
Critical Feature Analysis
of a Radiotherapy Machine

Andrew Rae1, Daniel Jackson2, Prasad Ramanan2, Jay Flanz3, Didier Leyman4

1Information Technology and Electrical Engineering
University of Queensland, St Lucia, QLD Australia

arae@itee.uq.edu.au
2Laboratory for Computer Science

Massachusetts Institute of Technology, Cambridge, MA
dnj@mit.edu

3Northeast Proton 6erapy Center
Massachusetts General Hospital, Boston, MA

flanz@hadron.mgh.harvard.edu
4Ion Beam Applications

Louvain-La-Neuve, Belgium
leyman@iba.be

Abstract. 6e software implementation of the emergency shutdown feature in a
major radiotherapy system was analyzed, using a directed form of code review
based on module dependences. Dependences between modules are labelled by
particular assumptions; this allows one to trace through the code, and identify
those fragments responsible for critical features. An ‘assumption tree’ is con-
structed in parallel, showing the assumptions which each module makes about
others. 6e root of the assumption tree is the critical feature of interest, and its
leaves represent assumptions which, if not valid, might cause the critical feature
to fail. 6e analysis revealed some unexpected assumptions that motivated im-
provements to the code.

1 Introduction
A key difficulty in the analysis of large software systems is the isolation and evalu-
ation of critical source code. Ideally, safety critical requirements would be imple-
mented by safety critical modules, neatly isolated from the non-critical code. In
practice, the safety of a system is tightly bound to its correct operation, and a single
safety feature requires the cooperation of many modules.

6is paper reports on our experiences analyzing the source code of a radiotherapy
machine. We concentrated on a single feature of the software—the emergency stop
function. As expected, we found that reasoning about this function required us to
make assumptions about the behaviour of other parts of the system. Inspecting the
tree of assumptions produced by our analysis exposed some conditions under which
the software might not behave as intended.

S. Anderson et al. (Eds.): SAFECOMP 2003, LNCS 2788, pp. 221−234, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Our analysis strategy is simple to understand and easy to apply. It is based on a
new model of dependences, in which dependences between modules are qualified
by specifications. A module A is said to S-use another module B if A relies on B to
provide a service described by the specification S. Making specifications explicit in
this way, and associating them with dependence arcs rather than modules, is a small
elaboration of standard module dependency diagrams. It has major practical rami-
fications, however, since it allows us to trace dependences in a more fine-grained
manner, to identify the code responsible for particular features of the system.

Our paper describes the context of the system (Section 2); an overview of the
analysis approach (Section 3), and its application to the case study (Section 4); an
evaluation of the results of the analysis (Section 5); and a comparison to related
work (Section 6).

2 Context of the Therapy Control System
6e Northeast Proton 6erapy Center (NPTC) is a new radiation therapy facility
associated with the Massachusetts General Hospital in Boston. It is one of only two
hospital-based facilities in the United States to offer treatment with protons (rather
than electrons or X-rays). Proton beams require much more elaborate and expensive
equipment to produce, but can be more tightly conformed, and cause less damage
to surrounding tissue. 6ey are thus more suitable for treatments in sensitive areas
such as the eye, and for the treatment of tumors in the brains of children, for which
collateral damage has more serious long-term consequences. 6e center occupies
a new building adjacent to the hospital, and began treating patients in the fall of
2001.

6e Software Design Group in the MIT Lab for Computer Science began a col-
laboration in April 2002 with NPTC and Ion Beam Applications, the developers
of the system, to investigate better methods for the development of safety critical
software. 6e NPTC system would be used as a challenging example of a modern
and complex medical device for the purposes of research; in turn, the results of the
research would be used where appropriate to improve the safety and reliability of
the system.

6e NPTC installation has at its core a cyclotron that generates a beam of pro-
tons. 6e beam is multiplexed amongst several treatment rooms, each with its own
gantry and nozzle for positioning the beam. Technicians in a master control room
supervise the cyclotron and direct the beam to the allocated treatment room. Each
treatment room is paired with a treatment control room, in which clinicians enter
and execute treatment prescriptions. 6e patient is placed on a couch which is
electromechanically positioned by staff within the treatment room. 6e beam de-
livery nozzle is also positioned, and its aim verified by staff using X-rays and lights
attached to the emitter. 6e staff then leave the room, and the treatment is initiated
and controlled from the treatment control room. Treatment consists of irradiating
a specific location on the patient using a beam of protons with a defined lateral and
longitudinal distribution.

6e machine is considered safety critical primarily due to the potential for over-
dose—that is, treating the patient with radiation of excessive strength or duration.

222 A. Rae et al.

6e International Atomic Energy Agency lists 80 separate accidents involving radia-
tion therapy in the United States over the past fifty years [14]. Software was impli-
cated in the failures of the infamous 6erac-25 machine [9], and more recently in
similar accidents in Panama [2].

6e NPTC system was developed in the context of a sophisticated safety program.
Unlike the 6erac-25, the NPTC system makes extensive use of hardware inter-
locks, including a hardware relay system and a redundant PLC-based system which
handles safety critical functions, both of which run in parallel with the software
control system. Video cameras inside the control room allow the technicians to
view internal mechanisms, including a beam stop that can be inserted to isolate the
treatment room from the cyclotron. 6e software itself is instrumented with abun-
dant runtime checks, including a software ‘heartbeat monitor’ to ensure continued
operation of critical processes. A detailed system-level risk analysis was performed.
6e software implementation was heavily tested, and manually reviewed against
rigorous coding standards.

2.1 Therapy Control System

6e software of the system, called the 5erapy Control System (TCS), is written pri-
marily in C, and is installed on commodity workstations running Unix, a commer-
cial messaging system (Talarian’s SmartSockets), a centralized Oracle database, and
Motif X-windows. Low-level control is implemented in assembler on a VME crate
running VXWorks. About 250,000 lines of C code is organized into a few hundred
modules.

6e TCS handles the storage and retrieval of patient data; entry and editing of
prescriptions; scheduling of treatments and maintenance; patient positioning; and
beam delivery. In concert with the hardware and PLC safety systems, it is designed
to help manage three main hazards: a physical collision between moving parts of
the system and a patient or staff member; accidental irradiation of a patient or staff
member; and inaccurate radiation of a patient (including overdoses and underdos-
es). In its most critical features, such as the emergency stop feature analyzed here,
the software is backed up by redundant hardware.

NPTC’s acquisition strategy follows an evolutionary model. 6e goal is to have in
place a safe working system, and then to expand the functionality and enable the
addition of new modes of treatment. 6e analysis in this paper is based on Version 1
of the software, which has been in use since 2001. Version 2 is currently undergoing
planning and design.

2.2 System Architecture

A view of the system architecture is shown in Figure 1. 6e Human/Computer In-
terface Layer consists of a graphical user interface, implemented as a collection of
definition files, listeners, etc. 6e Application Layer is the core of the system, and
contains most of the code. It is divided somewhat arbitrarily into four modules:
System Management, which controls user sessions, operational modes, and event
reporting; Beam Management, which handles allocation and operation of the pro-
ton beam; Treatment Management, which handles the patient treatment sequence

223Critical Feature Analysis of a Radiotherapy Machine

from prescription to irradiation; and Database Management, which provides func-
tions to allow the other modules to access the TCS database. 6e Control Unit Layer
contains the drivers for the physical devices; these are implemented in a table-driven
fashion as low level state machines.

From a communications perspective, the core of the system is a commercial mes-
saging system (Talarian’s SmartSockets [17]). 6e control units communicate with
application-level processes using various protocols, including RPC, TCP/IP and
SINEC-H1, depending on the type of hardware involved and the nature of the mes-
sage. 6e other modules communicate through the server using a publish/subscribe
mechanism that it provides: modules subscribe by registering callback procedures
against particular events, and when an event occurs, the server calls all registered
procedures.

3 Dependence Analysis
Our approach is based on a simple dependence model, which we outline here,
but which is described more fully elsewhere [6,7]. 6e analysis involves a traversal
through the dependence graph of the code, which generates, as a byproduct, a tree
of assumptions. Examination of the tree may reveal flaws in the system, in which
critical features are found to depend on unwarranted assumptions.

3.1 The Dependence Graph

6e dependence structure is represented as a graph. An example is shown in Figure
2. Modules are represented as nodes. 6e module name is shown as the upper-most
label inside the node; the other annotations are explained below. An edge labelled
S from module A to module B says that A has a dependence on B mediated by the
specification S. In other words, to fulfill its specification, A relies on B, but only to
the extent that it satisfies S.

Fig. 1. Architecture of 5erapy Control System

Human/Computer
Interface

Application Layer

System
Manager

Beam
Manager

Treatment
Manager

Control Units

RTServer

DataDAQ

publish/
subscribe

publish/
subscribe

publish/
subscribe

TCP/IP
SINEC-H1

RCU Commands/
Exceptions

224 A. Rae et al.

A module is just a syntactic unit of executable code; in a C program, for example,
it might correspond to a file. Source code units that are not executable—such as
header files in C and interfaces in Java—are not regarded as modules.

A specification is, more generally, a description of an assumption that a module
may make about its environment that is discharged by another module. In the sim-
plest case, it corresponds to a distinct service, associated with some subset of the
procedures or methods of a module. But it may also correspond to assumptions that
are not typically viewed as specifications, such as that some procedure within the
module is called with a certain frequency, or that a global variable of the module is
set in a certain way. A specification does not necessarily call for actions to occur; it
may say that certain actions do not occur. We shall talk of the provision of services
rather than the discharging of assumptions, since the words flow more easily, but the
reader should bear in mind that the more general notion is always implied.

A module may use any number of other modules. One module may use another
module under multiple specifications; it may use several other modules under the
same specification (if, for example, the service it requires is discharged at diff erent
times by different modules); and a module may itself be used under multiple speci-
fications by different modules.

In general, then, a module offers many specifications (its exports), and makes use
of other modules via many specifications (its imports). A given export will usually
not require all the imports. To express this, we can record internal dependences for
a module between its imported and exported specifications, writing

A: X -> S, T

for example, to say that module A’s provision of X relies on A’s use of modules that
provide both S and T. On the other hand, we may have that

A: Y -> S

Fig. 2. Sample dependency diagram

A
X->S,T
Y->S

B
S->U

C
T->V

D
U->W

E

TS

U V

W

225Critical Feature Analysis of a Radiotherapy Machine

so that A’s provision of Y relies on A’s use of a module that provides S. In the diagram,
these internal dependences are shown inside the relevant nodes.

6e internal dependences of a module make a more fine-grained dependence
analysis possible. In this case, we can see that in providing the service Y the module
A does not actually rely on the module C. And likewise, since the internal depen-
dences of module D show that it provides V directly, without further demands on
other modules, we can see that module C depends only on module D and not module
E, even though there is path in the graph from C to E.

3.2 The Assumption Tree

Given a dependence graph, and particular service offered by a particular module, we
can construct a tree showing all the services that contribute directly and indirectly
to this service. 6ese services represent the assumptions underlying the correct
working of the system in providing this service.

At the root lies the critical feature; at the leaves are assumptions that cannot be
decomposed further and must be evaluated on their own merits: they are either as-
sumptions about the operational environment, or assumptions that are discharged
locally, in their entirety, by modules. Note that the modules whose assumptions
appear as leaves need not themselves be leaves in the dependence graph: a module
may discharge some assumptions directly, but delegate other assumptions to further
modules.

Suppose the service of interest is X at module A. We label the root of the tree A:
X. Using the internal dependences of A, as described above, we find the services on
which X depends. Here, these services are S and T. Now from the dependence graph
we determine that these are provide by modules B and C respectively, say. 6is gives
us two new nodes of the tree, which we label B:S and C:T.

6is process is continued until the leaves of the tree represent modules that pro-
vide the required services with no further dependences. For the diagram of Figure
2, we obtain:

1 A:X
1.1 B:S
1.1.1 D:U
1.1.1.1 E:W
1.2 C:T
1.2.1 D:V

A module may depend on an assumption about the environment; by modelling the
environment as a module of sorts, we ensure that the tree never has any dangling
edges. A node labelled ENV:Z thus indicates that the environment discharges the as-
sumption Z.

For constructing the assumption tree, regarding dependences as mediated by
specifications is crucial. 6e successful provision of a service by some module
often relies on other modules meeting only very partial specifications. Analysis of
the emergency stop function, for example, reveals many cases in which a module
relies on a procedure call to another module, but does not demand that it meet its

226 A. Rae et al.

full specification. Instead, it depends only on the procedure call terminating, or not
returning an error value. In contrast, an analysis of full correctness would require
that a called procedure satisfy its full specification (which could therefore be left
implicit), resulting in a much larger assumption tree.

3.3 Analysis of the Assumption Tree

6e value of a dependence analysis lies not just in identifying and classifying as-
sumptions, but in assessing whether those assumptions are reasonable. In evaluat-
ing assumptions for critical functions, the following criteria are applied:
· critical functions should not depend on the performance of non-critical func-

tions;
· critical functions should be contained within limited and well-defined sections of

the software;
· fail-safe functions should only be conditional if performing the function may be

more dangerous than not performing the function; and
· where critical functions depend on reused or COTS modules, the fitness of those

modules should be evaluated with respect to the critical functions.

4 Applying the Analysis: Emergency Stop
Our case study investigates one particular function of the 6erapy Control Soft-
ware, namely the Emergency Stop function. When a button, known as the Crash But-
ton, is pressed in one of the control rooms, the system should insert a set of ‘beam
stops’. 6ese block the beam from entering any of the treatment rooms. 6e system
should also freeze motion of the equipment. Whilst hardware interlocks provide an
alternate path for the Emergency Stop function, the control software is required to
provide a redundant mechanism for the function.

Figures 3 and 4 show part of the dependence diagram and assumption tree for the
emergency stop feature of the 6erapy Control System. 6e full expansion of the tree
of Figure 4 is shown in the appendix. 6e critical feature at the root node is ‘Emer-
gency Stop Works’. For emergency stop to work, it is assumed that the RTServer,
the beam manager and the PCU will all behave in certain ways. 6ese translate into
services which must be provided by these modules. 6ese modules in turn make as-
sumptions about other modules which appear lower in the assumption tree.

4.1 Generating the Assumption Tree

6e starting point for the analysis of the Emergency Stop function was to identify
the boundary between the software function and its external environment.

Selecting the boundary of an analysis such as this is necessarily somewhat arbi-
trary. 6e boundary determines which modules are included in the dependence
diagrams. All assumptions relating to mdules included within the boundary should
appear in the assumption tree.

When the Crash Button is pressed, a signal is sent from the Control Unit (CU) to

227Critical Feature Analysis of a Radiotherapy Machine

dataDaq all other
modules

tmgrMainrtDaqIn

events
Interruptions

errorDef

event
Reporter

RTServer

msgOutBuild
Message

avoid
interference

accept
registration

register callback,
report system state

initiate
callback

transmit
inhibit beam

log error build and send
message

transmit error transmit message

Fig. 3. Dependency diagram for part of 5erapy Control System

2 Entire program: Emergency Stop Works
2.1 rtDaqIn: Transmit INIHIBIT_BEAM. If RTServer receives a TMGR_GLOBAL_CRASH_

PRESSED message, the Beam Manager will receive an INHIBIT_BEAM message.
2.1.1 tmgrMain: Register Callback. The Treatment Manager registers the rtDaqInput-

callback procedure with rtdaq.
2.1.1.1 rtDaqIn: Accept Registration. rtdaq registers the rtDaqInputcallback.
2.1.2 tmgrMain: Report System State. tmgrMain reports the system state as anything

but INITIALISATION.
2.1.3 rtdaq: Initiate Callback. rtdaq calls rtDaqInputcallback when a TMGR_GLOBAL_

CRASH_PRESSED message is received.
2.1.3.1 Entire Program: Avoid Interference. No other module removes or changes the

rtDaqInputcallback registration.
2.1.4 eventsInterruptions: Transmit INHIBIT_BEAM. If eventsInterruptions is called

by rtDaqIn, eventsInterruptions transmits an INHIBIT_BEAM message.
2.1.4.1 errorDef: Log Error. If errorDef is called to log an error, it returns a value of

TRUE.
2.1.4.1.1 eventreporter: Transmit ERROR. If eventReporter is called to transmit an

error message, the message is transmitted, stored and displayed to the HCI
correctly.

2.1.4.2 msgOutBuildMessage: Build And Send Message. If msgOutBuildMessage is
requested to build and send an INHIBIT_BEAM message, it does so correctly.

2.1.4.2.1 RTServer: Transmit Message. SmartSockets transmits messages correctly.

Fig. 4. Assumption tree for part of 5erapy Control System

228 A. Rae et al.

the dataDaq module (see Figure 1). 6e dataDaq module responds to the signal by
transmitting a message labelled TMGR_GLOBAL_CRASH_PRESSED via the RTServer.
6e correct response to this message is for a set of commands to be sent to the
control units stopping movement of the equipment and inserting the beam stops.
For the purpose of the analysis, the function begins after a crash button message is
received by dataDaq, and ends when commands are sent to the control units.

Our starting point for analysis is the module rtDaqIn, part of the RTServer of Figure
1. For rtDaqIn to be notified when a TMGR_GLOBAL_CRASH_PRESSED message to be
generated, it depends on trmgrmain (the Treatment Manager) to initialise a callback,
and dataDaq to notify the callback at the appropriate time. In turn, trmgrmain relies
on dataDaq to register the callback. 6e dataDaq module relies on all other modules,
since in order to guarantee that it will provide the service expected of it by rtDaqIn,
it depends on all other modules not to delete or alter the callback registered by
trmgrmain.

To proceed further, rtDaqIn relies on trmgrmain to report the system state. If this is
INITIALISATION, the Emergency Stop function is disabled.

Once the callback has been called, rtDaqIn depends on eventsInterruptions to ac-
tually send the message to the Beam Manager. 6e first action eventsInterruptions
takes is to log an error message. In order to complete the message send, it is not
directly necessary for the logging to be done. However, since eventsInterruptions
will not proceed until logging is complete, it depends on a procedure errorDef to
terminate with a value of TRUE. To achieve this, errorDef depends on eventsReporter
to correctly log the error message.

6e eventsInterruptions module relies on msgOutBuildMessage to send the INHIB-
IT_BEAM message to the Beam Manager. 6e msgOutBuildMessage module in turn
relies on the SmartSocket services provided by RTServer.

5 Evaluation
Software safety analysis does not take place in a vacuum, but rather as an integral
part of a system safety program which includes both software and hardware. 6e
designers of the Proton 6erapy System included an elaborate hardware backup,
implemented using PLC technology. 6e emergency stop function is handled di-
rectly by the hardware, so any flaws in the software revealed by our analysis are likely
to have no impact on the behaviour of the system. Nevertheless, the developers of
the system take a prudent attitude, and are concerned to preserve the redundancy
in order to maximize safety.

6rough our analysis, four issues were revealed in the implementation of the
Emergency Stop function, discussed in the following sections. 6ese were presented
to the developers. 6e first highlights the need for further analysis; the remaining
three were determined to be previously unidentified issues requiring rectification.
None of the issues found turned out to be artifacts of the documentation or the
analysis.

229Critical Feature Analysis of a Radiotherapy Machine

5.1 Implementation of Callbacks and Message Queueing

6e first observation made was that there were numerous dependences on the off-
the-shelf RTworks modules. In most cases, such as in assumption 2.1.3, registration
and activation of a callback procedure, these dependences reflected standard, well-
tested use of the COTS modules.

However, as noted in assumption 2.1.3.1, RTworks does not prevent other modules
from altering callback registrations, resulting in an open-ended dependency. 6e
RTServer, as used in the Proton 6erapy System, also does not provide a mechanism
for prioritising messages. 6us, assumption 2.1.4.2, that eventsInterruptions trans-
mits the INHIBIT_BEAM message, cannot be verified without identifying all other
messages that might be queued for transmission, and demonstrating that they will
not cause failure or excessive delays.

6is problem can be classified as a result of violation of encapsulation for the third-
party software. 6e dependency argument identifies and documents the behaviour
expected from the RTworks modules. By comparing this with the actual behaviour of
the modules, shortcomings can be noticed and addressed.

5.2 Logging before Acting

Correct operation of the Emergency Stop function is dependent on correct logging
of an error message (assumption 3.3.3 in the appendix). 6is violates the principle
that critical functions should not be dependent on non-critical functions.

Whilst the functional requirements for Emergency Stop and logging have been
correctly identified, priority and precedence has not been assigned to the require-
ments. As a result, in some parts of the code an action is performed and then logged,
whilst in other parts of the code an action is logged and then performed. 6ere are
some instances where this is quite appropriate—for example, in order to avoid over-
dose, it seems reasonable to avoid radiating the patient unless the radiation can be
logged. For Emergency Stop, however, it is more important to stop the system than
to record the reason why it was stopped.

Even if both functions were equally important, there is a more immediate temporal
requirement to stop the system.

5.3 Unnecessary Checks

Analysis of the Beam Manager also revealed some interesting dependences. Most
notably, a series of tests must be passed before the beam can be inhibited. 6ese are
described in assumptions 3.3.4 through 3.3.5.1 in the appendix. 6ese checks violate
the principle that fail-safe functions should only be conditional if performing the
function is more dangerous than not performing the function.

It seems unlikely that the developers of the system were unaware of this principle.
More likely, it was not articulated explicitly, and was thus not one of the criteria ap-
plied in code review. During normal operation, it is good defensive programming
to check the consistency of data at regular intervals. 6ese same checks should not,
however, be applied to Emergency Stop. 6e fact that the crash button has been
pressed implies that something has gone wrong, and that something may well result

230 A. Rae et al.

in, or be the result of, incorrect software behaviour. Emergency procedures should
not depend on the system behaving normally.

5.4 The Special Case of the Extra Treatment Room

Assumption 3.3.4 (in the appendix) is potentially a serious design error that pre-
vents Emergency Stop from operating if the beam is assigned to any treatment room
other than Room 1 or Room 2. When we discussed this error with the software engi-
neers responsible for the system, it became evident that the error had arisen through
evolution of the code during development. 6e original code was only designed to
handle two treatment rooms. 6is code was insufficiently generic, and so extension
of the code resulted in the other treatment rooms being treated as special cases,
through the ExtraTreatmentRoom modules. Creation of this special case required
many subtle changes in the software, not all of which were made consistently.

6 Related Work
Our assumption tree has something in common with a fault tree. Unlike a fault tree,
however, its nodes represent the successful provision of a service or function, rather
than a failure. In a conventional fault tree analysis, the structure of the fault tree is
not easily obtained from the system. Our assumption tree, in contrast, is directly
extracted from the dependence diagram.

6e assumption tree has no and/or structure, since a node of the tree represents all
possible behaviours associated with a given assumption, rather than a behaviour in
a particular state. 6is dramatically reduces the size of the tree; more direct applica-
tions of fault tree analysis to code which account for control-flow structure (such as
[8]) seem unlikely to scale.

Software Failure Modes and Effects Analysis (SFMEA), as applied by Lutz [10], in-
volves considering what can go wrong with each module, and the effects that this will
have on each of the dependent modules. It can be viewed as the inverse of fault tree
analysis, working bottom-up rather than top-down. Hazard and Operability Studies
(HAZOP) [1] obtains similar results by listing the connections between modules,
and classifying them with key-phrases such as ‘too fast’, ‘too large’, and ‘incorrect
order’. In this way it systematically explores the effects which each module can have
on other modules. Each of these techniques can be considered to ask the question
‘What might go wrong?’, whereas our technique asks ‘What must go right?’.

6e idea of module dependences goes back to Parnas’s seminal work [13]. Our
dependence diagram differs crucially in the labelling of edges, and in the internal
dependences that link a module’s incoming and outgoing dependences, thus making
it possible to trace the dependence’s associated with a particular subfunction. Most
work on slicing [18] has been at the statement level (see, eg, [4]), although there have
been efforts to apply slicing at the procedure [5] and component [15] levels. Wong
discusses the phenomenon of the ‘long thin slice’ of source code related to any given
hazard [19].

With appropriate tool support, the extraction of the tree could be made largely
automatic. A static analysis that can account for aliasing and procedures-as-values

231Critical Feature Analysis of a Radiotherapy Machine

is required; a type based analyzer such as Lackwit [12] may suffice, in combination
with a means of lifting statement-level results to the module level (such as the re-
flexion model tool [11]).

Since no tools were ideally suited to our analysis, we used a simple syntactic ana-
lyzer [16] to generate cross references, and then processed the results with a com-
bination of scripts and manual editing. How easy such an analysis is to do depends
heavily on how well lexical features of the code (such as the names of identifiers)
capture semantic properties. In some cases, for example, two different constants
were used for the same message type; this makes it very hard to locate code that
reads of writes messages of that type. 6is confirms Griswold’s argument for the
importance of ‘transparency’ in lexical structure [3].

7 Conclusion
6e analysis we have presented is simple but effective. It can be conducted without
extensive knowledge of the code, since the analysis itself highlights those parts of
the code that are relevant. It is feasible without tool support, although tool support
would make it less burdensome, and would make mistakes less likely. Even on a well-
tested system, it exposed interesting issues. An analysis of this form should perhaps
be included in standard code reviews for safety critical code.

Acknowledgments.
6is research was performed when the first author was a post-doctoral fellow in the
Software Design Group at MIT. It was funded by grant 0086154 from the ITR pro-
gram of the National Science Foundation, and by the High Dependability Comput-
ing Program from NASA Ames, cooperative agreement NCC-2-1298.

References

1. P. Fenelon and B. Hebbron. Applying HAZOP to software engineering models. Risk
Management And Critical Protective Systems: Proceedings of SARSS. Altrincham, Eng-
land. 6e Safety And Reliability Society. Oct. 1994. pp. 11–116.

2. Food and Drug Admininstration. FDA Statement on Radiation Overexposures in Pana-
ma. Available at http://www.fda.gov/cdrh/ocd/panamaradexp.html.

3. William G. Griswold. Coping With Software Change Using Information Transparency.
Technical Report CS98-585, Department of Computer Science and Engineering, Univer-
sity of California, San Diego, April 1998 (revised August 1998).

4. S. Horwitz, T. Reps and D. Binkley. Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems. Volume 12. 1990. pp.
26–60.

5. Daniel Jackson and Eugene J. Rollins. A New Model of Program Dependences for Re-
verse Engineering. Proc. SIGSOFT Conf. on Foundations of Software Engineering, New
Orleans, December 1994.

6. Daniel Jackson. Module dependences in software design. Monterey Workshop on Radi-
cal Innovations of Software and Systems Engineering in the Future, Venice, Italy, October
2002.

232 A. Rae et al.

7. Daniel Jackson. Dependences and decoupling. Lecture notes, 6170: Laboratory in
Software Engineering. Dept. of Electrical Engineering and Computer Science, MIT,
Sept. 2002, Available at: http://6170.lcs.mit.edu/www-archive/Old-2002-Fall/lectures/
lecture-09.pdf.

8. Nancy G. Leveson, Stephen S. Cha, and Timothy J. Shimeall. Safety Verification of Ada
Programs Using Software Fault Trees. IEEE Software. Vol. 8, No. 4. July/August 1991, pp.
48–59.

9. Nancy G. Leveson and C. Turner. An investigation of the therac-25 accidents. IEEE
Computer. Vol. 7, No. 26, 1993, pp. 18–41.

10. Robyn R. Lutz and Robert M. Woodhouse. Experience Report: Contributions of SFMEA
to Requirements Analysis. pp. 44-51. Available at http://citeseer.nj.nec.com/article/
lutz96experience.html.

11. Gail C. Murphy, David Notkin, and Kevin Sullivan. Software Reflexion Models: Bridging
the Gap Between Source and High-Level Models. Proceedings of the 5ird ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, 1995, pp. 18–28.

12. Robert O’Callahan and Daniel Jackson. Lackwit: A program understanding tool based
on type inference. Proceedings of the 1997 International Conference on Software Engi-
neering (ICSE’96), Boston, MA, May 1997.

13. David Parnas. Designing Software for Ease of Extension and Contraction. IEEE Transac-
tions on Software Engineering, Vol. SE-5, No 2, 1979.

14. Robert C. Ricks, Mary Ellen Berger, Elizabeth C. Holloway and Ronald E. Goans. RE-
ACTS Radiation Accident Registry: Update of Accidents in the United States. Interna-
tional Radiation Protection Association, 2000.

15. Judith A. Stafford and Debra J. Richardson and Alexander L. Wolf. Architecture-Level
Dependence Analysis for Software Systems. International Journal of Software Engineer-
ing and Knowledge Engineering. Volume 11, No. 4, 2001. pp. 431–451.

16. Red Hat, Inc. 5e Source Navigator IDE. Available at: http://sourcenav.sourceforge.net.
17. Talarian, Inc. SmartSockets. http://www.talarian.com/rtworks.html.
18. Mark Weiser. Program Slicing. IEEE Transactions on Software Engineering. Vol. SE-10,

No. 4, 1984, pp. 352-357.
19. Ken Wong. Looking at Code With Your Safety Goggles On. Reliable Software Technolo-

gies: 1998 Ada-Europe International Conference on Reliable Software Technologies. Lars
Asplund, ed. Uppsala, Sweden,1998. Lecture Notes in Computer Science, Vol. 1411.
Springer, 1998.

Appendix: Assumption Tree

3 Entire program: Emergency Stop Works
3.1 rtDaqIn: Transmit INIHIBIT_BEAM. If RTServer receives a TMGR_GLOBAL_CRASH_

PRESSED message, the Beam Manager will receive an INHIBIT_BEAM message.
3.1.1 tmgrMain: Register Callback. The Treatment Manager registers the rtDaqInputcall-

back procedure with rtdaq.
3.1.1.1 rtDaqIn: Accept Registration. rtdaq registers the rtDaqInputcallback.
3.1.2 tmgrMain: Report System State. tmgrMain reports the system state as anything

but INITIALISATION.
3.1.3 rtdaq: Initiate Callback. rtdaq calls rtDaqInputcallback when a TMGR_GLOBAL_

CRASH_PRESSED message is received.
3.1.3.1 Entire Program: Avoid Interference. No other module removes or changes the

rtDaqInputcallback registration.

233Critical Feature Analysis of a Radiotherapy Machine

3.1.4 eventsInterruptions: Transmit INHIBIT_BEAM. If eventsInterruptions is called by
rtDaqIn, eventsInterruptions transmits an INHIBIT_BEAM message.

3.1.4.1 errorDef: Log Error. If errorDef is called to log an error, it returns a value of
TRUE.

3.1.4.1.1 eventreporter: Transmit ERROR. If eventReporter is called to transmit an
error message, the message is transmitted, stored and displayed to the HCI
correctly.

3.1.4.2 msgOutBuildMessage: Build And Send Message. If msgOutBuildMessage is re-
quested to build and send an INHIBIT_BEAM message, it does so correctly.

3.1.4.2.1 RTServer: Transmit Message. SmartSockets transmits messages correctly.
3.2 rtDaqin: Transmit pcuCrashStop. If RTServer receives a TMGR_GLOBAL_CRASH_

PRESSED message, the PCU will receive a pcuCrashStop call.
3.2.1 eventsInterruptions: Transmit pcuCrashStop. If the eventsSafetyEvent procedure

of eventsInterruptions is called, eventsInterruptions calls pcuCrashStop of the
PCU.

3.3 beamMgr: Insert Beam Stops. If beamMgr receives an INHIBIT_BEAM message, the
beam stops are inserted.

3.3.1 rtdaq: Accept Registration. rtdaq registers the beamConnMsgBeamActionCb.
3.3.2 rtdaq: Initiate Callback. rtdaq calls beamConnMsgBeamActionCb when an IN-

HIBIT_BEAM message is received.
3.3.3 beamMgrErrorLib: Log Error. beamMgrErrorLib terminates and returns.
3.3.3.1 eventReporter: Transmit ERROR. If eventReporter is called to transmit an error

message, eventReporter terminates and returns.
3.3.4 extraRoom: Report Beam Allocation. extraRoom reports that the beam is allocated

to room 1 or room 2.
3.3.5 beamMgrTools: Report Beam Allocation. beamMgrTools reports that the beam is

allocated to the room referred to by the INHIBIT_BEAM message.
3.3.5.1 Entire Program: Avoid Interference. No module changes the beam allocation be-

tween when the INHIBIT_BEAM message is constructed and when the allocation
is checked by beamMgrTools.

3.3.6 beamControl: Insert Beam Stops. beamControl inserts the beam stops.
3.3.6.1 bsIoLib: Insert Beam Stops. bsIoLib inserts the beam stops.
3.3.6.1.1 ecubctu: Return. ecubctu does not generate an exception.
3.3.6.1.2 vxWorks: Transmit STOP. vxWorks transmits to the beam stop hardware.
3.4 PCU: Immobilise Gantry. If the PCU receives a pcuCrashStop call, the commands to

immobilise the gantry will be issued.
3.4.1 pcuStateMgr: Immobilise All Movement. If pcuCrashStop is called, pcuStateMgr

halts all gantry movement.
3.4.1.1 jogLib: Stop Jog Movement. If jogStop is called, jogLib stops jog movement.
3.4.1.2 pathLib: Stop Path Movement. If pathStop is called, pathLib stops path move-

ment.
3.4.1.3 axisLib: Stop All Axes. If axisAllStop is called, axisLib stops movement on all

axes.
3.4.1.3.1 macLib: Stop Mac Movement. If macStop is called, macLib stops mac move-

ment.
3.4.1.3.2 steuLib: Stop STEU Movement. If steuStop is called, steuLib stops gantry

movement.
3.4.1.3.3 sreuLib: Stop SREU Movement. If sreuStop is called, sreuLib stops snout

movement.

234 A. Rae et al.

	Introduction
	Context of the Therapy Control System
	Therapy Control System
	System Architecture

	Dependence Analysis
	The Dependence Graph
	The Assumption Tree
	Analysis of the Assumption Tree

	Applying the Analysis: Emergency Stop
	Generating the Assumption Tree

	Evaluation
	Implementation of Callbacks and Message Queueing
	Logging before Acting
	Unnecessary Checks
	The Special Case of the Extra Treatment Room

	Related Work
	Conclusion

