Self-organising Map Techniques for Graph Data
Applications to Clustering of XML Documents

A.C. Tsoi', M. Hagenbuchner?, and
A. Sperduti®

! Monash e-Research Centre, Monash University

Victoria 3800, Australia

ahchung.tsoi@adm.monash.edu.au

2 Faculty of Informatics, University of Wollongong,
Wollongong NSW 2522, Australia
markus@Quow.edu.au
3 Dipartimento di Matematica Pura ed Applicata, University of Padova,
Via G.B. Belzoni, 7, 35131 Padova, Italy

sperduti@math.unipd.it

Abstract. In this paper, neural network techniques based on Kohonen’s
self-organising map method which can be trained in an unsupervised
fashion and applicable to the processing of graph structured inputs are
described. Then it is shown how such techniques can be applied to the
problems of clustering of XML documents.

1 Introduction

Neural networks have been one of the main techniques used widely in data min-
ing. There are a number of popular neural network architectures, e.g. multilayer
perceptrons [5], self organising maps [3], support vector machines [6]. However,
most of these techniques have been applied to problems in which the inputs are
vectors. In other words, the inputs to these neural network architectures are
expressed in the form of vectors, often in fixed dimensions. In case the inputs
are not suitably expressed in the form of vectors, they are made to conform to
the fixed dimension vectorial format. For example, it is known that an image
may be more conveniently expressed in the form of a graph, for instance, the
image of a house can be expressed as a tree, with the source node (level 0) being
the house, windows, walls, and doors expressed as leaves (level 1), and details
of windows, walls and doors being expressed as leaves (level 2) of those leaves
located in level 1, etc. These nodes are described by attributes (features, which
may express colour, texture, dimensions) and their relationships with one an-
other are described by links. Such inputs can be made to conform to a vectorial
format if we “flatten” the structure and instead represent the information in each
node in the form of a vector, and obtain the aggregate vector by concatenating
the vectors together. Such techniques have been prevalent in the application of
neural network architectures to these problems.

X. Li, O.R. Zaiane, and Z. Li (Eds.): ADMA 2006, LNATI 4093, pp. 19301 2006.
© Springer-Verlag Berlin Heidelberg 2006

20 A.C. Tsoi, M. Hagenbuchner, and A. Sperduti

Recently, there have been some attempt in preserving the graph structured
data as long as we can before applying the neural network technique. For ex-
ample, in support vector machines, there have been some work in expressing
the graph structured data in the form of string kernels [4], or spectrum kernels
[4], and then use the “kernel trick” [6] in using the support vector machine ma-
chinery to process the data. Alternatively, another way to process the data is
to preserve the graph structured data format, and modify the neural network
techniques to process graph structured data. In this paper, we will not consider
support vector machine further, and we will concentrate only on ways to modify
a classic neural network technique, self- organising maps, so that it can accept
graph structured inputs.

The structure of this paper is as follows: in Section [2, we will describe ways
in which the classic self organising map idea can be extended to consider graph
structured data, in what we called a self organising map for structured data
(SOM-SD) technique and contextual self-organising map for structured data
(CSOM-SD) technique. In Section [B] we will describe applications of these tech-
niques to clustering XML documents. Some conclusions will be drawn in Sec-
tion [

2 Self-organizing Map for Structured Data

The self-organising map concept [3] was developed to help identify clusters in
multidimensional, say, p-dimensional datasets. The SOM does this by effectively
packing the p-dimensional dataset onto a ¢-dimensional display plane, where we
assume for simplicity ¢ = 2 throughout this paper. The SOM consists of dis-
cretising the display space into N x N grid points, each grid point is associated
with a p-dimensional vector, referred to in this paper, as an artificial neuron, or
simply a neuron [l. Each neuron has an associated p-dimensional vector, called a
codebook vector. This codebook vector m has the same dimension as the i-the
input vector x;. The neurons on the map are bound together by a topology,
which is often either hexagonal or rectangular. The contents of these vectors
are updated with each presentation of samples from the p-dimensional origi-
nal data set. The contents of these vectors encode the relationships (distances)
among the p-dimensional data. The result is that data items that were “sim-
ilar” or “close” to each other in the original multidimensional data space are
then mapped onto nearby areas of the 2-dimensional display space. Thus SOM
is a topology-preserving map as there is a topological structure imposed on the
nodes in the network. A topological map is simply a mapping that preserves
neighborhood relations.

In general, the SOM is a model which is trained on a set of examples in an
unsupervised fashion as follows:

For every input vector x; in a training set, obtain the best matching codebook
by computing

! This is called a neuron for historical reasons.

Self-organising Map Techniques for Graph Data Applications 21

¢ = argmin [|z; — my | (1)
J

where || - || denotes the Euclidean norm.

After the best matching unit m, is found, the codebook vectors are updated.
m, itself as well as its topological neighbours are moved closer to the input
vector in the input space i.e. the input vector attracts them. The magnitude
of the attraction is governed by a learning rate o and by a neighborhood func-
tion f(Ajc), where Aj. is the topological distance between m. and m;. As the
learning proceeds and new input vectors are given to the map, the learning rate
gradually decreases to zero according to a specified learning rate function type.
Along with the learning rate, the neighborhood radius decreases as well. The
codebooks on the map are updated as follows:

Am; = a(t) f(Aje)(my — x;) 2)

where « is a learning coefficient, and f(.) is a neighborhood function which
controls the amount by which the weights of the neighbouring neurons are up-
dated. The neighborhood function can take the form of a Gaussian function
f(4jc) = exp (— H1j2_0126‘|2> where o is the spread, and 1. and 1; is the location
of the winning neuron and the location of the j-the neuron respectively. Other
neighborhood functions are possible. Equations ({l) and (@) are computed for
every input vector in the training set, and for a set number of iterations.

The SOM for Data Structures (SOM-SD) extends the SOM in its ability to
encode directed tree structured graphs [I]. This is accomplished by processing
individual nodes of a graph one at a time rather than by processing a graph
as a whole. The network response to a given node v is a mapping of v on the
display space. This mapping is called the state of v and contains the coordinates
of the winning neuron. An input vector representation is created for every node
in a graph G by concatenating a numeric data label I, which may be attached
to a node v with the state of each of the node’s immediate offsprings such that
x, = [ly Yenpy)), where chlv] denotes the children of node v, and y,j,; denotes
the states or mappings of the children of v. The dimension of x is made constant
in size by assuming a maximum dimension for ! together with a maximum out-
degree of a node. For nodes with less dimensions than the assumed, padding
with a suitable value is applied. Since the initialization of x depends on the
availability of all the children states, this dictates the processing of nodes in an
inverse topological order (i.e. from the leaf nodes towards the root nodes), and
hence, this causes information to flow in a strictly causal manner (from the leaf
nodes to the root nodes).

A SOM-SD is trained in a similar fashion to the standard SOM with the
difference that the vector elements I and y, need to be weighted so as to control
the influence of these components to a similarity measure. Equation () is altered
to become:

¢ = argmin(| (@, —m;)A]) (3)

where x,, is the input vector for vertex v, m; the i-the codebook, and A is a
m X m dimensional diagonal matrix with its diagonal elements Ay 1--- A, , set

22 A.C. Tsoi, M. Hagenbuchner, and A. Sperduti

to g1, and Apt1pt1 - Am,m set to po. The constants p; and po control the
influence of I, and Yy, to the Euclidean distance in ().

The rest of the training algorithm remains the same as that of the standard
SOM. The effect of this extension is that the SOM-SD will map a given set
of graphs, and all sub-graphs onto the same map. The SOM-SD includes the
standard SOM and the SOM for data sequences as special cases.

With contextual SOM for graphs (CSOM-SD), the network input is formed
by additionally concatenating the state of parent nodes and children nodes to
an input vector such that x, = [l Yehlo] ypam], where y,,,,] are the states of the
parent nodes and y,) are the states of the children nodes. The problem with
this definition is that a circular functional dependency is introduced between
the connected vertices v and pafv], and so, neither the state for node v nor the
state of its parents palv] can be computed. One possibility to compute these
states could be to find a joint stable fix point to the equations involving all the
vertices of a structure. This could be performed by initializing all the states with
random values and then updating these initial states using the above mentioned
equations, till a fixed point is reached. Unfortunately, there is no guarantee that
such a fixed point would be reached. Moreover, even if sufficient conditions can be
given over the initial weights of the map to guarantee stability, i.e. the existence
of the fixed point, there is no guarantee that training will remain valid on such
sufficient conditions over the weights.

A (partial) solution to this dilemma has been proposed in [2]. The approach
is based on an K-step approximation of the dynamics described above: Let

y=hx!Ht=1,... K (4

~—

where h(-) computes the state of node v by mapping the input z! !

7, yig[i] yf);[lv]]. The algorithm is initialized by setting yghm = yga[v]
k = [-1,—1], an impossible winning coordinate. In other words, the approach
iteratively re-computes the states of every node in a graph K-times. Then, the
network input can be formed by setting @, = [l Yl Ypap]- A suitable value
for K could be, for instance, the maximum length of any path between any
two nodes in the graph. Although such a choice does not guarantee the full
processing of contextual information due to possible latency in the transfer of
contextual information from one vertex of the structure to its neighbors vertices,
this value for K seems to be a good tradeoff between contextual processing and
computational cost.

Training is performed similar to the training of SOM-SD with the difference
that A is now a n x n matrix, n = dim(x) with Apt1,m+1 - Ann set to the
constant ps. All other elements in A are the same as defined before.

t—1 _
v =

= k, where

,and x

3 Experiments

The corpus (m-db-s-0) considered consists of 9,640 XML formatted documents
which were made available as part of the INEX Initiative (INitiative for the
Evaluation of XML Retrieval). Each of the XML formatted documents describes

Self-organising Map Techniques for Graph Data Applications 23

an individual movie (e.g. the movie title, list of actors, list of reviewers, etc.). It
was built using the IMDB database. Each document is labelled by one thematic
category which represents the genre of the movie in the original collection and one
structure category. There are 11 thematic categories and 11 possible structure
categories which correspond to transformations of the original data structure.
Note that the target labels are used solely for testing purposes, and hence, are
ignored during the training process.

A tree structure was extracted for each of the documents in the dataset
by following the general XML structure within the documents. The resulting
dataset featured 9,640 tree structured graphs, one for each XML document in
the dataset. The maximum depth of any graph is 3, the maximum outdegree
is 6,418, and the total number of nodes in the dataset is 684,191. Hence, the
dataset consists of shallow tree structures which can be very wide. A three-
dimensional data label is attached to every node in the dataset indicating the
XML-tag it represents (more on this below). There were a total of 197 different
tags in the dataset.

While for the SOM-SD and CSOM-SD there is no specific need to pre-process
this set of graphs, we decided to apply a pre-processing step in order to reduce
the dimensionality of the dataset. This allows for a reasonable turn around time
for the experiments. Dimension reduction was achieved by consolidating XML
tags as follows: Repeated sequences of tags within the same level of a structure
are consolidated. For example, the structure:

<BB>
<a>
 <BB>
zzi:;:i is consolidated to :izzjiz
<a> </BB>

</BB>

A justification for taking this step is inspired by operations in regular ex-
pressions. For example, the expression (ab)™ can be simulated by repeatedly
presenting ab n-times. Hence, it suffices to process the consolidated structure n
times. There were many trees which exhibited such repeated sequences of tags.
The consequence of this pre-processing step is that the maximum outdegree is
reduced to just 32.

A further dimension reduction is achieved by collapsing sequences into a single
node. For example, the sequential structure <A><c></c> can be
collapsed to <A><b&c></b&c>, and further to <A&b&c>. Since the deepest
graph is of depth 3, this implies that the longest sequence that can be collapsed
is of length 3. This pre-processing step reduces the total number of nodes in the
dataset to 247, 140.

A unique identifier (ID) is associated with each of the 197 XML tags. In order
to account for nodes which represent collapsed sequences, we attach a three
dimensional data label to each node. The first element of the data label gives
the ID of the XML tag it represents, the second element of the data label is the

24 A.C. Tsoi, M. Hagenbuchner, and A. Sperduti

Label|Frequency Number of graphs
1 598
10 386 250
11 448 200 <‘
> | 16 | 0
3 701 100 120
f jl ;z o - 100
5 5 oL - 50
6 231 0 0
7 261
8 769

20

9 333 Outdegree 25 Class label

Fig. 1. Properties of the training set: The table (left) shows the number of graphs
in each of the 11 classes. The plot (right) shows the distribution of outdegrees in the
dataset. Shown are the number of graphs (z-axis) which have a given outdegree (y-axis)
and belong to a given class (x-axis).

ID number of the first tag of a collapsed sequence of nodes, and consequently,
the third element is the ID of the tag of the leaf node of a collapsed sequence.
For nodes which do not represent a collapsed structure, the second and third
element in the data label will be set to zero.

The resulting dataset consists of 4,820 graphs containing a total of 124, 360
nodes (training set), and 4,811 graphs containing a total of 122,780 nodes (test
set). The training set was analysed for its statistical properties; and the results
are shown in Figure [Il It is observed that the training set is unbalanced. For
example, the table on the left of Figure [l shows that there are only 172 samples
of the pattern instance denoted by “4” but over 700 instances of patterns from
the instance denoted by “3”. Also, the 3-D plot in Figure [Il shows that the dis-
tribution of outdegrees can vary greatly. For example, there is only one instance
in the pattern class denoted by “8” which has an outdegree of 10 while there are
over 270 instances for the same pattern class with outdegree 5. There are also
a number of pattern classes which are similar in features such as class “10” and
class “11” which are of similar size and are of similar structure.

There are 2, 872 unique sub-structures in the training set. This is an important
statistical figure since it gives an indication to how much more information is
provided to a SOM-SD when compared to the flat vectors used for the SOM.
And hence, the larger the number of unique sub-structures in the training set,
the greater the potential diversification in the mapping of the data will be.
Similarly, there are 96,107 unique nodes in different contextual configurations
in the training set. This shows that the CSOM-SD is provided with a greater set
of diverse features in the training set, and hence, may be capable of diversifying
in the mapping of the data even further. Thus, this dataset provides a challenging
learning problem on which various SOM models will be tested.

Self-organising Map Techniques for Graph Data Applications 25

All SOMs illustrated in this section used a hexagonal topology, and a Gaussian
neighborhood function. For the SOM-SD and the CSOM-SD, when generating
the input vectors x; for nodes with less than the maximum outdegree, padding
was performed using the impossible coordinate [—1, —1].

The standard SOM is trained on 4,820 data vectors, each one represents an
XML document. The i-the element in the data vector represents the frequency
of the i-the XML tag within a document. Thus, the input vectors for the SOM
are 197 dimensional containing all the information about the XML tags in a
document but do not contain any information about the topological structure
between the XML tags.

Thus, the SOM is trained on relatively few high-dimensional data vectors
while the SOM-SD or the CSOM-SD is being trained on a large number of
nodes which are represented by a relatively small size vectors. For the SOM
we chose 64 x 48 = 3,072 as the size of the network. The total number of
network parameters for the SOM is 3,072 x 197 = 605, 184. Since the codebook
dimensions for the SOM-SD is 3432 x 2 = 67, this implies that a SOM-SD needs
to feature at least 9,033 codebooks to allow a fair comparison. Accordingly, the
CSOM-SD should feature at least 8,771 neurons. However, since the SOM-SD
(and to an even greater extent the CSOM-SD) is to encode a larger feature set
which includes causal (contextual) information about the data, this implies that
the SOM-SD (CSOM-SD) will potentially diversify the mapping of the data to
a greater extent than a SOM would do. Hence, this would justify the choice
of even larger networks for the SOM-SD and CSOM-SD respectively for the
comparisons. However, we chose to use these network sizes as these suffice to
illustrate the principal properties of the models.

It is evident that a simple quantization error is an insufficient indicator of the
performance of a SOM-SD or a CSOM-SD since such an approach neglects to
take into account the fact that structural information is being mapped. In fact,
there are a number of criteria with which the performance of a SOM-SD or a
CSOM-SD can be measured.

Retrieval capability (R): This reflects the accuracy of retrieved data from the
various SOM models. This can be computed quite simply if for each XML doc-
ument d; a target class y; € {t1,...,%,} is given. Since each XML document
is represented by a tree, in the following, we will focus our attention just on
the root of the tree. Thus, with r; we will refer to the input vector for SOM,
SOM-SD or CSOM-SD representing the root of the XML document d;. The
R index is computed as follows: the mapping of every node in the dataset is
computed; then for every neuron i the set win(i) of root nodes for which it
was a winner is computed. Let win(i) = {r;|r; € win(i) and y; = t}, the

Jwing (2)|

lwin(p| 18 computed for neurons with |win(#)] > 0 and the

value R; = max;

index R computed as R = , D i jwin(i)|>0 1t where W =37, oy 1 s

the total number of neurons which were activated at least once by a root node.
Classification performance (C): This can be computed as follows:

C - lif y; =, ¢ = argmaxy [win(r)|
77 Oelse ’

26

A.C. Tsoi, M. Hagenbuchner, and A. Sperduti

where r is the index of the best matching codebook for document d; (typi-
cally measured at the root node). Then,

1 N
C= 2 G
7=0

where N is the number of documents (graphs) in the test set. Values of C
and R can range within (0 : 1] where values closer to 1 indicate a better

performance.

Clustering performance (P): A more sophisticated approach is needed to

compute the ability of a SOM-SD or a CSOM-SD to suitably group data on
the map. In this paper the following approach is proposed:
1. Compute the quantities R; as defined above, and let tf =
argmaxy |wing(i)).
2. For any activated neuron compute the quantity:

IV | [wines (D1 Jwing (4)] NG| Jwine=(5)
p - Z] 1 |wzn k] + |win(i)] _ Z] 1 |wzn(j + R;
’ NG| +1 NG| +1

where N; = {v|v € ne[i], win(v) # 0}.
3. The overall neural network performance is then given by:
; P
P= i .
w
A performance value close to 1 indicates a perfect grouping, while a value

closer to 0 indicates a poor clustering result. Thus, this measure indicates
the level of disorder inside a SOM-SD or CSOM-SD.

Structural mapping precision (¢ and E): These indices measure how well

structural (e) and contextual structural (E) information are encoded in the
map. A suitable method for computing the structural mapping precision was
suggested in [2]. In this case, just the skeleton of the trees is considered, i.e.
the information attached to vertices is disregarded, and only the topology
of the trees is considered. Notice that these measures do not consider the
information about the class to which an XML document (i.e., a tree) belongs.
For this reason, all the neurons of a map are now considered, since we are
also interested in neurons which are winners for sub-structures. These two
measures ¢ and F are respectively computed as follows

_ 1N M;
- N Zz 1,m; 760 nl and E= N Zi:l,ni;ﬁo n;

where n; is the number of sub-structures mapped at location i, m; is the
greatest number of sub-structures which are identical and are mapped at
location ¢. Similarly, M; is the greatest number of identical complete trees
which are associated with the sub-structure mapped at location ¢. N is the
total number of neurons activated by at least one sub-structure during the
mapping process. Hence, e is an indicator of the quality of the mapping
of sub-structures, and F indicates the quality of the contextual mapping
process. Values of e and E close to 1 indicate a very good mapping (indeed
a perfect mapping if the value is 1), and values closer to 0 indicate a poor

mapping.

Self-organising Map Techniques for Graph Data Applications 27

Compression ratio: This is the ratio between the total number of root nodes
in the training/test set, and the number of neurons actually activated by
root nodes in the training/test set. The higher the compression, the fewer
the number of neurons are involved in the mapping process. Extremely high
or extremely low compression ratios can indicate a poor performance. The
compression ratio can vary between 0 and N, where N is the number of root
nodes in the training/test set.

A number of SOMs, SOM-SDs, and CSOM-SDs were trained by varying the
training parameters, and initial network conditions. We used the classification
measure C' as a general benchmark on which to optimize the performance of the
various models. A total of 56 experiments were executed for each of the SOM
models, and every experiment was repeated 10 times using a different random
initialization of the map as a starting point. The experiments varied the following
training parameters: number of training iterations 4, initial neighborhood radius
r(0), initial learning rate «(0), and the weight values p (in this order). The set of
training parameters which maximised the classification performance of the three
models is shown below.

size # iterations «(0) r(0) pu1 pe s
SOM 64 x 48 32 1.0 4 10 - -
SOM-SD 110 x 81 62 1.0 38 0.110.89 —
CSOM-SD 110 x 81 12 0.7 15 0.110.880.01 2

It is observed that the SOM-SD required more training iterations and a larger
initial neighborhood radius to achieve optimum classification performance (on
the training set). It was also observed that the classification performance of
the CSOM-SD improved with smaller values for ug reaching an optimum for
us = 0.0. However, setting us to zero would reduce the CSOM-SD to a SOM-
SD, and hence, would be an unsuitable choice for the comparisons. In this case
we have set puz to a small value.

Table 1. Best results obtained during the experimentation with maps of size 64 x 48
(SOM), and for maps of size 110 x 81 (SOM-SD and CSOM-SD)

train set test set
C R P e E Z C R P e FE Z
SOM 90.5% 0.90 0.73 1.0 1.0 2.45 76.5% 0.92 0.73 1.0 1.0 2.45

SOM-SD 92.5% 0.92 0.78 0.77 0.50 5.13 87.3% 0.93 0.79 0.76 0.50 4.9
CSOM-SD 83.9% 0.87 0.73 0.91 0.30 8.53 78.6% 0.88 0.71 0.90 0.37 8.54

The performances of the three SOM models are illustrated in Table [I] with
the above mentioned performance measures. From Table [Tl it can be observed
that a standard SOM is capable of classifying over 90% of patterns in the training

2 Smallest non-zero value tried. Setting psz = 0.0 resulted in a better classification
performance but would reduce the CSOM-SD to a SOM-SD.

28 A.C. Tsoi, M. Hagenbuchner, and A. Sperduti

set correctly despite of no information about the underlying causal or contextual
configuration of XML tags is provided to the training algorithm. However, it was
found that the SOM generalizes poorly. In comparison, the SOM-SD improved the
classification rate by a noticeable amount, and was able to generalize over unseen
data very well. As is observed from the compression ratio Z, the performance in-
crease of the SOM-SD comes despite a doubling of the compression ratio. This is a
clear evidence that causal information about the order of XML tags allows (a) to
diversify the mapping of nodes to a considerably larger extend, and (b) the diversi-
fication in the mappings can result in an overall improvement of the classification
or clustering performances. In contrast, the inclusion of contextual information
did not help to improve on the classification performance as it is observed from
the results obtained from the CSOM-SD. It is found that contextual information
helped to diversify the mapping of nodes by almost double when compared to the
SOM-SD. This is indicated by the larger compression ratio. Thus, it is evident
that a correct classification of the graphs in the dataset is independent of the con-
textual information about the XML tags within the original documents. When
paired with the greater data compression which is the result of a greater diver-
sification in the mapping of nodes, this produced a relative overall reduction in
classification performance for the CSOM-SD, and explains the observation that
the performance optimum of the CSOM-SD is at ug = 0.

In addition, it is observed that a CSOM-SD performs worse on the perfor-
mance measure F than a SOM-SD. This is a result which arose out of the fact
that the experiments were to optimize the classification performance C. It was
found that a CSOM-SD improves on C when using ps — 0. However, setting
us = 0 would reduce the CSOM-SD to a SOM-SD and would have denied us
from making a comparison between the models. Instead, we chose a small value
for ps so as to allow such comparisons, and still produce reasonable classification
performances. Using a very small us reduces the impact of contextual informa-
tion to the training algorithm. When paired with the increased compression ratio
in the mapping of root nodes, this resulted in a relative decrease in the perfor-
mance on F. Note that the standard SOM performed at ¢ = E = 1. This is
due to the fact that a SOM handles the simplest type of data structures (viz.
single nodes). These render all structures in the dataset identical, resulting in
the observed performance values.

A closer look at the mapping of (training) data is made in the standard
SOM Figure [2(a). The hexagons in Figure2la) refer to the neurons on the map.
The brightness of the grid intersection represents the number of training data
which are assigned to the grid point due to their closeness in the original input
space. Thus by examining the brightness in the grid, it is possible to gain an
appreciation of the way the given training dataset can be grouped together,
according to their closeness in the original input space. Every neuron is also
filled in with a pattern indicating the class that most frequently activated the
neuron. There are 11 different fill in patterns for the 11 possible classes. Neurons
which are not filled in are not activated by any vector in the training set. It can
be observed that a number of well distinct clusters have formed on the map,

Self-organising Map Techniques for Graph Data Applications 29

seunaasos
SRR
RRRRR
0000000
20000000

S
BN
X

SRR
SRR

R
SRS
s

dotodnt
R
IRRRERRRRRY
AR
SEEER

(a) (b) (c)

Fig. 2. The mapping of the training vectors on a standard SOM is shown in (a). The
mapping of root nodes (training vectors) on a SOM-SD is shown in (b). The mapping
of root nodes (training vectors) on a CSOM-SD is shown in (c).

most of which correspond nicely with the target label that is associated with the
training data. Most clusters are separated from each other by an area of neurons
which were not activated. This may indicate a good result since the presence
of such border regions should allow for a good generalization performance; a
statement which could not be confirmed when evaluating the test set.

In comparison, the mapping of root nodes in the training set on a trained SOM-
SD is shown in Figure2(b). Neurons which are not filled in are either not activated
by a root node, or are activated by a node other than the root node. It can be
observed in Figure [2(b) that large sections of the map are not activated by any
root node. This is due to the fact that root nodes are a minority in the dataset.
Only 4, 824 nodes out of the total 124, 468 nodes in the training set are root nodes.
Hence, only a relatively small portion of the map is activated by root nodes. It is
also observed that graphs belonging to different classes form clear clusters some of
which are very small in size. This observation confirms the experimental findings
which show that the SOM-SD will be able to generalize well.

Figure[(c) gives the mapping of the root nodes as produced by the CSOM-SD.
Again, it is found that the largest portion of the map is filled in by neurons which
are either not activated or are activated by nodes other than the labelled root
nodes. Clear clusters are formed which are somewhat smaller in size when com-
pared to those formed in the SOM-SD case. This illustrates quite nicely that the
CSOM-SD is compressing the “root” data considerably more strongly than the
SOM-SD since contextual information is also encoded which requires additional
room in the map. Nevertheless, the observation confirms that the CSOM-SD
will also be able to generalize well even though some of the performance indices
may be worse than when compared to a SOM-SD of the same size. This can be
expected since the CSOM-SD compresses the “root” data more strongly.

4 Conclusions

The clustering of graphs and sub-graphs can be a hard problem. This pa-
per demonstrated that the clustering task of general types of graphs can be

30 A.C. Tsoi, M. Hagenbuchner, and A. Sperduti

performed in linear time by using a neural network approach based on Self-
Organizing Maps. In addition, it was shown that SOM-SD based networks can
produce good performances even if the map is considerably smaller than the size
of the training set. Using larger maps will generally improve the performance
further though this was not illustrated in this paper.

Specifically, it was shown that the given learning problem depends on the
availability of causal information about the XML tags within the original doc-
ument in order to produce a good grouping or classification of the data. The
incorporation of contextual information did not help to improve on the results
further.

The training set used in this paper featured a wide variety of tree struc-
tured graphs. We found that most graphs are relatively small in size, only few
graphs were either very wide or featured many nodes. This creates imbalances
in features represented in a training set which is known to negatively impact
the performance of a neural network. Similarly it is true when considering the
way we generated data labels for the nodes. An improvement of these aspects
(i.e. balancing the features in the training set, using unique labels which are
equiv-distant to each other) should help to improve the network performances.
An investigation into the effects of these aspects is left as a future task.

Furthermore, it was shown that the (C)SOM-SD models map graph structures
onto a finite regular grid in a topology preserving manner. This implies that
similar structures are mapped onto nearby areas. As a consequence, these SOM
models would be suitable for inexact graph matching tasks. Such applications
are considered as a future task.

References

1. M. Hagenbuchner, A. Sperduti, and A. Tsoi. A self-organizing map for adaptive
processing of structured data. IEEE Transactions on Neural Networks, 14(3):491—
505, May 2003.

2. M. Hagenbuchner, A. Sperduti, and A. Tsoi. Contextual processing of graphs using
self-organizing maps. In Furopean symposium on Artificial Neural Networks, Poster
track, Bruges, Belgium, 27 - 29 April 2005.

3. T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information
Sciences. Springer, Berlin, Heidelberg, 1995.

4. C. Leslie, E. Eskin, and W. Noble. Spectrum kernel: A string kernel for svm protein
classification. Proceedings of the Pacific Symposium on Biocomputing, pages 474—
485, 2002.

5. D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 1st edition, 2003.

6. S. A. Schlkopf, B. Learning with Kernels. MIT Press, Cambridge, MA, 1st edition,
2002.

	Introduction
	Self-organizing Map for Structured Data
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

