
client is immediately connected to that facility. Phase I terminates when the last active
client is connected. If any combination of events is set to occur simultaneously, we can
break ties in an arbitrary order. Notice that the tiebreaking rule has no effect on the dual
solution generated.

At the end of phase I, we have some preliminary set Sy of open facilities. As we
have mentioned, the algorithm opens a facility only when the w;; variables fully pay for
it, and the v; variable for client j exactly pays for its connection cost plus its share of
the facility cost for its connecting witness. Then why is Sy not an optimal solution? It is
because some client may have contributed a non-zero cost share to some open facility
to which it is not connected. Thus, we must clean up the solution to avoid this problem.
In phase II, we select a subset of facilities S C Sy so that each client pays a positive
cost share to at most one open facility. Every client that has a tight edge to a facility
in S is said to be directly connected. Thus, the directly connected clients exactly pay
for their own connection costs and all of the facility costs. The trick is, each client j
that is not directly connected must still be connected to some facility ?. We obtain a
3-approximation algorithm if we can guarantee that c;; < 3v;.

Phase II proceeds as follows. We construct a graph G with vertices Sy, and include
an edge between ¢, k € Sy if there exists some client j such that w;;, wy; > 0. We must
select .S to be an independent set in G. Otherwise, some client j offered cost shares to
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two facilities in S, but it can afford to pay for only one. We might as well choose .S to be
a maximal independent set (meaning that no superset of S is also an independent set, so
every vertex in Sy — S is adjacent to a vertex in .S). For each client j that is not directly
connected, consider its connecting witness 4. Since ¢ ¢ .S, there must exist an adjacent
facility k£ € S, so we connect j to k. This completes the description of the algorithm.

In their original paper [16], Jain & Vazirani chose a particular set S, but in the
journal version, they modify their analysis to accommodate any maximal independent
set. Later, we will choose a maximum (cardinality) independent set, but for Theorem [
and the present discussion, any maximal independent set suffices.

The LMP property becomes important when we view the LP relaxation of UFL as the
Lagrangian relaxation of the standard LP relaxation of k-median. The k-median LP is
the same as the UFL LP, except there is no facility cost term in the objective, and we add
the constraint ) . y; < k. By Lagrangian relaxation, we mean to remove the cardinality
constraint, set a non-negative penalty parameter z, and add the term z(} _, y; — k) to the
objective function. This penalizes solutions that violate the constraint by opening more
than £ facilities, and gives a bonus to solutions that open fewer than k. Aside from the
constant term of —zk, this is precisely the same as the LP relaxation of UFL, setting all
facility costs to z. Notice that the objective function matches the true k-median objective
whenever exactly k facilities are opened. Thus, every feasible solution for the original
k-median LP is also feasible for its Lagrangian relaxation, and the objective function
value in the relaxation is no greater than in the original LP. Therefore, every dual feasible
solution for the Lagrangian relaxation provides a lower bound on the optimal k-median
solution. These observations lead to the following result in [[15].

Theorem 2 Suppose that we set all facility costs to z > 0, so that the JV algorithm
opens exactly k facilities. Then this is a 3-approximate k-median solution.

A bad example and how to fix it in general. We first give a well-known example
showing that the JV algorithm as described above does not satisfy the continuity property.
We then show that perturbing the input fixes this bad example. Our main result shows
that this trick works in general. Consider the metric space given by a star with i arms,
each of length 1. At the end of each arm there is one client j and one potential facility ;.
There is also one facility (called () located at the hub of the star. (See Figure[T] setting
alle; =0.)Whenz < 1+ ﬁ, each client completely pays for the facility located on
top of it by time z, while the hub facility has still not been paid for. Hence, G(z) consists
of these h facilities, with no edges between them. When z > 1+ ﬁ, the hub is opened
and all clients connected to it before time z, so G(z) has just one vertex, the hub. Thus,
|S(z)| jumps from h down to 1 at the critical value z = 1 + 2.

Now perturb the instance by an arbitrarily small amount, moving each client j out past
its nearby facility by an amount ¢; < 1, where 0 = ¢; < ... < €. Lete = 2?21 €55
andlet z; = Zf; . For z > z1, the hub facility is opened before any of the arm facilities,
so G(z) is just one isolated vertex. At the critical value z = 21, the hub facility is paid
for at exactly the same moment as facility 1. For slightly smaller values of z, facility 1
is paid for first, then the hub is opened before any other facility is paid for. Clearly, there
exist some z; > z3 > ... > zp > 0 such that when z € (z;41, 2;), facilities 1,... ;4
are opened before the hub in phase I, and facilities (¢ + 1), ... , h are not opened. For z
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Discontinuity Example

G(z) for varying values of z

z>7, 2,>2>127, 72,>72>72,

Fig. 1. Discontinuity example (with h = 5) and its perturbation.

in this range, G(z) consists of the hub facility with edges to facilities 1, . .. , 7, because
client 7 contributes toward the costs of both the hub and the open facility j,for 1 < 5 <.
For z € [0, z1,), G(z) contains just isolated vertices i1, . .. , ip.

Theorem [T holds no matter which maximal independent set we choose in phase II,
so let S(z) be a maximum independent set. When z € (z;11, 2;), S(z) consists of the ¢
facilities 1, . .. , 4. Thus, | S(z)| changes by at most one at each of the critical values. We
have made JV algorithm continuous by perturbing the input an arbitrarily small amount.
Our main result is that this trick always works.

We now give some definitions to make our claim precise. We also state our two
main results, Theorems 3 and[4] but prove them later. An event of the algorithm is the
occurrence that either an edge ij goes tight (because client j is active at time c;;) or
some facility becomes paid for in phase I. We say that an instance of the UFL problem
is degenerate if there is some time at which three or more events coincide, or there
are at least two points in time where two events coincide. An instance of the k-median
problem is degenerate if there exists some z > 0 that yields a degenerate UFL instance.
(For every non-trivial instance, it is easy to select z so that there is one time when two
events coincide.) Notice that an instance of the k-median problem simply consists of the
distances {c;; : ij € FxC}, so we consider an instance to be a point in ]foc.

Theorem 3 The set of all degenerate instances to the k-median problem has Lebesque
measure zero.

For a non-degenerate UFL instance, let us define the trace of the algorithm to be
the sequence of events encountered during phase I. Notice that G(z) (and consequently,
|S(2)]) depends only on the trace. Define z to be a critical value of z if, when z = z,
there is some point in time where at least two events coincide. For a graph G, let Z(G)
denote the size of the largest independent set in G.

Theorem 4 As z passes through a critical value at which only two events coincide,
Z(G(z)) changes by at most 1.

As we will show, this holds because G(z) changes only slightly when z passes
through a non-degenerate critical value. Thus, the algorithm is continuous if our k-
median instance is non-degenerate.
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Facility location Trace examples G(z)
instance —_—
() 1 (o) &2 (i ) _ i i,
i ! = e time z=1
1 1 2 5 6 7
i, G.j) i (g By ¢ ol _ Critical value can
} » ¢ time z= result in either graph
7 1 3 5 7
i (i Jo) i (i) (s b i,
, L 7> time z=3 [ ]
5 1 4 5 7 8
; B - Facility is fully paid for 2% - Facility would be fully paid for if duals grew indefinitely

& - Edge becomes tight ¥ - BEdge would become tight if duals grew indefinitely

Fig. 2. Trace example.

Example of traces. To clarify the concept of a trace, we give three traces for the simple
facility location instance in Figure 2l When z = 1, both ¢; and - are opened, j; is
connected to 71 and jo is connected to io. The edge (i1, jo) would become tight at time
7 if v, were allowed to grow indefinitely, but v;, stops growing at time 6, when jo
is connected to 5. When 2z = 3, j; pays to open ; and jo connects to it before 25 is
paid for. The figure shows that i3 would have opened at time 8 if v;, were allowed to
continue growing. At the critical value z = 2, i5 is paid for at the same time that (1, jo)
becomes tight, so tiebreaking determines which of the previous solutions is output. The
final output of the algorithm depends only on the order of events, not on the actual times.
Thus, as z changes, events may slide forward and backward on the trace, but the output
changes only at critical values, when events change places.

Exploiting non-degeneracy. For a non-degenerate instance of k-median, we wish to
understand how G(z) changes when z passes through a critical value, as summarized in
the following theorem.

Theorem 5 When z passes through a critical value where exactly two events coincide,
the graph G(z) can change only in one of the following ways: (a) a single existing facility
is deleted (along with its incident edges), (b) a single new facility is added, along with
edges to one or more cliques of existing facilities, (c) a single existing facility gains
edges to one clique of facilities, or loses edges to one clique.

Proof: We need to determine how overlapping events can change G(z) at a critical
value z. To this end, we define one more graph, H(z), which has one node per client,
one node per facility opened in phase I, and an edge between every client j and facility
i such that w;; > 0. Thus, the edges of G(z) connect facilities for which there exists
a two-hop path in H(z). We prove that, at a critical value of z, H(z) can change only
by addition or deletion of one facility (along with its incident edges), or by addition or
deletion of a single client-facility edge. The theorem follows.

Given the order of events, we determine the edges of H (z) as follows. For each client
j and open facility i, H(z) includes an edge if the edge event (i, j) occurred strictly
before the facility event ¢. Since each v; increases at unit rate from time ¢ = 0, then
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
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Fig. 3. Trace change cases.

stops when the client j is connected, the edge event for (i, j) will either occur at t = ¢;,
or not at all if the client is connected before that time. Facility events, on the other hand,
change position depending on z. However, if there is a facility event for a certain value
of z, that event will disappear as z changes only if it gets moved past the time where all
clients are connected. Thus, the graph H(z) changes in a restricted way. The vertex set
changes only if a facility event is added or removed from the trace. The presence of edge
(4, 4) changes only if facility event 7 and edge event (i, j) change their relative order.
Critical values of z fall into several cases, as shown in Figure[3l For ease of exposition,
we refer to the top trace occurring “before” the change in z, and the bottom trace “after.”
Case 1: Facilities ¢ and k swap places. This can happen if different numbers of clients
are contributing to the two facilities, causing different rates of payment. Here, the set
of open facilities remains the same, and the positions of edge events relative to ¢ and k
remain the same, so H(z) does not change.

Case 2: Facility 7 disappears when k opens first. This happens if all clients that were
paying for 7 connect to k£ when it opens, and no other clients go tight to ¢ before the end
of phase I, so ¢ remains unopened. The relative order of events remains intact, except
that ¢ is removed, so H (z) changes by removal of 4 and all incident edges.

Case 3: Facility ¢ jumps later in time when k opens first. Similar to case 2, this happens if
all clients that were paying for ¢ instead connect to k£ when it opens, causing ¢ to remain
closed for a period of time, until the next client j grows its dual enough to go tight and
finish paying for ¢, possibly much later in the trace. Here, H (z) gets one new edge (4, 7).
Case 4: Facility ¢ moves across edge (k, j). If ¢ = k, then the order of the two events
determines whether j has strictly positive cost share to ¢. Thus, as the facility event moves
to the left, H(z) loses the edge (4, j). If i # k, then H(z) does not change, because the
order of the edge event (k, j) and the facility event k (if it exists) is preserved.

Case 5: Facility i disappears as it crosses edge event (k, j) to the right (where k # 7).
Similar to case 2, this happens if j is the only client contributing to ¢, but stops when it
connects to an open facility k. As in case 2, ¢ gets deleted from H (z).

Case 6: Facility 7 jumps later in time when the edge event (k, j) occurs before it (k # 7).
Similar to case 3, this happens if j is the only client contributing to ¢, but stops when it
connects to k. However, 7 is opened later as some other client j' becomes tight and pays
for the excess. Here, H(z) gets one new edge (4, j'). [

Clearly, the types of graph perturbations described in Theorem[3change Z(G(z)) by
at most one, which proves Theorem[d] By definition, non-degenerate k-median instances
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are ones where we can apply Theorem [4 at every critical value, so our algorithm is
continuous when applied to these instances.

Attaining non-degeneracy.. Our last task is to prove Theorem Bl Our approach is to
view UFL instances (¢, z) with uniform facility costs z as points in Ri— *C xRy, ie., the
positive orthant of (N 4 1)-dimensional space, where N = |F| - |C|. Each possible trace
corresponds to a region of space consisting of the UFL instances that result in this trace.
A k-median instance with cost vector ¢ is represented by the ray {(c,z) : z > 0}. As
long as this ray passes through no degenerate UFL points, then the k-median instance ¢
is non-degenerate. In other words, the set of all degenerate k-median instances is simply
the projection onto the z = 0 plane of the set of all degenerate UFL instances. Theorem[3]
relies on the following result.

Theorem 6 Each possible trace corresponds to a region of (c, z)-space bounded by a
finite number of hyperplanes.

We include detailed proofs of Theorems Bland[3lin the full version of this paper. The
crux is that every degenerate UFL instance lies at the intersection of two hyperplanes,
hence on one of a finite number of (N — 1)-dimensional planes. The same goes for the
projection, which thus has zero Lebesgue measure in Rf .

3 Facility Location Algorithm of Mettu and Plaxton

So far we have been considering the UFL algorithm of Jain & Vazirani because it has the
LMP property. We now turn to a similar algorithm proposed by Mettu & Plaxton (MP).
In its original form, it does not have the LMP property. However, using an LP-based
analysis, we show that a slightly modified version of this algorithm attains the LMP
property while delivering the same approximation factor.

Algorithm Description. The MP algorithm associates a ball of clients with each facility,
and then chooses facilities in a greedy fashion, while preventing overlapping balls. Define
theradiir; : i € F,sothat f; =) jec max (0, r; —¢;;). Intuitively, these radii represent
a sharing of the facility cost among clients. If each client in a ball of radius r; around
facility ¢ pays a total of r;, that will pay for the connection costs in the ball, as well as
the facility cost f;. Without loss of generality, letr; < ry < --- < r,. Let B; be the ball
of radius r; around ¢. In ascending order of radius, include i in the set of open facilities
if there are no facilities within 2r; already open. The algorithm ensures that the balls
around open facilities are disjoint, so no client lies in the balls of two different open
facilities. Thus, each client contributes to at most one facility cost.

Proof of Approximation Factor. We now use LP duality to prove that MP achieves
an approximation factor of 3. We also prove that a slightly modified algorithm MP-/3
has the LMP property. The algorithm MP-3 is MP with one modification. In MP-£3,
choose the radii r; so that 8f; = > jec max(0,7; — ¢;;). Our analysis uses the same
LP formulation as before.
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Theorem 7 MP-( delivers a 3-approximate solution to the facility location problem for
1<8< % Furthermore, if F is the facility cost of the algorithm’s solution, C' is the
algorithm’s connection cost, and O PT is the optimal solution cost, then C + 20F <
Zj Vj S 30PT.

We prove this result by exhibiting a particular feasible dual solution. Let Z be the
set of facilities opened by MP-3, and let r; : ¢ € F be the radii used. We need to
construct a set of v; and w;; from this solution. Set w;; = %max((),ri — ¢j;) for
ij € FxC. Say that j contributes to i if w;; > 0. Then, set v; = min;er c;; + w;;.
It is clear that the v and w vectors are non-negative. By the choice of the vector v, we
automatically satisfy v; — w;; < ¢4, Vij € FxC. Finally, r; and w;; were chosen so
that 8f; = ;e max(0,7; — ¢;5) = B¢ wij. Thus, our dual solution is feasible.

It remains to be shown that } . - d(j, Z) + 283 ,c, fi < 33 ,ccvj. We will
show that each 3v; pays to connect j to some open facility ¢, and also pays for 23
times j’s cost share (if one exists). Define s; = wj; if there is an ¢ such that 7 is open
and w;; > 0, and set s; = 0 otherwise. Note that this is well defined because j can
be in at most one open facility’s ball. Since f; = 3 ;0 wij, Diez fi = X jec S5
Furthermore, Vi € Z,d(j, Z) > c;; by definition. Thus, in order to show 33, v; >
263 iz fi + 2 jec A4, Z), it is enough to show that for all j € C there exists i € Z
such that 3v; > c¢;; + 208s;.

Call the facility ¢ that determines the minimum in min;e 7 ¢;; + w;; the bottleneck
of 7. The proof of Theorem [relies on some case analysis, based on the bottleneck of j.
Before we analyze the cases, we need four lemmas, stated here without proof.

Lemma 1. For any facility i € F and client j € C, r; < c;j + Bw;;.
Lemma 2. If 3 < 3, and i is a bottleneck for j, then 3vj > 2r;.

Lemma 3. If an open facility i is a bottleneck for j, then j cannot contribute to any
other open facility.

Lemma 4. Ifa closed facility i is a bottleneck for j and k is the open facility that caused
i to close, then ci; < max(3,20)v;.

Now we prove the theorem in cases, according to the bottleneck for each client j.
Proof of Theorem[Z: We must show for all j that there is some open facility i such that
3v; > ¢;; + 2Bw;;. Consider the bottleneck of an arbitrary client j.

Case 1: The bottleneck is some open facility . By Lemma 8] we know that j cannot
contribute to any other open facility. So connect j to facility 7. If ¢;; < r; then 0 <
w;; = s; and v; = ¢;; + s;. Thus, v; pays exactly for connection cost and the cost
share. If ¢;; > r;, we know that s; = 0, since w;; = 0, and j cannot contribute to any
other facility. So v; = ¢;;. Thus, v; pays exactly for connection cost, and there is no
cost share.

Case 2: The bottleneck is some closed facility ¢, and j does not contribute to any open
facility. We know s; = 0 since j does not contribute to any open facility. We also know
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there is some open facility k that caused i to close. Connect j to k. By Lemmal[4], we
know that c; < max(3,208)v;. Since 3 < 2 we have that 3v; > cg;. Thus, 3v; pays
for the connection cost, and there is no cost share.
Case 3: The bottleneck is some closed facility ¢, and there is some open facility [
with w;; > 0, and [ was not the reason that ¢ closed. Since w;; > 0, s; = wy;.
Connect j to [ incurring c;; + wy;. Since wy; = s;, we have that ¢;; + 8s; = 7.
Since k and [ are both open, we have that ¢, > 2r;. Using the triangle inequality, this
gives 2¢ci; + 208s; < e < ey + ey, or ¢ + 2855 < cgj. Just as in Case 2, we
know there is some open facility k& # [ that prevented ¢ from opening, which means
cik < 2r;. By Lemma [4, we know cr; < 3vj;. So, putting it all together, we have
ci; +28s; < cr; < 3v;. Thus, 3v; pays for the connection cost, and 23 times the cost
share.
Case 4: The bottleneck is some closed facility ¢ and there is some open facility k& with
wy; > 0 and k caused i to be closed. Here, s; = wy;. From Lemma [2 we know
that 3v; > 2r;. Since k caused i to close, r; > 71, = cp; + Bs;. Thus, we have
3v; > 2r; > 2¢i + 2Bs; > cij + 283s;. So 3v; pays for the connection cost and 23
times the cost share.

Thus, in each case, we have shown that there is an open facility ¢ that satisfies
3v; > c¢;; + 28s; which shows that the algorithm delivers a solution that satisfies
C + 20F < 30PT, giving a 3-approximation so long as § > % [ ]

4 Final Thoughts

The preceding theorem shows that the algorithm MP-% has the LMP property necessary
to build a k-median algorithm. The primary benefit of using MP-% instead of another
LMP algorithm with guarantee 3 is the running time. The k-median approximation
algorithm runs the facility location algorithm several times as a black box. Whereas the
original JV facility location algorithm had a running time of O(|F||C|log |F[|C]), the
algorithm MP-2 can be implemented to run in O(|F|? + | F||C|) time.

Any LMP algorithm with guarantee c that also has the continuity property analogous
to Theorem Blimmediately yields a c-approximation for the k-median problem, because
we can simply search for a value of z for which we open exactly k facilities. Unfortunately
MP-% is not continuous. We include an example demonstrating this fact in the full version
of this paper. The tightest LMP result is the dual fitting algorithm of [14], which yields a
factor of 2. However, on the star instance of Figure[T], this algorithm jumps from opening
1 facility to opening h of them at z = Zfi Thus, our modification of JV is the only
LMP algorithm so far that has this property.

An important direction for future research is to identify a rule for computing maximal
independent sets in polynomial time that satisfy the continuity property of Theorem [4
with Z(G(z)) replaced by |S(z)|. This would convert our existential result into a poly-
nomial time 3-approximation algorithm for the k-median problem.

One algorithmic consequence of Theorem[3lis that we can always make an arbitrarily
small perturbation to our given instance to transform it into a non-degenerate instance.
However, for purposes of applying Theorems@land[3] it suffices to process trace changes
one at a time for degenerate values of z. These same techniques can be applied to prove
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analogous theorems about degeneracy in the prize-collecting Steiner tree algorithm of
Goemans & Williamson [|L1], the other major example where Lagrangian relaxation has
been used in approximation algorithms [[10].
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