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INTRODUCTION TO THE SERIES
"Advances in Image Communication"

Dear Colleague,

Image Communication is a rapidly evolving multidisciplinary field on the development
and evaluation of efficient means for acquisition, storage, transmission, representation,
manipulation and understanding of visual information. Until a few years ago, digital image
communication research was still confined to universities and research laboratories of tele-
communication or broadcasting companies. Nowadays, however, this field is witnessing
the strong interest of a large number of industrial companies due to the advent of narrow
band and broadband ISDN, GSM, the Internet, digital satellite channels, digital over-the-
air transmission and digital storage media. Moreover, personal computers and workstations
have become important platforms for multimedia interactive applications that advantage-
ously use a close integration of digital compression techniques (JPEG, MPEG), Very Large
Scale Integration (VLSI) technology, highly sophisticated network facilities and digital
storage media.

At the same time, the scope of research of the academic environment on Image
Communication has further increased to include model- and knowledge-based techniques,
artificial intelligence, motion analysis, and advanced image and video processing techni-
ques. The variety of topics on Image Communication is so large that no one can be a spe-
cialist in all the topics, and the whole area is beyond the scope of a single volume, while
the requirement of up-to-date information is ever increasing.

This was the rationale for Elsevier Science Publishers to approach me to edit a book series
on ‘Advances in Image Communication’, next to the already existing and highly successful
Journal: "Signal Processing: Image Communication". The book series was to serve as a
comprehensive reference work for those already active in the area of Image
Communication. Each author or editor was asked to write or compile a state-of-the-art
book in his/her area of expertise, including information until now scattered in many jour-
nals and proceedings. The book series therefore would help Image Communication spe-
cialists to gain a better understanding of the important issues in neighbouring areas by rea-
ding particular volumes. It would also give newcomers to the field a foothold for doing
research in the Image Communication area.
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In order to produce a quality book series, it was necessary to ask authorities well known in
their respective fields to serve as volume editors, who would in turn attract outstanding
contributors. It was a great pleasure to me that ultimately we were able to attract such an
excellent team of editors and authors.

Elsevier Science and 1, as Editor of the series, are delighted that this book series has alre-
ady received such a positive response from the image communication community. We
hope that the series will continue to be of great use to the many specialists working in this
field.

Jan Biemond
Series Editor
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Preface

Along with the advancement in multimedia and Internet technology, large-scale
digital image and video databases have emerged in both the professional and consumer
environments. Although digital representations have many advantages over analog
representations, vast amounts of (old) film and video material are still in analog
format. Re-using this material in digital format and combining it with newly
produced audiovisual information is, however, only feasible if the visual quality
meets the standards expected by the modern viewer, which motivates the need for
automated image restoration. At the same time, service providers are reluctant to
offer services in digital form because of the fear for unrestricted duplication and
dissemination of copyrighted material. This has led to worldwide research on
watermarking techniques to embed a secret imperceptible signal, a watermark,
directly into the video data. Further, with steadily increasing information volumes
stored in digital image and video databases, it is crucial to find ways for efficient
information retrieval.

This book provides an in-depth treatment of the three aforementioned
important topics related to image and video databases: restoration, watermarking and
retrieval. It is an outgrowth of the participation of the Delft University of Technology
in the European Union ACTS program, a pre-competitive R&D program on
Advanced Communications Technologies and Services (1994-1998). In particular the
book has benefited from participation in the AURORA and SMASH projects on
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respectively automated film and video restoration and storage for multimedia
systems (watermarking & retrieval).

The research has been performed in the Information and Communication
Theory Group, Department of Mediamatics, Faculty of Information Technology and
Systems of the Delft University of Technology, The Netherlands, as part of the
Visual Communications research program (http://wwwr-ict.its.tudelftnl) and has
been published extensively. The restoration task was performed by P.M.B. van
Roosmalen, the watermarking task by G.C. Langelaar, and the retrieval task by A.
Hanjalic under the guidance of the professors J. Biemond and R.L. Lagendijk.

Delft, February 2000
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Outline

In recent years, technology has reached a level where vast amounts of digital
audiovisual information are available at a low price. During the same time, the
performance-versus-price ratio of digital storage media has steadily increased.
Because it is easy and relatively inexpensive to obtain and store digital information,
while the possibilities to manipulate such information are almost unlimited, large-
scale image and video databases in the professional and consumer environments have
grown rapidly. Examples are databases of museum records, Internet image and
video archives, databases available to commercial service providers and private
collections of digital audiovisual information at home. All of these are characterized
by a quickly increasing capacity and content variety. This book addresses three
important topics related to efficient practical realization and utilization of digital
image and video databases: image restoration, copy-protection by watermarking and
efficient information retrieval.

The first topic, restoration, is addressed in Part I of this book. It considers
unique records of historic, artistic, and cultural developments of every aspect of the
20th century, which are stored in huge stocks of archived moving pictures. Many of
these historically significant items are in a fragile state and are in desperate need of
conservation and restoration. Preservation of visual evidence of important moments
in history and of our cultural past is not only of purely scientific value. Moreover, it
is possible to digitize these historic records and combine them with newly produced



programs for broadcasting or database-building purposes. On the one hand, huge
collections of movies, soaps, documentaries, and quiz shows currently held in store
provide a cheap alternative to the high costs of creating new programs. On the other
hand, emerging databases in some professional spheres, such as journalism, politics
or social sciences, can largely benefit from preserved and easily accessible historic
records. Re-using old film and video material is, however, only feasible if the visual
and audio quality meets the standards expected by the modern viewer. There is a
need for an automated tool for image restoration due to the vast amounts of
archived film and video and due to economical constraints. The term automated
should be stressed because manual image restoration is a tedious and time-
consuming process. At the Delft University of Technology, algorithms were
developed for correcting three types of artifact common to old film and video
sequences, namely intensity flicker, blotches and noise.

Intensity flicker is a common artifact in old black-and-white film sequences. It
is perceived as unnatural temporal fluctuations in image intensity that do not
originate from the original scene. We describe an original, effective method for
correcting intensity flicker on the basis of equalizing local intensity mean and
variance in a temporal sense.

Blotches are artifacts typically related to film that are caused by the loss of
gelatine and dirt particles covering the film. Existing techniques for blotch detection
generate many false alarms when high correct-detection rates are required. As a
result, unnecessary errors that are visually more disturbing than the blotches
themselves can be introduced into an image sequence by the interpolators that
correct the blotches. We describe techniques to improve the quality of blotch
detection results by taking into account the influence of noise on the detection pro-
cess and by exploiting the spatial coherency within blotches. Additionally, a new,
fast, model-based method for good quality interpolation of blotched data is
developed. This method is faster than existing model-based interpolators. It is also
more robust to corruption in the reference data that is used by the interpolation
process.

Coring is a well-known technique for removing noise from still images. The
mechanism of coring consists of transforming a signal into a frequency domain and
reducing the transform coefficients by the coring function. The inverse transform of
the cored coefficients gives the noise-reduced image. We develop a framework for
coring image sequences. The framework is based on 3D (2D space and time) image
decompositions, which allows temporal information to be exploited. This is
preferable to processing each frame independently of the other frames in the image
sequence. Furthermore, a method of coring can be imbedded into an MPEG2
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encoder with relatively little additional complexity. The MPEG2 encoder then
becomes a device for simultaneous noise reduction and image sequence
compression. The adjusted encoder significantly increases the quality of the coded
noisy image sequences.

Not only does image restoration improve the perceived quality of the film and
video sequences, it also, generally speaking, leads to more efficient compression.
This means that image restoration gives better quality at fixed bitrates, or,
conversely, identical quality at lower bitrates. The latter is especially important in
digital broadcasting and storage environments for which the price of
broadcasting/storage is directly related to the number of bits being broad-
cast/stored. We investigate the influence of artifacts on the coding efficiency and
evaluate how much is gained by restoring impaired film and video sequences. We
show that considerable savings in bandwidth are feasible without loss of quality.

The second topic, copy-protection by watermarking, is addressed in Part II of
this book. Although digital data have many advantages over analog data, service
providers are reluctant to offer services in digital form because they fear unrestricted
duplication and dissemination of copyrighted material. The lack of adequate
protection systems for copyrighted content was for instance the reason for the
delayed introduction of the DVD. Several media companies initially refused to
provide DVD material until the copy protection problem had been addressed.

To provide copy protection and copyright protection for digital audio and
video data, two complementary techniques are being developed: encryption and
watermarking. Encryption techniques can be used to protect digital data during the
transmission from the sender to the receiver. However, after the receiver has
received and decrypted the data, the data is in the clear and no longer protected.
Watermarking techniques can complement encryption by embedding a secret
imperceptible signal, a watermark, directly into the clear data. This watermark
signal is embedded in such a way that it cannot be removed without affecting the
quality of the audio or video data. The watermark signal can for instance be used for
copyright protection by hiding information about the author in the data. The
watermark can now be used to prove ownership in court.

Another interesting application for which the watermark signal can be used is
to trace the source of illegal copies by using fingerprinting techniques. In this case, the
media provider embeds watermarks in the copies of the data with a serial number
that is related to the customer’s identity. If now illegal copies are found, for instance
on the Internet, the intellectual property owner can easily identify customers who
have broken their license agreement by supplying the data to third parties. The
watermark signal can also be used to control digital recording devices by indicating
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whether certain data may be recorded or not. In this case, the recording devices must
of course be equipped with watermark detectors. Other applications of the
watermark signal include: automated monitoring systems for radio and TV
broadcasting, data authentication and transmission of secret messages.

Each watermarking application has its own specific requirements.
Nevertheless, the most important requirements to be met by most watermarking
techniques are that the watermark is imperceptible in the data in which the
watermark is hidden, that the watermark signal can contain a reasonable amount of
information and that the watermark signal can not easily be removed without
affecting the data in which the watermark is hidden.

In Part IT of this book an extensive overview is given of different existing
watermarking methods. However, the emphasis is on the particular class of
watermarking techniques that is suitable for real-time embedding watermarks in
and extracting watermarks from compressed video data. This class of techniques is
for instance suitable for fingerprinting and copy protection systems in home-
recording devices. To qualify as a real-time watermarking technique for compressed
video data, a watermark technique should meet the following requirements besides
the already mentioned ones. There are two reasons why the techniques for
watermark embedding and extracting cannot be too complex: they are to be
processed in real time, and as they are to be used in consumer products, they must
be inexpensive. This means that fully decompressing the compressed data, adding a
watermark and subsequently compressing the data again is not an option. It should
be possible to add a watermark directly to the compressed data. Furthermore, it is
important that the addition of a watermark does not influence the size of the
compressed data. For instance, if the size of a compressed MPEG-video stream
increases, transmission over a fixed bit rate channel can cause problems, the buffers
in hardware decoders can run out of space, or the synchronization of audio and
video can be disturbed. The most efficient way to reduce the complexity of real-time
watermarking algorithms is to avoid computationally demanding operations by
exploiting the compression format of the video data. We introduce two new
watermarking concepts that directly operate on the compressed data stream, namely
the least significant bit (LSB) modification concept and the Differential Energy
Watermark (DEW) concept.

The end of Part 1I is dedicated to the evaluation of the DEW-concept. Several
approaches to evaluate watermarking methods from literature are discussed and
applied. Furthermore, watermark removal attacks from literature are discussed and
a new watermark removal attack is proposed.
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While Parts I and II are mainly related to the process of creating an image or
video database in terms of providing visual material of acceptable quality
(restoration) and protecting the ownership of that material (watermarking), the topic
addressed in Part III of this book, information retrieval, concerns the efficiency of
using image and video databases, that is, of handling large amounts of not-indexed
audiovisual information stored therein.

With steadily increasing information volumes stored in image and video
databases, finding efficient ways to quickly retrieve information of interest becomes
crucial. Since searching manually through GBytes of unorganized stored data is
tedious and time-consuming, the need grows for transferring information retrieval
tasks to automated systems. Realizing this transfer in practice is, however, not
trivial. The main problem is that typical retrieval tasks, such as “find me an image
with a bird!”, are formulated on a cognitive level, according to the human capability
of understanding the information content and analyzing it in terms of objects,
persons, sceneries, meaning of speech fragments or the context of a story in general.
Opposed to this, an image or a video is analyzed at the algorithmic or system level in
terms of features, such as color, texture, shape, frequency components, audio and
speech characteristics, and using the algorithms operating on these features. Such
algorithms are, for instance, image segmentation, detection of moving objects in
video sequences, shape matching, recognition of color compositions, determination
of spatio-temporal relations among different objects or analysis of the frequency
spectrum of the audio or speech stream. These algorithms can be developed using
the state-of-the-art in image and audio analysis and processing, computer vision,
statistical signal processing, artificial intelligence, pattern recognition and other
related areas. Experience has shown, however, that the parallelism between the
cognition-based and feature-based information retrieval is not viable in all cases.
Therefore, the development of feature-based content-analysis algorithms has not
been directed to enable queries on the highest semantic level, such as the above
example with a bird, but mainly towards extracting certain semantic aspects of the
information that would allow for a reduction of the overall large search space. The
material presented in Part III of this book is meant to contribute further to research
efforts in this direction.

We first introduce a series of novel algorithms for video analysis and
abstraction. These algorithms are developed to provide an overview of the video-
database content and logical entry points into a video when browsing through a
video database. Also a video index may be constructed based on visual features
contained in the abstract, which can then be used for video queries using image
retrieval techniques. On the one hand, algorithmic solutions are provided for
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segmenting a video into temporally homogeneous fragments called video shots, for
condensing each of the shots into a set of characteristic frames called key frames and
for performing a high-level analysis of a video content. This high-level analysis
includes determining semantic relationships among shots in terms of their temporal
characteristics and suitable features of their key frames, and identification of certain
semantically interesting video shots. Examples are merging the shots of a movie into
scenes or episodes or the identification of anchorperson shots in news programs. On
the other hand, we develop an algorithm for automatically summarizing an arbitrary
video by extracting a number of suitable key frames in such a way that the result is
similar as when that video is summarized manually. One characteristic application
where having such abstracts is useful is browsing through a video and searching for
a scene of interest. The user only needs to check a limited amount of information
contained in an abstract instead of going through the entire video in the fast-
forward/rewind mode, while still having available all the characteristic information
related to the video content and thus being able to understand and follow that
content exclusively on the basis of the abstract.

The second contribution of Part III is the search for suitable compression
methodologies which are to be applied to images and videos stored in databases.
Large scientific and industrial efforts have been invested over the years in
developing and improving high-quality digital image and video compression
methods. Hereby, three classical optimization criteria were taken into account: (1)
minimizing the resulting bit rate, (2) maximizing the quality of the reconstructed
image and video and (3) minimizing the computational costs. The invested efforts
have resulted in many efficient image and video compression methods, the most
suitable of which were standardized (e.g. JPEG, MPEG). These methods are,
however, not optimized in view of content accessibility which is analog to the
efficiency of regaining the features of content elements being important for a given
retrieval task. This means that a high computational load in reaching image and
video features combined with large amount of information stored in a database, can
negatively influence the efficiency of the interaction with that database.

In order to make the interaction with a database more efficient, it is necessary
to develop compression methods which explicitly take into account the content
accessibility of images and video, together with the classical optimization criteria.
This challenge can also be formulated as to reduce the computational load in
obtaining the features from a compressed image or video. As a concrete step in this
direction a novel image compression methodology is presented where a good
synergy among the four optimization criteria is reached.
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Chapter 1
Introduction to Restoration

1.1 Background

If one considers that archived film and video sequences will be preserved by
transferring them onto new digital media, there are a number of reasons why these
sequences should be restored before renewed storage. First, restoration improves the
subjective quality of the film and video sequences (and it thereby increases the
commercial value of the film and video documents). Second, restoration generally
leads to more efficient compression, i.e., to better quality at identical bitrates, or,
conversely, to identical quality at lower bitrates. The latter is especially important in
digital broadcasting and storage environments for which the price of broadcast-
ing/storage is directly related to the number of bits being broadcast/stored.

There is a need for an automated tool for image restoration due to the vast
amounts of archived film and video and due to economical constraints. The term
automated should be stressed because manual image restoration is a tedious and
time-consuming process. Also, the restoration tool should operate in real-time in
order to allow for bulk processing, and to reduce the high costs of manual labor by
requiring a minimum of human intervention.

1.2 Scope of Part I

Detecting and restoring selected artifacts from archived film and video material with
real-time hardware places constraints on how that material is processed and on the
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complexity of the algorithms used. It is stressed here that these constraints do not
restrict the complexity of the methods for image restoration presented here, with the
exception of the work presented in Chapter 3. Even though much of the work
described here is too complex (meaning too expensive) to be implemented in
hardware directly, it gives good insight into the nature of the investigated artifacts.
The material presented in Chapters 1 to 6 gives an upper bound on the quality that
can be achieved under relaxed constraints.

We restrict ourselves to black-and-white image sequences for two reasons.
First, a large proportion of the films that require restoration is in black and white.
Second, most of the algorithms can easily be extended to color, though perhaps in a
suboptimal manner. An example of this would be a situation in which a color image
sequence is restored by applying the restoration algorithms to the R, G, and B
channels separately. Multi channel approaches [Arm98], [Ast90] could be taken from
the start, at the cost of increased complexity and at the risk of achieving little
significant gain compared to what single channel processing already brings.

As an inventory of impairments found in old film and video sequences, a list of
over 150 entries emerged that indicates the nature of the defects and the frequency of
their occurrence. From this list, the most important impairments are noise [Abr96],
[Arc91], [Bra95], [Don94b], [Dub84], [Hir89], [Kle94], [Ozk92], [Ozk93], [Roo97],
blotches [Fer96], [Goh96], [Kal97], [Kok98], [Kok95a], [Kok95b], [Mul96], [Nad97],
[Roo99a], [Roo98b], [Vel88], line scratches [Kok98], [Mor96), film unsteadiness [V1a96],
and intensity flicker [Fer96], [Mul96], [Ric95], [Roo99b], [Roo97]. Figure 1.1 shows
some examples of these artifacts. This figure shows frames that are corrupted by
multiple artifacts. This is often the case in practice.

Not only the quality of video has been affected by time, audio tracks often
suffer degradations as well. However, restoration of audio is beyond the scope of
this book.

Even though a single algorithm for restoring all the artifacts at hand in an
integral manner is conceivable, a modular approach was chosen to resolve the
various impairments. A divide-and-conquer strategy increases the probability of (at
least partial) success. Furthermore, real-time systems for video processing require
very fast hardware for the necessary computations. Modular systems allow the
computational complexity to be distributed. Figure 1.2 shows a possible system for
image restoration using a modular approach that was largely implemented for the
purposes of this book.

The first block in Figure 1.2, flicker correction, removes disturbing variations in
image intensity in time. Intensity flicker hampers accurate local motion estimation;
therefore, it is appropriate to correct this artifact prior to applying any restoration
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technique that relies on local motion estimates. Next, local motion is estimated.
Instead of designing (yet another) motion estimator that is robust to the various
artifacts, we use a hierarchical block matcher [Bie88], [Haa92], [Tek95] with
constraints on the smoothness of the motion vectors.

Figure 1.1: (a,c,e) Three consecutive frames from a Charlie Chaplin film impaired by noise,
blotches, and line scratches. There are also differences in intensity, which are less visible in
print than on a monitor though. Zooming in on (b) noise, (d) a blotch, and (f) a scratch.
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Where the motion vectors are not reliable, due to the presence of artifacts, a
strategy of vector repair is applied when necessary [Che97], [Has92], [Kok98],
[Lam93], [Nar93]. Next, blotch removal detects and removes dark and bright spots
that are often visible in film sequences. Scratch removal, which is not a topic of
research in this book, removes vertical line scratches. Noise reduction reduces the
amount of noise while it preserves the underlying signal as well as possible. Finally,
image stabilization makes the sequence steadier by aligning (registering) the frames of
an image sequence in a temporal sense. Image stabilization is not a topic of research
in this book.

in this book Outside scope of this book

Figure 1.2: Schematic overview of a modular system towards image restoration.

In Figure 1.2, blotches and scratches are addressed prior to noise because they are
local artifacts, corrections thereof influence the image contents only locally. Noise
reduction is a global operation that affects each and every pixel in a frame.
Therefore, all processes following noise reduction are affected by possible artifacts
introduced by the noise reduction algorithm. Image stabilization, for which very
robust algorithms exist, is placed at the back end of the system because it too affects
each and every pixel by compensating for subpixel motion and by zooming in on the
image. Zooming is required to avoid visible temporal artifacts near the image
boundaries. As already mentioned, intensity flicker correction is an appropriate
front end to the system. It is applied prior to the algorithms that require local motion
estimates.
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At the starting point in Figure 1.2 are digital image sequences instead of
physical reels of film or tapes containing analog video. Rather than investigating the
large number of formats and systems that have been used in one period or another
over the last century, it is assumed that the archived material has been digitized by
skilled technicians who know best how to digitize the film and video from the
various sources. When the source material is film, digital image sequences are
obtained by digitizing the output of the film-to-video telecine. It must be kept in
mind that the earlier telecines have their limitations in terms of noise characteristics
and resolution. Sometimes a copy on video tape obtained from an earlier telecine is
all that remains of a film.

The output of the system in Figure 1.2 forms the restored image sequence.
Subjective evaluations using test panels assess the improvement in perceived quality
of the restored sequence with respect to the impaired input sequence.

1.3 Overview of Part I

Chapter 2 commences with general remarks on model selection, parameter
estimation, and restoration. The key to an automatic restoration system lies in
automatic, reliable parameter estimation. Models for noise, blotches, line scratches,
film unsteadiness, and intensity flicker are reviewed. Motion estimation is an
important tool in image sequence restoration, and its accuracy determines the
quality of the restored sequences. For this reason, the influence of artifacts on motion
estimation is investigated. It is likely that archived material selected for preservation
is re-stored in a compressed format on new digital media. To appreciate the possible
benefits of image restoration with respect to compression, the influence of artifacts
on the coding efficiency of encoders based on the MPEG2 video compression
standard is investigated.

Chapter 3 develops a method for correcting intensity flicker. This method
reduces temporal fluctuations in image intensity automatically by equalizing local
image means and variances in a temporal sense. The proposed method was
developed to be implemented in hardware; therefore, the number of operations per
frame and the complexity of these operations have been kept as low as possible.
Experimental results on artificially and naturally degraded sequences prove the
effectiveness of the method.

Chapter 4 investigates blotch detection and removal. Existing methods, both
heuristic and model based, are reviewed. Improved methods are developed.
Specifically, the performance of a blotch detector can be increased significantly by
postprocessing the detection masks resulting from this detector. The postprocessing
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operations take into account the influence of noise on the detection process; they also
exploit the spatial coherency within blotches. Where blotches corrupt the image
data, the motion estimates are not reliable. Therefore, benefits of motion-vector
repair are investigated. Finally, a new, relatively fast model-based method for good-
quality interpolation of missing data is presented.

Chapter 5 investigates coring. Coring is a well-known technique for removing
noise from images. The mechanism of coring consists of transforming a signal into a
frequency domain and reducing the transform coefficients by the coring function.
The inverse transform of the cored coefficients gives the noise-reduced image. This
chapter develops a framework for coring image sequences. The framework is based
on 3D image decompositions, which allows temporal information to be exploited.
This is preferable to processing each frame independently of the other frames in the
image sequence. Furthermore, this chapter shows that coring can be imbedded into
an MPEG encoder with relatively little additional complexity. The adjusted encoder
significantly increases the quality of the coded noisy image sequences.

Chapter 6 evaluates the image restoration tools developed in this book. First, it
verifies experimentally that the perceived quality of restored image sequences is
better than that of the impaired source material. Second, it verifies experimentally
that, for the artifacts under consideration, image restoration leads to more efficient
compression.



Chapter 2
Modeling and Coding

2.1 Modeling for image restoration

Model selection and parameter estimation are key elements in the design process of
an image restoration algorithm. Section 2.1.1 reviews these key elements so that their
presence can be recognized clearly in subsequent chapters. It is argued that robust
automatic parameter estimation is essential to an automatic image restoration
system. Section 2.1.2 models common degradations that affect old film and video
sequences. These models form a basis for the restoration techniques developed in
this book. They are also used for evaluation purposes. Section 2.1.3. investigates the
influence of artifacts on the accuracy of motion estimation.

2.1.1 Model selection and parameter estimation

Image model. Many models that define various aspects of natural images and of
image sequences are described in literature. For example, for still images, the
magnitude of the Fourier spectrum has a 1/f characteristic [Sch98], and local pixel
intensities depend on each other via markov random fields [Gem84], [Ros82],
[Won68], [Woo72]; for image sequences, there is a very high correlation between
frames in time for image sequences [Has92].

The choice of the image model to be used depends on the problem at hand. In
the case of image restoration, it is appropriate to select image models with ordinary
parameter values that are affected as much as possible by the degradations under



10 CHAPTER 2

investigation. The reason for this is apparent. Suppose the model parameters of the
assumed image model are not affected at all by a certain degradation. Then that
image model provides no information that can be used for determining the severity
of that degradation, nor does it provide any indication of how to correct the
degradation.

Degradation model. Degradation models describe how data are corrupted; they
imply how the model parameters for unimpaired images are altered. Models for
specific degradations are obtained through a thorough analysis of the mechanisms
generating the artifacts. The analysis is not always straightforward because the
physical processes that underlie an impairment can be very complex and difficult to
qualify. Often there is a lack of detailed knowledge on how a signal was generated.
In practice, approximations and assumptions that seem reasonable have to be made.
For example, in Section 2.1.2, the overall influence of the various noise sources
affecting pictures in a chain of image capture, conversion, and storage is
approximated by a single source instead of taking into account all the individual
noise contributions explicitly.

Restoration model. Ideally, restoration would be modeled as the inverse operation
of the degradation with its model parameters. Unfortunately, “the inverse” does not
exist in many cases due to the singularities introduced by the degradation and due
to the limited accuracy with which the model parameters are known. There are
many solutions to a restoration problem that give identical observed signals when
the degradation model (though be it with different parameters) is applied to them.
For example, image data corrupted by blotches can be restored by a number of
methods (Chapter 4), each of which gives a different solution. However, none of the
solutions conflict with the degradation process and with the observed data that
result from the degradation process.

The restoration problem is ill posed in the sense that no unique inverse to the
degradation exists. A unique solution can be found only by reducing the space of
possible solutions, by setting constraints in the form of criteria that must be fulfilled
as well as is possible: the characteristics of the restored image are required to fit an
image model. The goal of image restoration is to restore an image so that it
resembles the original scene as closely as possible. Therefore, an often used
additional criterion is that, in the spatial domain, the mean squared error between
the restored image and the original, uncorrupted image must be as small as possible.
Estimating model parameters. Figure 2.1 shows how the image, degradation, and

restoration models relate to each other. The central element that links the models is
parameter estimation (system identification). The quality of a restored image sequence
is determined by the quality of the estimated model parameters. Indeed, the quality
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of a restored image sequence can be worse than that of the degraded source material
if poor choices are made for the values of the model parameters. Therefore, the level
of automation for which model parameters can be estimated in a robust manner and
with sufficient accuracy determines the extent to which a restoration system
performs its function without user intervention. For this reason, automatic
parameter estimation from the observed signals is an important part of each of the
methods for image restoration presented in this book.

Image Model
\A Parameter Restoration
Estimation | ————————» Model
Degradation /

m /

Figure 2.1: Relationships between model selection and parameter estimation.

Automatic parameter estimation is a non-trivial task in many cases due to the fact
that insufficient numbers of data are available and due to the presence of noise. The
term noise has a broad meaning in this context, and often it includes the signal to be
restored from the observed data themselves. For example, estimating the noise
variance (as a parameter for some algorithm) is hampered by the fact that it is very
difficult to differentiate between noise and texture in natural images. Again,
approximations and assumptions that seem reasonable have to be made.

Note that the quality of the estimated model parameters, e.g., determined by
means of a direct numerical comparison to the true parameters, is not necessarily a
good indication of the quality of the restoration result. This is because the quality of
the restoration result varies in a different way for estimation errors in each of the
parameters [Lag91].

2.1.2 Impairments in old film and video sequences

Chapter 1 mentions the most common impairments in old film and video sequences,
and Figure 1.1 shows some examples of these artifacts. This subsection gives models
for the various impairments. Figure 2.2 indicates the sources of the artifacts in a
chain of recording, storage, conversion, and digitization.
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Figure 2.2: Sources of image degradation in a chain of recording, storage, conversion and
digitization.

Noise. Any recorded signal is affected by noise, no matter how precise the recording
apparatus. In the case of archived material, many noise sources can be pointed out.
There is granular noise on film, a result of the finite size of the silver grains on film,
that can be modeled by signal-dependent random processes [Bil75], [Jai89], [Ozk93],
[Prad1]. There is photon or quantum noise from plumbicon tubes and charged coupled
devices (CCDs) that is modeled as a signal-dependent Poisson process [Dav92]. There
is also thermal noise, introduced by electronic amplifiers and electronic processing,
that is modeled as additive white gaussian noise [Dav91], [Pra91]. There is impulsive
noise resulting from disturbances of digital signals stored on magnetic tape [Jus81].
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Finally, in the case of digital signal processing, the digitizing process introduces
quantization noise that is uniformly distributed [Rob87].

Many historical (and modern) film and video documents contain a combination
of all the types of noise mentioned. For instance, such is the case for material
originating on film that has been transferred to video. Modeling noise is often
complicated by the band-limiting effects of optical systems in cameras and by the
nonlinear gamma correction that makes the noise dependent on the signal [Kle94].
Quantitative analysis of the contributions of each individual noise source to a
recorded image is extremely difficult, if not impossible. In practice, it is often
assumed that the Central Limit Theorem [Leo94] applies to the various noise sources.
This implies the assumption that the various noise sources generate independent and
identically distributed (i.i.d.) noise.

Unless mentioned otherwise, it is assumed in Chapters 1 to 6 that the combined
noise sources can be represented by a single i.i.d. additive gaussian noise source.
Hence, an image corrupted by noise is modeled as follows. Let y(i) with i=(i, j, ) be
an image with discrete spatial coordinates (i, j) recorded at time t. Let the noise be
(7). The observed signal z(i) is then given by:

z(i) = y(i) + n(i) (2.1)

Many very different approaches to noise reduction are found in the literature,
including optimal linear filtering techniques, (nonlinear) order statistics, scale-space
representations, and bayesian restoration techniques [Abr96], [Arc91], [Bra95],
[Don95], [Don94a], [Don94b], [Dub84], [Hir89], [Kle94], [Ozk92], [Ozk93], [Roo96].
Blotches. Blotches are artifacts that are typically related to film. In this book, the
term blotch is used to indicate the effects that can result from two physical
degradation processes of film. Both degradations lead to similar visual effects. The
first degradation process is a result of dirt. Dirt particles covering the film introduce
bright or dark spots on the picture (depending on whether the dirt is present on the
negative or on the positive). The second degradation process is the loss of gelatin
covering the film, which can be caused by mishandling and aging of the film. In this
case, the image is said to be blotched. A model for blotches is given in [Kok98]:

2(i)=(1- (@) y(i) + d(i) c(d) (2.2)

where z(i) and (i) are the observed and the original (unimpaired) data, respectively.
The binary blotch detection mask d(i) indicates whether each individual pixel has
been corrupted: d(i)e {0, 1}. The values at the corrupted sites are given by c(i), with
c(i) # y(i). A property of blotches is that the intensity values at the corrupted sites
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vary smoothly; that the variance c(i) within a blotch is small. Blotches seldom appear
at the same location in a pair of consecutive frames. Therefore the binary mask d(i)
will seldom be set to one at two spatially co-sited locations in a pair of consecutive
frames. However, there is spatial coherence within a blotch; if a pixel is blotched, it is
likely that some of its neighbors are corrupted as well.

Figure 2.3: Measured intensities (solid line) Figure 2.4: Example of a frame affected by a
and approximated intensities (dashed line) horizontal scratch on a two-inch video tape.
from a cross section of the vertical scratch in  (Photo by courtesy of the BBC).

Figure 1.1e

Films corrupted by blotches are often restored in a two-step approach. The first step
detects blotches and generates binary detection masks that indicate whether each
pixel is part of a blotch. The second step corrects pixels by means of spatio-temporal
interpolation [Fer96], [Goh96], [Kal97], [Kok95a], [Kok95b], [Mul96], [Nar93],
[Roo99a], [Roo98b], [The92]. Sometimes an additional step of motion estimation is
included prior to interpolation because motion vectors are less reliable at corrupted
sites. An alternative approach is presented in [Kok98], where blotches are detected
and corrected simultaneously.

Line scratches, A distinction can be made between horizontal and vertical line
scratches. Vertical line scratches are impairments that are typically related to film
[Kok98], [Mor96]. They are caused by sharp particles scratching the film in a
direction parallel to the direction of film transport within the camera. Line scratches
are often visible as bright or dark vertical lines. The fact that vertical lines appear in
nature frequently makes it difficult for an algorithm to distinguish between scratches
and real-image structures. A one-dimensional cross-section of a scratch can be
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modeled by a damped sinusoid (Figure 2.3):

lc—il

IG)= A K" cos( )+ f (2.3)

w

where A depends on the dynamic range of the intensities over the cross-section of a
scratch, k is the damping coefficient, ¢ indicates the central position of the scratch, w
indicates the width of the scratch, and f, is an offset determined by the local mean
gray level. Once detected, line scratches can be restored by spatial or spatio-temporal
interpolation.

In the case of video, horizontal scratches disturb the magnetic information
stored on the tape. As a result of the helical scanning applied in video players, a
horizontal scratch on the physical carrier does not necessarily give a single
horizontal scratch in the demodulated image. For example, a horizontal scratch on a
two-inch recording results in local distortions all over the demodulated image.
Figure 2.4 is an example.

Film unsteadiness. Two types of film unsteadiness are defined, namely interframe

and intraframe unsteadiness. The first and most important category is visible as
global frame-to-frame displacements caused by mechanical tolerances in the
transport system in film cameras and by unsteady fixation of the image acquisition
apparatus. A model] for interframe unsteadiness is:

z(i) = y(i—q,(t), j—q,(t),1) (2.4)

Here g,(t) and g,(t) indicate the global horizontal and vertical displacement of
frame t with respect to the previous frame. Intraframe unsteadiness can be caused by
transfers from film to video where the field alignment is off (many older telecines
used separate optical paths for the odd and even fields). This leads to interference
patterns that are perceived as variances in luminance. Unsteadiness correction is
estimated from the displacements and misalignments by maximizing temporal and
spatial correlation, followed by resampling of the data. See [V1a96], for example.

Intensity flicker. Intensity flicker is defined as unnatural temporal fluctuations in
the perceived image intensity that do not originate from the original scene. There are
a great number of causes, e.g., aging of film, dust, chemical processing, copying,
aliasing, and, in the case of the earlier film cameras, variations in shutter time. This
book models intensity flicker as:

z(i) = a (1) y(i) + B(i) (2.5)
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where fluctuations in image intensity variance and in intensity mean are represented
by the multiplicative a(i) and additive B(i). It is assumed that a(i) and B(i) are
spatially smooth functions. Histogram equalization has been proposed as a solution
to intensity flicker [Fer96], [Mul96], [Ric95]. This book presents a more robust
solution [Roo99b].

Other artifacts are linejitter [Kok98], [Kok97], color fading, blur [Ban97],
[Lag91], echoes, drop-outs and moiré effects. These are beyond the scope of this
book.

Frame 1 .

Degrade

Motion
Degrade Estimate Vectors
P  Motion —;
Y Out
Frame 2 T Compensate MSE
Motion P F——>

Figure 2.5: Scheme for measuring the influence of image degradations on the accuracy of
estimated motion vectors.

2.1.3 Influence of artifacts on motion estimation

For image sequence restoration, temporal data often provide additional information
that can be exploited above that which can be extracted from spatial data only. This
is because natural image sequences are highly correlated in a temporal sense in
stationary regions. In nonstationary regions, object motion reduces the local
temporal correlation. Therefore, increasing the stationarity of the data via motion
estimation and compensation is beneficial to the restoration process. Many motion
estimation techniques have been developed in the context of image compression.
Examples are (hierarchical) block matchers, pel-recursive estimators, phase cor-
relators, and estimators based on bayesian techniques [Bie87], [Bie88], [Haa92],
[Kon92], [Pea77], [Tek95].

This book uses a hierarchical motion estimator with integer precision and some
constraints on the smoothness of the motion vectors. The constraints on smoothness
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are imposed by increasingly restricting the allowed deviation from the local
candidate vectors passed on from lower resolution levels to higher resolution levels.
Appendix A describes the details of this motion estimator. A motion-compensated
frame representing a frame y(i) recorded at time t computed from a reference frame
recorded at time t+k will be denoted as y,, (i,t+k).

The scheme depicted in Figure 2.5 was used for some experiments to get some
feeling for the influence of various artifacts on the accuracy of this motion estimator.
In this scheme, two consecutive frames from a sequence are degraded and the
motion between the objects in the degraded frames is estimated. The mean squared
error (MSE) between the original (unimpaired) frames is then computed. One of
these frames is compensated for motion with the estimated vectors. Let N indicate
the number of pixels per frame. Then, the MSE between the current frame and the
motion-compensated next frame is defined as:

MSE(y(i), Y (i, £+ 1) = %ZZW("' Jt) = Yneli, it + 1)) (2.6)

The rationale behind this scheme is the following. In the case that the motion
estimator is not influenced much by the degradations, the correct vectors are found
and the MSE is low. As the influence of the degradations on the estimated motion
vectors becomes more severe, the MSE increases.

The scheme in Figure 2.5 was applied to three test sequences to which
degradations of various strength are added. The first sequence, called Tunnel, shows
a toy train driving into a tunnel. The background is steady. The second sequence,
MobCal, has slow, subpixel motion over large image regions. The third sequence,
Manege, shows a spinning carousel and contains a lot of motion. Table 2.1 indicates
the severity of the impairments for various levels of strength. Strength zero indicates
that no degradation has been added, strength four indicates an extreme level of
degradation. The latter level does not occur frequently in naturally degraded image
sequences.

Figure 2.6 plots the MSE for each of the test sequences as a function of the
strength of the impairments. Before going into the details of the results, a few details
are noted from this figure. First, in the absence of degradations, the MSE is relatively
large for the Manege sequence. The reason for this is that the motion estimation,
which was computed on a frame basis, was hampered by the strong interlacing
effects. Second, the trends of the results are identical for all test sequences, i.e., the
results are consistent.
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Noise. Block-matching algorithms estimate motion by searching for maximal
correlation between image regions in consecutive frames. If the signal-to-noise ratio
is low, there is a risk that the maximum results largely from correlating noise. In the
case the noise spectrum is white, hierarchical motion estimators are more robust to
noise than full-search block matchers. Most of the signal energy of natural images is
concentrated in the low frequencies. For a hierarchical block matcher this means that
at the lower resolution levels, which are obtained by low-pass filtering the data, the
signal-to-noise ratio is higher than at the higher resolution levels. Therefore, the
probability of spurious matches is reduced. The influence of noise at the higher
resolution levels is reduced by the constraints placed on the smoothness of the
candidate motion vectors. Figure 2.6a shows the MSE computed for the three test
sequences to which various amounts of white gaussian noise have been added.

Strength 0 | Strength 1 | Strength 2 | Strength 3 | Strength 4
Noise (variance) 0 14 56 127 225
Blotches (% corrupted) 0 0.41 0.62 1.04 1.90
Number of Scratches 0 2 5 8 11
Flicker (MSE) 0 19 72 161 281

Table 2.1: Average strength of various impairments added to test sequences. For noise the
measure is the noise variance; for blotches, the measure is the percentage of pixels corrupted;
for scratches, the measure is the number of scratches; and for intensity flicker, the measure is
the MSE between original and corrupted frames.

Blotches. A hierarchical block matcher will find the general direction in which data
corrupted by blotches move, provided that the sizes of the contaminated areas are
not too large. Because of the subsampling, the sizes of the blotches are reduced and
they will have little influence on the block-matching results at the lower resolution
levels. At the higher resolutions, the blotches cover larger parts of the blocks used
for matching, and blotches will therefore have great influence on the matching
results. However, if the number of candidate vectors is limited (e.g., in case the
motion is identical in all neighboring regions) the correct motion vector may yet be
found. Figure 2.6b shows the MSE computed for the three test sequences to which
various numbers of blotches have been added.

Line scratches. The temporal consistency of line scratches is very good. As a result,
motion estimators tend to lock onto them, especially if the contrast of the scratches is
great with respect to the background. If the background motion is different from that
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of the line scratches, considerable errors result. Figure 2.6c shows the MSE computed
for the three test sequences.

Unsteadiness. Measuring the influence of unsteadiness on motion estimates with
the scheme in Figure 2.5 is not meaningful. Estimating motion between frames from
an unsteady sequence is not unlike estimating motion between frames from a
sequence containing camera pan. A motion estimator that performs its function well
does not differentiate between global and local motion. In practice, unsteadiness
(and camera pan) does have some influence. First, there are edge effects due to data
moving in and out of the picture. Second, motion estimators are often intentionally
biased towards zero-motion vectors. Third, the motion estimation can be influenced
by aliasing if the data are not prefiltered correctly. This third effect is not of much
importance because natural images have relatively little high-frequency content.
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Figure 2.6: MSE versus strength of impairment (0 = no impairment, 4 = greatly impaired):
(a) noise, (b) blotches, (c) line scratches, (d) intensity flicker. Note the differences in scale



20 CHAPTER 2

Intensity Flicker. Many motion estimators, including the hierarchical motion
estimator used in this book, assume the constant luminance constraint [Tek95]. This
constraint, which requires that there be no variations in luminance between

consecutive frames, is not met in the presence of intensity flicker. Figure 2.6d shows
the MSE computed for the three test sequences to which varying amounts of
intensity flicker have been added. The dramatic influence of this artifact on the
quality of the estimated motion vectors compared to the other the artifacts examined
becomes clear when the scale in Figure 2.6d is compared to those in Figures 2.6a-c.

In conclusion, artifacts can have a considerable impact on the accuracy of
estimated motion vectors. In some cases, this leads to a chicken-and-egg problem: in
order to obtain good motion estimates, the artifacts should be restored; and in order
to restore the artifacts, good motion estimates are required. This problem can often
be overcome by applying iterative solutions where estimates of the motion vectors
and of the restored image are obtained in an alternating fashion. Alternatively,
restoration methods that do not rely on motion estimates might be devised (Chapter
3) or a strategy of motion-vector repair can be applied after the severity of the
impairments has been determined (Chapter 4).

2.2 Image restoration and storage

Restoration of archived film and video implies that the restored sequences will once
again be archived. It is very likely that the restored documents are stored in new
digital formats rather, than in analog formats similar to those from which the
material originated. Most restored material will be re-archived in a compressed form
due to the high costs associated with renewed storage of the vast amounts of
material being held in store currently. This section investigates the effects of various
impairments on the coding efficiency and uses the MPEG2 compression standard as
a reference. The results of this investigation indicate the possible benefits that can be
obtained by applying image restoration prior to encoding.

2.2.1 Brief description of MPEG2

The ISO/IEC MPEG2 coding standard developed by the Motion Pictures Expert
Group is currently the industry standard used for many digital video
communication and storage applications. As a result of the requirements on its
versatility, it has become a very complex standard with a description that fills
several volumes [IEC1], [IEC2], [IEC3]. The following describes only the basics of
MPEG?2 that are relevant to the restoration.
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To achieve efficient compression, the MPEG2 encoding scheme exploits spatial
and temporal redundancy within elementary units of pictures. Such an elementary
unit is called a group of pictures (GOP) (Figure 2.7). MPEG2 defines three types of
pictures that can be used within a GOP, namely intra frames (I frames), predicted
frames (P frames), and bi-directionally interpolated frames (B frames). A GOP cannot
consist of a random collection of 1, B, and P frames. There are some rules that must
be adhered to, e.g., the first encoded picture in a GOP is always an I frame.
Figure 2.8 gives a schematic overview of the hybrid coding scheme that forms the
heart of the MPEG2 coding system.

GOP

Figure 2.7: Subdivision of an image sequence into groups of pictures (GOPs). In this exam-
ple, the GOP has length 7 and it contains I, P and B frames. The arrows indicate the predic-
tion directions.

I frames. To encode I frames, spatial information is used only. Therefore, temporal
information for decoding I frames is not required. This is important because it allows
random access to the image sequence {(on the level of GOPs anyhow) and it limits
error propagation in the temporal direction resulting from possible bit errors in a
stream of encoded data.

Efficient compression of I frames requires reduction of spatial redundancy. The
MPEG?2 standard reduces the spatial redundancy by subdividing I frames into 8 by 8
image blocks and applying the discrete cosine transform (DCT) to these blocks. The
decorrelating properties of the DCT concentrate much of the signal energy of natural
images in the lower-frequency DCT coefficients. A quantizer Q quantizes the
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transform coefficients and thereby reduces the number of representation levels and
sets many coefficients to zero. Note that, as the eye is less sensitive to quantization of
high frequencies, the high-frequency components can be quantized relatively
coarsely. Entropy coding codes the remaining coefficients efficiently by applying
run-length coding followed by variable length coding (VLC) to each 8 by 8 block of
quantized DCTs. The result forms the encoder output.

The decompression of I frames is straightforward: the inverse DCT is applied
to 8 by 8 blocks in which the quantized coefficients are ordered after the entropy-
coded data are decoded.

Digital
VideoIn 4
A ¢ 4 Bitstream
Inverse
DCT

Frame
Stores

*

Motion
Estimator

Figure 2.8: Schematic overview of the hybrid coding scheme used in MPEG2.

B and P frames. Efficient compression of P frames and B frames is achieved by
exploiting both temporal and spatial redundancy. P frames are predicted from single
I frames or P frames coded previously, for which motion estimation and
compensation is often used. The prediction error signals, which contain spatial
redundancy, are encoded as are the I frames, ie, by means of the DCT and
quantization. B frames are predicted from two coded I frames or P frames and are
encoded like the P frames. The motion vectors are transmitted as well; these are
encoded with differential coding. Note that, in the case of P frames and B frames, the



MODELING AND CODING 23

encoder may well decide that it is more efficient to encode the original contents of an
image region instead of encoding the prediction error signals.

Decompression consists of decoding the error signal and adding it to the
motion-compensated prediction made in the decoder.

Video In / Out

p| Degrade CODEC » PSNR >

\ Bitrate

Strength of degradation

Figure 2.9: Experimental setup for evaluating the influence of artifacts on the coding
efficiency.

2.2.2 Influence of artifacts on coding efficiency

Figure 2.9 shows an experimental setup used for evaluatg the quantitative
influence of artifacts on the coding efficiency of an MPEG2 encoder. Coding
efficiency is defined as the amount of distortion introduced by a codec under the
condition of a limited bitrate, or, vice versa, as the bitrate required by a codec under
condition of limited distortion. The scheme in Figure 2.9 measures the peak-signal-to-
noise-ratio (PSNR) of a degraded image sequence after encoding and decoding z (7).
The degraded sequence prior to encoding z,(i) serves as the reference. The PSNR is
defined as:

PSNR [z,(i), z.(i)] = 101og 2.7)

The numerator in (2.7) is a result of the dynamic range of the image intensities. The
allowed range of intensities is restricted here to values between 16 and 240. If the
degradations have little influence on the coding efficiency, the differences z,(i)-z, (i)
will be small and the PSNR will be large. As the influence of the degradations on the
coding efficiency increases, the PSNR decreases.
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combined.
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The degradations are introduced by applying the models for the artifacts in Section
2.1.2. Figure 2.10 plots the PSNR as a function of the bitrate of the encoder and of the
strength of the impairments (Table 2.1) for the MobCal sequence. From this figure it
can be seen that, if the strength of the impairments is held constant, the PSNR
increases with increasing bitrate. This is to be expected, of course, because a signal
can be encoded more accurately if more bits are available. When the bitrate is kept
constant, it can been seen that the coding efficiency decreases with an increasing
level of impairment. The reason for the latter is explained for each impairment in the
qualitative analysis that follows.

Variance Vanance

(a) DCT Coethicient (b) DCT Coefficient

Figure 2.11: (a) Variance of DCT coefficients (in zig-zag scan order) of a clean frame from
the MobCal sequence, (b) variance of DCT coefficients from same frame but now with white
gaussian noise with variance 100.

Noise. A property of white noise is that the noise energy spreads out evenly over all
the transform coefficients when an orthonormal transform is applied to it. The DCT
is an orthonormal transform. Therefore, in MPEG2, the presence of additive white
gaussian noise leads to fewer transform coefficients that are zero after quantization.
Furthermore, on average, the amplitudes of the remaining coefficients are larger
than in the noise-free case. See Figure 2.11. Both these effects lead to a decrease in
coding efficiency; more coefficients must be transmitted and, on average, the
codewords are longer. Similar arguments hold for the encoding of the error signals
of the P frames and B frames. Note that the noise variance in the error signal is larger
than that in I frames. This is so because the error signal is formed by subtracting two
noisy frames. The benefits of noise reduction prior to MPEG2 encoding are shown
by [Ric85], [Roo], [Roo98a].
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Blotches. Blotches replace original image contents with data that have little relation
to the original scene. Large prediction errors will result for P frames and B frames at
spatial locations contaminated by blotches. Large prediction errors imply nonzero
DCT coefficients with large amplitudes, they therefore imply a decrease in coding
efficiency. The overall influence of blotches on the coding efficiency is usually less
than that of noise because blotches are local phenomena that often affect only a small
percentage of the total image area.

Line scratches. Scratches are image structures that, depending on their sharpness,
have high energy in the frequency domain in orientations perpendicular to that of
the scratch in question. For I frames this implies nonzero coefficients with large
amplitudes, i.e., a decrease in coding efficiency. The situation is slightly better for P
frames and B frames if the spatial locations of the scratches do not vary too much
from frame to frame. In such cases, the prediction errors are small.

Unsteadiness. In principle, the influence of film unsteadiness on prediction errors
for P frames and B frames is countered by motion compensation. At first glance, the
overhead due to nonzero motion vectors is neglible because of the differential
coding: adjacent regions affected by global motion have only zero differential
motion. However, because the codeword for no motion takes fewer bits than that for
zero differential motion [Erd98], unsteadiness influences the coding efficiency in a
negative sense. Furthermore, near the image edges, the prediction errors can be large
due to data moving in and out of the picture.

Intensity flicker. Intensity flicker decreases the coding efficiency of P frames and B

frames for two reasons. First, the prediction error increases due to the fluctuations in
image intensities. Thus the entropy of the error signal increases. Second, in the
presence of intensity flicker the constant luminance constraint [Tek95] under which
many motion estimators operate is violated. The result is that the motion vectors are
more erratic, which leads to larger differential motion. The larger the differential
motion, the more bits are required for encoding. The positive effects of reducing
intensity flicker prior to compression are shown by [Ric85], [Roo].

The analysis given here shows that artifacts have a negative influence on the
coding efficiency of MPEG2. Therefore removing artifacts prior to encoding is
beneficial. It is difficult to quantify the benefits beforehand because they depend
strongly on the nature of the unimpaired signal, the strength of the impairments,
and the effectiveness of the restoration algorithms. It should be noted that not all
impairments decrease the coding efficiency. For example, image blur [Ban97],
[Lag91] is beneficial to compression because removes high frequency contents and
thus nullifies the high-frequency transform coefficients.



Chapter 3
Intensity flicker correction

3.1 Introduction

Intensity flicker is a common artifact in old black-and-white film sequences. It is
perceived as unnatural temporal fluctuations in image intensity that do not originate
from the original scene. Intensity flicker has a great number of causes, e.g., aging of
film, dust, chemical processing, copying, aliasing, and, in the case of the earlier film
cameras, variations in shutter time. Neither equalizing the intensity histograms nor
equalizing the mean frame values of consecutive frames, as suggested in [Fer96],
[Mul96], [Ric95], are general solutions to the problem. These methods do not take
changes in scene contents into account, and they do not appreciate the fact that
intensity flicker can be a spatially localized effect. This chapter describes a method
for equalizing local intensity means and variances in a temporal sense to reduce the
undesirable temporal fluctuations in image intensities [Roo99b].

Section 3.2 models the effects of intensity flicker, and derives a solution to this
problem for stationary sequences that is robust to the wide range of causes of this
artifact. The derived solution is optimal in a linear mean square error sense. The
sensitivity to errors in estimated model parameters and the reliability of those
parameters are analyzed. Section 3.3 extends the applicability of the method to
include nonstationary sequences by incorporating motion. In the presence of
intensity flicker, it is difficult to compensate for motion of local objects in order to
satisfy the requirement of temporal stationarity. A strategy of compensating for
global motion (camera pan) in combination with a method for detecting the

27



28 CHAPTER 3

remaining local object motion is applied. The model parameters are interpolated
where local motion is detected. Section 3.4 shows the overall system of intensity-
flicker correction and discusses some practical aspects. Section 3.5 describes

experiments and results. Conclusions relevant to this chapter are given in Section
3.6.

3.2 Estimating and correcting intensity flicker in
stationary sequences

3.2.1 A model for intensity flicker

It is not practical to find explicit physical models for each of the mechanisms
mentioned that cause intensity flicker. Instead, the approach taken here models the
effects of this phenomenon on the basis of the observation that intensity flicker
causes temporal fluctuations in local intensity mean and variance. Since noise is
unavoidable in the various phases of digital image formation, a noise term is
included in the model:

z(i) = a(d) y(i) + B(i) + (i) G.1)

The multiplicative and additive intensity-flicker parameters are denoted by a(i) and
B(i). In the ideal case, when no intensity flicker is present, a(i) = 1 and (i) = 0 for all
i. It is assumed that (i) and B(i) are spatially smooth functions. Note that y(i) does
not necessarily need to represent the original scene intensities; it may represent a
signal that, prior to the introduction of intensity flicker, may already have been
distorted. The distortion could be due to signal-dependent additive granular noise
that is characteristic of film [Bil75], [Ozk93], for example.

The intensity-flicker-independent noise, denoted by 7(i), models the noise that
has been added to the signal after the introduction of intensity flicker. It is assumed
that this noise term is uncorrelated with the original image intensities. It is also
assumed that n(i) is a zero-mean signal with known variance. Examples are
quantization noise and thermal noise originating from electronic studio equipment
(VCR, amplifiers, etc.).

Correcting intensity flicker means estimating the original intensity for each
pixel from the observed intensities. Based on the degradation model in (3.1), the
following choice for a linear estimator for estimating y(i) is obvious:

(i) = a(d) z(3) + b(@) (3.2)
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If the error between the original image intensity and the estimated original image
intensity is defined as:

e(i) = y(i) - y(@) (3.3)

then it can easily be determined that, given a(i) and f(i), the optimal values for a(i)
and b(i) in a linear minimum mean square error (LMMSE) sense are given by:

. var[z(i)]-var[n(i)] 1
W= a] 2@ (3.4)
b B0 , varln(] ELz(0) -

a(i) var[z(i)] a(i)

where E[.] stands for the expectation operator and var|[.] indicates the variance. It is
interesting that it follows from (3.4) and (3.5) that a(i) = 1/a(i) and b(i) = -B(i)/a(i) in
the absence of noise. In such a case, it follows from (3.1} and (3.2) that (i) = y(i).
That is to say, the estimated intensities are exactly equal to the original intensities. In
the extreme case that the observed signal variance equals the noise variance, we find
that a(i) = 0 and §(¢) = b(i) = E[y(i)]; the estimated intensities equal the expected
values of the original intensities.

In practical situations, the true values for a(i) and (i) are not known and
estimates (i) and B (i) are made from the observed data (this is the topic of Section
3.2.2). Because these estimates will never be perfect, the effects of errors in a(i) and
[§(i) on (i) is investigated. To simplify the analysis, the influence of noise is
discarded. For ease of notation, the following analysis leaves out the spatial and
temporal indices. Let & =a + Ao and [3 =B+ AB . The reconstruction error Ay is then
given by:

AB

N Aa
Ay=y-y= 3.6
y=y-y a+Aa y+a+Aa (3.6)

Figure 3.1 plots the reconstruction error as a function of Aa and A witha =1,5=0
and y=100. Now, if |Aa | <<a, then it can be seen that the sensitivity of Ay to errors
in a(i)is linear in y , and that the sensitivity of Ay to errors in B(i) is constant:

dAy dAy
=7 - d —£=1 37
e 7 B 3.7)
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Equation (3.7) shows that Ay is much more sensitive to errors in a(f) than to errors
in [3(1'). It also shows that the sensitivity due to errors Aa can be minimized in
absolute terms by centering the range of image intensities around 0. For example,
consider a noiseless case in which & =a +0.1 and g=p. If y ranges between 0 and
255 with o = 1 and B = 0, then it can be seen from (3.6) that Ay is maximally 23.2.
After the range of image intensities is centered around 0, y ranges between -127 and
128. The maximal absolute error is halved and, unlike the previous case, the
sensitivity to errors in a(i) for the mid-gray values is relatively small.

Figure 3.1: Error Ay in a reconstructed image as a function of errors A and AP computed
for y=100

3.2.2 Estimating intensity-flicker parameters in stationary scenes

In the previous section, a LMMSE solution to intensity flicker is derived on the
assumption that the intensity-flicker parameters a(i) and (i) are known. This is not
the case in most practical situations, and these parameters will have to be estimated
from the observed data. This section determines how the intensity-flicker parameters
can be estimated from temporally stationary image sequences, i.e., image sequences
that do not contain motion. It was already assumed that a(i) and S(i) are spatially
smooth functions. For practical purposes it is now also assumed that the intensity-
flicker parameters are constant locally:

<a(i, =, ) vi,jeQ, (3.8)

ﬂ(i/jrt):ﬂm,n(t)
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where Q,  indicates a small image region. The image regions Q,, , can, in principle,
have any shape, but they are rectangular blocks in practice, and m, n indicate their
horizontal and vertical spatial locations. The «,, ,(f) and B, .(t) correspondig to
Q,., are considered frame-dependent matrix entries at m, n. The size MxN of the
matrix depends on the total number of blocks in the horizontal and vertical
directions.

Keep in mind the assumption that the zero-mean noise n(i) is signal
independent. The expected value and variance of z(i) taken from (3.1} in a spatial

sense for 1,je Q, . is given by:
Elz(d)]=a,, () E[y(®)]+B,, (1) (3.9
var[z(i)] = al ,(t) var[y(i)]+ var[n(i)] (3.10)

Rewriting (3.9) and (3.10) gives exact analytical expressions for «,, ,(t) and B, (t)
fori,jeQ,, .:

B,..(t)=Elz(d)]-a,, (1) E[y(i)] (3.11)
_ Ivar[z(i)] - var[n(i)]
&, (t) = \/ varly (0] (3.12)

Equations (3.11) and (3.12) must now be solved in a practical situation. The means
and variances of z(f) can be estimated directly from the observed data of regions
Q,, .- The noise variance is assumed to be known or estimated. What remains to be
estimated are the expected values and variances of y(i) in the various regions Q,, .

Two methods for estimating the mean and variance of y(i) for i,jeQ, , are
discussed here. The first method estimates y(i) by averaging the observed data in a
temporal sense. In this case the underlying assumption is that the effects of flicker
will be averaged out:

.y 1 &
Ely(i, j, )= F:_LZ Elz(i, j,t+1)] (3.13)

==r

varly(i, j,t)] = ;#Ilivar[z(i,j,m ) (3.14)
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The second method takes the frame corrected previously as a reference:
varly(i, j, )] = var[§(i, j,t - 1)] (3.16)

The latter approach is adopted here because it has the significant advantage that the
requirement of temporal stationarity is more likely to be fulfilled when a single
reference frame, rather than multiple reference frames, is used. This approach is also
more attractive in terms of computational load and memory requirements. Hence,
for i,je Q,, ,, the estimated intensity-flicker parameters are given by:

mn’

~

B n(t)=Elz(i, j, )]~ a,,, () E[§(i, j,t - 1) (3.17)

i, (- Jvar[z(i,j, t)] - var[n(i, j, )] (318)

var[y(i, j,t-1)]

3.2.3 Measure of reliability for the estimated model parameters

Note that, by using (3.15) and (3.16), recursion is introduced into the method for
flicker correction. As a result, there is a risk of error propagation leading to
considerable distortions in a corrected sequence. A source of errors lies in the
estimated model parameters &, , () and B, ,(t), which may not be exact. Therefore,
it is useful to have a measure of reliability for &,, ,(t) and B, ,(t) that can be used to
control the correction process by means of weighting and smoothing the estimated
model parameters as is done in Section 3.3.3.

The &, ,(t) and B, (t) are not very reliable in a number of cases. The first case
is that of uniform image intensities. For any original image intensity in a uniform
region, there are infinite combinations of a(i) and (i) that lead to the same observed
intensity. The second case in which &, ,(f) and B...(t) are potentially unreliable is
caused by the fact that (3.15) and (3.16) discard the noise in §(i) originating from
n(i) . This leads to values for a,, , (t) that are too small. Considerable errors result in
regions Q, . in which the signal variance is smaller than the noise variance.

The signal-to-noise ratio, defined as var(y)/var(n), determines the variance of
the errors in the estimated model parameters. Figure 3.2 illustrates this by plotting
the reciprocal values of the error variances ¢}, and o}, as a function of signal-to-
noise ratio. These values were obtained experimentally by synthesizing 100.000
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textured areas of 30x30 pixels with a 2D autoregressive model to which gaussian
noise and flicker were added. The flicker parameters were then determined with
(3.11) and (3.12). Figure 3.2 shows that the variance in the estinated model
parameters is inversely proportional to the signal-to-noise ratio.
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Figure 3.2: (a) Plot of /o', vs. signal-to-noise ratio, (b) plot 1/c%, vs. signal-to-noise ratio.
Note that the relationships are linear.

In Section 3.3.3, the model parameters that are estimated over an image are
smoothed and weighted using a 2D polynomial fit. The weighted least-squares
estimate of the polynomial coefficients is optimal if the weights are proportional to
1/o,and 1/0,, [Str88], ie., if the weights are proportional to the squared root of
the signal-to-noise ratio. Hence, the following measure of reliability W, ,(f}, for

i,jeQ,,, is defined:
0, v var[z(i)] < T,
W ()= )] - 3.19
) ———Var[z¥) I-T, , otherwise (3.19)

n

where T, is a threshold depending on the variance of 7(i) . Large values for W, (t)
indicate reliable estimates; small values indicate unreliable estimates.
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3.3 Incorporating motion

The previous sections model the effects of intensity flicker and derive a solution for
temporally stationary sequences. The necessity of temporal stationarity is reflected
by (3.15) and (3.16), which assume that the mean and variance of (i, j,t) and
y(i,j,t-1) are identical. Real sequences, of course, are seldom temporally stationary.
Measures will have to be taken to avoid estimates of a(i) and S(i) that are incorrect
due to motion. Compensating motion between z(i,j,t) and #(i,j,t—1) helps satisfy
the assumption of temporal stationarity. This requires motion estimation.

Robust methods for estimating global motion (camera pan) that are relatively
insensitive to fluctuations in image intensities exist. Unfortunately, the presence of
intensity flicker hampers the estimation of local motion (motion in small image
regions) because local motion estimators usually have a constant luminance
constraint. This includes pel-recursive methods and all motion estimators that make
use of block matching in one stage or another [Tek95]. Even if motion can be well
compensated, a strategy is required for correcting flicker in previously occluded
regions that have become uncovered.

For these reasons, the strategy presented here for estimating the intensity-
flicker parameters in temporally nonstationary scenes is based on local motion
detection. First, a pair of frames are registered to compensate for global motion
(Section 3.3.1). Then the intensity-flicker parameters are estimated as outlined in
Section 3.2.2. With these parameters, the remaining local motions is detected
(Section 3.3.2). Finally, the missing model parameters in the temporally
nonstationary regions are spatially interpolated from surrounding regions without
local motion (Section 3.3.3).

3.3.1 Estimating global motion with phase correlation

In sequences with camera pan, applying global motion compensation helps satisfy
the requirement of stationarity. Let the global displacement vector be (qi,qj)T.
Global motion compensation can be applied to the model parameter estimation by

replacing (3.17) and (3.18) with:

Bon(t)= El2(i, j, )]G, () E[§(i~ g, j — 9;,t - D] (3.20)

G, ()= \/var[z(i,j,t)]—Var[n(i,j,t)] (3.21)

var[j(i-g;,j~q,,t-1)]
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Global motion compensation is only useful if the global motion vectors (one vector
to each frame) are accurate: i.e., if the global motion estimator is robust against
intensity flicker. A global motion estimator that meets this requirement is one that is
based on the phase correlation method applied to high-pass-filtered versions of the
images [Pea77], [Tek95].

The phase correlation method estimates motion by measuring phase shifts in
the Fourier domain. This method is relatively insensitive to fluctuations in image
intensity because it uses Fourier coefficients that are normalized by their magnitude.
The direction of changes in intensity over edges and textured regions is preserved in
the presence of intensity flicker because the amount of intensity flicker was assumed
to vary smoothly in a spatial sense. This means that the phases of the higher-
frequency components will not be affected by intensity flicker. However, the local
mean intensities can vary considerably from frame to frame, and this gives rise to
random variations in the phase of the low-frequency components. These random
variations are disturbing factors in the motion estimation process that can be
avoided by removing the low-pass frequency components from the input images.

The phase correlation technique estimates phase shifts in the Fourier domain as
follows:

Z(w,,w,) Z;—l(wl W)
1Z,(w,,w,) Z,(w,, w,)

Ct,t~1(w1 ’ wz) = I (3.22)

where Z,(w,,w,)stands for the 2D Fourier transform of z(j, j, t), and * denotes the
complex conjugate. If z(i, j, t) and z(i, j, t - 1) are spatially shifted, but otherwise
identical images, the inverse transform of (3.22) produces a delta pulse in the 2D
correlation function. Its location yields the global displacement vector (g,,4; )"

3.3.2 Detecting the remaining local motion

It is important to detect the remaining local motion after compensating for global
motion. Local motion causes changes in local image statistics that are not due to
intensity flicker. This leads to incorrect estimates of a(i) and f(i); to visible artifacts
in the corrected image sequence. First, two obvious approaches to motion detection
are discussed. It is concluded that these are not appropriate. Next, a robust
alternative strategy is described.

Two methods for detecting local motion are (1) detecting large local frame
differences between the corrected current and previous frames and (2) comparing
the estimated intensity-flicker parameters &, ,(t) and ﬁm,n(t) to threshold values
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and detect motion when these thresholds are exceeded. These methods have
disadvantages that limit their usefulness. The first method is very sensitive to film
unsteadiness; slight movements of textured areas and edges lead to large frame
differences and thus to “false” detections of motion. The second method requires
threshold values that detect motion accurately without generating too many false
alarms. Good thresholds are difficult to find because they depend on the amount of
intensity flicker and the amount of local motion in the sequence.
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Figure 3.3: Example of part of a frame subdivided in blocks Q,, , that overlap each other by

one pixel.

To overcome problems resulting from small motion and hard thresholds, a
robust motion-detection algorithm that relies on the current frame only is developed
here. The underlying assumption of the method is that motion should only be
detected if visible artifacts would otherwise be introduced. First, the observed image
is subdivided into blocks Q, . that overlap their neighbors both horizontally and
vertically (Figure 3.3). The overlapping boundary regions form sets of reference
intensities. The intensity-flicker parameters are estimated for each block by (3.20)
and (3.21). These parameters are used with (3.2), (3.4), and (3.5) for correcting the
intensities in the boundary regions. Then, for each pair of overlapping blocks, the
common pixels that are assigned significantly different values are counted:

= Y boolean[ 1, (i)~ §,(i) 1> T,] (3.23)

€S, ,
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Here g and r indicate two adjacent image blocks, S, indicates the set of boundary
pixels, T, is a threshold above which pixels are considered to be significantly
different and boolean|.] is a boolean function that is one if its argument is true and is
zero otherwise. Motion is flagged in both regions g and r if too many pixels are
significantly different, that is, if:

n,,>Dp, (3.24)
where D, is a constant.
3.3.3 Interpolating missing parameters

Due to noise and motion, the estimated intensity-flicker parameters are unreliable in
some cases. These parameters are referred to as missing. The other parameters are
referred to as known. The goal is to find estimates of the missing parameters by
means of interpolation. It is also necessary to smooth the known parameters to avoid
sudden changes in local intensity in the corrected sequence. The interpolation and
smoothing functions should meet the following requirements. First, the system of
intensity-flicker correction should switch itself off when the correctness of the
interpolated values is less certain. This means that the interpolator should
incorporate biases for &,,,(t) and 8, ,() towards unity and zero, respectively, that
grow as the smallest distance to a region with known parameters becomes larger.
Second, the reliability of the known parameters should be taken into account.

Three methods that meet these requirements are investigated. Each of these
methods uses the W,  (f) determined by the measure of reliability as defined in
(3.19). The interpolation and smoothing algorithms are described for the case of the
multiplicative parameters &, ,(t) . The procedures for the Bm‘n(t) are similar and are
not described here.

Interpolation by dilation. With each iteration of this iterative dilation approach,

regions of known parameters grow at the boundaries of regions with missing
parameters. Consider the matrix containing the known &, ,(t) corresponding to the
regions Q, = for a frame ¢. Figure 3.4a graphically depicts such a matrix that can be
divided into two areas: the black region indicates the matrix entries for which the
multiplicative parameters are known, and the white region indicates the missing
entries. Each missing @, ,(t) and its corresponding weight W, (t) at the boundary
of the two regions is interpolated by:
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DWW, (Da,, 1)

- 19,71€Sm n k k
t)= : +1- 3.25
am,n( ) qu',(t) p p ( )

{g,r1eSn

LW, ()

Wm,n(t) = (_'L")El_znnl_ (326)

where S, indicates the set of known parameters adjacent to the missing parameter
being interpolated, p (with 0 < p < 1) determines the trade-off between the
interpolated value and the bias value as a function of iteration number k. After the
first iteration, Figure3.4b results. Repeating this process assigns estimates for

a,, .(t) to all missing parameters (Figure 3.4¢,d).

[ ]

(a) (b) (c) (d)

Figure 3.4: Interpolation process using dilation: (a) initial situation, (b), (c), (d) results after
1, 2 and 3 iterations.

Next, a postprocessing step smooths all the matrix entries with a 5x5 gaussian
kernel. Figure 3.5(a)b) shows respectively, an original set of known and missing
parameters and the interpolated, smoothed parameters.

Interpolation by successive overrelaxation (SOR). SOR is a well-known iterative

method based on repeated low-pass filtering [Pre92]. Unlike the dilation technique,
this method interpolates the missing parameters and smooths the known parameters
simultaneously. SOR starts out with an initial approximation a,, ,(t). At each
iteration k, the new solution a;,

residual term r**!

m.n

(t) is computed for all (m, n) by computing a
and subtracting this from the current solution:
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Tt = W (D) (@5, () =0ty () +
' ' 3.27
Z’ (4a’:n.n(t)—a’r(n—l,n(t)—a’:n+1,n(t)_a’r(n,n—1(t)_afn,m-l(t)) ( )

k+1

k+1 o Tt
H=al (H-w m (3.28)

Here W, ,(t) are the weights, A determines the smoothness of the solution, and w is
the so-called overrelaxation parameter that determines the rate of convergence. The

@, (t) are initialized to the known multiplicative intensity-flicker parameters at (m,

n), and to the bias value for the missing parameters.

The first term in (3.27) weighs the difference between the current solution and
the original estimate, and the second term measures the smoothness. The solution is
updated in (3.28) so that where the weights W, _(t) are great, the original estimates
&, .(t) are emphasized. In contrast, when the measurements are deemed less
reliable, i.e., when A>>W, (t), emphasis is laid on achieving a smooth solution. This
allows the generation of complete parameter fields where the known parameters,
depending on their accuracy, are weighted and smoothed. Figure 3.5¢ shows results
of this method.

Interpolation by 2D polynomial fitting. By fitting a 2D polynomial P(m, n, t) to the

known parameters, the missing parameters can be interpolated and the known
parameters are smoothed simultaneously. The 2D polynomial is given by [Hay67]:

D, D,
P(m,n,t)= Zc mEn (3.29)
=0

k=0 =

where D, and D, determine the degree of the polynomial surface and the
coefficients ¢, ,, shape the function. Polynomial fitting entails finding the
coefficients c,,, so that the weighted mean squared difference of P(m, n, t) and
a,,,(t) is minimized for a given #:

mm[z W,.(t) (P(m,n, t)-&,, ,(t ))ZJ (3.30)

klf mn

The complexity of solving (3.30) is typical of a weighted least squares problem that
requires computation of a pseudo inverse of a square matrix [Str88]. The number of
columns (and rows) depends on the order of the polynomial and is determined by
the number of coefficients c, ,, at an instant ¢.
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Figure 3.5: (a) Set of original measurements with variable accuracy; the missing measure-
ments have been set to 1, (b) parameters interpolated and smoothed by repeated dilation, (c)
parameters interpolated and smoothed by SOR (250 iterations), (d) parameters interpolated
and smoothed by polynomial fitting (D, = D, = 2). Note the differences in scale.

Biases are applied by setting the missing parameters to their bias value; the
weights corresponding to these parameters are set to a fraction (e.g., one tenth) of
the largest weight found for the known parameters. This will have little effect on the
shape of the polynomial surface if only a few parameters are missing locally. Where
many parameters are missing, the combined influence of the biased parameters will
shape the polynomial locally towards the bias value.

The range of the results obtained by the dilation and SOR interpolation
methods is limited to the range of the data. This is not the case for 2D polynomial

fitting. The higher-order terms cause spurious oscillations if the order of the

polynomial is taken too high, which leads to incorrect values for the interpolated
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and smoothed parameters. In practice, taking D, =D, =2 gives the best results.
Figure 3.5d shows a result of this interpolation and smoothing method.

IN Z(il jl t)
LPF Compute Detect Compute
g U,c 2 Loc.al Weights
Motion
A
A A A
LPF Compute Compute Interpolate Upsample Correct | OUT
B ,u,o'z = «,B a,p —» Bilinear [ Frame >
4
y(i,j,t-1 Compensate
LALZ ) Global <
Motion
(i, i) Ll
Estimate
z(,7,t—1 Global
GJ ) Motion

Figure 3.6: Global structure of the intensity-flicker correction system.

3.4 Practical issues

Figure 3.6 shows the overall structure of the system of intensity-flicker correction.
Some operations have been added in this figure that have not yet been mentioned.
These operations improve the system’s behavior. First, the current input and the
previous system output (with global motion compensation) are low-pass filtered
with a 5x5 gaussian kernel. Prefiltering suppresses the influence of high-frequency
noise and the effects of small motion. Then, local means u and variances ¢’ are
computed to be used for estimating the intensity-flicker parameters. The estimated
model parameters and the current input are used to detect local motions. Next, the
missing parameters are interpolated and the known parameters are smoothed. Bilin-
ear interpolation is used for upsampling the estimated parameters to full spatial
resolution. The latter avoids the introduction of blocking artifacts in the correction
stage that follows.

As mentioned in Section 3.2.3, the fact that a recursive structure is used for the
overall system of intensity-flicker correction introduces the possibility of error
propagation. Errors certainly do occur, for example, as a result of the need to
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approximate the expectation operator and from model mismatches. Therefore, it is
useful to bias corrected intensities towards the contents of the current frame to avoid
possible drift due to error accumulation. For this purpose, (3.2) is replaced by:
() =k (i) () + b(i))+ (1 -k ) z(i) (3.31)
where k is the forgetting factor. If x =1, the system relies completely on the frame
corrected previously, and it tries to achieve the maximal reduction in intensity

flicker. If k =0, we find that the system is switched off. A practical value for x is
0.85.

3.5 Experiments and results

This section applies the system of intensity-flicker correction both to sequences
containing artificially added intensity flicker and to sequences with real (non-
synthetic) intensity flicker. This first set of experiments takes place in a controlled
environment and evaluates the performance of the correction system under extreme
conditions. The second set of experiments verifies the practical effectiveness of the
system and forms a verification of the underlying assumptions of the approach
presented in this chapter. The same settings for the system of intensity-flicker
correction were used for all experiments to demonstrate the robustness of the
approach (see Table 3.1).

Image Blocks Motion | 2D Polynomial Successive Miscellaneous
Detection OverRelaxation
Size: 30x20 T,=5 D,=D =2 w=1 k=085
Overlap: 1 pixel| p__ =5 A=5 var[n(x,y,t)]=5
T, =25

Table 3.1: Parameter settings of intensity-flicker correction system for the experiments.

Some thought should be given to what criteria are to be used to determine the
effectiveness of the proposed algorithm. If the algorithm functions well and the
image contents does not change significantly, then the equalized frame means and
variances should be similar from frame to frame. Indeed, the converse need not be
true, but visual inspection helps to verify the results. Therefore, the temporal
smoothness of frame means and frame variances measures the effectiveness of
intensity-flicker correction system.
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A sliding window approach is adopted here: the variance in frame mean and
frame variance is computed locally over 24 frames (which corresponds to 1 second
of film) and the estimated local variances are averaged over the whole sequence.
There is a reason for using this sliding window. If the variation in frame means and
variances are computed over long sequences, there are two components that
determine the result: (1) variations due to flicker, and (2) variations due to changes
in scene content. We are only interested in the first component which can be isolated
by computing the variations over short segments.

3.5.1 Experiments on artificial intensity flicker

For the first set of experiments the Mobile sequence (40 frames), containing moving
objects and camera panning (0.8 pixels/frame), is used. Artificial intensity flicker
was added to this sequence according to (3.1). The intensity-flicker parameters were
artificially created from 2D polynomials, defined by (3.29), with degree D, =D, =2.
The coefficients c,,, are drawn from the normal distribution N(0, 0.1), and from N(1,
0.1) for c,,,, to generate the a(i) and from N(0, 10) to generate the B(i). Visually
speaking, this leads to a severe amount of intensity flicker (Figure 3.7).

MobCal Soldier Mine Charlie
Mean  Var.|Mean Var.|Mean Var.|Mean Var.
Degraded 19.8 501 2.7 44 2.3 61 85 435
Dilation 55 110 0.8 29 1.0 37 56 319
SOR 5.2 86 0.8 31 1.0 40 4.9 235

2D Polynomial| 5.8 105 0.9 27 1.2 41 6.3 333

Table 3.2: Standard deviation of averaged frame mean and frame variance of degraded and
sequences corrected by various interpolators in the intensity flicker correction system.

The degraded sequence is corrected three times, and each time a different
interpolation and smoothing algorithm is used, as described in Section 3.3.3.
Figure 3.7 shows some corrected frames. Figure3.9 plots the frame means and the
frame variances of original, degraded and corrected sequences. It can be seen from
these graphs that the variations in frame mean and variance have been strongly
reduced. Visual inspection confirms that the amount of intensity flicker has been
reduced significantly. However, residues of local intensity flicker are clearly visible
when the dilation interpolation method is used. The SOR interpolation method gives
the best visual results.
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Figure 3.7: Top row: original frames 16, 17, and 18 of the MobCal sequence. Central row:
degraded frames. Bottom row: frames corrected by the intensity-flicker correction system
with successive overrelaxation. '

Table 3.2 lists the standard deviation of the frame means and frame variances
computed over short segments by the sliding window approach and averaged as
mentioned before. This table shows that the artificial intensity flicker severely
degraded the sequence. It also shows that the intensity-flicker correction system
strongly reduces fluctuations in frame mean and frame variance. The SOR
interpolation method gives the best numerical results.

3.5.2 Experiments on naturally degraded film sequences

Three sequences from film archives were used for the second set of experiments.
Table 3.2 lists the results. The first sequence, called Soldier, is 226 frames long. It
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shows a soldier entering the scene through a tunnel. There is some camera
unsteadiness during the first 120 frames, then the camera pans to the right and up.
There is film-grain noise and a considerable amount of intensity flicker in this
sequence. The total noise variance was estimated to be 8.9 by the method described
in [Mar95]. Figure 3.8 shows three frames from this sequence, original and corrected.
Figure 3.10 indicates that the fluctuation in frame means and variances have signifi-
cantly been reduced by the intensity-flicker correction system. Visual inspection
shows that all three methods significantly reduce the intensity flicker without
introducing visible new artifacts. The best visual results are obtained with the SOR
interpolation method.

= ;-iIH

Figure 3.8: Top: frames 13, 14, and 15 of the naturally degraded Soldier sequence. Bottom:
frames corrected by the intensity-flicker correction system using the 2D polynomial
interpolation method.

The second naturally degraded sequence, called Mine, consists of 404 frames.
This sequence depicts people in a mine. It contains camera pan, some zoom, and it is
quite noisy (estimated noise variance 30.7). The intensity flicker is not as severe as in
the Soldier sequence. Figure 3.11 shows the frame means and variances of the
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degraded and the corrected sequences. Visually, the results obtained from the
dilation interpolation method show some flickering patterns. The 2D polynomial
interpolation leaves some flicker near the edges of the picture. The SOR method
shows good results.

The third sequence is a clip of 48 frames from a Charlie Chaplin film, called
Charlie. Some frames have so much intensity flicker that it looks as if the film has
been overexposed and the texture is lost completely in some regions. Besides
intensity flicker, this sequence is characterized by typical artifacts occurring in old
films, such as blotches, scratches, and noise (estimated variance 5.0). Figure 3.12
shows that the fluctuations in frame means and variances have diminished. Again,
from a subjective point of view, the SOR interpolation technique gives the best
result, but a slight loss of contrast is noted in the corrected sequence.

Table 3.2 indicates that the intensity-flicker correction system significantly
reduces the fluctuations in frame mean and frame variance of all the test sequences.
The SOR interpolation method gives the best numerical results: in all cases it gives
the largest reduction in variation of the mean image intensity and it gives a
reduction in variation of image variance that is similar or better than that obtained
by the other interpolation methods.

3.6 Conclusions

This chapter introduced a novel method for removing intensity flicker from image
sequences that significantly reduces the temporal fluctuations in local image mean
and variance. The system is based on simple block-based operations and motion
detection. Therefore the complexity of the system is limited. This is advantageous for
real-time implementation in hardware.

Improvements to the system are certainly conceivable. For instance, effort
could be put into reducing the sizes of the image regions for which estimated flicker
parameters are discarded due to local motion. In the current scheme, data in whole
image blocks are discarded even though large parts of those blocks may not have
been affected by motion. Alternatively, instead of detecting motion, an approach
that incorporates robust motion estimation into the flicker correction system could
be developed. This would result in a system for simultaneous motion and parameter
estimation and intensity-flicker correction.
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Figure 3.9:(a) Frame means and (b) variances of original MobCal sequence, MobCal
sequence with artificial intensity flicker, and sequences corrected by various interpolation
and smoothing methods within the system for intensity-flicker correction.
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Figure 3.10: Frame means (a) and variances (b) of the naturally degraded Soldier sequence
and sequences corrected by the system for intensity-flicker correction with various
interpolation and smoothing methods.
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Figure 3.11: Frame means (a) and variances (b) of the naturally degraded Mine sequence
and sequences corrected by the system for intensity-flicker correction with various
interpolation and smoothing methods.
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Figure 3.12: Frame means (a) and variances (b) of the naturally degraded Charlie sequence
and sequences corrected by the system for intensity-flicker correction with various
interpolation and smoothing methods.



Chapter 4

Blotch detection and
correction

4.1 System for blotch detection and correction

Blotches are artifacts typically related to film. The loss of gelatin and dirt particles
covering the film cause blotches. The original intensities corrupted by blotches are
lost and will be referred to as missing data. Correcting blotches entails detecting the
blotches and interpolating the missing data from data that surround the corrupted
image region. The use of temporal information often improves the quality of the
results produced by the interpolation process. This means that reference data from
which the missing data are interpolated, need to be extracted from frames
preceeding and/or following the frame currently being restored. Motion estimation
and compensation is required to obtain optimal interpolation results.

The methods for blotch detection presented in this chapter assume the
degradation model from (2.2), either implicitly or explicitly [Kok98):

2(i) = (1= d(2)) y(@) + d(i) (i) “.1)

where z(i) and y(i) are the observed and the original (unimpaired) data, respectively.
The binary blotch detection mask d(i) indicates whether each pixel has been
corrupted: d(i)e {0, 1}. The values at the corrupted sites are given by c(i), with c(i) =
y(i). One property of blotches is the smooth variation in intensity values at the
corrupted sites; the variance c(i) within a blotch is small. Blotches seldom appear at
the same location in a pair of consecutive frames. Therefore the binary mask d(i) will

51
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seldom be set to one at two spatially co-sited locations for a pair of consecutive
frames. However, there is spatial coherence within a blotch; if a pixel is blotched, it is
likely that some of its neighbors are corrupted as well, i.e., if d(i) = 1 it is likely that
some other d(i £1,j +1, ) = 1 also.

The following sections use various models for the original, uncorrupted image
data. The common element is that these models do not allow large temporal
discontinuities in image intensity along the motion trajectories. This constraint
results from the fact that c() # y(i) in the degradation models, which implies that
blotches introduce temporal discontinuities in image intensity. Temporal
discontinuities in image intensity are also caused by moving objects that cover and
uncover the background. There is a difference between the effects of blotches and
the effects of motions. Motion tends to cause temporal discontinuities in either the
forward or the backward temporal direction, but not in both directions at the same
time. Blotches cause discontinuities simultaneously in both temporal directions.

The estimated motion vectors are unreliable at image locations corrupted by
blotches because they are determined with incorrect, corrupted data. Models for
motion vector repair and for blotch correction assume a relationship between the
original image data at the corrupted sites and the data surrounding those sites
(temporally and/or spatially). For example, for motion vector repair, this
relationship can be smoothness of the motion vector field. For blotch correction, this
relationship can be defined by autoregressive (AR) image models.

Figure 4.1 illustrates two possible approaches for detecting and correcting
blotches. The first approach computes the locations of the blotches, the motion
vectors, and the corrected intensities simultaneously within a single bayesian
framework. Maximum a posteriori (MAP) estimates for the true image intensities,
(z), the motion vectors v(i), the blotch detection mask d(i) and the intensities of the
blotches c(7) are computed from the observed images z(i):

arg max P[(i), v(1), d(7),c(i) | z(3)] 4.2)
¥(@),0(1),d(3),c(i)

This is an elegant framework because it defines an optimal solution that takes
dependencies between the various parameters into account. It was applied
successfully in [Kok98]. A disadvantage of this method, besides its great
computational complexity, is the difficulty of determining what influence the
individual assumptions for the likelihood functions and priors have on the final
outcome of the overall system. Hence, it is difficult to determine whether the
assumed priors and likelihood functions give optimal results.
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Figure 4.1: (a) Simultaneous approach for blotch detection and correction vs. (b) modular
approach.

The second approach towards resolving blotches is a modular approach, as shown
in Figure 4.1b. The motion estimate module estimates motion between consecutive
frames in the forward and backward directions (from ¢t to ¢t + 1 and from ¢t to ¢ - 1
respectively). On the basis of motion estimates and the incoming degraded data, the
blotch detection module detects blotches. The motion vector repair module corrects
faulty motion vectors. Finally, the blotch correction module corrects blotches using the
corrected motion vectors, the binary blotch detection mask, and the degraded image
sequence.

This chapter concentrates on the modular approach for blotch detection and
correction. This approach has the advantage that the modules can be designed and
evaluated independently of each other. Furthermore, the modular approach has the
advantage of being computationally much less demanding than the simultaneous
bayesian approach.

This chapter is structured as follows. Section 4.2 reviews existing techniques for
blotch detection, motion vector repair and blotch correction. Section 4.3 introduces a
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new technique for improving the detection results by postprocessing blotch
detection masks. The postprocessing operations significantly reduce the number of
false alarms that are inherent to any detection problem. Section 4.4 shows that
increasing the temporal aperture of a detector gives significant gains in some cases.
Section 4.5 presents a new, fast model-based method for excellent quality of missing
data interpolation. Section 4.6 evaluates the performance of the complete blotch
removal system and concludes this chapter.

4.2 Overview of existing techniques
4.2.1 Blotch detection techniques

The parameter estimation problem for the degradation model consists of
determining the binary blotch detection mask d(i) for each frame. If required, ¢() can
easily be found once d(i) is known. The blotch detectors presented in this section all
apply the same principle: they check whether the observed data z(i) fit an image
model for y(i). If this is not the case, the image is assumed to be corrupted and a
blotch is flagged.

SDIa detector. The spike detection index-a (SDla) is a simple heuristic method for
detecting temporal discontinuities in image intensity [Kok98], [Kok95a]. It compares
each pixel intensity of the current frame z(i) to the corresponding intensities in the
forward and backward temporal directions by computing the minimum squared
difference SDIa(i):

SDIa(i) = min[(z(i) - z,, (i, t+ 1)), (2(3) - ,, (i, t = 1))*] (4.3)

Large values for SDIa(i) indicate discontinuities in image intensity in both the
forward and backward temporal directions. A blotch is detected if SDIa(i) exceeds a
threshold T;:

1 if SDIa(i)>T,

d )= ith T, >0 4.4
son (1) <0 otherwise wi ! @4)

where T, is a threshold selected by the user. If a small value is chosen for this
threshold, the detector is very sensitive and will detect a large percentage of the
blotches corrupting an image. However, due to the great sensitivity, many false
alarms will result as well. Increasing the value of T, reduces the sensitivity; it
reduces both the number of false alarms and the number of correct detections.
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Figure 4.2: (a) Selection of reference pixels p, from motion compensated previous and next
frames, (b) computation of ROD(i,l) based on pixels p, ordered by rank: r,,.

A variation on the SDIa detector is the SDIp detector. SDIp has an additional
constraint that requires the signs of z(i)-z,.(i,t+1) and z(i)-z,(i,t-1) to be
identical before a blotch can be detected. This constraint reduces the number of false
alarms resulting from erroneous motion estimates. In the case of correct motion
estimation, the reference pixels in the previous and next frames are assumed to be
identical, and therefore the intensity differences with the corrupted data in the
current frame should have the same polarity. Note that this is not necessarily true in
the case of occlusion and noisy data.

ROD detector. The rank-ordered differences (ROD) detector is a heuristic detector
based on order statistics (OS) [Nad97]. Let p,with k=1, 2, ..., 6 be a set of reference
pixels relative to a pixel from z(#). These reference pixels are taken from the motion
compensated previous and next frames at locations spatially co-sited with pixel z(i)
and its two closest vertical neighbors (see Figure 4.2a). Let r, be the reference pixels
p,ordered by rank with r, <r, <r, <r, <r, <r,. The rank order mean r,,, and rank-

mean

order differences ROD(,l) with I = 1, 2, 3 are defined by (see Figure 4.2b):

1t

mean — 2 (45)
h = 2(1) lf 2(1) < Vriean

ith 1=1,2, 3. ;
Wi)-rry i i) re, 23 “)
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A blotch is detected if at least one of the rank-order differences exceeds a specific
threshold T;. The T, are set by the user and determine the detector’s sensitivity:

1 if ROD(@,1)>T,

with 0<T, <T,<T, and I=1,2,3. 4.7
0 else

dROD(i) = <

MREF detector. In [Kok95a] an a posteriori probability for a binary occlusion map,
given the current frame and a motion-compensated reference frame, is defined. The
occlusion map indicates whether objects in the current frame are also visible in a
reference frame. The probability mass function (pmf) for the a posteriori probability of
the occlusion map is given by:

Pld (i) z(4),z,, (i, t+ k)] < P[z(i) {d, (i), z,,.(i,t + k)] Pld, ()] 4.8)

where the symbol « means is proportional to, and k indicates which reference frame is
used. Maximizing (4.8) gives the MAP estimate for an occlusion mask.

Blotches are detected where occlusions are detected both in forward and
backward temporal directions; k =1 and k = -1:

4 (i) <1 if (@dED=DAW,60)=1) 49
0 otherwise

The likelihood function in (4.8) is defined by:

Plz(i)1d, (1), z,,. (i, t+ k)] exp(—z [(1-4, (D) (z(d) - z,,. (i, t+ k))* ]) (4.10)

where S indicates the set of all spatial locations within a frame. This likelihood
function indicates that, in the absence of occlusion, d,(i)=0, the squared difference
between the current pixel i and the corresponding pixel from the motion-
compensated reference frame is likely to be small. The prior in (4.8) is given by:

Pld, ()] « eXP(-Z (8, fld (i) +B, dk(r)]) with B,,B,20 (4.11)

ie$

where the function f(d,(i)) counts the number of neighbors of d,(i) that are
different from d,(i). The term S, f(d, (7)) in (4.11) constrains the occlusion map to be
consistent locally. If an occlusion mask is locally inconsistent, 3, f(d,(7)) is large and
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the probability of P[d,(i)] is made smaller. The term B,d,(r) in (4.11) is a penalty
term that suggests that it is unlikely that many pixels are occluded. The user controls
the strength of the self-organization and the sensitivity of the detector by selecting
values for 8, and 8, .

Combining (4.8), (4.10), and (4.11) gives:

Pld, (i) 12(3), z,, (i, t + k)] o eXP(-Z [(1-d, (1)) (2(0) - 2, (i, t+ K))* + B, f(d, (D)) + B zdk(i)])
(4.12)

Equation (4.12) can be maximized with simulated annealing (SA) [Gem84]. It is
maximized once for k = 1 and once for k = -1. The resulting occlusion masks are
combined by (4.9) to give the binary blotch detection mask d,(i).

AR detector. The assumptions that underlie the AR detector are that uncorrupted
images follow AR models and that the images can be predicted well from the motion
compensated preceeding and/or following frames [Kok95a]. If the motion-
compensated frame at ¢ + k is used as a reference, the observed current frame z(i) is

given by:
2(i)= Y. a4z, (i+q, t+ k) +e(i,t+k)=2()+e(i,t + k) (4.13)
=1

where the g, are the n AR model coefficients estimated from the observed data (see,
for example, [The92]), g, give the relative positions of the reference pixels with
respect to the current pixel and e(i,t+ k) denotes the prediction error.

In the absence of blotches and occlusion, the prediction errors e(i,t+k) are
small. A blotch is detected if the squared prediction error exceeds a user defined
threshold T, in both the forward (k = 1) and backward (k = -1) directions:

1 if (6 t+)>T)AE*(Et-1)>T)

ith T, >0 414
0 otherwise wi ! ( )

dAR (1) = <

Evaluation. To compare the effectiveness of the detectors described in this section,
Figure 4.3 plots their receiver operator characteristics (ROCs) for four test sequences.
An ROC plots the false alarm rate (P, ) versus the correct detection rate (P,) of a
detector. Ideally, the ratio of correct detections to false alarms is large. For the SDIa,
ROD, and AR detectors, the curves were obtained by letting T, vary so that
1<T, <35 (for the ROD detector, T,=39 and T, =55 were used). For the AR
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detector, the image was subdivided into blocks of 28x28 pixels, and a set of AR
coefficients was computed for each block. The support consisted of five pixels as in
[Kok95a] (see Figure 4.4). For the MRF detector, 3<f,<8 and 9<f, <1369 were
used.

(c) P (a)

Figure 4.3: Receiver operator characteristics for various blotch detectors for (a) Western
sequence, (b) MobCal sequence, (c) Manege sequence, (d) Tunnel sequence.

The detectors were applied to four test sequences, namely Western, which was
also used in [Kok95a], Mobcal, Manege, and Tunnel. To avoid problems caused by the
combination of interlacing and fast motion, only the odd fields from the last two
sequences were used'.

"This is reasonable because blotches are artifacts that are typically related to film with no interlacing.
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All sequences were degraded by adding artificial blotches. Each artificial blotch
had a fixed gray value that was drawn uniformly between 16 and 240, which is here
the allowed range for pixel intensities. The Western sequence originates from film
and therefore contains granular noise. The MobCal, Manege, and Tunnel sequences,
which were recorded by modern cameras, have little noise. To let them resemble real
film data more closely, white gaussian noise with variance 10 was added after the
blotches were added. Therefore, for these sequences, unlike for the Western
sequence, the blotches are no longer completely smooth. Motion was estimated by
an hierarchical motion estimator (Appendix A).

Figure 4.3 shows that the performance of the detectors strongly depends on the
sensitivity to which they are set and on the sequences themselves. The best detection
results are obtained for the Western sequence, which has relatively low local
contrasts. The poorest results are obtained for the Manege, sequence which contains
fast motion and sharp local contrasts.

Figure 4.4 Support (circles) from reference frame at t+k used for AR detector. The center of
the support is aligned with pixel being processed in the current frame t

The experiments show that no detector consistently outperforms any other. In
some instances, the AR detector shows the best performance; in other instances, it
shows the poorest performance. It can been seen from the ROCs that greater
complexity does not necessarily lead to better results. The SDIa detector requires
only a fraction of the number of computations required by the MRF detector, and
both give a similar performance for all sequences. The ROD detector performs well
for most sequences. However, it breaks down in the Tunnel sequence. This is because
many false alarms are generated in this sequence as a result of the fixed settings
chosen forT, and T,.



60 CHAPTER 4

4.2.2 Techniques for motion vector repair

Estimated motion vectors are less reliable when an image is blotched. Hence, the
reference data extracted from the motion-compensated reference frames and used
for interpolating the missing data may be erroneous. Motion vector repair can
improve the likelihood of obtaining correct reference data. This repair has been
investigated in the context of error concealment in (compressed) digital video
transmission where each 8x8 or 16x16 image block gets one motion vector assigned.

Figure 4.5: Three frames from the Manege sequence with a single blotch (black) in the cen-
tral frame and a bounding box. The regions within the dashed boxes in the outermost frames
indicate the search region for the block matcher.

Two basic approaches to motion vector repair are found in literature. The first
approach re-estimates the unreliable motion vectors by interpolating them from the
surrounding reliable motion vectors. In [Has92], [Nar93], median filtering and
averaging are proposed for this purpose. The second approach re-estimates the
motion vector on basis of the image intensities. The methods in [Che97], [Lam93]
exploit the correlation between pixels along the boundaries between adjacent image
blocks. An erroneous motion vector is replaced by a new vector so that the mean
squared difference in image intensity over the boundaries with the neighboring
blocks is minimized. The approach in [Kok98], which was developed in the context
of blotch correction, re-estimates the motion of corrupted image blocks. The motion
estimation process discards the corrupted pixels and constrains the smoothness of
the motion vectors.

This section gives an indication of how well either approach can be expected to
perform. Two algorithms are evaluated for this purpose. The first algorithm
interpolates the unreliable motion estimates by applying the dilation interpolation
technique described in Chapter 3 to the horizontal and vertical components of the

motion vector fields independently. All weights W, are set to one, and no biases

n



BLOTCH DETECTION AND CORRECTION 61

are applied.

The second algorithm re-estimates motion vectors on the basis of the observed
image intensities, as illustrated by Figure 4.5. First, a bounding box is computed
around each blotch with an additional (small) horizontal and vertical margin.
Motion is estimated between the region contained by the box and the previous/next
frames by block matching. To avoid biases resulting from blotched data, the block
matcher discards the corrupted pixels in the current frame and in the reference
frames. To limit the computational effort, the search range is limited to +20 pixels for
both horizontal and vertical directions.

Additionally, a third algorithm is evaluated. This algorithm simply replaces the
motion vectors at blotched sites with vectors that indicate zero motion. Large parts of
images tend to be temporally stationary and, therefore, assuming no motion is
correct in a large number of cases.

The effectiveness of the three methods is evaluated by applying the scheme in
Figure 4.6 to the same four test sequences used in the previous sedion. In this
scheme, the motion vectors are estimated between pairs of consecutive frames that
are corrupted by artificial blotches. Next, the motion vectors are repaired at locations
indicated by the blotch detection masks. The blotch masks are made available to the
motion vector repair block in Figure 4.6, though this is not shown explicitly in the
figure. Then, one of the original, uncorrupted input frames is compensated for
motion, and the MSE with the other original, uncorrupted input frame is computed.
The MSE is computed only over the locations indicated by the blotch mask. If the
motion vectors are accurate, the MSE will be small.

Frame 1
y
Add Estimate
Blotches Motion
A
A Y Motion
Add Motion Vector | Vectors
Blotches Repair
A 4 A 4 A
Compensate MSE Out
Motion —»
Frame 2

Figure 4.6: Scheme for measuring the effectiveness of motion vector repair.
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Two sets of experiments are carried out. The first set uses the true locations of the
pixels corrupted by blotches. The second set uses detection masks resulting from the
SDIa detector set to a detection rate of approximately 70%. The first set of
experiments shows the improvements that are obtained under ideal circumstances.
The second set of experiments shows the improvements obtained under realistic
circumstances where false alarms influence the results. In this second set of
experiments, 30% of the blotched pixels are not detected. These are the so-called
misses. Motion vector repair does not influence the motion vectors assigned to misses
because the motion vectors are only re-estimated at locations when blotches are
detected.

Blotch Mask | Vector Repair | Western Mobcal Manege Tunnel
(MSE) (MSE) (MSE) (MSE)
Exact None 94 338 1027 396
Exact Block Matching 32 58 215 82
Exact Dilation 62 218 656 122
Exact Zero Motion 63 190 748 97
Estimated None 157 721 2136 1044
Estimated | Block Matching 103 538 2138 693
Estimated Dilation 140 594 2658 908
Estimated Zero Motion 126 496 2841 847

Table 4.1: Evaluation of quality of motion vectors before and after motion vector repair. The
MSE is computed only at sites indicated by the blotch mask. Both the true blotch mask and
an estimated blotch mask, estimated with the SDla detector set to a detection rate of
approximately 70%, are used.

Blotch Mask| Western Mobcal Manege Tunnel
(MSE) (MSE) (MSE) (MSE)
Exact 21 35 113 18
Estimated 72 343 1925 689

Table 4.2: MSE computed with the motion vectors estimated from the original, unimpaired
image sequences. The MSE is computed only at sites indicated by the blotch mask.

Table 4.1 gives the experimental results. This table indicates that applying vector
repair significantly increases the accuracy of the corrupted motion vectors if the
locations of the corrupted sites are known exactly. When the estimated blotch mask
is used, the MSE increases and the gains are smaller. This is not surprising. Because
of false alarms, motion vectors are re-estimated at locations that are not corrupted.
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The new motion estimates for the false alarms are suboptimal because correct image
data are discarded in the motion estimation process.

The lowest MSEs are obtained with motion vectors repaired by the block
matching technique, and, therefore, this method is to be preferred to the other
methods for vector repair. The zero motion technique shows good results for those
test sequences that contain large areas without motion, i.e., all test sequences except
the Manege sequence. The dilation method has a relatively poor performance, yet it is
to be preferred to no vector repair at all.

Table 4.2 shows the MSEs obtained from motion vectors computed from the
original, unimpaired test sequences. These form the lower bound for the MSEs that
can ideally be achieved. The conclusion is that the block-matching vector-repair
technique bridges the gap between the MSE obtained from the corrupted vectors
and the “true” vectors to a large extent.

4.2.3 Blotch correction techniques
MMF interpolator. A multistage median filter (MMF) is a concatenation of median

filtering operations. The ML3Dex MMF is a heuristic method for interpolating
missing data [Kok95b]. ML3Dex first applies five subfilters centered around the

pixel being processed. Figure 4.7 shows the subfilter masks. In this figure, the top
plane of each subfilter refers to data in the motion-compensated next frame, the
center plane refers to data in the current frame, and the bottom plane refers to data
in the motion-compensated previous frame. Next, the output of all the subfilters are
combined and give the interpolated value according to:

m, = median[W,]  with 1</<5 (4.15)

ML3Dex = median[m,,m,,m,,m, , mg] (4.16)

Note that ML3Dex does not necessarily fulfill any of the image models used by the
detectors described in Section 4.2.1. In other words, if a detector is applied again to a
corrected image, the corrected data may well be flagged as being blotched. In such
instances, there is no objective reason to prefer the corrected data to the observed
data and, from an engineering point of view, it may actually be better to stick to the
observed data. This reduces the risk of introducing corruption at locations at which
blotches were mistakenly detected.

MREF interpolator. A MRF formulation towards interpolating missing data is given
in [Kok95b]. This approach tries to find the MAP estimate of the missing data, (i),
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given the locations of the corrupted sites and the observed (motion-compensated)
previous, current and next frames by maximizing:

Ply(i)1d(i), z,, (i, -1),z(i),z,, (i, +1)] <

exp[ Z [Z (i)~ §(s))* Z/l (i)-z, St_1))2+(9(i)‘zmc(51t+1))2]D 4.17)

#:d(i)=1 \seSs (i) seSr (i)

where S; and S; indicate the spatial and temporal neighborhoods, and A is the
relative weight for the temporal neighborhood. Equation (4.17) is optimized only
over blotched image locations. The term (§(i)~- #(s))* on the right hand side of (4.17)
indicates the assumption that the interpolated values are likely to be smooth
spatially. The other quadratic terms indicate the assumption that it is unlikely that
the interpolated values introduce temporal discontinuities in image intensity along
the motion trajectories. Equation (4.17) can be maximized with SA [Gem84].

Figure 4.7: Subfilter masks for ML3Dex. Gray elements indicate the included data, white
elements indicate excluded data.

AR interpolator. A method for interpolating missing data based on a 3D AR model
is described in [Kok95b]. For each region of an image with missing data a set of AR
parameters is determined. It is assumed that the data in this region are stationary.
The AR parameters are computed from data of the (motion-compensated) previous,
current, and next frames. Note that the blotched data in the current frame f are
discarded so that they do not bias the estimates of the AR parameters. Next, the
missing data are interpolated so that the linear-mean-squared-prediction-error, com-
puted with the estimated AR parameters, is minimized.

Consider the data to be ordered in a lexicographic fashion [Pra75]. Let e
indicate a vector of prediction errors, let z, indicate a vector containing the observed
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data from the current frame plus that from the motion-compensated previous and
next frames, and let A be a matrix with the AR coefficients placed at suitable
locations. The prediction errors are denoted compactly by:

e=Az, (4.18)

The prediction errors consist of two parts. One part depends on the product of the
known data z,, (data that are not to be interpolated) in z, with a number of
columns from A, these columns will be denoted by A, . The other part consists of the
product of unknown data z,, (data that are to be interpolated) in z, and the
remaining columns of A, which will be denoted by A, :

e=Az +Az, (4.19)

The unknown data are interpolated so that the mean-squared-prediction-error e”e is

minimized. Taking the derivative of e"e with respect to z,,, setting it to zero and

u+’

solving for z,, gives the required result:

Zu+ = —[A;rAu ]_IAZ‘AkZh (420)

Variations on this 3D AR method are described in [Goh96], [Kal97]. In [Goh96] it is
pointed out that the assumption of stationarity is not met for occluded regions that
have become uncovered (and vice versa). The authors suggest estimating the AR
model parameters and interpolating the missing data with two frames only. One
frame is the current frame that contains the missing data. The other frame is either
the preceeding or the following frame. This depends on which (motion-
compensated) frame gives the smallest mean squared difference with the current
frame in the region of the missing data. This method is referred to as the B3DAR
method. In [Kal97] this approach is refined by subdividing regions with missing
data into multiple regions and interpolating the missing data for each region. This is
done because a single set of AR coefficients may not be able to model a block of
pixels adequately when the missing data cover a large region.

Drawbacks. There are a number of drawbacks to the methods for interpolating
missing data described in this section. The multistage median filter has no model for
the corrected image. Therefore the interpolation results are not necessarily
consistent, either with the data surrounding the corrupted region or within the
corrected region itself. The MRF interpolator gives an overly smooth result because
it interpolates the data so that the differences between an interpolated pixel and its
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spatio-temporal neighbors are minimized. The MRF interpolator takes no measures
for resolving the effects resulting from occlusion.

The AR interpolators can also smooth the data, and therefore the fidelity of the
interpolated data in textured regions and in noisy film sequences is not that of their
surroundings. As mentioned before, the problem of occlusion can, in principle, be
solved with the method in [Goh96]. However, unlike the method described in
[Goh96], the direction of interpolation should be determined pixelwise instead of
blockwise. Because occlusion can vary on a pixel-by-pixel basis, the optimal
direction of interpolation should be allowed to vary on a pixel-by-pixel basis. Fur-
thermore, by subdividing missing data into a number of regions, as suggested in
[Kal97], mismatches may well occur within the interpolated results near the region
boundaries.

Finally, all the approaches described in this section assume that the reference
regions in the motion-compensated previous/next frames do not contain missing
data in the regions of interest. This assumption is not always correct and can lead to
incorrect interpolated data, as will be shown in Section 4.5.

4.2.4 Conclusions

Existing techniques for blotch detection show good performance, though even better
performance is desirable in an automated environment for image restoration. For
example, consider the ROC curves in Figure 4.3. These indicate that the false alarm
rate varies between 0.5 and 15% for a correct detection rate of 85%. With other
words, not only are many blotches removed, which is good, but also two thousand
to sixty thousand pixels are also interpolated unnecessarily for each frame of a PAL
image, which has a resolution of 720x576 pixels. Because the interpolators are
fallible, false alarms can lead to artifacts in the corrected sequence that are visually
more disturbing than the blotches themselves.

The development of improved methods for blotch detection and correction is
the topic of the remaining sections of this chapter. Sections 4.3 and 4.4 investigate
how to improve the detectors. Section 4.5 develops an interpolator for correcting
blotches that is robust to errors in the reference data obtained from motion-
compensated frames.

4.3 Improved blotch detection by postprocessing

The goal of this section is to improve the ratio of correct detections to false alarms of
existing blotch detectors. The approach taken here is not one of designing yet



BLOTCH DETECTION AND CORRECTION 67

another detector. Instead, a strategy of postprocessing that removes possible false
alarms and that finds parts of blotches missed by the detector is developed.
Figure 4.8a shows how postprocessing fits in the scheme of Figure 4.1b. Figure 4.8b
shows the proposed set of postprocessing techniques.

What is the idea behind the postprocessing operations? Blotches are not just
random sets of individual pixels, but that they are spatially coherent regions and can
be manipulated as such. How these regions can be extracted from the blotch
detection masks is discussed in Section 4.3.2. Because it is not certain at this point
that the extracted regions are true blotches, rather than something that resulted from
false alarms made by the detector, the term candidate blotches is used to refer to the
extracted regions.

Section 4.3.3 dllows a probabilistic approach towards identifying and
eliminating candidate blotches as a result of false alarms due to noise. The other
candidate blotches, resulting from correct detections, have been detected only
partially. Applying techniques called hysteresis thresholding and constrained dilation
can make the detections more complete. These techniques are explained in
Section 4.3.4 and Section 4.3.5. Section 4.3.6 concludes with experimental evaluations
that demonstrate the effectiveness of the postprocessing approach applied to a
simplified version of the ROD detector, which is described next.

Impaired h 4 Blotch Corrected
Sequence Blotch Postprocessing | Mask Blotch Sequence
”| Detection i Correction >
T l Motion
Motion Motion Vector Vectors
Estimate i Repair
(a)
Data Mask
In Objects Noise Hysteresis Dilation Out
—> > >

(b)

Figure 4.8: (a) Place of postprocessing in a system of blotch detection and correction, (b)
chain of postprocessing operations for increasing the ratio between correct detections and
false alarms.
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4.3.1 Simplified ROD detector

By letting T, > and T, -, the output of the ROD detector is completely
determined by T,. In this case, T, and T, can removed from the equations and a
simplified ROD (SROD) detector results. The SROD detector is computationally much
more efficient than the ROD detector because it no longer requires the reference
pixels to be ordered by rank:

min(p, ) - z(i) if min(p,)-z(i) >0

SROD(i) = ( z(i)-max(p,)  if z(i)—max(p,)>0 with k=1,...,6 (4.21)
0 otherwise
A blotch is detected if:

1 ifSROD()>T,

Aspop (i) = <0 with T, 20 (4.22)

otherwise

The SROD detector looks at a range of pixel intensities obtained from motion-
compensated frames and compares this range to the pixel intensity under
investigation. Blotches are detected if the current pixel intensity lies far enough
outside the range. What is considered “far enough” is determined by T,.

4.3.2 Extracting candidate blotches

The SROD detector is a pixel based detector. If the spatial coherence within blotches
is to be exploited, regions consisting of pixels with similar properties will have to be
extracted from the available data. Adjacent pixels within a blotch tend to have
similar intensities. A pair of pixels are considered to be similar if their difference is
smaller than twice the standard deviation of the noise. This means at least 96% of the
pixels will be labeled as belonging to the same candidate blotch if additive white
gaussian noise is assumed to be corrupting the image.

Therefore, adjacent pixels with similar intensities that have been flagged by the
blotch detector are considered to be part of the same candidate blotch. To
differentiate between the various candidate blotches, a unique label is assigned to
each of them.
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Figure 4.9: (a) Frame from Western test sequence, (b) same frame with artificially added
blotches, (c) true blotch mask, (d) blotch mask estimated with the SROD detector withT, = 0
and a zoom in on a candidate blotch, (e) estimated blotch mask after possible false alarms due
to noise are removed,

4.3.3 Removing false alarms due to noise

After the labelling procedure, a candidate blotch is an object with spatial support §
and it consists of K pixels, each of which has a specific detector output SROD(i). By
selecting a small value for T, the detector is set to a great degree of sensitivity. In
this case, it is not only sensitive to blotches, but also to noise. An example of this is
given in Figure 4.9, which shows a frame from the original Western test sequence, the
same frame degraded with artificial blotches, and the blotch mask used for adding
the artificial blotches. The estimated blotch mask, estimated with the SROD detector
with T, = 0, shows many false alarms.

Figure 4.9d also zooms in on a candidate blotch. The question for this
candidate blotch is whether it is likely that it was detected purely as a result of false
alarms due to noise. If so, the complete candidate blotch should be removed from
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the blotch detection mask. Figure 4.9e shows a result of this approach, for which the
details follow, applied to Figure 4.9d. Many false alarms have been removed.

The probability of a candidate blotch being detected purely due to false alarms
is equal to the probability of the detector giving specific set of values SROD(3), all of
which are larger than T,. This probability can be computed in two steps. The first
step determines the probability of a specific detector response for an individual pixel
under the influence of noise. The second step determines the probability that a
collection of such pixels belong to a single object. The details of these two steps are
given now.

For the first step, it is assumed that the reference pixels p, and the current pixel
z(i) are identical except for the additive noise in the absence of blotches, ie.,
z(i)=y+n,; and p, =y+n,, where n, and 7, indicate a specific noise realization. It
is also assumed that the noise is iid., has zero mean, and is symmetrically
distributed around the mean. The probability that the SROD detector generates a
false alarm due to noise is:

P(SROD(i) > T,]= Plz(i)- max(p, ) > 0,z(i) — max(p, ) > T;] +
Plmin(p, ) - z(i) > 0, min(p, ) — z(i) > T,]
= P[z(i)— max(p, ) > 0l z(i) - max(p,) > T,] P[z(i)— max(p,) > T;] +
P{min(p, ) - z(i) > Olmin(p, ) - z(i) > T,] P[min(p, ) - z() > T,]  (4.23)
= P[z(i)— max(p,) > T, ]+ P[min(p, )~ z(i) > T;]
=2 P[z(i)—- max(p,) > T,]
=2 P[n, —~max(n,)>T,]

where the last but one line follows from symmetry. Using the fact that
n, —max{(n,) > T, requires that n, —n, > T, for all k gives:

P(SROD(i)>T,]=2Pln;,-n, > Ty, m;—=n, >T1,....m; =N > T

=2 IP[nf -1,>T,n, -1, > Ty, ,m;=ne > Tin,] Pln; Jdn,

=2 {T] P, -n, >Tln,] Pln,Jdn, (4.24)
—w k

=2 [P*[n, -, > T,In,] PlnJdn,

w (-1, 6
=2 j[ | P[n]dn] Pln,ldn,
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The step from the second to the third line in (4.24) is obtained by applying the
theorem on total probability [Leo94]. The fourth and the fifth lines in (4.24) are
obtained by considering that the 77, are independent of each other. This is indicated
by dropping index k from 7, . Equation (4.24) gives the probability that the SROD
detector generates a false alarm for an individual pixel due to noise and can be
evaluated numerically once the parameters of the noise have been determined.

In the case that the pixels of an image sequence are represented by integer

values, the output of SROD also consists of integer values. The probability
P _.[SROD(i)= x] that the SROD detector gives a specific response x, with x>0, for
an individual pixel is given by:
P...[SROD(i) = x]= P[SROD(i) > x — 0.5] - P[SROD(i) > x + 0.5] (4.25)
Table 4.3 lists the computed probabilities of specific detector responses in the case of
white gaussian noise with a variance of 9.6. (The method described in [Mar95] was
used to estimate a noise variance of 9.6 for the Western sequence).

Probability Probability
1 0.091921 7 0.002224
2 0.060748 8 0.000892
3 0.036622 9 0.000304
4 0.020492 10 0.000108
5 0.010353 11 0.000028
6 0.005168 12 0.000007

Table 4.3: Probability of a specific detector response SROD(i) computed for a constant signal
corrupted by additive white gaussian noise with variance 9.6.

For the second step, it is assumed that the individual pixels within a blotch are
flagged independently of their neighbors. Strictly speaking this assumption is
incorrect because, depending on the motion vectors, sets of reference pixels p, can
overlap. The effects of correlation are ignored here. Let H, denote the hypothesis
that an object is purely the result of false alarms and that each of the sets of reference
pixels were identical to the true image intensity y(i) except for the noise. P[H,] is
then the probability that a collection of K individual pixels are flagged by the SROD
detector, each of which with a specific response x(i):

P[H,] =[] P,..[SROD() = x(i)] (4.26)

ieS
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where S is the spatial support of the candidate blotch. Those objects for which the
probability that they are solely the result of noise exceeds a risk R are removed from
the detection mask:

P[H,] >R (4.27)
The result of this approach, as mentioned before, is indicated in Figure 4.9e.
4.3.4 Completing partially detected blotches

The technique for removing possible false alarms due to noise can be applied to any
value of T,. When a blotch detector is set to a low detection rate, not much gain is to
be expected from this technique because the detector is insensitive to noise. A
second method for improving the ratio of correct detections to false alarms is
described here.

Many blotches are not detected at all and others are detected only partially at
lower detection rates. The strategy is now to make the partial detections more
complete. This is achieved by noting from Figure 4.3 that the probability of false
alarms decreases rapidly as the correct detection rate is lowered. Therefore,
detections resulting from a blotch detector set to a low detection rate are more likely
to be correct and can thus be used to validate the detections by the same detector set
to a high detection rate.

Figure 4.10: Example of hysteresis thresholding. Detection masks from (a) detector set to low
sensitivity (T,= 30) with removal of possible false alarms due to noise, (b) detector set to high
sensitivity (T,= 0) with removal of possible false alarms due to noise, (c) hysteresis
thresholding.
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The validation can be implemented by applying hysteresis thresholding [Can86]; see
Figure 4.10. The first stage computes and labels the set of candidate blotches with a
user-defined setting for T,. Possible false alarms due to noise are removed as
already described. The second stage sets the detector to a very high detection rate,
i.e., T, = 0, and again a set of candidate blotches is computed and labeled. Candidate
objects from the second set can now be validated; they are preserved if
corresponding candidate objects in the first set exist. The other candidate blotches in
the second set, which are more likely to have resulted from false alarms, are dis-
carded. Effectively blotches detected with the operator settings are preserved and
are made more complete.

4.3.5 Constrained dilation for missing details

There is always a probability that a detector fails to detect elements of a blotch, even
when it is set to its most sensitive setting. For example, the large blotch on the right
hand side in Figure 4.9c is not completely detected in Figure 4.9d. Inthis final
postprocessing step, the detected blotches are refined by removing small holes in the
candidate blotches and by adding parts of the blotches that may have been missed
near the edges.

B rcinee N

Figure 4.11: Example of constrained dilation: (a) image with blotches, (b) initial detection
mask, (c) detection mask after one iteration, (d) detection mask after two iterations, (e) result
of constrained dilation applied to Figure 4.10(c).

For this purpose, a constrained dilation operation is suggested here. Dilation is a
well known technique in morphological image processing [Mar98). The constrained
dilation presented here applies the following rule: if a pixel’s neighbor is flagged as



74 CHAPTER 4

being blotched and its intensity difference with that neighbor is small (e.g., less than
twice the standard deviation of the noise) then that pixel should also be flagged as
being blotched. The constraint on the differences in intensity reduces the probability
that uncorrupted pixels surrounding a corrupted region are mistakenly flagged as
being blotched. It uses the fact that blotches tend to have gray values that are
significantly different from their surroundings. Figure 4.11a-c illustrates the proce-
dure, Figure 4.11e shows the result of this method when applied to the blotch mask
in Figure 4.10c.

It is important not to apply too many iterations of the constrained dilation
operation because it is always possible that the contrast between a candidate blotch
and its surrounding is small. The result would be that the candidate blotch grows
completely out of its bounds and many false alarms occur. In practice, if the detector
is set to a great sensitivity, applying two iterations favorably increases the ratio of
the number of correct detections to false alarms. When the detector is set to less
sensitivity, the constrained dilation is less successful and should not be applied. In
the latter case, the blotches that are initially detected by the SROD detector must
have sharp contrast with respect to the reference data. Because of the sharp contrast,
the blotches are made fairly complete by the hysteresis thresholding. The dilation
therefore adds little to the number of correct detections, yet it significantly increases
the number of false alarms.

4.3.6 Experimental evaluation

Figure 4.12 summarizes the effects of the consecutive postprocessing operations.
Visually speaking, the final result in this figure compares well to the true blotch
mask in Figure 4.9c. Now the effectiveness of the postprocessing operations is
evaluated objectively.

Figure 4.13 plots the ROCs for ROD detector, SROD detector, and the SROD
detector with postprocessing. The results from either the MRF or the AR detector,
depending on which showed the best results in Figure 4.3, are also plotted for
comparison. Figure 4.13 makes it clear that the SROD detector has a performance
similar to that of the ROD detector for small values of T, (high detection rates).
When set to a lesser sensitivity, the SROD detector shows performance either
similarly to or better than the ROD detector. This is explained by the fact that
detection mask of the SROD detector is a subset of the detection mask of the ROD
detector; each detection made by the SROD detector is also made by the ROD
detector. However, the SROD detector generates not only fewer correct detections,
but also (significantly) fewer false alarms.



BLOTCH DETECTION AND CORRECTION 75

3]
oy
(3]
L4

Figure 4.12: Summary of postprocessing: (a) initial detection, (b) result after removal of false

alarms, (c) result after hysteresis thresholding, (d) final result after constrained dilation.
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Figure 4.13: Receiver operator characteristics for (a) Western sequence, (b) MobCal
sequence, (c) Manege sequence, (d) Tunnel sequence (P, - false alarm rate, P, - correct

detection rate)
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The postprocessing applied to the detection masks obtained from the SROD detector
improves the performance considerably over the whole range of operation of the
detector. Note that the constrained dilation operation was not applied for T, > 12.
This explains the sometimes large change in trend between the fourth and fifth
measuring point of the SROD ROCs. The postprocessed results are significantly
better than any results from the detectors without postprocessing. For instance,
before postprocessing, a correct detection rate of 85% corresponds with a false alarm
rate between 0.5 and 15%. After postprocessing a correct detection rate of 85%
corresponds with a false alarm rate between 0.05 and 3%.

4.4 Blotch detection with increased temporal aperture

Objects for which the motion cannot be tracked accurately from frame to frame pose
severe problems to blotch detectors. Incorrect motion vectors lead to incorrect sets of
reference pixels and hence to false alarms. An obvious solution to this problem
would be to use a “robust” motion estimator. Though techniques that are more
robust to complex motion than the hierarchical block matcher used here do exist,
e.g., motion estimators that use affine motion models [Odo95], [Wan], it is
questionable whether the increase in performance justifies the increase in
complexity. Motion in natural image sequences often involves objects of which
shape, texture, illumination, and size vary in time. No motion estimation algorithm
is truly capable of dealing with this type of motion.

An alternative way to reduce the number of false alarms is to incorporate more
temporal information. False alarms result from the fact that object motion cannot be
tracked to any of the reference frames. Increasing the number of reference frames
increases the probability that good correspondence to at least one of the reference
frames is found. Once good correspondence is found for an object, it is assumed that
this object is not a blotch. Therefore, increasing the temporal aperture of a blotch
detector reduces the number of false alarms. However, increasing the temporal
aperture also increases the probability that blotches are mistakenly matched to other
blotches or to some part of the image contents. This decreases the correct detection
rate. Obviously there is a trade-off.

The SROD detector can easily be extended to use four reference frames by
taking into account three extra reference pixels from each of the frames at ¢ - 2 and at
t + 2. The extended SROD detector is denoted by SRODex. The postprocessing
operations can be applied as before, all that is necessary is to recompute the
probability of false alarms due to noise (taking into account that there are now
twelve reference pixels instead of six).
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(2) (b )

Figure 4.14: Top row: three consecutive frames from V] Day sequence. Second row: corrected
frames using SROD with postprocessing and ML3Dex. Note the distortion of the propellers
in the boxed regions. Third row: corrected frames after combining the SROD detection
results with SRODex results. (Original photos courtesy by the BBC).

Consider two sets of candidate blotches detected by the SROD detector and the
SRODex detector, respectively. The SRODex detections form a subset of the SROD
detections; the SROD detector finds blotches everywhere the SRODex detector does,
and more. The blotches detected by the SROD detector are more complete than those
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detected by the SRODex detector, but the SRODex detections are less prone to false
alarms. As in Section 4.3.5, hysteresis thresholding can be applied. The reliable,
possibly incomplete SRODex detected blotches can be used to validate less reliable,
but more complete SROD detections. In case of true blotches, the shapes and sizes of
the regions flagged by both detectors should be similar. If this is not the case, it is
likely that the detections are a result of false alarms due to complex motion. Hence,
preserving SROD-detected candidate blotches that are similar to corresponding
SRODex-detected blotches reduces the probability of false alarms. The other SROD-
detected candidate blotches are discarded. Two candidate blotches and are
considered to be similar if the ratio of their sizes is smaller than some constant £:

Size of blotch in A < (4.28)
Size of blotch in B
b D
1
—¢ SROD Post |
095} | v--x  SRODex combined with SROQ
09}
. /0—-0
085 ©
08 !
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ort ~
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/
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Figure 4.15: Receiver operator characteristics for the SROD detector and for the SROD
detector combined with the SRODex detector (all with postprocessing) computed for the
MobCal sequence ( P, - false alarm rate, P, - correct detection rate).

Figure 4.14a-c show frames 27-29 from the V] Day sequence. Besides blotches, this
sequence contains a lot of action in the form running men and rotating propellers.
Some of the propellers are not visible at all in some of the frames. Figure 4.14d-f
shows data restored from the SROD detector (T, = 10) with postprocessing and
ML3Dex for interpolation. The blotches have been removed very efficiently, but, as
an unwanted side effect, parts of the propellers have been removed as well.
Figure 4.14g-i shows restored data, but now the proposed combination of SROD and



BLOTCH DETECTION AND CORRECTION 79

SRODex has been used with T,= 10 and { = 2. Most of the blotches have been
removed and, very importantly, the propellers have been preserved.

The proposed algorithm was very successful for the V] Day sequence because it
is capable of dealing with the periodic presence of the propellers. However,
increasing the temporal aperture does not necessarily always increase the
performance, as can be observed from the ROC curves for the Manege sequence in
Figure 4.15. In this case, the SRODex detector misses too many correctly ROD-
detected are discarded. Whether increasing the temporal aperture is beneficial to the
restoration process depends on the particular image sequence. In practice, it is up to
an operator to decide which detector is most appropriate.

4.5 Fast, good quality interpolation of missing data

Section 4.2.1 showed that model-based interpolation of missing data can be done
with 3D AR processes. This method gives good-quality interpolation results and its
performance in resynthesizing textures of missing data is superior to that of other
interpolators. Equation (4.20) gives a closed form solution to the 3D AR interpolation
method. Unfortunately, there are a number of drawbacks to this method. First, it is
very expensive in computational terms. For example, resynthesizing the texture for a
region with a blotch of 20x20 pixels requires inverting a matrix with 400x400
elements. Second, the method as described in Section 4.2.3 assumes that the data in
the reference frames are always correct. This assumption is not always true.
Incorrect reference data can result from erroneous motion estimates, occlusions, and
corruptions due to blotches. Third, AR interpolations can be overly smooth if the
interpolated regions are large.

It is important to realize that full 3D AR restoration is not necessary in most
cases. The most common differences between the frames of an image sequence can
be characterized by a rearrangement of the object location. Therefore, it is likely that
missing data in one frame can be restored by pasting (copying) pixels from
corresponding regions in a reference frame. Reliable motion estimates must be
available for pasting. In fact, pasting can be viewed as a one-tap AR interpolator
with a coefficient of 1.0.

This section investigates the concept of interpolating missing data by pasting.
Each pixel of the missing data in a blotched frame is replaced by a pixel from the
corresponding location in either the motion-compensated previous frame or the
motion-compensated next frame. A strategy for determining the direction of
interpolation (i.e., pasting from the previous frame or pasting from the next frame) is
required. The strategy used here constrains the interpolated data to fit in well with
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the region surrounding the missing data. Hence, the data surrounding the missing
data define a set of boundary conditions to the solution of the interpolation problem.
This constraint is enforced by requiring corrected image regions to follow 2D AR
processes as well as possible.

Figure 4.16: (a) Region-based pasting: a region from either the previous or next frame
(motion-compensated) is pasted into the current frame, (b) pixel-based pasting: pixels are
pasted from either of the reference frames. In both cases (a) and (b), the pasting is done so that
the corrected region, indicated by the dashed box, can fit a 2D AR model as well as possible.

The question is now how to decide which reference frame should supply the pixels
for pasting. One approach is to paste complete regions from either the previous or
the next frame, depending on which result fits in better according to the 2D AR
process (Figure 4.16a). To get good visual results with this approach, the motion-
compensated reference data must represent the missing data at all locations. This
requirement is less likely to be fulfilled as the size of the region to be pasted
increases. The probability of some of the missing data being unavailable is
proportional to the size of the region due possible to occlusions, blotches, and
erroneous motion estimates.
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A better approach is to determine the direction of interpolation for each
individual pixel, as illustrated by Figure 4.16b. The pixel intensity from the motion-
compensated reference frame with the smallest prediction error is pasted into the
current frame. The advantage of pasting single pixels from either the previous or
next reference frame is evident: if the reference data in one reference frame are
inconsistent with the 2D AR model for the corrected frame, large prediction errors
will result. In which case, data can be pasted from the other reference frame. This
mechanism requires no explicit knowledge about errors in the reference data. Hence,
corruptions in one of the reference frames do not influence the interpolated result
negatively if the data in the other reference frame are correct.

At this point, the direction of interpolation in the pasting method described can
vary erratically from pixel to pixel. Everything depends on which reference frame
provides the pixel closest to the value predicted by the AR model. This can lead to
two possible side effects. First, AR predictors tend to give overly smooth prediction
results. Because the reference pixels closest to the AR predictions are selected, the
pasted result can be overly smooth. Second, if the textures in reference frames are
different (e.g., due to uncovering/occlusion), the pasted result might be a mixture of
textures. In this case, the result is different from the true texture that underlies the
missing data. These effects can be avoided by constraining the direction of
interpolation to be consistent locally. For this purpose, a markov random field is
applied.

4.5.1 Interpolating missing data with controlled pasting

This section formulates the ideas mentioned in mathematical terms. Because the aim
is to paste pixels from either the previous or the next motion-compensated frame, a
binary direction mask o(i) is introduced. This mask indicates for each spatial location
which of the motion-compensated reference frames is most appropriate to serve as a
reference for pasting, e.g., “0” for z,.(i,t-1) and “1” for z, (i,t+1).

At this point it is assumed that the binary blotch detection mask d(i) has
already been determined. This could be done by any of the methods in the previous
sections. The corrected frame (i), which is an estimate of the true data y(i), is given

by:

2, i t=1)  ifd()=10(0)=0
y(@)={ z,.(i,t+1)  ifd@i)=10()=0 (4.29)
z(i) otherwise
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Now, the aim is to find o(i). The reconstructed image (i) follows through this
variable. The image data model underlying the corrected image 7(i) is assumed to
be a 2D AR model of order n with coefficients a,, with [ =1, ..., n. The prediction
error e(i) is a gaussian random variable with zero mean and variance o>: ‘

3i)=a, §(i+q,)+eli) (4.30)
I=1

The binary field o(i) must be found so that, on one hand, the corrected image (i)
fits the image model in (4.30) as well as possible, i.e., so that the prediction error
variance o’ is as low as possible. On the other hand, as already explained, the
direction of interpolation must be a consistent one locally. Note that not only must
o(i) be found, but also the parameters that define the AR process, namely the AR
coefficients 4, and the prediction error variance o’.

To come to a tractable solution, the number of computations must be kept as
low as possible. Therefore o(7) is not computed for the complete frame. Instead, o(i)
is computed only for regions that contain missing data. The image regions are
selected so that, at most, 20% of the area consists of missing data. Each region is
modeled by a single set of AR model parameters and a single prediction error
variance o?.

Proceeding in a probabilistic fashion, these requirements translate to finding
the maximum of Plo(i),a,,...,a,,0%1z, (i,t-1),2(i),z, (i,t +1),d(i),0]. Here O
indicates the direction of interpolation for the pixels in the local region surrounding
o(i). With Bayes’ rule, this can be seen to be proportional to:

Plo(i), 4,621z, (i), d(i), O]« Pz, (i) lo(i),a,02,d(i)] Plo(i) 10] Pla] P[o] (4.31)

where the terms a,,a,,...,4, have been grouped together into a and z, (i,t-1),
z(i)and z, (i,t+1) have been grouped together in z, (i) for convenience.

The first term on the right hand side of (4.31), P[z, (i) lo(i),a,5%,d(i)] , indicates
the likelihood of observing the data z, (i), given the direction of interpolation, the
AR model parameters, and the blotch mask. Let AR(7,4,i) be the prediction of the
corrected image ¥ at location i. AR(Y,a,i) is determined completely by z, (i), o(i),
a, o> and d(i). The likelihood can then be defined by (4.32).

The second line in (4.32) states that at locations at which no blotches have been
detected (d(i) = 0), the likelihood of observing a specific pixel intensity in the current
frame z(i) is proportional to the squared AR prediction error weighted by the
prediction error variance. The third line in (4.32) states that, at locations where a
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pixel from z, (i,t+1)was pasted, the likelihood of that pixel intensity being
observed is proportional to the weighted squared AR prediction error of the restored
frame. The fourth line of (4.32) makes a statement somewhat similar to that in the
third line, but then for z, (i,t-1).

(z(i)- AR(7,a, 1))

Pz, (i) lo(i),a,0%,d(i)] = exp(-[(1- d(i))

2 2
(i) ofi) (Z'"f("”l)"fR@ L2V (4.32)
20,

d(i) (1— (i) (2, (it~ 1)2 /ZlR(y,a /1) D
Equation (4.32) can be simplified to:
Plz, (i) lo(i),a,6%,d(i)]

( (1-d(i)) z(i)+ d(i) (o(i) z,,. (i, + 1)+ (1- 0o(7)) zmc(i,t—l))—AR(y,a,i))ZJ
202

ocexp( (@) - AR y,a i)’ J (4.33)

oC

(z))
,/27&78 exp( 20

This means that likelihood function of the observed data P[z,(i)l...] is proportional
to probability of the prediction error e(i) of the restored frame as defined by (4.30).

The other three terms in (4.31) describe a priori knowledge related to the model
parameters. To achieve local consistency in the direction mask o(i), the following
prior is assumed:

Plo(i) 10] < exp(—z Blo(i)-o(i+q,) |) (4.34)

where f is a constant that defines the strength of the self-organization. The eight-
connected neighbors of o(i) are indicated by o(i+¢,), with k =1, ..., 8. Equation (4.34)
simply states that the direction of interpolation for a pixel is likely to be similar to
that of the majority of its neighbors.

Following [Kok98], a uniform prior is assigned to a4, and a Jeffreys’ prior
[Rua96] is assigned to the prediction error variance o2:
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Plo?]oc (4.35)
e}

€

Equation (4.31) is completely defined now. The next section describes the practical
implementation for correcting blotched image sequences on the basis of maximizing
(4.31) jointly for all o(7) in a region with missing data.

4.5.2 Practical implementation of controlled pasting

The MAP estimate for (4.31) jointly for all o(f) can be found with SA [Gem84]. SA as
described here involves two elements. The first element is a global control parameter
T called temperature, which is used to shape the probability functions in (4.31). The
second element is a mechanism for drawing random samples from conditionals,
called a Gibbs sampler. SA can be summarized by four steps:

Initialize temperature: T =T,

egin /

Sample the unknowns with the Gibbs sampler,
Repeat step 2 until convergence is obtained,

e

Lower T according to a cooling schedule and goto 2if T >T,

nal *

In [Gem84] it is proved that if T, is sufficiently large and that if a logarithmic
cooling schedule is applied, the algorithm converges to the MAP solution. The most
involved part of the SA scheme is the Gibbs sampler. The Gibbs sampler operates
iteratively by drawing random samples for the unknowns in turn, which are derived
in Appendix B:

a~ Plalo?,o(i),z, ,d]
o’ ~ Plo’la,o(i),z,,d] (4.36)
o(i) ~ Plo(i) 1a,0?,z,(i),d(i),0]

One might argue that using such heavy machinery as SA just to determine the
direction of interpolation for a set of pixels is slightly overdoing things. The goal of
this section is to simplify this machinery somewhat and to come to an efficient
implementation.

The number of computations has to be kept small for an efficient
implementation. As mentioned in the previous section, the controlled pasting
scheme is not applied to the complete image, but only to image regions containing
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missing data. The image regions are selected so that, at most, 20% of the area
consists of missing data. A single set of three AR model parameters 4, is computed
for each region. A quarter plane prediction model is used (see Figure 4.17).

Figure 4.17: Support (dots) used for AR prediction (cross).

Strictly speaking, all unknowns should be sampled in the SA scheme, and this
includes the sampling the AR coefficients a and the error variance ¢ from the
probability functions derived in Appendix B. Drawing samples from these
distributions is costly in terms of computational complexity, and it is noted here that
good results are obtained by just using the least squares estimate for the AR
coefficients instead of sampling them. (In fact, this is equivalent to sampling from
(B.10) with zero variance). Similarly, it is not necessary to sample for ¢’ to get good
results. Hence:

a=R;r, (4.37)
Here R, and r,; are the autocorrelation matrix and autocorrelation vector that are
required for solving the normal equations [Lag94], [The92]. What remains are the
samples to be drawn for o(i) from (B.16):

Plo(i)la,o;,z, (i), d(i), O]

o eXP(—%[(l— A(i)) (z(i)— AR(Y,a,1))" +
d(i) (0(d) z,,. (i, t+ 1)+ (1- 0(d)) 2,, (i, + 1) - AR(}, 4,7))* +
Zk:ﬂlo(i)— o(i+q,) 1)

(4.38)

where AR(Y,a,i) indicates the spatial AR prediction of (i) from its surroundings.
The reconstructed image ¥, required for the AR predictions is obtained via (4.29).
Drawing samples from (4.38) with the Gibbs sampler is very easy. It involves
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evaluating (4.38) at a specific site i for o(f) = 0 and for o(i) = 1, while keeping the
other values for the direction mask and the #(i) fixed. The results are assigned to
c,and c,, respectively. Next a value for o(i) (and thereby the corresponding (7)) is
chosen at random, with a probability ¢, /(c, +¢c,) that o(i) = 0 and with a probability
¢, / (¢, +¢,) that o(i) = 1. A single update of an image region consists of applying the
Gibbs sampler to each site in that region in turn, using, for instance, a checkerboard

i Data in

Initialize temperature T and

scanning pattern.

direction of interpolation o

A

Generate corrected frame j(i)

according to eq. (4.29)

A 4

Estimate AR coefficients
a according to eq. (4.37)

Sample for o(i) for
i from eq. (4.38)

A
Reduce T

¢ Data out

Figure 4.18: Overview of a practical implementation of the CP scheme.

Figure 4.18 summarizes the practical controlled pasting (CP) scheme that results. The
data put into the system consist of the current frame and the motion-compensated
previous and next frames. The blotch detection mask, which indicates for each pixel
whether it is considered to be part of a blotch, also belongs to the input data.
Initially, the direction field o(i) is assigned binary values at random, and an initial
temperature T is chosen. The main loop is as follows. First a corrected frame (i) is
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generated. Next, a set of AR coefficients a is estimated for each missing region. This
is used for predicting the corrected image intensities. Next, the direction of
interpolation is updated by sampling from (4.38) as already described. The main
loop is repeated at each temperature level T, until the solution has converged or
until a fixed number of iterations have been done. The temperature is lowered with
an exponential cooling schedule:

T, =y'T,

begin (4.39)
where y controls the rate of decrease and k indicates the k-th temperature level. The
main loop is iterated again until the final temperature has been reached.

4.5.3 Experiments with controlled pasting

The scheme in Figure 4.18 is ready to be applied now. The result it yields is the joint
distribution of the o(7) within an image region §,, as is given by (4.40). The term
defined by the summation in (4.40) is known as the potential function. Lower
potential functions indicate better solutions.

Plola,o?,z,(i),d(i)]

< exp(-1 3 [(1-d(h) (2()- ARG, 4, i) +
ics, (4.40)
4(3) () Zpy (i, + 1) + (1— 0(r)) 2, (i, £+ 1)~ ARG, a, ) +

Zk:ﬁ|0(i)—0(i+qk)|])

To get some idea about what sensible values are for T, , T, and k, two

experiments are carried out on a blotched frame from the Western test sequence. For
eqin= 1000, To,= 1.0 and y = 09 is chosen. At each
temperature level, 30 iterations are applied. For the second experiment, only one

the first experiment T,

temperature level T, T;a = 1 is assumed. Again, 30 iterations of the Gibbs

sampler are applied. Iigigure 4.19 plots the potential functions for both experiments as
a function of the number of iterations.

Figure 4.19 shows that both experiments converge. The solution found in the
full SA scheme converged to a lower potential (final potential 483) than the solution
found with the Gibbs sampler only (final potential 1307). The difference is, however,
that the first experiment required about 625 iterations to reach its optimum, whereas

the second experiment required only 25 iterations. Visually, the corrected results are
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not noticeably different. The conclusion is that it is not necessary to apply an
elaborate cooling schedule and that sufficiently good results can be obtained in
relatively few iterations. It must be emphasized that the result obtained by applying
the Gibbs sampler only (without a cooling schedule) does not in general result in a
MAP estimate. The reason why it is so successful here is probably because the
distributions from which the samples are drawn are very compact; there is not a lot
of ambiguity in drawing a sample.

The top row in Figure 4.20 shows three frames from the Western test sequence:
(motion-compensated) previous, current, and next. The second row shows three
corrections of the current frame, made with the 3DAR and the ML3Dex methods,
described in Section 4.2.3, and with the CP method described in the previous section.
The results from the CP method were obtained by using just 30 iterations of the
Gibbs sampler. _

All the corrected frames show a great improvement over the corrupted frame.
However, the 3DAR and the ML3Dex methods fail where the motion-compensated
frames are corrupted (see the highlighted boxes in the figures). These methods fail
because they always incorporate data from both motion-compensated frames,
regardless of the fact that some of those data may be corrupted. The B3DAR method,
of which the results are not shown, also fails in this particular case because a block-
based approach is used to determine the direction of interpolation, regardless on the
validity of the data within the block. Figure 4.20g-i zooms in on the boxed regions.
Clearly, the proposed CP method outperforms the other methods in terms of visual
quality.

15000 . . 15000
Potential Potential
10000 10000f
5000+ 5000
c0 200 400 600 800 10‘00 12‘00 1400 ) 5; 1‘0 15 2‘0 2‘5 30
(a) Iteration (b) Iteration

Figure 4.19: Potential function as function of iteration number: (a) for T, = 100.0,
T4a=1.0 and y=0.9, (b) for Togin = Tha = 1.
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(g) (h) (i)

(c)

(f)

Figure 4.20: (a) Motion-compensated previous frame, (b) current frame t, (c) motion-com-
pensated next frame, (d), (e), (f) restored frame t by the 3DAR, ML3Dex, and CP schemes,
respectively. Note the differences within the boxed regions. (g), (h), (i) Zoom-in to the boxed
regions of panels (d), (e), and (f), respectively.
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Figure 4.21: RMSE of corrected sequences with original, unimpaired sequences: (a) Western,
{(b) MobCal, (c) Manege, and (d) Tunnel.

Interpolator | Western Mobcal Manege Tunnel
(RMSE) (RMSE) (RMSE) (RMSE)
None 1132 814 86.7 90.5
ML3Dex 20.8 12.6 25.2 16.7
3DAR 209 12.1 248 15.9
CP 16.1 8.5 221 12.4

Table 4.4: RMSE computed between the corrected and original, unimpaired sequences.
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4.6 Results and conclusions

This section evaluates the complete chain of blotch detection, postprocessing, motion
vector repair, and interpolation as depicted in Figure 4.8a. All experiments apply the
SROD detector with postprocessing because this gives the highest ratio of correct
detections to false alarms. The motion vector repair uses the block matching
technique described in Section 4.2.2. Three interpolators are evaluated, namely, the
ML3Dex, the 3DAR, and the CP method (using 30 iterations per frame).

Figure 4.21 shows the root mean squared error (RMSE), which is defined as the
squared root out of the MSE, for the test sequences as a function of frame number.
For each sequence the SROD detector with postprocessing was set to an overall
correct detection rate of about 85%. The RMSE was computed only at locations at
which the true blotch mask or the estimated blotch mask indicate corruptions (i.e., at
locations where the original image data was altered by blotches or by interpolating
false alarms). Figure 4.21 indicates that the CP interpolation method has the best
performance. Whether the ML3Dex performs better than the 3DAR method is
difficult to determine from this figure. Table 4.4 lists RMSE computed over all
frames. It can be seen from this table that the interpolation considerably decreases
the average errors. These data confirm that the CP method gives the best
performance. Furthermore, it can be seen that the ML3Dex method, on average,
performs slightly better than the AR method.

In terms of computational load, the CP method is to be preferred to the 3D AR
method. The 3D AR method requires a matrix to be inverted, see (4.20), the size of
which increases with increasing blotch size. Therefore, the number of computations
for this method grows exponentially (order 3) [Pre92], {Str88] with increasing blotch
size. There is also a risk that the system in (4.20) is singular and that no unique
solution exists. In such cases, singular value decomposition [Pre92], [Str88] is useful.
The ML3Dex interpolator is, computationally speaking, the most efficient: it is a non-
iterative method that has to be evaluated only at the locations containing missing
data, and it can be implemented efficiently with fast sorting algorithms [Pre92].

The methods for blotch detection and correction introduced in this chapter give
significantly better results than those obtained by existing methods. However, as can
be seen from the ROCs in Figure 4.13, the ratio of false alarms to correct detection
remains relatively high for some sequences. There is room for further improvements.
Nonetheless, even though too many false alarms are generated in some cases, the
methods described in this chapter are very useful and can be applied efficiently in
practical situations. Visually disturbing artifacts introduced into a corrected
sequence due to false alarms can be removed by manual intervention. Removing
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regions of false alarms and undoing erroneous interpolations by single mouse clicks
is much more efficient than having an operator mark and correct blotches in image
sequences manually.



Chapter 5
Noise reduction by coring

5.1 Introduction

As computers with memories sufficiently large to store images and even short image
sequences became widespread some 25 years ago, many researchers began to
investigate digital algorithms for noise reduction. The well-known theories
developed by Wiener and Kalman for optimal linear filtering were applied in the
digital domain on a large scale. New types of nonlinear filters, such as order
statistics filters and switching filters, were developed. Nowadays many very
different approaches towards noise reduction are found in the literature [Abr96],
[Arc91], [Bra95], [Don95], [Don94b], [Hir89], [Kle94], [Ozk92], [Ozk 93], [Ro096]. One
such approach that has gained great popularity in recent years and that has proven
to be very successful for denoising 2D images is coring. This chapter investigates this
method for noise reduction and extends its application to image sequences.

Coring is a technique in which each frequency component of an observed
signal is adjusted according to a certain characteristic, the so-called coring function.
Originally coring was developed as a heuristic technique. It was first applied in 1951
for removing spurious oscillations in the luminance signal that were caused by a
system designed to make television pictures more crisp [Gol51]. In 1968 it was
recognized that this technique could also be used for removing imperfections such as
noise from signals [McM68]. In the 1970s and the early 1980s coring was applied in
the digital domain for noise reduction [Ade84], [Pow82], [Ros78]. The technique of
thresholding or coring received a lot of attention after Donoho and Johnstone applied

93
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it successfully in the wavelet transform domain [Don95], [Don94b] in 1994.

Section 5.2 describes techniques for optimal filtering in a minimum-mean-
squared-error (MMSE) sense. An example of such an optimal filter, the Wiener filter,
is derived. The Wiener filter is a linear filter. If the constraint of linearity is dropped,
more general nonlinear filters result. The filter characteristics of these nonlinear
filters are represented by coring functions.

The domain in which coring is applied determines the effectiveness of coring
for noise reduction. Section 5.3 describes two spatial signal transforms. One is a bi-
orthogonal wavelet transform, and the other is a directionally sensitive subband
decomposition. It is shown how to extend these 2D transforms to include the
temporal dimension. The spatio-temporal decomposition provides a good basis for
coring image sequences.

Noise-reduced signals are often stored or broadcast in a digital format. Section
5.4 investigates how noise can be reduced and compressed simultaneously within an
MPEG2 encoder by coring the DCT coefficients. Section 5.5 contains some
conclusions which are relevant to this chapter.

5.2 Noise reduction techniques
5.2.1 Optimal linear filtering in the MMSE sense

Any recorded signal is affected by noise, no matter how accurate the recording
equipment. In this chapter noise is modeled by a additive white gaussian source. Let
y(i) be an original, unimpaired frame and let the noise be 7(i). The observed frame
z(i) is given by:

z(i) = y(i) + n(i) (5.1)

A class of linear filters are the finite impulse response (FIR) filters, which are defined
by:

0= hzli+g,) (52)

Here h,, withk =1, ..., n, are the n filter coefficients and the g, define the support of
the filter. The optimal filtering coefficients in MMSE sense can be found by:

arg min E[(y(i)- #(i))*] (5.3)

yooerlly
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The filter that results is known as the Wiener filter. The Wiener filter can be
implemented efficiently via the Fourier domain [Lag94], [The92]. Let Fourier
transform of (5.1) be given by:

Z(w)=Y(w)+ N(w) (5.4)
The estimates Y(w) are given by:

5,,()

Y(w) = TS
(W) + S, (w)

Z(w) (5.5)

Here S, (w) and S (w) indicate the power spectral density (PSD) functions of the
unimpaired signal and the noise. From (5.5) it can be seen that each frequency
component of the observed data is weighted depending on the spectral power
densities of the original, unimpaired signal and noise.

5.2.2 Optimal noise reduction by nonlinear filtering: coring

The Wiener filter imposes a FIR structure onto the solution of the MMSE problem.
The optimal solution to the MMSE problem that is obtained when no constraints are
placed on the filter structure is often a nonlinear function. Let Y(w) be a general
function of the observed data Z(w). The optimal estimate Y(w), given a single
observation Z(w), is found with the conditional expectation [Leo94]:

E[(Y(w) - Y(w))*]= E[E[(Y(w) - Y(w))*| Z(w)]]

= L0V () V)1 Z(0)) PLZ(w)] dZ(a0) 56

The integrand in (5.6) is positive for all Z(w); therefore, the integral is minimized by
minimizing E[(Y(w)- Y(w))ZIZ(w)] for each w. This minimum is given by:
Y(w) = E[Y(w) 1 Z(w)] (5.7)

The general solution given by (5.7) yields the smallest possible mean square error for
estimating Y(w), given a single observation Z(w). In general, the Wiener solution
will have larger mean square errors. Further development of (5.7) gives:
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Y(w)=E[Y(@) 1 Z@)] = [Y(®) P,y 00 [Y (w) 1 Z(w)] dY () (5.8)

Here P,,;[AlB] indicates the pdf of A, given B. If the distributions of Y(w) and N(w)
are known, then P, ., [Y(w) | Z(w)] can be determined via Bayes’ rule:

PZ(w) 1Y (w) [Z(w) |Y(ZU)] Py(w)[y(w)]
PZ(w) [Z(w)]
Pyl Z(w) = Y(w)] Py, [Y(w)] (59)

[P Z(w) = Y (@)] Py [Y ()] dY ()

PY(w)IZ(w) Y(w)iZ(w)]=

In (5.7), (5.8), and (5.9), the interpretation given to w is that of frequency. Note that
this frequency need not necessarily be obtained by applying a Fourier transform to a
signal. Other transforms, such as the DCT, wavelet transforms, and subband
transforms, may well be used.

Figure 5.1a shows a typical characteristic that results from (5.8). This
characteristic is called a coring function. Sometimes this characteristic is also referred
to as Bayesian optimal coring because of the relationship in (5.9) [Sim96]. In general,
coring functions leave transform coefficients with high amplitudes unaltered, and
the coefficients with low amplitudes are shrunk towards zero. Intuitively speaking,
this is appealing. Coefficients with high amplitudes are reliable because they are
influenced relatively little by noise. These coefficients should not be altered.
Coefficients with low amplitudes carry relatively little information and are easily
influenced by noise. Therefore, these coefficients are unreliable, and their
contribution to the observed data should be reduced.

Y(w) / Y (w) Y(w) ( Y(w)

(a) (b) (©) (d)

Figure 5.1: Coring functions: (a) Bayesian optimal coring, (b) soft thresholding, (c) hard
thresholding, (d) piecewise linear coring.
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5.2.3 Heuristic coring functions

Originally, coring was developed as a heuristic technique for removing noise. Three
well-known heuristic coring functions are described here.
Soft thresholding. Soft thresholding is defined by [Don95], [Pow82]:

= 5.10
Y(w) 0 otherwise ( )

. <sgn((Z(w))(|Z(w) -T)) iflZ(w)!>T
where the sgn(Z(w)) gives the sign (or phase) of Z(w). Figure 5.1b plots this coring
function.

Natural signals tend to have weak high-frequency components. Therefore, soft
thresholding nullifies the high-frequency transform coefficients obtained from a
signal. The result is that, besides the noise being removed, the slopes of edges are
reduced and their rise time increases. For images this is perceived as blurring of
edges in images. Soft thresholding has another effect, namely, it reduces contrast
because it shrinks the magnitudes of all AC transform coefficients indiscriminately.
Hard thresholding. Hard thresholding is defined by [Don95], [Pow82]:

Y(w)=

<Z(w) if1Z(w)|>T (5.11)

0 otherwise

Figure 5.1c plots this coring function. A disadvantage of hard thresholding is that it
introduces spurious oscillations or so-called ringing patterns. These occur because
hard thresholding not only removes noise energy at selected frequencies, but also
signal energy. The removal of signal energy can be viewed as adding impulses to the
original, unimpaired signal. The amplitudes of these impulses are equal to those of
the original signal contents, but the signs are opposite. In the synthesis stage, where
the signal is transformed back from the frequency domain to the spatial domain, the
impulse responses of the synthesis filters are superimposed on the result. These
superimposed filter responses are perceived as ringing.

Piecewise linear coring. A compromise between soft thresholding and hard
thresholding is piecewise linear coring:

Z(w) if I Z(w) !> T,
Y(w)= % T, sgn(Z(w))  if T, <IZ(w)I< T, (5.12)

0 otherwise
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Figure 5.1d plots this function. Piecewise linear coring is intended to reduce the
ringing artifacts resulting from hard thresholding on one hand and to preserve low-
contrast picture detail, which is lost by soft thresholding, on the other hand [Pow82].

5.3 Coring image sequences in wavelet and subband
domains

The frequency domain implementation of the Wiener filter as described in Section
5.2.1 can be viewed as an implementation of coring: each observed frequency
component is adjusted according to a characteristic that is determined by the PSDs of
signal and noise. However, the use of the Fourier transform as a decorrelating
transform has the disadvantage of forfeiting knowledge of the spatial locations of
dominant signal components. This implies that the cored signal is not adapted to
local statistics, but depends on global statistics only. Clearly, this is suboptimal
because local statistics can be very different from the global statistics.

The objective of transforming data prior to coring is to separate the signal from
the noise as well as possible. To get optimal separation of the signal and the noise, it
is advantageous to use transforms that compact the signal energy as much as
possible [Don94b], [Nat95]. Unlike the Fourier transform, scale-space representations
[Bur83], [Mal89], [Wan95] allow local signal characteristics at different scales to be
taken into account. In the case of noise-reducing image sequences, adaptation to
local statistics is advantageous due to the nonstationary, scale-dependent nature of
natural images.

This section describes two 2D scale-space decompositions. The first is a
nondecimated wavelet transform known as the algorithm a trous [Hol89], [Vet95]. The
second is a subband decomposition based on directionally sensitive filters that is
known as the Simoncelli pyramid [Sim92]. Next, it is shown how these
decompositions can be extended to three dimensions by adding a temporal
decomposition step. The 3D decompositions provide good separation of the signal
and the noise. Which of the two scale-space-time decompositions is most suited for
noise reduction by coring is investigated.

5.3.1 Nondecimated wavelet transform
The discrete wavelet transform (DWT) is a popular tool for obtaining scale space

representations of data. A popular implementation of the DWT is the decimated
DWT in which the transformed data have the same number of coefficients as the
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input data. A problem with this transform, however, is that shifting of the input
image spatially, may lead to entirely different distributions of the signal energy over
the transform coefficients [Sim92], [Vet95]. This is caused by the critical subsampling
applied in decimated wavelet transforms. Therefore, shifting the input image can
lead to significantly different filtered results. This is undesirable because it can lead
to temporal artifacts when in the processing of image sequences.

Shift invariance is obtained by nondecimated DWTs. An algorithm that
generates nondecimated DWTs is the algorithm a trous (“algorithm with holes”)
[Hol89]. Because no subsampling is applied in this scheme, the decomposition is
significantly overcomplete. For example, a three-level decomposition of an image
with N pixels gives 10N transform coefficients.

> Hy,(w) » H,, (w) =
Hy . (w) | » H, . (w)
- Ly Ly x(w) M L, (w) | Out
—>
> Hy @) —™ H, ) [
LH,k(w) 1 > IjH,k(w) [
> Lv,k(w) iV,k(w) J

Figure 5.2: Overview of the algorithm & trous: a 2D wavelet analysis/synthesis scheme. The
total decomposition is obtained by inserting the complete filter bank into the white spot near
the bottom of the figure recursively. At each recursion level, index is incremented.

Figure 5.2 gives a schematic overview of the algorithm a trous. First the input image
is filtered twice in horizontal direction; once with the high-pass analysis filter and
once with the low-pass analysis filter. Next, the filtered data are filtered again with
the same high-pass and low-pass analysis filters, but now in a vertical direction. The
data that result from low-pass analysis in both the horizontal and vertical directions
are decomposed again with the same analysis filter banks. However, this time the
analysis filters are dilated by inserting 2*' zeros between each of the filter
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coefficients at recursion level k, with k = 1, 2, ... for the recursion levels. Initially, the
algorithm starts out with k = 0, and no zeros are inserted between the filter
coefficients. For the synthesis part of the filter bank, again 2*'zeros are inserted
between each of the coefficients of the high-pass and low-pass synthesis filters at
each recursion level k.

The algorithm a trous uses bi-orthogonal wavelet pairs. This means that
synthesis filters used in the reconstruction phase are not identical to the analysis
filters. Table 5.1 gives the filter coefficients for the analysis and synthesis filters.
These are symmetric FIR filters, therefore they are linear phase filters. This is a useful
property in image processing because nonlinear phase filters degrade edges [Ant94].

Figure 5.3 gives the transform coefficients of the 2D algorithm-a-trous image
decomposition of a test image. One half of this image consists of a frequency sweep,
the other half shows half a disc that is partially contaminated by additive white
gaussian noise. Figure 5.3 shows a number of things. First of all, the signal energy is
concentrated in different “frequency” bands, depending on the orientation and the
frequency of the local signal components. Furthermore, the spatial location of signal
components is preserved; the spatial location of various signal components are
clearly visible in Figure 5.3. This is in contrast to the Fourier transform, which
indicates the presence of specific frequencies within a signal, but their localization is
not known. Finally, the noise energy is spread out over all frequency bands and
orientations.

The filter banks used by the algorithm a trous are quite short and they are
therefore not ideal in terms of cut-off frequency and signal suppression in the stop
bands. The result is spectral leakage. Figure 5.3 shows that energy from high-
frequency signal components are visible in low-pass subbands and vice versa.

5.3.2 Simoncelli pyramid

The Simoncelli pyramid is a subband decomposition scheme based on directionally
sensitive filters [Sim92]. This means that the distribution of signal energy over
frequency bands depends on the orientation of structures within the image. Shift
invariance is accomplished by avoiding aliasing effects by ensuring that no
components with frequencies larger than 7 /2 are present before 2:1 subsampling.
The Simoncelli decomposition is significantly overcomplete; the number of
transform coefficients is much larger than the number of pixels in the original image.
For example, a four-level pyramid decomposition with four orientations (four times
four sets of high-pass coefficients and one set of low-pass coefficients) of an image
with N pixels gives about 9.3N coefficients.
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Original Ly akis

Figure 5.3: Top three rows: transform coefficients from decomposed image at levels 0, 1, and
2. Bottom right: low-pass residual. Bottom left: original input image. To improve visibility,
the contrast has been stretched for all images.
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Low-Pass |-1/82/8|6/812/8}-1/8
Analysis

Low-Pass 1/411/211/4
Synthesis

High-Pass 1/8(-2/8|1/8
Analysis

High-Pass | 1/4 | 2/4|-6/4|2/4}|1/4
Synthesis

Table 5.1: Coefficients for the bi-orthogonal wavelet pairs used by the algorithm & trous.

Figure 5.4 shows the 2D Simoncelli pyramid (de)composition scheme. The filters
L,(w), H,(w) and F (w) are the 2D low-pass, high-pass, and directional {fan) filters,
respectively. The filters L(w), Hy(w), L(w) and H,(w) are self-inverting, linear-
phase filters. Self inverting-filters have the pleasant property that the analysis and
the corresponding synthesis filters are identical.

The following constraints apply to Ly(w), Hy(w), L{w) and H,(w): the
aliasing in the low-frequency (subsampled) bands is minimized (5.13), all radial
bands have a bandwidth of one octave (5.14), and the overall system has unity
response, requiring that low and high-pass filters are power complementary (5.15):

L(w)y—>0  for w >% (5.13)
L,(w)=L,(2w) (5.14)
IL(w) P+ H,(w) P =1 (5.15)

The 2D filters can be obtained from 1D linear phase FIR filters by means of the
McCLellan transform [McC73]. Equation (5.14) can be used to obtain the 2D filter
Ly(w) from L (w). A conjugate gradient algorithm was used to find the filters H,(w)
and H,(w) under the constraints set by (5.15) [Pre92].

For practical purposes, the high-pass filters Hy(w) and H,(w) are directly
combined with the fan filters E(w), F,(w), E(w) and F,(w). Taking the 2D Fourier
transforms of H, and H,, multiplying the transform coefficients with f(6-6,) in
(5.16), and taking the inverse Fourier transforms gives the required combination. In
(5.16), 0, is the center of the orientation of the filter.
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E(w) | F(®)
F, () F,(w)
Hy(w) | | Ho(w)
F,(w) F,(w)
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1

Figure 5.4: The Simoncelli analysis/synthesis filter bank. The total decomposition is obtained
by recursively inserting the contents of the dashed box into the white spot near the bottom of
the figure.

1 vIo-6,l<Z
16
£0-6,)={ cos(416-0,)) v%slo—emus?—’é (5.16)
0 otherwise

The first filtering stage with filters Ly(w) and H(w) is omitted for the experiments
in this chapter to reduce the number of computations. This also reduces the number
of transform coefficients by 4N, where N is the number of pixels in a frame.
Figure 5.5 shows an example of a decomposition using a pyramid with three levels
and the same test image as in the previous section. The 2D filter used banks
consisting of 21x21 taps.
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Figure 5.5:Top: pyramid decom-
position of the input image showing
the output of the directionally
sensitive fan filters and the residual
low-pass image. The contrast has been
stretched to improve visibility. Note
that the local signal energy is
concentrated in one or two ori-
entations, whereas the noise energy is
spread out over all orientations.
Bottom: test image that was also used
in Figure 5.3.
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The 2D pyramid decomposition with four orientations has a number of advantages
over a 2D nondecimated DWT. First, the local separation between signal and noise is
better for the pyramid decomposition than for the DWT. At each level of the
pyramid decomposition, the noise energy is distributed over four frequency bands,
and the energy of the image structures, such as straight lines, is distributed over one
or two frequency bands. In contrast, at each decomposition level of the DWT, the
energy of the image structures is distributed over two or three frequency bands, and
the noisy energy is also distributed over three frequency bands. Exceptions are
horizontal and vertical image structures; their energy is concentrated in one
frequency band only. Improved separation between signal and noise means
removing more noise and distorting the signal less.

The second advantage of the 2D pyramid decomposition is that the three-level
pyramid decomposition gives 5.3N coefficients; this is less overcomplete than a shift
invariant nondecimated DWT that gives 10N coefficients for the same number of
levels.

Finally, for the particular implementation of the Simoncelli pyramid in this
chapter, there is much less leakage than for the algorithm a trous. This is a result of
the constraint set by (5.13) in combination with the relatively large filter banks.

5.3.3 An extension to three dimensions using wavelets

The 2D decorrelating transforms described in the previous sections spatially separate
signals from noise. It will be made apparent that this separation can be improved by
including motion-compensated temporal information. If the signals are stationary in
a temporal direction, the motion-compensated frames from ¢-#, ..., t+m should all be
identical to frame ¢, except for the noise terms. The (linear) pyramid decompositions
of these images should also be identical, again except for the noise terms. This means
that a set of transform coefficients at scale-space locations corresponding in a
temporal sense should consist of a 1D DC signal plus noise. This signal can be
separated into low-pass and a high-pass terms, e.g., by the DWT.

Note that, ideally speaking, one would use long analysis filters to obtain good
separation of the signal and noise components in the temporal decomposition step.
However, inaccuracies of the motion estimator and the fact that areas become
occluded or uncovered form a limiting factor to the length of temporal filter used.

The steps to a 3D spatial-temporal decomposition/reconstruction scheme are
summarized by Figure 5.6. Large reductions in computational effort can be obtained
for steps 4a and 5a by realizing that, for the purposes of this chapter, it is only
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necessary to reconstruct the current frame ¢. Reconstructions of decomposed motion-
estimated frames are not of interest here, and therefore they need not be computed.

Analysis:
la. Calculate the motion compensated frames from frames at
t-n, ..., t+m
2a. Calculate a 2D decomposition for each (motion compensated)
frame.

3a. Apply the DWT in the temporal direction to each set of
coefficients at tcorresponding scale-space locations.

Synthesis:
4a. Apply the inverse DWT in the temporal direction to each set
of wavelet coefficients to reconstruct the coefficients of the
spatially decomposed frame at ¢.
5a. Apply the synthesis stage of the 2D filter bank.

Video In Motion - 2D 3D Spatio-Temporal
— 3] Compensate Decomposition »  Decomposition
(Step 1a) (Step 2a) (Step 3a)
A
Frame Out 2D 3D Spatio-Temporal
< Reconstruction Reconstruction
(Step 5a) (Step 4a)

Figure 5.6: Summary of 3D signal decomposition scheme.

5.3.4 Noise reduction by coring

The structure of the proposed decomposition/reconstruction algorithm offers
several possibilities for coring transform coefficients by inserting the steps
summarized in Figure 5.7. Ths figure represents a framework for 3D scale-space
noise reduction by coring.
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The generally nonlinear nature of coring makes it difficult to determine the
combination of coring characteristics for steps 2b, 3b, and 4b required for optimal
noise reduction. Another question is whether optimal coring requires coring in all
steps 2b, 3b, and 4b. To exploit the temporal decomposition, coring is certainly
necessary in step 3b. However, this alone cannot be optimal as is explained in a
moment. The conclusion is that spatial noise reduction is required as well.

Coring the spatio-temporal transform coefficients only (step 3b) is suboptimal
because this coring operation can be viewed as a switching filter [Kle94] that turns
itself on and off automatically, depending on the accuracy of the data. Suppose
coring is applied to the spatio-temporally decomposed signal, and suppose there is
an error in the motion estimation process that results in large frame differences. In
such a case, all the coefficients resulting from the spatio-temporal decomposition
have high amplitudes. The spatio-temporal coring function tends to keep high
amplitudes intact and will not remove a lot of noise in such circumstances; the filter
is effectively switched off locally.

Coring:
2b. Core the spatial transform coefficients (except those in the
DC band) for all frames.
3b. Core the high-pass spatio-temporal transform coefficients.
4b. Core the spatial transform coefficients (except those in the
DC band) of the current frame.
I\I?deo Motion 2D Core 3D Spatio-Temporal
— p{ Compensate Decomposition Spatial [®|  Decomposition
(Step 1a) (Step 2a) Coeffs. (Step 3a)
=P (Step 2b)
v
Core
Spatio-Temporal
Coefficients
(Step 3b)
v
Noise Reduced Frame Out Reconzsguction S(;:)Ztrizl 3DRsel::f111(;‘;rTuecI:ilgsral
< (Step 5a) Coeffs. [4] (Step 4a)
(Step 4b)

Figure 5.7: Representation of the 3D scale-space system for noise reduction.
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Step 2b applies optimal coring functions that are computed by (5.8) for each subband
of a 2D decomposition. This requires estimating or assuming distributions for the
signal and noise coefficients in each subband. In step 3b, hard thresholding is used
for coring the spatio-temporal coefficients because it fits in nicely with the switching
filter idea. If a spatio-temporally decomposed coefficient is small, it is likely to be
noise and it should be removed completely. If the coefficient is large, it is likely that
the data were not stationary in a temporal sense and the coefficient should not be
altered.

The optimal coring functions in step 4b are much harder to determine because
they depend on the spatial coring applied in step 2b and on the spatio-temporal
coring applied in step 3b. The effect of the latter is particularly difficult to model due
to its dependency on the quality of motion-compensated images. Therefore, rather
arbitrarily, soft thresholding is applied in step 4b. Note that soft thresholding is
preferred over hard thresholding because the latter tends to give disturbing ringing
patterns as discussed earlier.

Threshold selection. A good value for the hard thresholding in the spatio-temporal
threshold is T,, = 30 ,,, where cip is the estimated variance of the noise in the high-
pass coefficients. The motivation for this is the following. If the noise corrupting the
image sequence is assumed to be additive, white, and gaussian, and if the motion
compensation is perfect, then the high-pass coefficients contain noise energy only. In
fact, the high-pass coefficients follow a zero-mean gaussian distribution. Setting all
observed coefficients that lie within +30, to zero effectively means that noise is
removed from 99.7% of the high-pass coefficients. It is assumed that the variance of
the high-pass coefficients is much greater than that of the noise, if the motion
compensation is not perfect. Therefore, if the temporal intensity differences are large
due to imperfect motion compensation, the signal will hardly be affected by the
temporal coring.

The threshold T, for soft thresholding the spatial decomposition coefficients in
step 4b is chosen so that the PSNR of the corrected sequence is maximal. In practical
situations, T, cannot be chosen to give the maximum PSNR due to the absence of an
unimpaired original to serve as a reference. In this case, the value for T, that gives
the best visual quality of the noise reduced sequence is selected.

Note that no threshold selection is required for the coring of spatial
decomposition coefficients in step 2b because the coring functions are completely
determined by the signal and noise distributions in each subband.
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5.3.5 Perfect reconstruction?

One of the characteristics of wavelets is that they allow for perfect reconstruction.
Hence, the algorithm a trous gives perfect reconstruction. Unfortunately, this is not
the case for the Simoncelli pyramid. The Simoncelli pyramid is a linear phase
function, self-inverting and power complementary in the ideal case. In practice, self-
inverting linear-phase FIR filters with more than two taps cannot possess both the
power-complementary property and the perfect reconstruction (PR) property [Vai92].
If the power-complementary property is retained, the absence of PR is reflected by
ringing near sharp edges in reconstructed images. The errors introduced due to the
lack of PR is represented by the difference between the original and reconstructed
images.

The following investigates how the effects of lack of PR can be minimized. Let
Z and Y denote a decomposed noisy image before and after coring, respectively. If
the (linear) reconstruction operator is denoted by R[.], the noise reduced image ¥ is
given by:

§=R[Y]=R[Z+Y - Z]= R[Z- N(Z)] = R[Z]- RIN(Z)] (5.17)

where N(Z): Z-Y can be regarded as an estimate of the noise realization that
corrupts the original data. Ideally speaking, R[Z] equals z, therefore:

j=2-R[N(Z)] (5.18)

This result shows that reconstructing an image of the noise realization and
subtracting it from the noisy input image reduces the effects of lack of PR. This is
done instead of directly reconstructing the noise-reduced image from the cored
transform coefficients. Hence, the problem of lack of PR for the original image is
shifted to lack of PR for the noise realization. This approach, however, introduces no
artifacts, such as ringing, that are associated with image structures if the noise is
independent of the image contents. Furthermore, because the noise has a lower
variance than that of the image contents, the effects of lack of PR for the recon-
structed noise signal are much less (or not) visible.

5.3.6 Experiments and results

This section evaluates the noise-reduction capabilities of the wavelet and pyramid
noise-reduction schemes described in Section 5.3.4. In both cases, the 2D
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decompositions are extended to three dimensions by the same bi-orthogonal wavelet
used by the algorithm & trous (Table 5.1). To get some indication of the gains
achieved by 3D filtering over 2D filtering, the test sequences are processed twice by
each filter: once with coring of the spatio-temporal decomposed coefficients (step 3b)
and once without. To reduce the computational complexity, no coring is applied to
the spatially decomposed motion-compensated frames, i.e., step 2b is omitted.

Sequence Noisy a trous a trous Pyramid Pyramid
Sequence | Spatial | Temporal+Spatial | Spatial | Temporal+Spatial
(dB) Coring Coring Coring Coring
{(dB) (dB) (dB) (dB)
Plane 25 33.0 3.6 4.1 3.8 4.8
Plane 100 27.0 4.8 6.1 5.7 6.7
Plane 225 23.5 6.0 8.3 7.0 8.5
MobCal 25 33.0 1.8 26 1.6 29
MobCal 100 27.0 3.4 4.7 3.5 49
MobCal 225 23.5 4.6 5.9 49 6.1

Table 5.2: PSNR of test sequences and increase in PSNR of noise reduced sequences using
the Pyramid and Wavelet decomposition schemes with and without coring of spatio-temporal
subband coefficients.

Two test sequences are evaluated in this section. The first sequence is called Plane
and shows a plane flying over a landscape. It contains fine detail, sharp edges,
uniform regions, and a lot of motion. The sequence was originally recorded with a
high-definition camera, and the images are very crisp. There are strong interlacing
effects due to motion. The second test sequence is the well-known MobCal sequence,
which does not display noticeable interlacing effects. Ideally, to avoid the effects of
interlacing, one would apply motion-compensated de-interlacing [Del94]. The noise-
reduction filters would be applied to the de-interlaced frames. However, motion-
compensated de-interlacing adds a lot of complexity to the noise-reduction system.
Therefore, the Plane sequence is processed on a field-by-field basis instead of on a
frame-by-frame basis.

White gaussian noise, with variances 25, 100, and 225, has been added to the
test sequences. Figure 5.8 shows an example of a noisy field from the Plane sequence
and the filtered result obtained by 3D pyramid with both spatio-temporal and
spatial coring. Table 5.2 lists the PSNRs of the test sequences and the increase in
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PSNR for the filtered results.

Considerable amounts of noise reduction are achieved by the filters. The best
results are obtained by coring both the spatio-temporal coefficients and the spatial
coefficients (step 3b and step 4b in Section 5.3.4), which gives an improvement
ranging from 0.5 to 2.3 decibels over spatial filtering only. The magnitude of the
improvements depend on the sequence, the amount of noise, and the spatio-
temporal decomposition used. The performance of the pyramid filter is similar or
better than that of the shift invariant wavelet filter in terms of PSNR in all cases.
Visually speaking, the results given by the pyramid filter are better than those of the
wavelet filter; the results are a bit sharper, and artifacts that result from filtering in

the form of “low-frequency spatial patterns” are less visible.

Figure 5.8: Top: noisy field from Plane sequence with noise variance 225 (PSNR = 23.5 dB).

Bottom: filtered result from the 3D pyramid filter. (Sequence available by courtesy of the
BBC).
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5.4 MPEG2 for noise reduction

Consider a broadcasting environment in which noisy film and video sequences are
digitally broadcast with an MPEG2 encoding system, as illustrated by Figure 5.9. It is
assumed that no channel errors are introduced. MPEG2 encoding systems try to
minimize the coding errors between input z(i) and output 2(i). However, in the case
of noisy image sequences, what they should be doing is minimizing the errors
between the original, noise-free image y(i) and the output 2(f). When doing so, the
MPEG2 encoding systems can be considered devices for simultaneous noise
reduction and image compression.

. Quantized
Noise DCT

y(@) z(d) MPEG2 Channel MPEG?2 Z(i)

Encode Decode >

0  DCT

Figure 5.9: (left) MPEG2 encoding of noisy image sequences.
Figure 5.10: (right) Example of quantization of AC DCT
coefficients with a deadzone around zero.

Let £(i) denote the error between y(i) and Z(i). The aim of this section is to adjust an
MPEG2 encoding system to minimize the error variance. The error variance can be
expressed in terms of DCT coefficients:

El&*(i)] = El(y(i) - 2G))’] = ) E(Y, (')~ Z("))’] (5.19)

Here Y,(i') and Zk(i'), with k = 1, ..., 64, represent the 64 DCT coefficients of each
8x8 data block within a frame. The column, row, and frame number of a data block is
indicated by i'.

Two basic approaches can be followed to minimize (5.19). In theory, these
approaches give the same results. The first approach directly minimizes
E[(y(i)- 2(9))*]. As is shown in Appendix C, this approach is equivalent to
determining optimal quantizers for the DCT coefficients of a noisy signal. The
second approach is based on the fact that the problem of minimizing the overall
error variance can be split into two parts for a communication system in which a
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signal is distorted prior to (lossy) channel encoding [Wol70]. The first part consists of
computing the conditional expectation for the true signal given the observed noisy
data. The second part consists of designing an encoder that is optimal for the
original, noise-free signal.

In the particular case of Figure 5.9, the advantage of the second app roach is
that, in principle, the encoder is already optimized for encoding noise-free signals.
Therefore, it is not necessary to design new quantization tables as is required for the
first approach. All that needs to be done for the second approach is to core the DCT
coefficients following (5.8) prior to quantization, i.e., by replacing the observed DCT
coefficients with the conditional expectation for the true DCT coefficients. This
second approach is investigated further in this section.

In fact, MPEG2 encoders implicitly core noisy DCT coefficients to some extent
by incorporating a so-called dead zone in the quantizers for the coefficients of the non-
intra-coded frames (Figure 5.10) [Mit96]. As a result of the dead zone, DCT
coefficients with small magnitudes are mapped to zero. However, note that the use
of dead zones is suboptimal for noise reduction because they are not applied to all
frames and because they do not address the noise on DCT coefficients with larger
amplitudes.

I Frame DCT Lookup Tables with Encode
i Coring Functions » as usual

Figure 5.11: Coring of the DCT coefficients of I frames in an MPEG?2 encoder.

5.4.1 CoringI, P, and B frames

I-frames. The MPEG2 system defines three frame types; namely, I frames and
predicted P and B frames. The I frames are encoded by dividing the frames in 8x8
blocks, applying the DCT to the blocks and quantizing the DCT coefficients (Chapter
2). Two basic approaches can be followed towards coring the DCT coefficients of 1
frames. The first is to estimate the pdf for each DCT coefficient from the observed
data for each frame, compute the conditional expectation for each coefficient
according to (5.8), and replace the observed coefficients by these values. Computing
optimal coring functions for each I frame of an image sequence is expensive in terms
of computational complexity, and therefore it is expensive to implement in real-time
hardware.



114 CHAPTER 5

The second approach does not optimize the coring functions for each frame.
Instead, fixed sets of coring functions are computed off-line and stored in the
encoder as lookup tables (Figure 5.11). The coring functions are computed from a
large set of images, so that on average the encoder gives the best results that can
possibly be achieved under the condition of static lookup tables. This approach can
be implemented in an MPEG2 encoder easily. Section 5.4.2 gives the details of this
second approach.

B and P frames. The B and P frames are predicted from frames coded previously.
The frame differences between the predicted and current frames are encoded like I
frames, i.e., by using DCTs and quantization. Finding the ideal coring coefficients is
more difficult now because the signal and noise distributions of the frame
differences are not known. These depend on the nonlinear coring and quantization
of the frames coded earlier and on the quality of the motion estimation and
compensation.

Instead of coring the DCTs of the frame differences, as illustrated in
Figure 5.12a, an alterngive strategy is preferred in which the DCT and coring
operation are performed prior to subtracting the current and predicted frames from
each other. Figure 5.12b illustrates this alternative strategy. Note that the coring
functions in Figure 5.12a,b are different from each other and that also the results
given by the two approaches generally speaking are not identical.

Frame in DCT Lookup Tables with Encode

Coring Functions » as usual

Predicted
Frame

(a)
Frame in DCT Lookup Tables with Encode
> Coring Functions as usual
Predicted
Frame
(b)

Figure 5.12: (a) Coring function applied to DCT of frame differences, (b) illustration of how,
by sliding the DCT and the coring function in front of the subtraction, B and P frames can be
cored as the I frames are. Note that the predicted frame is extracted from a coded frame that
has already been noise reduced and need not be cored again.
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Two points about the scheme in Figure 5.12b are noteworthy. First, the predicted
frames have already been coded and hence they have already been noise reduced
earlier on. Therefore it is not necessary to core the predicted frames again. Second,
the optimal coring characteristics are identical to those computed before for the I
frames. This means that only one set of lookup tables is required for the I, P and B
frames.

5.4.2 Determining the DCT coring functions

This sections deals with computing the coring functions for the I, P, and B frames. As
indicated in the previous section, the coring functions are computed from a large set
of images, so that the encoder gives the best results that can be achieved on average
with static lookup tables. Computing the coring functions consists of two steps. First,
the distributions of the signal and the noise have to be determined. Next, the coring
functions can be computed from (5.8) and (5.9).

The noise corrupting the image sequences is assumed to be additive, white, and
gaussian with known variance. The distributions of each of the 63 AC DCT
coefficients are sometimes modeled by laplacian distributions [Jos95], [Rei83]. In
practice, the generalized gaussian is more accurate [Bar98], [Sha95]. The DC
coefficients are not cored because their conditional expectation depends too much on
the specific sequence. The generalized gaussian distribution is given by:

P(x)=aexp(-blxl") (5.20)
with:

b _1T(3/¢)
“Zarazg M "TeNTA/o (5:21)

where I'(.) is the gamma function and o is the standard deviation of the distribution.
It can be seen from (5.20) and (5.21) that the generalized gaussian is completely
determined by the shape parameter ¢ and the noise variance o*. The well-known
gaussian distribution is obtained by letting ¢ = 2; the laplacian distribution is
obtained by letting ¢ = 1.

An efficient method for estimating the shape parameter ¢ from a set of data
based on second-order statistics is given in [Sha95]. Let Y, denote DCT coefficients
with coefficient number k = 1, ..., 64. The mean and the variance u, and o; of a set
of observed DCT coefficients with coefficient number k can be estimated directly
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from the observed data. Let p, be:

2
O

=y ] (5.22)

P

The shape parameter c, for the distribution of DCT coefficient k is found by solving:

I(1/¢)I@/¢) _
_——_—_FZ(Z/C,() =py (5.23)

Equation (5.23) can be solved efficiently with a lookup table that is generated by
letting ¢, vary over the range of values that could possibly be expected for this
parameter in small steps. Let ¢, vary from 0.1 to 2.5 with a step size of, say, 0.01 for
these steps. Then the generalized gaussian approximations to the distributions of the
observed DCT coefficients are readily obtained from the ¢, and the o} with (5.21)
and (5.20).

ahape parameter standard deviation

DCT Coefticient DCT Coefficient

Figure 5.13: (@) Shape parameters and (b) standard deviations estimated for the DCT coeffi-
cient.

Figure 5.13 shows the ¢, and the o, that are estimated from the DCT coefficients
obtained from a set of 18 different images. The scanning order in a 2D block of DCTs
is taken from left to right (increasing horizontal frequency) and from top to bottom



NOISE REDUCTION BY CORING 117

(increasing vertical frequency); see Figure 5.14. Except for the first DCT coefficient,
the DC component, it can be seen that ¢, is a bit smaller than 0.5. The standard
deviation of the coefficients decreases with increasing frequency, which is consistent
with the well-known fact that natural images contain less energy in high frequencies
than in low frequencies.

150 P
2|34 |5/6|7]8 e
1011]12(13|14|15]| 16 b Cored DCT //
17 {18 |19 |20 |21 (22|23 |24 50 _;/
2526|2728 |29|30|31]32 o o v
33134353637 383940
4142 (43 |44 | 45|46 |47 | 48 s /*/“
49 |50 | 51 |52 |53 |54 55|56 oo //
57 |58 | 59 | 60 | 61 | 62 | 63 | 64 -
45?5/ -100 -50 [ 50 100 150
Observed DCT value

Figure 5.14: (left) Numbering of DCT coefficients in an 8x8 block.
Figure 5.15: (right) Coring function for DCT coefficient 8, computed for noise with variance
100 corrupting the image.

DCT
DCT (

Figure 5.16: Plot of part of the coring functions for all 64 DCT coefficients, computed for
noise with variance 100 corrupting the image.
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Figure 5.15 shows the coring function computed for DCT coefficient number 8 for
noise with variance 100 corrupting the image. In this figure, small values are cored
towards zero; larger values are altered less. This confirms the intuitive assumption
that data with small amplitudes are noisy and unreliable, and they should therefore
be discarded. Figure 5.16 plots the coring functions for all 64 DCT coefficients, again
with noise with variance 100 corrupting the image. As already mentioned, the DC
terms are not cored; hence the 45 degree line for this DCT coefficient. It can be seen
that coefficients representing higher spatial frequencies are cored towards zero more
strongly than coefficients representing lower spatial frequencies. This, again,
matches well with the fact that natural images contain less energy in high frequen-
cies than in low frequencies.

The coring functions depend on the noise variance. A number of lookup tables
are computed for different noise variances in a practical situation. The MPEG2
encoder selects the lookup table that corresponds best with the actual noise variance
in an image sequence.

5.4.3 Experiments and results

For the experiments, the standard test model 5 (TM5) MPEG2 encoder [IEC93] was
adjusted so that the DCT coefficients are cored using lookup tables, as described in
the previous sections. This section describes two sets of experiments. The same test
sequences are used in Section 5.3.6.

The first set of experiments evaluates the performance of the adjusted TM5
encoder in terms of the PSNR when applied to test sequences with varying amount
of noise. Figure 5.17a shows the scheme used for measuring the PSNR of the
corrected sequences. Figure 5.17b,c plots the PSNRs for bitrates ranging from 2
Mbit/s to 15 Mbit/s. The results show that the PSNRs of the filtered and coded
sequences are considerably higher at the higher bitrates than those of the noisy input
sequences.

The PSNRs of the corrected sequences increase more rapidly with increasing
bitrate at low bitrates than at high bitrates. Specifically, the curves for test sequence
with noise variance 100 and 225 are quite flat over the range from 4 Mbit/s to 15
Mbit/s. This contrasts to the PSNRs for noise free sequences, which increase steadily
with increasing bitrate. This implies that there is an “early” saturation point for the
bitrate in noisy image sequences. Encoding with bitrates above the saturation point
gives only marginal improvements in image quality.

By comparing the results in Figure 5.17, at for instance 8 Mbit/s, to those in
Table 5.2, it can be seen that the 3D pyramid and wavelet filters autperform the
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adjusted MPEG2 encoder in terms of PSNR. However, the adjusted MPEG2 encoder
is basically a 2D filter. It can be seen that its performance is similar to that of the 2D
pyramid and 2D wavelet filters.

The second set of experiments investigates whether the adjusted TM5 encoder
performs better than the standard encoder in combination with prefiltering, e.g.,
with the 3D pyramid noise-reduction system. It could be imagined that even though
the 3D pyramid filter and the 3D wavelet filter on their own outperform the adjusted
MPEG2 encoder, their superior quality may be lost due to quantization errors
introduced by the standard encoder. Another question is how the performance of the
adjusted MPEG2 encoder compares to the standard TM5 MPEG2 encoder with a
dead zone when it is applied to a noisy sequence.

Noise Bitrate
Video in }\ Adjusted MPEG2 | PSNR Out
> Encoder 7
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Figure 5.17: (a) Scheme for measuring PSNRs of coded noisy test sequences. Results for (b)
Plane and (c) MobCal sequences with the adjusted MPEG2 encoder and coring. The noise
variance in the noisy sequences were 25, 100, and 225, which correspond to PSNRs of 33.0,
27.0, and 23.5 dB, respectively.
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These questions are investigated, using the Plane and MobCal sequences to which a
moderate amount of noise (variance 100) was added. Figure 5.18 plots the PSNRs as
a function of the bitrate of the noisy test sequences after encoding by the standard
TM5 with and without prefiltering by the 3D pyramid filter. The PSNRs that result
from applying the adjusted TM5 coder to the noisy sequences are also shown.
Finally, the PSNRs of the coded original, noise-free sequences are plotted as a
reference of what can maximally be obtained.

PSNR (dB) PSNR (dB)
42— - . Bria s original
. o——a  Pyramid
Pl ¢—o Adj. MPEG
O lo—s  Adi. MPEG 1 3} |— MPEG
— MPEG
a8t
b
6k
34l 2

—
52 /0/9_—4———0—‘9———”*
304 4

30# 4
- | 28 ,—\\j

2 3 4 5 6 7 8 15 2 3 4 5 6 7 8 15

Bitrate (Mbit/s) Bitrate (Mbit/s)

Figure 5.18: (@) PSNR vs. bitrate for the original Plane sequence, noisy Plane sequence
(noise variance 100), and noise-reduced Plane sequence (filtered by the 3D pyramid filter)
encoded by the standard TM5 MPEG2 encoder. Also shown is the PSNR of the noisy Plane
sequence that was encoded and noise reduced simultaneously by the adjusted MPEG2
encoder with coring. (b) As before, but now for the MobCal sequence.

Figure 5.18 indicates that prefiltering sequences with a moderate amount of noise
prior to encoding with the standard TM5 encoder gives a PSNR that is maximally
one decibel higher than when simultaneous filtering and encoding is done by the
adjusted TM5 MPEG2 encoder. It can also be seen from Figure 5.18 that the standard
TMS5 encoder (without prefiltering) also functions as a noise reducer at low bitrates.
At 3 Mbit/s, the PSNR of the coded noisy Plane sequence is about 3.5 dB higher than
that of the noisy original. This number is 1.5 dB for the MobCal sequence. The
PSNRs decrease for these sequences at higher bitrates. This behavior is not
surprising. The encoder applies a coarse quantization at low bitrates and much noise
energy is removed by the dead zone. The encoder is capable of encoding the signal
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and the noise more accurately at higher bitrates, so that the noise part of the signal is
preserved better. In the limiting case, at very high bitrates, the noisy sequence is
encoded without errors, and the PSNR equals 23.5 dB.

5.5 Conclusions

This chapter shows that coring is a powerful technique for noise reduction. A 2D
shift invariant wavelet filter and the 2D Simoncelli pyramid were introduced. These
filters were extended in the temporal dimension so that temporal information, as
well as spatial information, in image sequences could taken into account in the noise
reduction process. The spatio-temporal decomposition allows temporal filtering of
the DC bands of the 2D Simoncelli pyramid and the 2D DWT transforms without
introducing severe blur or other artifacts. Two-dimensional scale-space noise
reduction filters have no way of filtering the DC bands by means of coring,.

The noise reduction capabilities of the Simoncelli pyramid outperforms those
of the shift invariant DWT due to the minimal aliasing and its enhanced directional
sensitivity. However, the difference in performance in terms of increase in PSNR can
be considered marginal if one takes into account the increase in complexity for the
pyramid filter compared to the wavelet filter.

Even though the 3D pyramid filter as presented in this chapter is a complex
and expensive filter to implement, it is nevertheless a useful one. Visually speaking,
the results obtained by the pyramid filter are better than those obtained from the
shift invariant wavelet filter. It can be applied when good quality noise reduction is
absolutely necessary, i.e., when processing time is less important than image quality.
It can also be used as a benchmark for the results obtained by other filters.

This chapter also shows that the MPEG2 scheme can easily be adapted to
perform simultaneous noise reduction and compression. The extra costs of the
adapted scheme, compared to a standard MPEG2 encoder, consist of implementing
lookup tables and an extra DCT operation for the B and P frames. This is a cheaper
solution than the pyramid filter or the wavelet filter and it gives reasonable
performance. In fact, the experiments indicate that, if a noisy image sequence is to be
encoded, the difference between encoding the prefiltered sequence and encoding the
noisy sequence with the adapted encoder is less than one decibel over a large range
of bitrates. In this case, whether or not prefiltering is a cost-effective solution
depends on the required quality of service.
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Chapter 6

Evaluation of restored
image sequences

6.1 Introduction

Chapter 1.1 explains the motivation for restoration of archived film and video. It is
stated there that image restoration improves the perceived (subjective) quality of
film and video sequences and that restoration also leads to more efficient
compression. This chapter experimentally verifies the validity of these two
assertions. Section 6.2 describes the methodology that is used in two sets of
experiments for validating the assumptions mentioned. The first set of experiments
is aimed at verifying that image restoration indeed improves the perceived quality
of impaired image sequences. These experiments are done with test panels. The
second set of experiments is aimed at verifying that image restoration indeed
improves the coding efficiency. This can be done with test panels, or, as is done in
this chapter, by numerical evaluation. Section 6.3 describes and discusses the
experimental results.

6.2 Assesment of restored image sequences
6.2.1 Influence of image restoration on the perceived image quality
An important reason for image restoration is that it improves the image quality as

perceived by humans. Whether the underlying assumption is indeed true can only
be determined by having human observers compare restored sequences to the

123
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corresponding impaired sequences. So far, automatic validation (without human
beings) is not possible: there are no mathematical models that can adequately model
human perception of images in all their aspects.

The International Telecommunication Union (ITU) has standardized a number of
methods for evaluating image sequences by test panels. For instance, the double-
stimulus continuous quality-scale (DSCQS) method is well-known [ITU95]. This
method measures the relative difference in quality of an impaired sequence given
the original, unimpaired image as a reference. The DSCQS method is useful for
comparing the performance of various restoration systems.

At this point, the aim is not to compare the performance of different restoration
systems. Here, the central question is whether the image restoration algorithms
presented in previous chapters improve the perceived image quality. A method
simpler than the DSCQS method can be used for finding an answer to this question.
The method used here is the two alternatives forced choice 2AFC) method [Al183]. The
2AFC method is often used in television broadcasting environments to determine at
what point a transmission system introduces visible distortions in the transmitted
images or image sequences. In the context of image restoration, this method is not
used to determine whether there are visible differences between two sequences, but
to determine which of the two sequences have the highest perceived quality.

A B A B

Sequence

Grey

Decide

Time
|-

>

Figure 6.1: Overview of 2AFC testing.

In the 2AFC method, the members of a test panel are shown pairs of image
sequences A and B twice, as illustrated by Figure 6.1. One of the sequences is the
impaired sequence, the other is the restored sequence. Which is which is random.
The duration of each sequence is approximately 10 seconds. Between showing
sequences A and B, the screen is blanked to a mid-gray value for 2 seconds. After a
pair of image sequences has been viewed for the first time, the screen is blanked to a
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mid-gray value for 5 seconds. Then, sequences A and B are shown again. If was the
impaired sequence in the first viewing, then it is also the impaired sequence in the
second viewing. The same is true for B. After viewing the sequences the second time,
the assessors must indicate which sequence has the better visual quality.

For all experiments in this chapter, differences between the impaired and the
corrected sequences are clearly visible. The outcome of 2AFC testing is determined
by one of two cases. In the first case, a majority of the votes is given to either A or B.
This indicates a general consensus on whether the perceived quality of the corrected
sequence is better than that of the impaired sequence. In the second case, about 50%
of the votes is given to each of the sequences, and there is no general consensus on
which sequence (impaired or restored) is better. The second case can occur, for
example, in the case of noise reduction. It is well known that some people prefer a
noisy image over a slightly blurred noise-free image. The noise gives an illusion of
increased sharpness. Other people prefer a noise-reduced image, even if it is slightly
blurred.

6.2.2 Influence of image restoration on the coding efficiency

This section describes experiments that can be carried out to verify that image
restoration indeed does lead to more efficient image compression. Before it can be
determined how much more efficient one image sequence is compressed with
respect to another, a definition for the increase in coding efficiency is required.

Let AQ denote the increase in coding efficiency between a corrected image
sequence and an impaired image sequence. AQ can be defined in two ways. The
first definition relates AQ to the distortion introduced by a codec set to a fixed
bitrate. The second definition relates AQ to the bandwidth required by a codec to
compress a sequence given the allowable distortion.

AQ in terms of coding accuracy. Figure 6.2 proposes an experimental setup that can
be used for measuring the increase in coding efficiency in terms of how accurately
the corrected and the impaired image sequence are coded with respect to each other.

Let #,(i) and y.(i) be restored image sequences before and after coding,
respectively. Similarly, let z,(i) and z (i) be impaired image sequences before and
after coding, respectively. In Figure 6.2, the restored image sequence is encoded at a
constant bitrate. The PSNR computed between the codec input and output is given
by PSNR[Y,,7.]. The impaired image sequence is encoded at the same bitrate. In this
case, the PSNR computed between codec input and decoded output is given by
PSNR([z,,z.]. AQ is now defined by:
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AQ = PSNRI,,7.]- PSNR[z,,z.] =

2 2
=10log 224 ~10log 224 (6.1)

N Z0n)-3.(0 IONCIEERADN
2z (0) =z (D)’

> @o0) - 7.

=10log

From (6.1) it can be seen that AQ is a function of the ratio between the energy of the
coding errors in the impaired image sequence to the energy of the coding errors in
the corrected image sequence. If AQ > 0, the corrected sequence is coded with fewer
errors than the impaired sequence. If AQ <0, the corrected sequence is more difficult
to code than the impaired sequence and the compression errors are larger.

It is emphasized here that the coding errors in 7,(i) and z (i) are computed
between the input and output of the codec. The errors are not computed with
respect to a ground truth, i.e., an unimpaired original. In practice, no unimpaired
references exist for archived film and video material.

Yo | MPEG MPEG | Y- PSNR
Restored >
Encode Decode
Sequence C
AQ
Image p» Delay
Restoration
T % | MPEG MPEG | * | PSNR
. »  Encode Decode
Impaired C
Sequence
Delay

Figure 6.2: Method for measuring the difference in coding efficiency on the basis of PSNR.

AQ in terms of bandwidth. The definition of AQ in terms of bandwidth is given by

the difference in bitrate for the coded corrected image sequence and for the coded
impaired image sequence:
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AQ = Bitrate[impaired]| — Bitrate[corrected) (6.2)

Here, if AQ> 0, the corrected sequence requires fewer bits for coding than the
impaired sequence. If AQ < 0, the corrected sequence is more difficult to code than
the impaired sequence and it requires more bits. Obviously, AQ can only be given a
meaningful interpretation if it is measured on condition that the bitrates selected for
coding the impaired and corrected sequences are related in a meaningful way. The
constraint set here for measuring (6.2) requires that the codec introduces the same
amount of distortion to the impaired as to the corrected sequence.

[ Image \
Restoration
Impaired \ j Corrected

Sequence MPEG 2 MPEG 2 Sequence
CODEC CODEC «
Coder set to Coder set to bitrate
fixed bitrate selected by assessor

Figure 6.3: Setup for measuring the increase in coding efficiency using human assessors.

This raises the question of how the distortion introduced by a codec should be
measured. Ideally, the measured distortion is related to the perceived image quality.
This requires involving human observers to determine (6.2) with, for instance, the
setup proposed in Figure 6.3. In this setup, the impaired image sequence is coded by
an MPEG2 codec set to a fixed bitrate. The impaired sequence is restored and coded
by an MPEG2 codec of which the bitrate is controlled by an assessor. The codecs are
synchronized to compensate for the delay introduced by the restoration system.
Their outputs are displayed on two calibrated monitors. During the experiment, the
task of the assessor is to set the bitrate of the codec he/she controls to a level such
that the perceived quality of the coded corrected sequence is equal to that of the
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coded impaired sequence. The difference in bitrate of the two codecs gives the
increase (or decrease) in coding efficiency given by the image restoration process.

Note that the type of artifacts in the coded impaired and corrected sequences
can be different at the bitrates at which the assessor rates the perceived image
quality the same. For instance, consider a noisy image sequence coded at a bitrate at
which the codec does not introduce visible distortions. The corrected, noise free
sequence can be coded at a lower bitrate. At a certain point this bitrate is so low that
blocking artifacts start to appear. It is around this point that the assessor will begin
to prefer the coded noisy sequence over the coded corrected sequence.

The method for measuring the improvement in coding efficiency with human
assessors requires a fair amount of calibrated and synchronized equipment. An
alternative method is to measure the distortion with mathematical measures based
on the MSE. Obviously, the results will be different from those obtained by human
assessors. In this case, a scheme similar to that in Figure 6.2 is used for measuring
AQ . First, the corrected sequence is coded at a fixed bitrate. Next, the bitrate for
coding the impaired sequence is searched so that PSNR[},,7.] equals PSNR|z,,z.],
ie., so the same amount of compression errors have been introduced into the
corrected and impaired sequence. Again, as in (6.2), AQ is given by the difference in
bitrates.

As a final remark, it should be mentioned that AQ, measured either in dB or in
Mbit/s, can only be meaningful if the restored image sequence consists of sensible
data that represent the true image data in a reasonable manner. For example, it is
assumed that the restored sequence is not a collection of black frames if the original
data is clearly not a collection black frames, but, for instance, a recording of a zoo.

6.3 Experiments and results

This section experimentally verifies that the algorithms proposed in this book indeed
improve the perceived image quality by presenting the impaired and restored image
sequences to a test panel. The influence of image restoration on the perceived image
quality is assessed in two circumstances. In the first circumstance, pairs of impaired
and corrected sequences are used. In the second circumstance, pairs of MPEG2
encoded impaired and corrected sequences are used. The latter circumstance verifies
the assumption that image restoration improves the perceived image quality also
holds in a digital broadcasting environment.

This section also verifies that the algorithms developed in this book improve
the coding efficiency. The increase in coding efficiency, AQ, is determined by
numerical evaluation, both in terms of PSNR and in terms Mbit/s.
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Sequence Amount of Number of Visibility of
Flicker Blotches Noise
Plane High High High
(100 Frames)
Chaplin Medium High Medium
(112 Frames)
Charlie High High Low
(48 Frames)
Mine Medium Very Low High
(404 Frames)
V] Day None Low/Medium Low
(49 Frames)
Soldier Medium Very Low Low
(227 Frames)

129

Table 6.1: List of impaired sequences used for subjective and objective evaluations with an
indication of the severity of the various degradations. Note that the Plane sequence contains
artificial degradations.

Sequence Flicker Blotch Noise
Correction Correction Reduction
Plane X X
Chaplin X X X
Charlie X X
Mine X X
V] Day X
Soldier X

Table 6.2: Corrections applied to the test sequences.

6.3.1 Test sequences

To get an impression of the effects of removing different combinations of artifacts on
the perceived image quality and on the increase in coding efficiency, test sequences
were selected with various combinations of impairments. The test sequences consist
of one artificially degraded sequence and five naturally degraded sequences.
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Table 6.1 lists the sequences and gives an indication of the severity of the
degradations that impair them. The test sequences are also used in Chapters 3 to 5

and have already been described. An exception is the Chaplin sequence, which has

not been used before for any experiment. Three frames from this sequence are

shown in Chapter 1, Figure 1.1. Table 6.2 lists the artifacts that were corrected in
each of the test sequences by the restoration system depicted in Figure 1.2 with the

restoration methods developed in this book. The various control parameters of the

restoration algorithms were set to values that give good visual results.

6.3.2 Experiments on image restoration and perceived quality

The subjective experiments were done in a dimly lit room. The viewing distance was
six times the height of the display used. The test panel consisted of 25 people, all of
whom had good vision with a visus of 0.8 or better. Before the actual experiments,
the assessors were trained for their task by being shown some examples of
sequences with and without flicker, blotches, and noise. Each assessor assessed all
the test sequences once. They were asked the following question: “Which sequence
do you find more pleasing to view, A or B?”.

As already mentioned, each test sequence should be approximately 10 seconds
in duration. Because most of the test sequences are shorter than 10 seconds, they
were repeated (looped) a number times so that the duration of the looped sequence
was approximately 10 seconds. Only the first 10 seconds of the 16-second Mine
sequence were shown.

Table 6.3 gives the results for the first set of experiments in which the assessors
indicated which sequence they prefer: the impaired image sequence or the restored
image sequence. This table shows that, for all test sequences, the majority of the
votes is given to restored image sequences. This proves that the image restoration
algorithms presented in this book increase the perceived image quality of impaired
image sequences.

The restored Mine sequence received relatively fewer votes than the other
restored sequences. When questioned about this, some of the test panel members
indicated they considered the corrected Mine sequence to be overly smooth, and,
therefore, they preferred the flickering, noisy original. The smoothing was caused by
the noise reduction algorithm that was set to achieve a great amount of noise
reduction. It is a well-known fact that there is a trade-off between noise reduction
and introducing blur. Had the noise reducer been set for less noise reduction, less
smoothing would have been introduced, and the assessors in question might well
have preferred the corrected sequence.
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Table 6.4 gives the results for the second set of experiments in which the
assessors indicate which sequence they prefer: the MPEG2 encoded impaired image
sequence or the MPEG2 encoded restored image sequence. The standard TM5
MPEG2 encoder was used for all experiments [IEC93]. The coder was set to the main
profile and the GOP size was 12. This table shows that for all test sequences, the
majority of the votes is given to MPEG2 encoded restored image sequences. This
proves that the increase in perceived quality, obtained from the image restoration
algorithms presented in this book, are not lost due to coding artifacts introduced by
an MPEG2 encoder at 4 Mbit/s. Therefore, image restoration is beneficial in digital
broadcasting environments in which films are broadcast in compressed format.

Sequence Votes for Votes for
Corrected Impaired
Sequence (in { Sequence (in

Percentages) | percentages)

Plane 84 16
Chaplin 92 8
Charlie 84 16
Mine 72 28
V] Day 88 12
Soldier 92 8

Table 6.3: Results of subjective evaluations for the first set of experiments in which impaired
and restored sequences are compared.

Sequence Votes for Votes for
Corrected Impaired
Sequence (in | Sequence (in

Percentages) | percentages)

Plane 88 12
Chaplin 100 0
Charlie 88 12

Mine 68 32
V] Day 80 20
Soldier 96 4

Table 6.4: Results of subjective evaluations for the second set of experiments in which
impaired and restored sequences are compared after MPEG compression at 4 Mbit/s
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Figure 6.4: AQ measured in dB versus bitrate.

Sequence | PSNRof j(i) | Bitrate for z(i) AQ Savings in bandwith
at 4Mbit/s with same PSNR | (in Mbit/s) by restoration
(in dB) (in Mbit/s) (in %)
Plane 36.4 15.5 11.5 742
Chaplin 39.1 19.9 15.9 79.9
Charlie 40.1 9.0 5.0 55.6
Mine 44.3 38 34.0 89.5
V] Day 34.0 4.2 02 4.8
Soldier 36.8 4.8 0.8 16.7

Table 6.5: Results of numerical evaluations of AQ measured in Mbit/s.

6.3.3 Experiments on image restoration and coding efficiency

This section presents the results of two sets of numerical evaluations. The first set

applies the scheme shown in Figure 6.2 to measure the increase coding efficiency in
dB. AQ was evaluated for bitrates ranging from 2 Mbit/s to 8 Mbit/s. For all
experiments the standard TM5 MPEG2 encoder was used. The coder was set to the
main profile and the GOP size was 12.
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Figure 6.4 plots the results for this first set of experiments. The curves indicate
that image restoration leads to more efficient compression over the range of
investigated bitrates; at identical bitrates, the restored image sequences can be
compressed with fewer errors than the impaired sequences. This proves that image
restoration gives more efficient compression for the artifacts considered.

The gains are smallest for the V] Day sequence. Only the blotches were
restored in this sequence. Because the blotches cover only a small percentage of the
total image area in this sequence, removing them has little influence on the overall
coding efficiency. The gains for the Soldier sequence, which was corrected for
intensity flicker, are somewhat larger. The intensity flicker is a global effect and has
a larger influence on the coding efficiency. The Charlie sequence contained much
flicker and many blotches. Restoring this sequence gives large gains. The restored
Plane, Chaplin, and Mine sequences give the largest increases in coding efficiency.
Unlike the other test sequences, these sequences were noise reduced. Noise is
difficult to code and removing it simplifies the coder’s task (unless, of course, the
adjusted coder described in Chapter 5 is used). AQis largest for the Mine sequence.
As mentioned in the previous section, the corrected Mine sequence is quite smooth.
Hence it can be coded with many fewer errors than the impaired original.

The second set of experiments in this section measures AQ in terms of
bandwidth, i.e., in Mbit/s. At the time the experiments were carried out, the
equipment for measuring AQ with human assessors, as described in Section 6.2.2,
was not available. The numerical method, also described in Section 6.2.2, was used.

The experiment was set up as follows. First, the PSNR ratios were computed
over the encoded/decoded restored image sequences coded at 4 Mbit/s (broadcast
quality). Next, the impaired sequences were coded at bitrates so that the PSNRs over
the coded/decoded impaired sequences were identical to those of the corrected
sequences. The differences in bitrate gives the increase in coding efficiency. The
standard TM5 MPEG2 encoder was used for all experiments. The coder was set to
the main profile or, for bitrates greater than 15 Mbit/s, to the high profile, and the
GOP size was 12.

Table 6.5 lists the results from the second set of experiments. Again, it is
concluded that image restoration leads to more efficient compression. Considerable
savings in bandwidth can be achieved by restoring impaired image sequences.
Again, the largest gains were obtained for the test sequences to which noise
reduction was applied. The last column in this table was computed by:

Bitrate[z(i)] - 4

t =
P e = i ratel2(i)]

x100% (6.3)
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6.3.4 Discussion of experimental results

The experimental results verify that the image restoration algorithms developed in
this book improve the perceived image quality of impaired image sequences. The
experiments also verify that image restoration improves the coding efficiency.
Therefore, the benefits of restoration of archived film and video is confirmed, and
the assumptions underlying the work presented in previous chapters are validated.

A question is how well the numerical experiments for determining the increase
in coding efficiency correspond to human perception. AQ, as defined in this chapter,
reflects an increase in image quality terms of PSNR or in terms of how many bits of
irrelevancy have been removed. It is well known that numerical measures do not
necessarily correlate well with subjective perception. For instance, AQ is a global
measure, whereas human observers are very sensitive to local variations in image
quality. An example that illustrates this is given by the experimental results for the
V] Day sequence. This sequence was corrected for local artifacts, namely blotches.
The results from the test panel evaluation shows that a majority of 88% prefers the
corrected sequence over the impaired sequence. The large number of votes implies a
clearly visible improvement in the perceived image quality. In contrast, AQ the
computed for this sequence in terms of PSNR and in terms of bandwidth are small;
0.1 dB and 0.2 Mbit/s, respectively. Therefore, they suggest a marginal improvement
only.
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Hierarchical motion
estimation

Full-search block matching is a well-known method for estimating motion from a
source frame to a reference frame. In this method, the source frame is subdivided
into image blocks of or pixels. An exhaustive search is performed for each image
block to find the optimal match within the reference frame. The summed squared
difference (SSD) and the summed absolute difference (SAD) are often used as matching
criteria. The displacement that gives the optimal match yields the motion estimate
[Han92], [Tek95].

Full search block matching is very intensive from a computational point of
view. Furthermore, the motion vectors obtained from this technique do not
necessarily represent (a projection onto two dimensions) of the true motion. They
merely represent displacements that give optimal matches.

A method that suffers less from these drawbacks is hierarchical block matching
[Bie88], [Haa92], [Tek95]. Figure A.1 shows the principle of this method. First, initial,
coarse motion vectors are estimated by applying (full-search) block matching to
subsampled images. Next, the initial motion estimates are propagated to the next
level with higher resolution and refined. Instead of full-search block matching, the
refinements consist of doing a limited search in the region centered around the
initial, coarse motion estimate. Again, the refined motion vectors are then
propagated to the next level with higher resolution. The refinement process is
repeated until the motion vectors have been computed for the source image at full

135



136 APPENDIX A

resolution.

As a result of the subsampling and the limited search strategies, hierarchical
block matching requires fewer computations than full search block matching.
Therefore it is faster. Furthermore, the final hierarchical motion estimates are closer
to the true motion and the motion vectors are more consistent locally than the full
search block matching motion estimates.

Figure A.1: General principle of hierarchical block matching. The gray areas indicate the
search region for the block matching process.

The reason for this is that the initial motion estimates are done on coarse images. An
8x8 image region in an image subsampled horizontally and vertically by a factor 4
corresponds to an image region of 32x32 in the high-resolution image. Therefore, the
initial motion estimates computed by the hierarchical block matcher take more
context into account than a full-search block matcher that uses 8x8 image blocks.
Because motion estimates are propagated from coarse resolution levels to finer
resolution levels, the refined estimates for adjacent blocks in the higher resolution
images are made on the basis of the same initial vectors. Therefore, the final motion
estimates are consistent locally.

As is explained in Chapter 2, hierarchical motion estimators are relatively
robust to common artifacts in video and film sequences.
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Derivation of conditionals

B.1 Introduction
Section 4.5.2 stated that draws have to be taken from the conditionals:

a~ Plalo?,o0(i),z, ,d],
o’ ~ Plolla,o(i),z,,d)], (B.1)
o(i) ~ Plo(i) la,c?,z,(i),d(i),0)

This section shows that in the case of drawing samples from a conditional, it is not
necessary that the conditional be known exactly. It suffices that the distribution of
the samples follows a function that is proportional to the conditional. The following
sections derive such functions for the conditionals in (B.1).
Bayes’ rule states:
P[BIA] P[A]

PAIBl=—— (B.2)

The goal is to draw samples for A, given B, from P[A | B]. Because B is given, P[B] can
be regarded as a normalizing constant. It is therefore only necessary that the draw
for A be proportional to:

P[AIB] e P[BIA] P[A] (B.3)
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This means that, when deriving expressions for conditionals from which samples are
to be drawn, it is not necessary to compute the normalizing constants. Let B indicate
a collection of random variables, b,, b,, ..., b,, and suppose that b, is independent
of A. Then:

P[AIB] < P[b,,b,,...,b,| A] P[A]
= Plb,lb,,...,b,] Plb,, ..., b,| A] P[A] (B.4)
« P[b,,...,b,| A] P[A]

It can be seen from (B.4) that it is only necessary to consider terms involving A for
drawing random samples for A, given B.

Before deriving the conditionals in (B.1), first a quick word about notation. In
this section, bold faced characters describe matrices (capital letters) or vectors (small
letters). For instance, z represents a vector into which an observed frame z(i) has
been scanned in a lexicographic fashion. Analogous to Chapter 4, z, indicates a
vector containing the motion-compensated previous, current, and next frame.

B.2 Conditional for AR coefficients

Each image region with missing data is modeled by a 2D AR process that uses a
single set of coefficients a. The conditional for a is given by:

Pla,c?,0lz,,d]

Plalc?,o0,z,,d]=
IP a,c’ ,o0lz, ,dlda

(B.5)

At first glance this might seem to be a very complex distribution. Fortunately, as is
shown in [Kok98], it turns out that (B.5) is proportional to a multivariate gaussian
distribution. The derivation of [Kok98] is repeated here.

First, it is noted that the denominator in (B.5) is independent of a4 and hence it
can be considered as a normalizing constant that can safely be ignored. Therefore:

Plalo?,0,z,,d]« Pla,c?,0lz,,d]< Plz,la,67%,0,d] Pla]
1
* ol ool 5 JP -

where the identity in (4.33) has been used. Note that (4.33) applies to single pixels
whereas (B.6) applies to image blocks with N pixels. Hence the factor N in the last

(B.6)
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line of (B.6). In this equation, e is a vector with prediction errors and T indicates the
transpose operator. This prediction error vector is given by reformulating (4.30) in
vector-matrix notation:

}}=A9+e=l?a+e (B.7)

The top line in (B.7) gives the usual vector-matrix representation of an AR image
model in which a sparse matrix A that contains the prediction coefficients is
multiplied with an image vector. Here, for convenience, the definition in the bottom
line in (B.7) is used where the AR coefficients are placed in 4, and §(i) is scanned
into matrix Y such that Ya = Aj.

The term e’e in (B.6) is examined more closely now:

efe=(§—Ya) (§—Ya)=§"§—- 29 Ya+a"Y Ya= ®9)

@- Y)Y (YY) (a- (YY) Y+ §T5-§7Y X7V

I

lf’rg

Substituting those terms in (B.8) that involve a into (B.6), and also keeping in mind
that P(a) has a uniform distribution assigned to it, i.e., that it is a constant, gives:

<a_w)-w)w)(a—wwf%] (B9)

1
Plalc?,0,z,,d)c ————exp| -
! (2ro2)N? P 26!
This can be recognized as proportional to a multivariate gaussian and can be
denoted compactly as:

Plal§,02,0,2,,d] o N(4,02(YTY)™) (B.10)

where a=(Y"Y)"'Y"j is the least squares estimate for the AR coefficients. Y*Y and
Y'§ can be recognized as estimates for the autocorrelation matrix R, and the
autocorrelation vector 1. These are necessary for solving the normal equations
[Lag94], [The92]. The pdf for a is thus shown to be proportional to a well-known
distribution.

B.3 Conditional for the prediction error variance

A single error variance parameter o is associated with each image region with
missing data. The conditional for o is given by:
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Pla,0?,0lz,,d]

Plc’la,o0,z,,d]=
jPao- olz,,dldc’?

(B.11)

Again, the denominator can be viewed as a normalizing constant that can safely be
ignored:

Plc?la,0,z,,d]x Pla,c?,0lz,,d]< P[§la,c?] Plo?]

1 -ee (B.12)
)N/Z exp( 262 )P[Gfl

(277.'

In [Kok98] an equation is derived that is very similar to that in (B.12) and it is noted
there that the result is proportional to an inverted gamma distribution IG(xly,w)
with parameters v and w:

IG(xy, w) = Tvi(;;—w:exp(— %) (B.13)

If x=c?, y=N/2,and w=e"e/2, then (B.12) is proportional to (B.13), which
means that:

T

Plo2la,0,z, ]« 16(03@2’—,2—;) (B.14)

B.4 Conditional for the direction of interpolation

Unlike the AR model parameters, the direction of interpolation is computed on a
pixel-by-pixel basis instead of on a block-by-block basis. The conditional for o(i) is
derived here. At each particular site i the conditional is given by:

Pla,o;,0(i)z,,d,0]

Plo(i)la,c?,z,,d,0]=
lotd) = IPaaf,oIz+,d,O]do

(B.15)

Here O indicates the direction of interpolation for the pixels in the local region
surrounding o(i). Collecting those terms that are proportional to the variables of
interest gives:
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Plo(i)la,02,z,,d,0)« P[z,(i)la,o(i),o?,d] Plo(i) 10]
o exp(- _5;(:)) exp(—;ﬂlo(i) —o(i+q,) I)

cexp(-), [(1-d(i)) (z()) - AR(,1,@)" + (B.16)

ie$

d(3) (0(i) 2, (i, + 1)+ (1= 0(r)) 2,,.(i,t = 1)~ AR(F, i, a))" +
Ek:ﬂlo(i)— o(i+g)1)

As in Chapter 4, AR(j,a,i) denotes the prediction of the corrected image 7 at
location i. AR(},a,i) is determined completely by z, (i), 0(i), a4, o; and d. The eight-
connected neighbors of o(i) are indicated by o(i+4,), withk=1, ..., 8.

Drawing samples from (B.16) with the Gibbs sampler is very easy. It involves
evaluating (B.16) at a specific site i for o(i) = 0 and for o(i) = 1, while keeping the
other values for the direction mask and the §(i) fixed. The results are assigned to c,
and c,, respectively. Next, a value for o(i) (and thereby the corresponding #(i)) is
chosen at random, with a probability ¢, /(c, +¢,) that o(i) = 0 and with a probability
¢, /(c; +¢,) that o(i) = 1. A single update of an image region consists of applying the
Gibbs sampler to each site in that region in turn, following, for instance, a
checkerboard scanning pattern.
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Appendix C

Optimal Quantizers for
Encoding Noisy Image
Sequences

This appendix shows that minimizing the error variance E[¢?(i)] between input y(i)
and output (i) for a communication system as depicted in Figure 5.9 is equivalent
to designing optimal quantizers for the MPEG2 encoder. It is assumed that the
channel is error free. Work related to this topic is given in [Eph88], [Fin65]. The
equation for the optimal quantizers is derived. For ease of notation, spatial indices i
are omitted in this appendix.

In the absence of channel errors, the scheme in Figure 5.9 can be simplified to
that in Figure C.1 in which the noisy signal is transformed by the DCT, quantized,
inverse quantized and inverse transformed. Figure C.2 gives an example of a
quantizer with L, representation levels. The error variance is related to the
quantization error in the coded DCT coefficients:

E[eZI=ZE[<Yk—2k>21=ZEl<Yk—Qk[zk1)21
k64 © © (C1)
=> HY QIZ P, . [Y,, Z]d, dy,

k=

—_

Here Y,, Zk and Z,, with k = 1, ..., 64, indicate DCT coefficients with coefficient
number k obtained from 8x8 image blocks. The quantizer for DCT coefficient k is
indicated by Q[.] . The joint probability distribution P, , [Y;,Z,] is given by:
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P, o [Y. Z 1= P, [ZIY,]P, [Y,]= By[Y, - Z,] P, [Y;] (C2)

where P, [.] is the distribution of the additive noise.

Because the MPEG2 coding standard defines the representation levels of the
inverse quantizer in the decoder, the only free parameters in the chain from input to
output are the decision levels of the quantizers in the encoder. Minimizing (C.1) is
therefore equivalent to selecting optimal decision levels d, , in the quantizer, given
the representation levels r, ,, with I=1,..., L, andm=1, ..., L +1.

Noise

y(i) O/ E—— | Quantize | | Inverse et | X®
Quantize

Figure C.1: Simplification MPEG2 encoding/decoding over a noise free channel.

Figure C.2: Example of quantizer with representation levels r, to r, and decisions levels d, to
d,. Note that d, and d, lie at plus and minus infinity.

Without loss of generality, let d,; = and d, ;,, =« . Equation (C.1) can then be
broken down into L partial integrals over the L decision intervals:
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64 © L, da

Elz*]= zjz j (Y, - QlZ ) BylY, - Z] B, [Y, ), 4,

(C.3)

dy,y

Ly o
¥y [0 =7, R I%) [BylY,-2,)d,dy,
d

k=1 [=1 o

Equation (C.3) is always positive. Hence, it is minimized by minimizing each of its
64 terms, i.e., by selecting the optimal decision levels given the representation levels
for all the individual quantizers Q,. The optimal decision levels are obtained by
setting the derivatives with respect to r,, to zero. This yields the following decision
levels d, , , with 2<m<L,:

t]‘(((rk,m‘1 =Y ) =, = %)) P [V ] BlY, -4, ,14Y, =0 (C4)

The optimal quantizers are now defined. Some concluding remarks can now be
made. First, note that in an MPEG2 encoder, the input signal y(i) in Figure C.1 can
be either a true image or an image representing prediction errors, depending on
whether an I, P, or B frame is coded. The statistics for these images vary, and
therefore different quantizers need to be computed for each situation. Second,
depending on the amount of bits that are available, an MPEG2 encoder selects a
quantizer with a certain number of quantization levels. To get minimum error vari-
ance, multiple optimal quantizers have to be computed to accommodate this
freedom of the encoder.
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Chapter 7
Introduction to Watermarking

7.1 The need for watermarking

In the past few years there has been an explosion in the use and distribution of
digital multimedia data. Personal computers with internet connections have taken
the homes by storm, and have made the distribution of multimedia data and
applications much easier and faster. Electronic commerce applications and on-line
services are rapidly being developed. Even the analog audio and video equipment in
the home are in the process of being replaced by their digital successors. As a result,
we can see the digital mass recording devices for multimedia data enter the
consumer market of today.

Although digital data have many advantages over analog data, service
providers are reluctant to offer services in digital form because they fear unrestricted
duplication and dissemination of copyrighted material. Because of possible
copyright issues, the intellectual property of digitally recorded material must be
protected [Sam91]. The lack of such adequate protection systems for copyrighted
content was the reason for the delayed introduction of the Digital Versatile Disk
(DVD) [Tay97]. Several media companies initially refused to provide DVD material
until the copy protection problem had been addressed [Rup96] and [Ren96].
Representatives of the consumer electronics industry and the motion picture
industry have agreed to seek legislation concerning digital video recording devices.
Recommendations describing ways that would protect both intellectual property
and consumers’ rights have been submitted to the US Congress [Ren96] and resulted
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in the Digital Millennium Copyright Act [DCM98], which was signed by President
Clinton October 28, 1998.

To provide copy protection and copyright protection for digital audio and
video data, two complementary techniques are being developed: encryption and
watermarking [Cox97]. Encryption techniques can be used to protect digital data
during the transmission from the sender to the receiver [Lan99a]. However, after the
receiver has received and decrypted the data, the data is in the clear and no longer
protected. Watermarking techniques can complement encryption by embedding a
secret imperceptible signal, a watermark, directly into the clear data in such a way
that it always remains present. Such a watermark can for instance be used for the
following purposes:

¢ Copyright protection: For the protection of intellectual property, the data owner
can embed a watermark representing copyright information in his data. This
watermark can prove his ownership in court when someone has infringed on his
copyrights.

¢ Fingerprinting: To trace the source of illegal copies, the owner can use a
fingerprinting technique. In this case, the owner can embed different watermarks
in the copies of the data that are supplied to different customers. Fingerprinting
can be compared to embedding a serial number that is related to the customer’s
identity in the data. It enables the intellectual property owner to identify
customers who have broken their license agreement by supplying the data to
third parties. In Section 7.4 a fingerprinting application is explained in more
detail.

e Copy protection: The information stored in a watermark can directly control
digital recording devices for copy protection purposes [Lan98a]. In this case, the
watermark represents a copy-prohibit bit and watermark detectors in the
recorder determine whether the data offered to the recorder may be stored or
not. A complete copy protection system is discussed in Section 7.4.

e Broadcast monitoring: By embedding watermarks in commercial advertisements
an automated monitoring system can verify whether advertisements are
broadcasted as contracted [And98]. Not only commercials but also valuable TV
products can be protected by broadcast monitoring [Kal99]. News items can have
a value of over 100.000 USD per hour, which make them very vulnerable to
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intellectual property rights violation. A broadcast surveillance system can check
all broadcast channels and charge the TV stations according to their findings.

e Data authentication: Fragile watermarks [Wol99a] can be used to check the
authenticity of the data. A fragile watermark indicates whether the data has been
altered and supplies localization information as to where the data was altered.

Watermarking techniques are not only used for protection purposes. Other
applications include:

¢ Indexing: Indexing of video mail, where comments can be embedded in the
video content; indexing of movies and news items, where markers and
comments can be inserted that can be used by search engines.

¢ Medical safety: Embedding the date and the patient’s name in medical images
could be a useful safety measure [And98].

e Data hiding: Watermarking techniques can be used for the transmission of secret
private messages. Since various governments restrict the use of encryption
services, people may hide their messages in other data.

7.2 Watermarking requirements

Each watermarking application has its own specific requirements. Therefore, there is
no set of requirements to be met by all watermarking techniques. Nevertheless,
some general directions can be given for most of the applications mentioned above:

* Perceptual transparency: In most applications the watermarking algorithm must
embed the watermark such that this does not affect the quality of the underlying
host data. A watermark-embedding procedure is truly imperceptible if humans
cannot distinguish the original data from the data with the inserted watermark
[Swa98]. However, even the smallest modification in the host data may become
apparent when the original data is compared directly with the watermarked
data. Since users of watermarked data normally do not have access to the
original data, they cannot perform this comparison. Therefore, it may be
sufficient that the modifications in the watermarked data go unnoticed as long as
the data are not compared with the original data [Voy98].
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¢ Payload of the watermark: The amount of information that can be stored in a

watermark depends on the application. For copy protection purposes, a payload
of one bit is usually sufficient.
According to a recent proposal for audio watermarking technology from the
International Federation for the Phonographic Industry, (IFPI), the minimum
payload for an audio watermark should be 20 bits per second, independently of
the signal level and music type [Int97]. However, according to [Pet98a] this
minimum is very ambitious and should be lowered to only a few bits per second.
For the protection of intellectual property rights, it seems reasonable to assume
that one wants to embed an amount of information similar to that used for ISBN,
International Standard Book Numbering, (roughly 10 digits) or better ISRC,
International Standard Recording Code, (roughly 12 alphanumeric letters). On
top of this, one should also add the year of copyright, the permissions granted on
the work and rating for it [Kut99]. This means that about 60 bits [Fri99a] or 70
bits [Kut99] of information should be embedded in the host data, the image,
video-frame or audio fragment.

* Robustness: A fragile watermark that has to prove the authenticity of the host
data does not have to be robust against processing techniques or intentional
alterations of the host data, since failure to detect the watermark proves that the
host data has been modified and is no longer authentic. However, if a watermark
is used for another application, it is desirable that the watermark always remains
in the host data, even if the quality of the host data is degraded, intentionally or
unintentionally. Examples of unintentional degradations are applications
involving storage or transmission of data, where lossy compression techniques
are applied to the data to reduce bit rates and increase efficiency. Other
unintentional quality-degrading processing techniques include filtering, re-
sampling, digital-analog (D/A) and analog-digital (A/D) conversion. On the
other hand, a watermark can also be subjected to processing solely intended to
remove the watermark [Cox97]. In addition, when many copies of the same
content exist with different watermarks, as would be the case for fingerprinting,
watermark removal is possible because of collusion between several owners of
copies. In general, there should be no way in which the watermark can be
removed or altered without sufficient degradation of the perceptual quality of
the host data so as to render it unusable.

e Security: The security of watermarking techniques can be interpreted in the same
way as the security of encryption techniques. According to Kerckhoffs [And98],
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one should assume that the method used to encrypt the data is known to an
unauthorized party, and that the security must lie in the choice of a key. Hence a
watermarking technique is truly secure if knowing the exact algorithms for
embedding and extracting the watermark does not help an unauthorized party to
detect the presence of the watermark [Swa98].

* Oblivious vs. non-oblivious watermarking: In some applications, like copyright
protection and data monitoring, watermark extraction algorithms can use the
original unwatermarked data to find the watermark. This is called non-oblivious
watermarking [Kut99]. In most other applications, e.g. copy protection and
indexing, the watermark-extraction algorithms do not have access to the original
unwatermarked data. This renders the watermark extraction more difficult.
Watermarking algorithms of this kind are referred to as public, blind or oblivious
watermarking algorithms.

The requirements listed above are all related to each other. For instance, a very
robust watermark can be obtained by making many large modifications to the host
data for each bit of the watermark. However, large modifications in de host data will
be noticeable and many modifications per watermark bit will limit the maximum
amount of watermark bits that can be stored in a data object. Hence, a trade-off
should be found between the different requirements so that an optimal watermark
for each application can be developed. The mutual dependencies between the basic
requirements are shown in Figure 7.1.

The relation between the basic requirements for a well-designed secure
watermark is represented in Figure 7.2. The security of a watermark influences the
robustness enormously. If a watermark is not secure, it cannot be very robust.

Perceptual Transparency

Payload Robustness Security

Oblivious vs. Non-Oblivious

Figure 7.1: Mutual dependencies between the basic requirements.
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Figure 7.2: Relation between the basic requirements for a secure watermark.

7.3 Brief history of watermarking

Watermarking techniques are not new. Watermarking forms a particular group in
the steganography field. Steganography stems from the Greek words oteyavog for
“covered” and ypago for “to write”, and means covered or secret writing. While
classical cryptography is about rendering messages unintelligible to unauthorized
persons, steganography is about concealing the existence of the messages. Kahn has
traced the roots of steganography to Egypt 4000 years back, where hieroglyphic
symbol substitutions were used to inscribe information in the tomb of a nobleman,
Khnumbhoteb II [Kah67] and [Swa98].

Herodotus wrote about how the Greeks received a warning of Xerxes’ hostile
intentions through a message underneath the wax of a writing tablet [Her72].
Another secret writing method he described was to shave the head of a messenger
and tattoo a message or image on the messenger’s head. After the hair had grown
back, the message would be undetectable until the head was shaved again [Joh98]
and [Kob97].

A method suggested by Aenas the Tactician was to mark successive letters in a
cover text with secret ink, barely visible pin pricks or small dots and dashes [Kah67].
The marked letters formed the secret message.

Johannes Trithemius (1462-1526), a German monk, was the first who used the
term steganography. He encoded letters as religious words in such a way as to turn
covert messages into apparently meaningful prayers. As a reward for this artifice the
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first printing of his manuscript Steganographia in 1606 was placed on the Vatican’s
prohibited Index and was characterized as “full of peril and superstition” [Kah67]
and [Lea96].

(;)cc@h TIS

ITERARVM NO-
T1S
sy
N

m

RTIS f I Ml SENSA
wccmlie alys _J-_"\l".‘-‘.l}lh,llf oAb diyi ,.'.'-
(mificaia expif. andi cmedan-
dirme
Lisas lis
10. BAPTISTA PORTA

Niavoritanwe Avcroan.

EXPLICANTVA 4AFTEM INTIEA
CAiT A CP ErTm guequr [iriptevam e bas
dt wria boguintia, indidemg, peida

ScignTiA

.

LIIENLANN]

M ELtcarDl
Apudlacosva Foiceen,Expenfin Las
Zanl Tnpitmanis

M D XClLIL

Figure 7.3: Title page of Porta’s book: De occultis notis.

In 1593, Giovanni Baptista Porta published a book about cryptography under the
title: De occultis literarum notis seu artis animemi occulte alijs significadi, aut ab alijs
significata expiscandi enodandique. Libri III (Figure 7.3). In his book, he describes
amongst others a method for concealing a secret text message in a cover message by
means of a mask. In the following example the secret message can be extracted by
ignoring the masked (gray) text [Por93]:

Honor Milidae tuus suit Carolus pater, nam cum infini to victus est, cum mini 1a
exercitu inuitus parte hostis fugit, ac prope ultimum diem iniurius peribit, necabu nt
Bere illum; atque extemplo puer Arato peribit, res omnes deprehensae bonae si su il,
ante Sillam, & optimo capite non poenitentias amplius decidere sperabit. Vale.

In the 17" century it was not unusual to publish manuscripts anonymously,
especially if it concerned the writing of histories. The risk of offending powerful
political parties, which could have severe consequences to the author, was far too
great. Therefore, Bishop Francis Godwin coded his name as the initial capital letters
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of each chapter of his manuscript [Lea96]. This is an early example of copyright
protection.

An example of embedding copyright or authorship information in musical
scores was practiced by Bach, who embedded his name in many of his pieces. For
instance, in his organ chorale “Vor deinem Thron”, he used null cipher coding by
spelling out B-A-C-H in notes, where B-flat represents B, and B represents H or by
counting the number of occurrences of a note, one occurrence for A, two for B, three
for C and eight for H [Swa98].

In World War II steganogaphic techniques were widely used [Kah67] and
[Joh98]. In the USA the post banned a large class of objects that could conceal
messages, like chess games, crosswords and newspaper clippings. Other objects
were changed before these were delivered, lovers” Xs were deleted, watch hands
were shifted, loose stamps and blank paper were replaced. Censors even rephrased
telegrams to prevent that people hid secret messages in normal text messages. In one
case, a censor changed “father is dead” to “father is deceased”, which resulted in the
reply “is father dead or deceased?”. Thousands of people were involved in reading
mail, looking for language which appeared to be forced. For example, the following
message was actually sent by a German spy [Kah67]:

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects pretext for embargo on by-products, ejecting suets and
vegetable oils.

Extracting the second letter in each word reveals the following message:

Pershing sails from NY June 1.

During the 1980s steganographic techniques were used for fingerprinting. Prime
Minister Margaret Thatcher became so irritated at press leaks of cabinet documents
that she had the word processors reprogrammed to encode the user's identity in the
word spacing, so that disloyal ministers could be traced [And98].

From this brief history overview we can conclude that most applications
mentioned in Section 7.1 are nothing else than variations on the historical ones.

7.4 Scope of Part II

There are many types of watermarking techniques. This book concentrates on
techniques for real-time embedding of watermarks in and the extraction of watermarks from
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compressed image and video data. These watermarking techniques can for instance be

used in fingerprinting and copy protection systems for home-recording devices.

Fingerprinting: A consumer can receive digital services, like pay TV or video on
demand, by cable or satellite dish using a set-top box and a smart card, which he
has to buy and can therefore be related to his identity. To prevent other non-
paying consumers to make use of the same services, the service provider
encrypts the data, for which he uses one or more keys. This protects the services
during transmission. The set-top box in the home of the consumer decrypts the
data if a valid smart card is used, and adds a watermark, representing the
identity of the user, to the compressed clear data. The fingerprinted data can now
be fed to the internal video decoder to view the data or the data can be stored in
compressed form.

Set-top box

Add MPEG-
" 1 * 1 1
Watermark decoder

i L3

« Decrypt

L

Smart card reader 1:’:‘3,“' ‘.'1'-.'t'1'-.‘:l_'1' intertace
. e =

Digital encrypted
MPEG-2 data

omart card

Figure 7.4: Set-top box with fingerprinting capabilities.

The service provider can now identify consumers who supply data to third
parties breaking their license agreement. The complete scheme of a set-top box
with fingerprinting facilities is depicted in Figure 7.4.

Copy protection: Service providers are reluctant to accept digital recording
devices, because of they fear unrestricted copying of services like Pay TV, Pay-
Per-View and Video-On-Demand. However, digital video recorders enable
consumers to use services on another time than the time the services are actually
broadcasted (time-shifting), or to insert longer breaks in a movie. A compromise
between the conflicting desires of the service providers and the consumers would
be the embedding of an SCMS-like [IEC958] copy protection system in each
digital recorder [Han96].
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Using the Serial Copy Management System, consumers can make copies of any
digital source, but they cannot make copies of copies. An example of an SCMS-
like copy protection scheme using watermarking techniques is shown in Figure
7.5.

Copy Protection Scheme

A . Watermark| N Add 1 Store =
] Present? Watermark Video = R
= Y = \ = =

e Discard Video Data - -

Figure 7.5: A copy protection scheme for digital recorders.

This copy protection system checks all incoming video streams for a predefined
copy-prohibit watermark. If such a watermark is found, the incoming video must
already have been copied before and is therefore refused by the recorder. If the
copy-prohibit watermark is not found, the watermark is embedded and the
watermarked video is stored. This means that video data stored on this recorder
always contains a watermark and cannot be duplicated if a recorder is used
equipped with such a copy protection system.

Besides the basic requirements mentioned in Section 7.2, a watermarking technique
should meet the following extra requirements to qualify as a real-time technique for
compressed image and video data applicable to recording devices:

Oblivious: It should be possible to extract watermark information without using
the original unwatermarked data, since a recorder and a set-top box do not have
the original data at their disposal.

Low complexity: There are two reasons why the watermarking techniques
cannot be too complex: they are to be processed in real time, and as they are to be
used in consumer products, they must be inexpensive. This means that fully
decompressing the data, adding a watermark and finally compressing the data is

not an option for embedding a watermark.
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e Preserve host data size: The watermark should not increase the size of the
compressed host data. For instance, if the size of a compressed MPEG-video
stream increases, transmission over a fixed bit rate channel can cause problems,
the buffers in hardware decoders can run out of space, or the synchronization of
audio and video can be disturbed.

Protection systems that make use of watermarking techniques consist in general of a
chain of cryptographic techniques. The watermark information can be encrypted
first. Subsequently, the processed watermark information is added to the host data
by means of embedding techniques. The encryption and embedding techniques use
keys; these keys may vary in time. Cryptography protocols have to take care of the
key-management problem. In Figure 7.6 the involved fields of cryptography are
represented graphically. The subjects of encryption and protocol development are
outside the scope of this book. The focus is on developing, analyzing and testing the
embedding techniques for watermarks.

— (;ryptograph_y

Encryption " Protocols
Watermarking

"Embedding
Techniques

Figure 7.6: Fields of cryptography involved in watermarking applications.

7.5 Overview of Part II

Part II of this book is structured as follows. In Chapter 8 the state of the art in
watermarking techniques for digital image and video data is presented. Since the
most commonly used watermarking techniques use additive noise for watermark
embedding and correlation techniques for watermark detection, the correlation-
based techniques are discussed in full detail here. Various correlation-based
techniques are explained for embedding video content dependent or independent
watermarks representing one bit, multiple bits or logos in the spatial, Fourier,
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Discrete Cosine or Discrete Wavelet Transform domain which do or do not use
Human Visual System models to maximize the watermark energy. In addition extra
measures are discussed that make these watermarks resistant to lossy compression
techniques and geometrical transformations. Other non-correlation-based
techniques, like least significant bit modification, DCT coefficient ordering, salient
point modification and fractal-based techniques are briefly explained at the end of
this chapter.

In Chapter 9 the state of the art in real-time watermarking algorithms for
compressed video data is discussed. Furthermore, two new algorithms are proposed
and evaluated that are computationally highly efficient and very suitable for
consumer applications requiring moderate robustness. These real-time
watermarking algorithms are based on the basic Least Significant Bit (LSB)
modification principle, which is here directly applied to MPEG compressed video
streams. Since the watermarking methods discussed in this chapter rely heavily on
the MPEG video compression standard, this chapter starts with a brief description of
the relevant parts of the MPEG standard.

In Chapter 10 the slightly more complex Differential Energy Watermarking
(DEW) concept is proposed which is applicable for real-time consumer applications
requiring more robustness. The DEW concept is suitable for directly embedding
watermarks in and extracting watermarks from MPEG/JPEG or embedded zero tree
wavelet encoded video and image data. The DEW algorithm embeds the label bits of
the watermark by selectively discarding high frequency coefficients in certain video
frame regions. The label bits of the watermark are encoded in the pattern of energy
differences between DCT blocks or hierarchical wavelet trees.

Chapter 11 describes how a statistical model is derived and experimentally
validated to find optimal parameter settings for the DEW algorithm. The
performance of the DEW algorithm has been defined as its robustness against re-
encoding attacks, its label size, and its visual impact. We show analytically how the
performance is controlled by three embedding parameters. The derived statistical
model gives us an expression for the label bit error probability as a function of these
three parameters. Using this expression, we show how we can optimize a watermark
for robustness, label size or visibility and how we can add adequate error correcting
codes to the label bits.

In Chapter 12 the DEW algorithm is evaluated. For this purpose, benchmarking
approaches for watermarking algorithms and watermark removal attacks described
in literature are discussed. Next, the performance of the DEW algorithm for MPEG
compressed video data is compared to a real-time spread spectrum technique for
MPEG compressed video data. Finally, the DEW algorithm for JPEG compressed
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and uncompressed still images is compared to a basic spread spectrum method,
which is not specially designed for real-time operation on compressed data. The
real-time aspect is neglected in this comparison and for the evaluation the guidelines
of the benchmarking methods from literature are followed and the removal attacks
are taken into account.
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Chapter 8

State-of-the-Art in Image
and Video Watermarking

8.1 Introduction

In order to embed watermark information in host data, watermark embedding
techniques apply minor modifications to the host data in a perceptually invisible
manner, where the modifications are related to the watermark information. The
watermark information can be retrieved afterwards from the watermarked data by
detecting the presence of these modifications.

A wide range of modifications in any domain can be used for watermarking
techniques. Prior to embedding or extracting a watermark, the host data can be
converted to, for instance, the spatial, the Fourier, the Wavelet, the Discrete Cosine
Transform or even the Fractal domain, where the properties of the specific transform
domains can be exploited. In these domains modifications can be made like: Least
Significant Bit modification, noise addition, coefficient re-ordering, coefficient
removal, warping or morphing data parts and block similarities enforcing. Further,
the impact of the modifications can be minimized with the aid of Human Visual
Models, whereas modifications can be adapted to the anticipated post-processing
techniques or to the compression format of the host data.

Since the most commonly used techniques use additive noise for watermark
embedding and correlation techniques for watermark detection, we discuss the
oblivious correlation-based techniques extensively in this chapter, together with all
its possible variations. Other oblivious techniques are briefly explained at the end of
this chapter. The cryptographic security of the methods described here lies in the key

171
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that is used to generate a pseudorandom watermark pattern or to pseudorandomly
select image regions or coefficients to embed the watermark. In general, the
robustness of the watermark against processing techniques depends on the
embedding depth and the amount of information bits of the watermark.

Multipl).-‘ by gain
factor k

Wi(x,y): Pseudo Random Pattern {-1,0,1)

Figure 8.2.1: Watermark embedding procedure.

8.2 Correlation-based watermark techniques

8.2.1 Basic technique in the spatial domain

The most straightforward way to add a watermark to an image in the spatial domain
is to add a pseudorandom noise pattern to the luminance values of its pixels. Many
methods are based on this principle [Sch94], [Ben95], [Pit95], [Car95], [Har96],
[Lan96a], [Pit96a}, [Smi96], [Wol96], [Lan97al, [Wol97], [Zen97], [Fri99b], [Wol98],
[Wol99a] and [Kal99]. In general, the pseudorandom noise pattern consists of the
integers {-1,0,1}, however also floating-point numbers can be used. The pattern is
generated based on a key using, for instance, seeds, linear shift registers or randomly
shuffled binary images. The only constraints are that the energy in the pattern is
more or less uniformly distributed and that the pattern is not correlated with the
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host image content. To create the watermarked image I (x,y) the pseudorandom
pattern W(x,y) is multiplied by a small gain factor k and added to the host image
I(x,y), as illustrated in Figure 8.2.1.

L(xy)= I(xy)+ k- W(x,y) (8.2.1)

To detect a watermark in a possibly watermarked image I',(x,y) we calculate the
correlation between the image I’ (x,y) and the pseudorandom noise pattern W(x,y).
In general, W(x,y) is normalized to a zero mean before correlation. If the correlation
R,, exceeds a certain threshold T the watermark detector determines that image
I' (x,y) contains watermark W(x,y):

Ry epwiey >T = W(xy) detected (8.2.2)
<T — No W(xy) detected

If W(x,y) only consists of the integers {-1,1} and if the number of -1s equals the
number of 1s, we can estimate the correlation as:

zZ/2 12/2

Rrcomton = B W) = 2T 4 S0 W, 523

= 5{#[1'} wn-ulrs ]}

Where Z is the number of pixels in the image I’,,, and ™ indicates the set of pixels
where the corresponding noise pattern is positive or negative, and u[l’,’(x,y)]
represents the average value of set pixels in I’,(x,y). From Equation 8.2.3 it follows
that the watermark detection problem corresponds to testing the hypothesis whether
two randomly selected sets of pixels in a watermarked image have the same mean.

Figure 8.2.2 shows that the watermark detector can make two types of errors.
In the first place, it can detect the existence of a watermark, although there is none.
This is called a false positive. In the second place, the detector can reject the existence
of the watermark, even though there is one. This is called a false negative. In
[Kal98a] the probabilities of these two types of errors are derived based on a first-
order autoregressive image model:

A ©y=TWZ,
pr—zerfc(o_wo_l «/5) and f —r—— o0, J— (8.2.4)
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1 —1%/2
where erfc(x)= —J: je ar
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Here, o, represents the variance of the watermark pixels and o denotes the
variance of the image pixels. If the watermark pattern W(x,y) only consists of the
integers {-1,1} and the number of —1s equals the number of 1s, the variance of the
watermark o, equals k. The errors P, and P, can be minimized by increasing the
gain factor k. However, using larger values for the gain factor decreases the visual
quality of the watermarked image.

False }'\"-‘-:l\l

| False negative

[y 42 ull -l

Figure 8.2.2: Watermark detection procedure.

Since the image content can interfere with the watermark, especially in the low
frequency components, the reliability of the detector can be improved by applying
matched filtering before correlation [Dep98], [Sch94], [Lan%96a]. This decreases the
contribution of the original image to the correlation. For instance, a simple edge-
enhance FIR filter F

. €an be used, where F,

« 15 given by the following convolution

kernel:
-1 -1 -1

Fedge =(-1 10 -1}/2 (8.2.5)
-1 -1 -1

The experimental results presented in the next section show that applying this filter
before correlation reduces the error probability significantly, even when the visual
quality of the watermarked image was affected seriously before correlation [Lan96a],
[Lan97a].
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8.2.2 Extensions to embed multiple bits or logos in one image

From the watermark detector’s point of view, an image I can be regarded as
Gaussian noise, which distorts the watermark information W. Further, the
watermarked image I, can be seen as the output of a communication channel subject
to Gaussian noise over which the watermark information is transmitted. In this case,
reliable transmission of the watermark is theoretically possible if its information rate
does not exceed the channel capacity, which is given by [Sha49]:

2
C, =W,log,| 1+ 2% | bit/pixel (8.2.6)
ch b 2 0_2 p

I

Here, C, is given in units of watermark information bits per image pixel and the
available bandwidth W, is equal to 1 cycle per pixel. However, for practical systems
a tighter empirically lower bound can be determined [Smi%6]:

2
Ow

C,=W, logz(l + > ] bit/pixel (8.2.7)

oo,

Here, a is a small headroom factor, which is larger than 1 and typically around 3.
Since the signal-to-noise ratio ¢,’/o; is significantly smaller than 1, Equation 8.2.7
can be approximated by:

1 [ o} o
C,~— bit/pixel (8.2.8)

L~
“ In2\a-o;}

According to this equation, it should be possible to store much more information in
an image than just 1 bit using the basic technique described in the previous section.
For instance, a watermark consisting of the integers {-k, k} added to the 512x512
“Lena image” (Figure 8.2.1) can carry approximately 50, 200 or 500 bits of
information for k=1, 2 or 3 respectively and for a=3.

There are several ways to increase the payload of the basic watermarking
technique. The simplest way to embed a string of | watermark bits b, b, ... b,, in an
image is to divide the image I into I sub-images I ], ... I, and to add a watermark to
each sub-image, where each watermark represents one bit of the string [Smi96],
[Lan96a] and [Lan97a]. This procedure is depicted in Figure 8.2.3.

Using Equation 8.2.8 we can calculate the number of pixels P required per sub-
image for reliable detection of a single bit in a sub-image:
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ac}In2
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w

P pixels (8.2.9)

The watermark bits can be represented in several ways. A pseudorandom pattern
can be added if the watermark bit equals one, and the sub-image can be left
unaffected if the watermark bit equals zero. In this case, the detector calculates the
correlation between the sub-image and the pseudorandom pattern and assigns the
value 1 to the watermark bit if the correlation exceeds a certain threshold T;
otherwise the watermark bit is assumed to be 0.

)

,ﬂ
X

andom Pattern [-1,0

String of watermark bits: b,b, b,,

Figure 8.2.3: Watermark bit string embedding procedure.

The use of a threshold can be circumvented by adding two different pseudorandom
patterns RP, and RP, for watermark bit 0 and 1. The detector now calculates the
correlation between the sub-image and the two patterns. The bit value
corresponding with the pattern that gives the highest correlation is assigned to the
watermark bit. In [Smi96] the two patterns are chosen in such a way that they only
differ in sign, RP, = -RP,. In this case, the detector only has to calculate the
correlation between the sub-image and one of the patterns; the sign of the correlation

determines the watermark bit value.
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Figure 8.2.4 Watermark detection with and without pre-filtering.

edge

To investigate the effect on the robustness of the watermark of the pre-filter in the
detector, the gain factor k, and the number of pixels P per watermark bit, we perform
the following experiments. We first add a watermark to an image with the method
of [Smi96]. Next, we compress the watermarked image with the JPEG algorithm
[Pen93], where the quality factor Q,, of the compression algorithm is made variable.
Finally, the watermark is extracted from the decompressed image and compared bit
by bit with the originally embedded watermark bits. From this experiment, we find
the percentages of watermark bit errors due to JPEG compression as a function of
the JPEG quality factor.

The first experiment shows the effect of applying the pre-filter given by
Equation 8.2.5 before detection of a watermark embedded with a gain factor k=2,
and P=32x32 pixels per watermark bit. In Figure 8.2.4 the percentages bit errors
caused by JPEG compression are plotted for a detector that uses this pre-filter and
for a plain detector. It can clearly be seen that pre-filtering significantly increases the
robustness of the watermark.

The second experiment shows the effect of increasing the gain factor k for a
watermark embedded with P=32x32 pixels per watermark bit and detected using a
pre-filter. From Figure 8.2.5 it follows that the robustness of a watermark can be
improved significantly by increasing the gain factor.

The third experiment shows the influence of the number of pixels P per
watermark bit on the robustness of a watermark embedded with a gain factor k=2
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and detected using a pre-filter. From Figure 8.2.6 it follows that decreasing the
payload of the watermark by increasing P improves the robustness significantly.
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Figure 8.2.5: Influence of the gain factor k on the robustness of a watermark.
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Figure 8.2.6. Influence of the number of pixels per watermark bit P on the robustness of a
watermark.

Another way to increase the payload of the basic watermarking technique is the use
of Direct Sequence Code Division Multiple Access (DS-CDMA) spread spectrum
communications [Rua98a] and [Rua98b]. Here, for each bit b, out of the watermark
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bit string b, b, ... b,, a different stochastically independent pseudorandom pattern RP,
is generated that has the same size as the image. This pattern is dependent on the bit
value b. Here we use the pattern +RP, if b, represents a 0 and ~RP, if b, represents a 1.
The summation of all I random patterns +RP, forms the watermark. Prior to adding
the watermark to an image, we can scale the watermark by a gain factor or limit it to
a certain small range. An example of the 1-dimensional watermark generation is
presented in Figure 8.2.7. This example uses 7 different pseudorandom patterns to
embed the 7 watermark bits 0011010.

RP:-111-1-1 1-1-111-1 b:0 —» +RP:-111-1-1 1-1-11 1-1
RP:11-1-1 1-1-111-11 b,:0 — +RpP: 11-1-11-1-111-11
RP,: 1-1-1 1-1-111-1 1-1 b,:1 —> -RP:-111-11 1-1-11-11
RP,:-1-1 1-1-1 1 1-1 1-1-1 b;:1 - =-RP;: 1 1-1 1 1-1-1 1-1 1 1
RpP,:-1 1-1-1 1 1-1% 1-1-1 1 b;:0 —» +RP,:-1 1-1-11 1-1 1-1-1 1
RP: 1-1-1 1 1-11-1-1 11 b:1 - -RP:-11 1-1-1 1-1 1 1-1-1
RP:-1-111-11-1-1111 p:0 —> +RpP:-1-11 1-1 1-1-1 1 1 1 +
w :-351-313-713-13
Figure 8.2.7: Example of a CDMA watermark generation for 7 bits b p,...b,.

Each bit b, out of the watermark bit string b,b,...b,, can be extracted by calculating the
correlation between the normalized image I, and the corresponding pseudorandom
pattern RP,. If the correlation is positive, the value 0 is assigned to the watermark bit,
otherwise the watermark bit is assumed to be 1. Figure 8.2.8 shows as an example
the extraction of the embedded watermark bits in Figure 8.2.7.

W :-3 5 1-3 1 3-7 1 3 -1 3

T : 98 98 97 98 97 96 97 96 95 94 94 +

I, : 95 103 98 95 98 99 90 97 98 93 97
E[(RP,~E[RP,])-(I,-E[L,])] = +15.6 — b,=0
E[ (RP,~E[RP,])-(I,-E[I1,])] = +16.4 — b=0
E[ (RP,-E[RP,])-(I,-E[L])] = -26.4 — b=1
E[(RP,-E[RP,])-(I,-E[L,])] = - 3.1 - b=1
E[(RP,~E[RP,])-(I,-E[L,])] = +21.6 — b,=0
E[(RP,-E[RP,])-(I,~E[L,])] = -23.6 — b~=1
E[(RP,-E[RP,])-(I,~E[L,])] = + 0.4 — b=0

Figure 8.2.8: Example of CDMA watermark extraction,

Both ways of extending the watermark payload have their advantages and
disadvantages. If each watermark bit has its own image tile, there is no interference

compare to Figure 8.2.7.
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between the bits and only a small number of multiplications are required to calculate
the correlations. However, if the image is cropped, the watermark bits located at the
border are lost. If CDMA techniques are used, the probability that all bits can be
recovered after cropping the image is high. However, the watermark bits may
interfere with each other and many multiplications are required to calculate the
correlations, since each bit is completely spread over the image.

The watermark bits embedded using the methods mentioned above can
represent anything: copyright messages, serial numbers, plain text, control signals
etc. The content represented by these bits can be compressed, encrypted and
protected by error correcting codes. In some cases it may be more useful to embed a
small logo instead of a bit string as a watermark. If the watermarked image is
distorted, the watermark logo will also be affected. But now the sophisticated
pattern-recognition capabilities of the human visual system can be exploited to
detect the logo [Bra97], [Hsu96] and [Voy96]. For instance, we can embed a binary
watermark logo with 128x32 pixels in an image with 512x512 pixels using the
techniques described in this section. Each logo pixel is embedded in an image tile of
8x8 pixels by adding the pseudorandom pattern +RP or —RP to the image tile for a
black or white logo pixel respectively. As an example in Figure 8.2.9 the results are
shown of the logos extracted after the watermarked image has been degraded with
the lossy JPEG [Pen93] compression algorithm using several quality factors. From
Figure 8.2.9 it can be seen that, although it is heavily corrupted, the logo can still be
recognized.

Original embedded

Copyrighted | waermarkiogo

Extracted logo from image

giin " aragiaid o]
Copyﬁghted[ compressed with JPEG Q=90

Extracted logo from image

E:ogy I[ compressed with JPEG Q=75

s s .a..r,.h, :
Extracted logo from image

I”‘v‘agﬁt f?ﬁf‘ﬁ compressed with JPEG Q=50

Figure 8.2.9: Extracted watermark logos from a JPEG distorted image.
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8.2.3 Techniques for other than spatial domains

The techniques described in the previous section can also be applied in other
non-spatial domains. Each transform domain has it own advantages and
disadvantages. In [Rua96c] the phase of the Discrete Fourier Transform (DFT) is
used to embed a watermark, because the phase is more important than the
amplitude of the DFT values for the intelligibility of an image. Putting a watermark
in the most important components of an image improves the robustness of the
watermark, since tampering with these important image components to remove the
watermark will severely degrade the quality of the image. The second reason to use
the phase of the DFT values is that it is well known from communications theory
that often phase modulation possesses superior noise immunity in comparison with
amplitude modulation [Rua96c].

Many watermarking techniques use DFT amplitude modulation because of its
translation or shift invariant property [Her98a}], [Her98b], [Per99], [Rua96a], [Rua97},
[Rua98a] and [Rua98b]. Because cyclic translations of the image in the spatial
domain do not affect the DFT amplitude, the watermark embedded in this domain
will be translation invariant and, in case a CDMA watermark is used, it is even
slightly resistant to cropping. Furthermore, the watermark can directly be embedded
in the most important middle band frequencies, since modulation of the lowest
frequency coefficients results in visible artifacts while the highest frequency
coefficients are very vulnerable to noise, filtering and lossy compression algorithms.
Finally the watermark can easily be made image content dependent by modulating
the DFT amplitude coefficients | I(1,v)| in the following way [Cox95]:

1y @, v)| = [[Gu,v)| (L+ k- W (u,)) (8.2.10)

Here, W(u,v) represents a CDMA watermark, a 2-dimensional pseudorandom
pattern, and k denotes the gain factor. Now, the modification of a DFT coefficient is
not fixed but proportional to the amplitude of the DFT coefficient. Small DFT
coefficients are hardly affected, whereas larger DFT coefficients are affected more
severely. This complies with Weber’s law [Jai81]. The human visual system does not
perceive equal changes in images equally, but visual sensitivity is nearly constant
with respect to relative changes in an image. If Al is a just noticeable difference, then
AI/I = constant. Rewriting Equation 8.2.10 gives:

|y )~ [1 @) _ ALy _
[I(u,v)| |7(u,v)|

k- W(u,v) = constant (8.2.11)
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(c) Difference W(x,y)=I-I, (d) Heavily watermarked image
scaled for visibility

Figure 8.2.10: Fourier Amplitude Watermark.

Since the watermark is here mainly embedded in the larger DFT coefficients, the
perceptually most significant components of the image, the robustness of the
watermark improves.

Note that the symmetry of the Fourier coefficients must be preserved to ensure
that the image data is still real valued after the inverse transform to the spatial
domain. If the coefficient |I(x,v)| in an image with NxM pixels is modified
according to Equation 8.2.10, its counterpart |I(N-u,M-v) | must be modified in the
same way. In Figure 8.2.10b an example is given of an image in which a watermark
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is embedded using all DFT amplitude coefficients according to Equation 8.2.10 and
using a relatively small gain factor k. Figure 8.2.10c presents the strongly amplified
difference between the original image and the watermarked image. Figure 8.2.10d
shows an image watermarked using a large value for the gain factor k.

(a) Watermarked image (b) Heavily watermarked image

(c) Difference W(x,y)=I(x,y)-I,(x,y) (d) Fourier Spectrum W(u,v)

Figure 8.2.11: 8x8 DCT middle band image content independent watermark.

Another commonly used domain for embedding a watermark is the Discrete Cosine
Transform (DCT) domain [Bol95], [Cox95], [Cox96a], [Cox96b], [Hsu96], [Piv97],
[Pod97], [Tao97], [Rua96b] and [Wol99¢]. Using the DCT an image can easily be split
up in pseudo frequency bands, so that the watermark can conveniently be
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embedded in the most important middle band frequencies. Furthermore, the
sensitivity of the human visual system (HVS) to the DCT basis images has been
extensively studied, which resulted in a default JPEG quantization table [Pen93].
These results can be used for predicting and minimizing the visual impact of the
distortions caused by the watermark. Finally, the block-based DCT is widely used
for image and video compression. By embedding a watermark in the same domain
we can anticipate lossy compression and exploit the DCT decomposition to make
real-time watermark applications.

In Figure 8.2.11a an example is given of an image in which a 2-dimensional
CDMA watermark W is embedded in the 8x8 block DCT middle band frequencies.
The 8x8 DCT coefficients F(u,v) are modulated according to the following Equation:

I, uo+kW,  (4,v) uveF,

y=0816... 82.12
Ix,y(u,v) u’veFM Yy ( )

IWx'y (u, U) = <
Here F,, denotes the middle band frequencies, k the gain factor, (x,y) the spatial
location of an 8x8 pixel block in image I and (1,v) the DCT coefficient in the
corresponding 8x8 DCT block (Figure 8.2.12).

In Figure 8.2.11c the strongly amplified difference between the original image
and the watermarked image is presented. Figure 8.2.11d shows the Fourier Spectrum
of the watermark. Here, it can clearly be seen that watermark only affects the middle
band frequencies.

Figure 8.2.12. Definition of the middle band frequencies in a DCT block.

The watermark can be made image dependent by changing the modulation function
to:

I,(wo)-(+k-W, (u,0) uvek,

y=0,8,16,... 8.2.13
Ix,y(u/ '()) u,uve FM Xy ( )

IWx,y (ul U) = <



STATE-OF-THE-ART IN IMAGE AND VIDEO WATERMARKING 185

If this modulation function is applied, the results from Figure 8.2.11 change into the
results shown in Figure 8.2.13. From Figure 8.2.13b and c it appears that most
distortions introduced by the watermark are located around the edges and in the
textured areas.

(a) Watermarked image (b) Heavily watermarked image

(c) Difference W(x,y)=I(x,y)-I(x,y) (d) Fourier Spectrum W(u,v)

Figure 8.2.13: 8x8 block DCT middle band image content dependent watermark.

If watermarking techniques can exploit the characteristics of the Human Visual
System (HVS), it is possible to hide watermarks with more energy in an image,
which makes watermarks more robust. From this point of view the Digital Wavelet
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Transform (DWT) is a very attractive tool, because it can be used as a
computationally efficient version of the frequency models for the HVS [Bar99]. For
instance, it appears that the human eye is less sensitive to noise in high resolution
DWT bands and in the DWT bands having an orientation of 45° (i.e. HH bands).
Furthermore, DWT image and video coding, such as embedded zero-tree wavelet
(EZW) coding, will be included in the up-coming image and video compression
standards, such as JPEG2000 [Xia97]. By embedding a watermark in the same
domain we can anticipate lossy EZW compression and exploit the DWT
decomposition to make real-time watermark applications. Many approaches apply
the basic techniques described at the beginning of this section to the high resolution
DWT bands, LH,, HH, and HL, (Figure 8.2.14) [Bar99], [Bol95], [Kun97], [Rua96b],
[Xia97].

HL,
LH, | HH,

LH, HH,

Figure 8.2.14: DWT 2-level decomposition of an image.

In Figure 8.2.15a an example is given of an image in which a 2-dimensional CDMA
watermark W is embedded in the LH,, HH, and HL, DWT bands using a large gain
factor k. The DWT coefficients in each of the three DWT bands are modulated as
follows:

L,(uv)=I(uv)+ k- -W(u,v) (8.2.14)

Figure 8.2.15b shows the strongly amplified difference between the original image
and the watermarked image.
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(a) Heavily watermarked image (b) Difference W(x)=I(x,y)-I.(x.1)

Figure 8.2.15: DWT image content independent watermark.

The DWT watermark can be made image dependent by modulating the DWT
coefficients in each of the three DWT bands as follows:

1y (u,v) = I(u,v)- A+ k- W (u,v)) (8.2.15)

In Figure 8.2.16a an example is given of an image in which the same CDMA
watermark W is embedded in the LH,, HH, and HL, DWT bands using Equation
8.2.15 with a large gain factor k. Figure 8.2.16b shows the strongly amplified
difference between the original image and the watermarked image.

8.2.4 Watermark energy adaptation based on HVS

The robustness of a watermark can be improved by increasing the energy of the
watermark. However, increasing the energy degrades the image quality. By
exploiting the properties of the Human Visual System (HVS), the energy can be
increased locally in places where the human eye will not notice it. As a result, by
exploiting the HVS, one can embed perceptually invisible watermarks that have
higher energy than if this energy were to be distributed evenly over the image.

If a visual signal is to be perceived, it must have a minimum amount of
contrast, which depends on its mean luminance and frequency. Furthermore, a
signal of a given frequency can mask a disturbing signal of a similar frequency
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[Wan95] and [Bar98]. This masking effect is already used in the image-dependent
DCT watermarking method described in the previous section, where the DCT
coefficients are modulated by means of Equation 8.2.13. Here, to each sinusoid
present in the image (masking signal), another sinusoid (watermark) is added,
having an amplitude proportional to the masking signal. If the gain factor k is
properly set, frequency masking occurs.

The HVS is less sensitive to changes in regions of high luminance. This fact can
be exploited by making the watermark gain factor luminance dependent [Kut97].
Furthermore, since the human eye is least sensitive to the blue channel, a
perceptually invisible watermark embedded in the blue channel can contain more
energy than a perceptually invisible watermark embedded in the luminance channel
of a color image [Kut97].

(a) Heavily watermarked image (b) Difference W(x,)=I(xv)-1.(x,y)

Figure 8.2.16: DWT image content dependent watermark.

Around edges and in textured areas of an image, the HVS is less sensitive to
distortions than in smooth areas. This effect is called spatial masking and can also be
exploited for watermarking by increasing the watermark energy locally in these
masked image areas [Mac95]. The basic spatial watermarking techniques described
in Sections 8.2.1 and 8.2.2 can be extended with spatial masking compensation by,
for instance, using the following modulation function.

L, (x, )= 1(x,y)+ Msk(x,y)- k- W(x,y) (8.2.16)
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Here W(x,y) represents the 2-dimensional pseudorandom pattern of the watermark,
k denotes the fixed gain factor and Msk(x,y) represents a masking image. The values
of the masking image range from 0 to k', and give a measure of insensitivity to
distortions for each corresponding point in the original image I(x,y). In [Kal99] the
masking image Msk is generated by filtering the original image with a Laplacian
high-pass filter and by taking the absolute values of the resulting filtered image.

Wi

(a) Masking image (b) Difference W(x,y)=I(x,y)-1 (x,y)

Figure 8.2.17: Watermarking using masking image based on Prewitt operator.

In Figure 8.2.17a a mask is shown for the “Lena image” (Figure 8.2.10a) which is
generated by a simple Prewitt edge detector. Figure 8.2.17b shows the strongly
amplified watermark modulated with this mask.

Experiments have shown that a perceptually invisible watermark modulated
with a gain factor locally adapted to such a mask can contain twice as much energy
as a perceptually invisible watermark modulated with a fixed gain factor.

To investigate the effect of this energy doubling on the robustness of the
watermark we perform the following experiment. We add a watermark W, _,(x,y) to
the “Lena image” with the method of [Smi%] using a fixed gain factor k=2.
Increasing this fixed gain factor causes visible artefacts in the resulting watermarked
image. Next, we add a watermark W, (x,y) to another “Lena image” with the same

method, but now we use a variable gain factor locally adapted to the masking image

presented in Figure 8.2.17a. Although the watermark W, (x,y) contains about twice

ar

as much energy as W, (xy) the watermark is not noticeable in the resulting
watermarked image. Then we compress both watermarked images with the JPEG
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algorithm [Pen93], where the quality factor Q, . of the compression algorithm is
made variable. Finally, the watermarks are extracted from the decompressed image
and compared bit by bit with the originally embedded watermark bits. From this
experiment, we find the percentages of watermark bit errors due to JPEG
compression as a function of the JPEG quality factor. In Figure 8.2.18 the error curves
are plotted for both watermarks W, . (x,y) and W_(xy). It can be seen that the

robustness can be slightly improved by applying a variable gain factor adapted to
the HVS.

P=32x32, pre-filter F,

edge

applied before detection

% Bit errors

90 100
ijeg

Figure 8.2.18: Influence of a variable gain factor adapted to the HVS on the robustness of a
watermark.

In [Ng99] the squared sum of the 8x8 DCT AC-coefficients is used to generate a
masking image. Figure 8.2.19a shows a mask generated using this DCT-AC energy
for the “Lena image”. Figure 8.2.19b presents the strongly amplified watermark
modulated with this mask.

Spatial masking can also be applied if the watermark is embedded in another
domain e.g. DFT, DCT or DWT. In this case, the non-spatial watermark is first
embedded in an image I, resulting in the temporary image I,. The watermarked
image I, is now constructed by mixing the original image I and this temporary
image I,, by means of a masking image Msk as described above [Bar98] and [Piv97}:

I,(x,y)= (1 — Msk(x, y))](x, )+ Msk(x,y)- I, (x,») (8.2.17)
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Here the masking image must be scaled to values in the range from 0 to 1.
Watermarking methods based on more sophisticated models for the HVS can be
found in [Bar98], [Bar99], {Fle97], [Gof97], [Kun97], [Piv97], [Pod97], [Swa%6a],
[Swa96b], [Wol99b] and [Wol99c].

KR~

(a) Masking image (b) Difference W(x,y)=I(x,y)-1 (x,y)

Figure 8.2.19: Watermarking where a masking image is used based on DCT-AC energy.

8.3 Extended correlation-based watermark techniques

8.3.1 Anticipating lossy compression and filtering

Watermarks that have been embedded in an image by means of the spatial
watermarking techniques described in Sections 8.2.1 and 8.2.2 cannot be detected
reliably after the watermarked image has been highly compressed with the lossy
JPEG compression algorithm. This is due to the fact that such watermarks consist
essentially of low-power, high frequency noise. Since JPEG allocates fewer bits to the
higher frequency components, such watermarks can easily be distorted.
Furthermore, these watermarks can also be affected severely by low-pass operations
like linear or median filters.

The robustness to JPEG compression can be improved in several ways. In
[Smi%6] the pseudorandom pattern W is first compressed and then decompressed
using the JPEG algorithm. The energy of the resulting pattern W is increased to
compensate for the energy lost through the compression. Finally, this pattern is
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added to the image to generate the watermarked image. The idea here is to use the
compression algorithm to filter out in advance all the energy that would otherwise
be lost later in the course of the compression. It is assumed that a watermark formed
in this way is invariant to further JPEG compression that uses the same quality
factor, except for small numerical artifacts. Analogous pre-distortion of the
watermark pattern, such as filtering, can be applied to prevent other anticipated
degradations of the watermarked image.

Fy

Figure 8.3.1: DCT bands F,, in which the watermark energy @ is minimized.

In [Nik96] the energy of the watermark pattern is shifted to the lower frequencies by
calculating an individual gain factor k,, for each pixel of the watermark pattern
instead of using the same gain factor k for all pixels. First a pseudorandom pattern
W(x,y) is generated consisting of the integers 0 and k. Next, the pattern is divided
into 8x8 blocks and the DCT transform W(u,v) is calculated for each 8x8 block. The
non-zero elements in the 8x8 blocks are now regarded as gain factors k, and are
adapted in such a way that the energy @ in the vulnerable high frequency DCT
bands F,, is minimized (Figure 8.3.1):

D= > Wuv)' F={uol 5<u<8,5<v<8} (8.3.1)

u,ve Fyy

The energy @ is minimized under the following constraints:

Zsji W(x,y) k= i}sj W(x,p) k., knin<key< kpax (8.3.2)

x=1 y=1 x=1 y=1

The effect of this high-energy minimization on the watermark pattern is illustrated
in Figure 8.3.2. Figure 8.3.2a shows the watermark pattern within an 8x8 block,
where a constant gain factor of k=3 is used. After the high-energy minimization with
kmin

although the sum of the non-zero pixels still equals to the sum of the non-zero pixels

=0 and k=6 the watermark pattern fades smoothly to zero (Figure 8.3.2.b)

in the original pattern.
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Figure 8.3.2: (a) Original watermark block (b) Low frequency watermark block.

In [Lan96a] and [Lan97a] JPEG compression immunity is obtained by deriving a
different gain factor k for each 32x32 pixel block based on a lower quality JPEG
compressed image. A 32x32 pseudorandom pattern representing a watermark bit is
added to an 32x32 image tile. A copy of this watermarked image tile is degraded
according to the JPEG standard for which end a relatively low quality factor is used.
If the watermark bit cannot be extracted correctly from this degraded copy, the
watermark pattern is added to the image by means of a higher gain factor and a new
degraded copy is formed to check the bit. This procedure is repeated iteratively for
each bit until all bits can be extracted reliably from the degraded copies. A
watermark formed in this way is resistant to JPEG compression using a quality
factor equal to or greater than the quality factor used to degrade the copies. In Figure
8.3.3 an example of such a watermark is shown, amplified for visibility purposes.

E Ty

Figure 8.3.3: Watermark where the local gain factor per block is based on a lower quality
image.
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8.3.2 Anticipating geometrical transforms

A watermark should not only be robust to lossy compression techniques, but also to
geometrical transformations such as shifting, scaling, cropping, rotation etc.
Geometrical transforms hardly affect the image quality, but they do make most of
the watermarks that have been embedded by means of the techniques described in
the previous sections undetectable for the watermark detectors. Since geometrical
transforms affect the synchronization between the pseudorandom pattern of the
watermark and the watermarked image, the synchronization must be retrieved
before the detector performs the correlation calculations.

The most obvious way to achieve shift invariance is using the DFT amplitude

modulation technique described in Section 8.2.3. However if for some reason
another watermarking embedding domain is preferred and shift invariance is
required, a marker can be added in the spatial domain to determine the translation.
This marker can be a pseudorandom pattern like the watermark itself. The detector
first determines the spatial position of this marker by shifting the marker over all
possible locations in the image and calculating the correlation between the marker
and the corresponding image part. The translation with the highest correlation
defines the spatial position of the marker. Finally, the image is shifted back to its
original position and the normal watermarking detection procedure is applied.
An exhaustive search for a marker is computationally quite demanding. Therefore,
in {Kal99] a different approach is proposed: adding a pseudorandom pattern twice,
but at different locations in the image. The content of the watermark, ie. the
watermark bits, is here embedded in the relative positions of the two watermark
patterns. To detect the watermark, the detector computes the phase correlation
between the image and the watermark pattern using the fast Fourier transform and
it detects the two correlation peaks of the two patterns. The content of the
watermark is derived from relative position of the peaks. If the whole image is
shifted before detection, the absolute positions of the correlation peaks will change,
but the relative positions will remain unchanged, leaving the watermark bits
readable for the detector.

In [Fle97] a method is proposed to add a grid to an image that can be used to
scale, rotate and shift an image back to its original size and orientation. The grid is
represented by a sum of sinusoidal signals, which appear as peaks in the FFT
frequency domain. These peaks are used to determine the geometrical distortions.

In [Kut98] a method is proposed which embeds a pseudorandom pattern
multiple times at different locations in the spatial domain of an image. The detector



STATE-OF-THE-ART IN IMAGE AND VIDEO WATERMARKING 195

estimates the watermark W’ by applying a high-pass filter F,, to the watermarked
image:

00 0 -1 0 0 0
00 0 -1 0 0 0
0 0 0 -1 0 0 0
W'=1,®F, , Fp=[-1 -1 -1 12 -1 -1 -1|/12 (83.3)
0 0 0 -1 0 0 0
0 0 0 -1 0 0 0
0 0 0 -1 0 0 0

Next, the autocorrelation function of the estimated watermark W’ is calculated. This
function will have peak values at the center and the positions of the multiple
embedded watermarks. If the image has undergone a geometrical transformation,
the peaks in the autocorrelation function will reflect the same transformation, and
hence provide a grid that can be used to transform the image back to its original size
and orientation.

In [Her98a], [Her98b], [Rua97], [Per99], [Rua98a] and [Rua98b] a method is
proposed that embeds the watermark in a rotation, scale and translation invariant
domain using a combination of Fourier Transforms (DFT) and a Log Polar Map
(LPM). Figure 8.3.4 presents a scheme of this watermarking method.

Rotation, Scale and Translation Invariant < WM
Phast

DFT 1DFT
LPM IrM
DFI 1IDFT

1I"|I.]'.'_i'

Figure 8.3.4: Rotation, scale and translation invariant watermarking scheme.
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First the amplitude of the DFT is calculated to get a translation invariant domain.
Next, for every point (1,0) of the DFT amplitude a corresponding point in the Log
Polar Map (u,6) is determined:

u=e"cos@) v=e"sin(@) (8.3.4)

This coordinate system of the Log Polar Map converts rotation and scaling into
translations along the horizontal and vertical axis. By taking the amplitude of the
DFT of this Log Polar map, we obtain a rotation, scale and translation invariant
domain. In this domain a CDMA watermark can be added, for instance by

modulating the coefficients using Equation 8.2.10.

{ " ~3 (-
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(a) Original image 1!1} LPM of (a) h.] Scaled, rotated (d) LPM of (c¢)

Figure 8.3.5: Example of the properties of the Log Polar Map.

Figure 8.3.5 demonstrates an example of the properties of the Log Polar Map. Figure
(b) shows the Log Polar Map of the “Lena image” (a). Figure (c) depicts a rotated
and scaled version of the “Lena image” and Figure (d) shows its corresponding Log
Polar Map. It can clearly be seen that the rotation and scaling are converted into
translations.

In practice it has proven to be difficult to implement a watermarking scheme as
illustrated in Figure 8.3.4. The authors therefore propose a different approach, where
a CDMA watermark is embedded in the translation invariant amplitude DFT
domain as described in Section 8.2.3. To make the watermark scale and rotation
invariant, they embed a second watermark, a template, in this domain. To extract the
watermark, they first determine the scale and orientation of the watermarked image
by using the template in the following way:

o The DFT of the watermarked image is calculated.
e The Log Polar Map of the DFT amplitudes and the template pattern is calculated.
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o The horizontal and vertical offsets between the two log polar maps are calculated
using exhaustive search and cross-correlation techniques, resulting in a scale and
rotation factor.

Next, the image is transformed back to its original size and orientation, and the
information-carrying watermark is extracted.

8.3.3 Correlation-based techniques in the compressed domain

Not only robustness, but also computational demands play an important role in real-
time watermarking applications. In general image data is transmitted in compressed
form. To embed a watermark in real time the compressed format must be taken into
account, because first decompressing the data, adding a watermark and then re-
compressing the data is computationally too demanding. In [Har96], [Har97a],
[Har97b], [Har97c] and [Wu97] a method is proposed that adds a DCT transformed
pseudorandom pattern directly to selected DCT coefficients of an MPEG compressed
video signal. To extract the watermark they decompress the video data and apply
the correlation techniques described in Section 8.2. Since the scope here is real-time

watermarking algorithms, the above-mentioned method and novel alternatives are
described in full in Chapters 9 and 10.

Figure 8.4.1: Bit planes for the “Lena image”.
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8.4 Non-correlation-based watermarking techniques
8.4.1 Least significant bit modification

The simplest example of a spatial domain watermarking technique that is not based
on correlation is the least significant bit modification method. If each pixel in a gray
level image is represented by an 8-bit value, the image can be sliced up in eight bit
planes. In Figure 8.4.1 these eight bit planes are represented for the “Lena image”,
where the upper left image represents the most significant bit plane and the lower
right image represents the least significant bit plane.

Since the least significant bit plane does not contain visually significant
information, it can easily be replaced by an enormous amount of watermark bits.
More sophisticated watermarking algorithms that make use of LSB modifications
can be found in [Sch94], [Aur95], [Aur96], [Hir96] and [Fri99c]. These watermarking
techniques are not very secure and not very robust to processing techniques because
the least significant bit plane can easily be replaced by random bits, effectively
removing the watermark bits.

8.4.2 DCT coefficient ordering

In [Koc95], [Zha95], [Koc94] and [Bur98] a watermarking method is proposed that
adds a watermark bit string in the 8x8 block DCT domain. To watermark an image,
the image is divided into 8x8 blocks. From these 8x8 blocks the DCT transform is
calculated and two or three DCT coefficients are selected in each block in the middle
band frequencies F,, (Figure 8.4.2). The selected coefficients are quantized using the
default JPEG quantization table [Pen93] and a relatively low JPEG quality factor. The
selected coefficients are then adapted in such a way that their magnitudes form a
certain relationship. The relationships among the selected coefficients compose 8
patterns (combinations), which are divided into 3 groups. Two groups are used to
represent the watermark bits ‘1" or ‘0’, and the third group represents invalid
patterns. If the modifications which are needed to hold a desired pattern become too
large, the block is marked as invalid. For example, if a watermark bit with value ‘1’
must be embedded in a block, the third coefficient should have a lower value than
the two other coefficients. The embedding process and the list of patterns are
represented in Figure 8.4.2.

In Figure 8.4.3 the heavily amplified difference between the original “Lena
image” and the watermarked version is shown. In [Bor96a] and [Bor96b] a similar
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watermarking method is proposed, but here the DCT coefficients are modified in
such a way that they fulfill a linear or circular constraint imposed by the watermark
code.

v
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2 M H L patterns for 1
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8x8 DCT block with possible | L H M invalid patterns

locations for embedding a bit M M M
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quantized DCT coefficients M: middle
L: low

Figure 8.4.2: Watermarking based on adapting relationship between 3 coefficients.

Figure 8.4.3: Watermark W(x,y)=I(x,y)-1 (x,y) created by adapting relationships between
DCT coefficients.

In the methods described here, the relationships between a few middle band
coefficients within an 8x8 DCT block define the watermark bits. In [Lan97a],
[Lan97b], [Lan98a] and [Lan99b] a method is proposed that uses the relationship
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between a large amount of high frequency band DCT coefficients in different DCT
blocks to define the watermark bits. This new algorithm, its performance and its
statistical modeling are described in full in Chapters 10 and 11.

8.4.3 Salient-point modification

In [Ron99] a watermarking method is proposed that is based on modification of
salient points in an image. Salient points are defined as isolated points in an image
for which a given saliency function is maximal. These points could be corners in an
image or locations of high energy for example.

\ oy

\ 4

Figure 8.4.4: Examples of watermark patterns for salient-point modification.

To embed a watermark we extract the set of pixels with highest saliency S from the
image. Next, a binary pseudorandom pattern W(x,y) with the same dimensions as
the image is generated. This can be a line or block pattern as represented in Figure
8.4.4. If this pattern is sufficiently random and covers 50% of all the image pixels,
50% of all salient points in set S will be located on the pattern and 50% off the
pattern W(x,y). Finally, the salient points in set S are adapted in such a way that a
statistically significant high percentage of them lies on the watermark pattern (i.e.
the black pixels in the pattern). There are two ways to adapt the salient points:

¢ The location of the salient points can be changed by warping the points towards
the watermark pattern. In this case small, local geometrical changes are
introduced in the image.

¢ The saliency of the points can be decreased or increased by adding well-chosen
pixel patterns to the neighborhood of a salient point.
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To detect the watermark we extract the set of pixels with highest saliency S from the
image and compare the percentages of the salient points on the watermark pattern
and off the pattern. If both percentages are about 50%, no watermark is detected. If
there is a statistically significant high percentage of salient points on the pattern, the
watermark is detected. The payload of this watermark is 1 bit.

8.4.4 Fractal-based watermarking

Some watermark embedding algorithms are proposed that are based on Fractal
compression techniques [Dav96], [Pua%96], [Bas98] and [Bas99]. They mainly use
block-based local iterated function system coding [Jac92]. We first briefly describe
the basic principles of this fractal compression algorithm here. An image is
partitioned at two different resolution levels. On the first level, the image is
partitioned in range blocks of size nxn. On the second level the image is partitioned
in domain blocks of size 2nx2n. For each range block, a transformed domain block is
searched for which the mean square error between the two blocks is minimal. Before
the range blocks are matched on the domain blocks, the following transformations
are performed on the domain blocks. First, the domain blocks are sub-sampled by a
factor two to get the same dimensions as the range blocks. Subsequently, the eight
isometries of the domain blocks are determined (the original block and its mirrored
version rotated over 0, 90, 180 and 270 degrees). Finally, the scale factor and the
offset for the luminance values is adapted. The image is now completely described
by a set of relations for each range block, by the index number of the best fitting
domain block, its orientation, the luminance scaling and the luminance offset. Using
this set of relations, an image decoder can reconstruct the image by taking any initial
random image and calculating the content of each range block from its associated
domain block using the appropriate geometric and luminance transformations.
Taking the resulting image as initial image one repeats this process iteratively until
the original image content is approximated closely enough.

In [Pua96] a watermarking technique is proposed which embeds a watermark
of 32 bits bb,...b,, in an image. The embedding procedure consists of the full fractal
encoding and decoding process as described above, where the watermark
embedding takes place in the fractal encoding process. First, the image I(x,y) is split
in two regions A(x,y) and B(xjy). For each watermark bit b, U range blocks are
pseudorandomly chosen from I(x,y). If b, equals one, the domain blocks to code the U
range blocks are searched in region A(xy). If b, equals zero, the domain blocks to
code the U range blocks are searched in region B(x,y). For range blocks which are not
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involved in the embedding process, domain blocks are searched in regions A(x,y)
and B(x,y). To extract the watermark information, we must select and re-encode the
U range blocks for each bit b,. If most of the best fitting domain blocks are found in
region A(x,y), the value 1 is assigned to bit b]., otherwise the bit is assumed to be zero.

In [Bas98] and [Bas99] a watermark is embedded by forcing range blocks to
map exactly on specific domain blocks. The watermark pattern here consists of this
specific mapping. This mapping is enforced by adding artificial local similarities to
the image. The size of the range blocks may be chosen equal to the size of the
domain blocks. In Figure 8.4.5 an example is given of this process.

Optimal tractal mapping Controlled mapping
Pl }

Vv o 4

Figure 8.4.5: Modifying the mapping between range and domain blocks.

The left image illustrates how a fractal encoder would map the range block Rb,, on
domain block Db, in an unwatermarked image. To embed the watermark, this
mapping Db,—Rb,, must for instance be changed to Db—Rb,,. To force the mapping
to this form, a block Rb’, is generated from block Db, by changing its luminance
values. By adding block Rb’ to the image, we change the optimal fractal mapping to
its desired form Db—Rb,, because the quadratic error between Db,, corrected for
luminance scale and offset and Rb,, is now smaller than the error between Db, and
Rb,,.

To detect the watermark we calculate the optimal fractal mapping between the
range blocks and the domain blocks. If a statistically significant high percentage of
the mappings between range blocks and domain blocks match the predefined

mappings of the watermark pattern, the watermark is detected.
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8.5 Conclusions

Not all existing watermarking techniques are discussed in this chapter, because
some techniques are specifically designed for e.g. printing purposes, and others are
not so extensively represented in literature as the methods described in this chapter.
We will therefore only enumerate the most important principles of some of these
other methods here:

¢ For printed images dithering patterns can be adapted to hide watermark
information [Tan90] and [Che99].

» Instead of the pixel values, the histogram of an image can be modified to embed
a watermark [Col99].

¢ Quantization can be exploited to hide a watermark. In [Rua%6c] a method is
proposed in which the pixel values of an image are first coarsely quantized,
before some small adaptations are made to the image. To detect these
adaptations the watermarked image is subtracted from its coarsely quantized
version. In [Kun98] selected wavelet coefficients are quantized using different
quantizers for watermark bits 0 and 1.

In this chapter we discussed the two most important classes of watermarking
techniques. The first class comprises the correlation-based methods. Here a
watermark is embedded by adding pseudorandom noise to image components and
detected by correlating the pseudorandom noise with these image components. The
second class comprises the non-correlation-based techniques. This class of
watermarking methods can roughly be divided into two groups: the group based on
least significant bit (LSB) modification and group based on geometrical relations.
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Chapter 9

Low Complexity Watermarks
for MPEG Compressed Video

9.1 Introduction

The scope of Chapters 9, 10 and 11 is real-time watermarking algorithms for MPEG
compressed video. In this chapter the state of the art in real-time watermarking
algorithms is discussed and two new computationally highly efficient algorithms are
proposed which are very suitable for consumer applications requiring moderate
robustness. In Chapter 10 the slightly more complex DEW watermarking algorithm
is proposed, which is applicable for applications requiring more robustness. In
Chapter 11 a statistical model is derived to find optimal parameter settings for the
DEW method.

Low Complexity Watermark

Embedding / Extracting
Raw Watermark Raw Watermark
Embedding Extraction
v v v
n " MPEG |- - . . MPEG | -
Encoder Decoder
Raw Video Bit Stream Raw Video

Figure 9.1.1: Watermark embedding / extraction in raw vs. compressed video.
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A real-time watermarking algorithm should meet several requirements. In the first
place it should be an oblivious low complexity algorithm. This means that fully
decompressing the video data, adding a watermark to the raw video data and finally
compressing the data again is not an option for real-time watermark embedding.
The watermark should be embedded and detected directly in the compressed stream
to avoid computationally demanding operations as shown in Figure 9.1.1.

Furthermore, the watermark embedding operation should not increase the size
of the compressed video stream. If the size of the stream increases, transmission over
a fixed bit rate channel can cause problems: the buffers in hardware decoders can
run out of space, or the synchronization of audio and video can be disturbed.

Since the watermarking methods discussed in the following chapters heavily
rely on the MPEG video compression standard [ISO96] the relevant parts of the
MPEG-standard and the different domains in which a low complexity watermark
can be added are described in Section 9.2. In Section 9.3 an overview is given of two
real-time correlation-based watermarking algorithms from literature. In Sections 9.4
and 9.5 two new computationally highly efficient algorithms are proposed which are
very suitable for consumer applications requiring moderate robustness [Lan96b],
[Lan97b] and [Lan98a].

"“t'lll:l"l'l\t_'
t.||ul'.|'||n.‘
Pictures
Picture Luminance (Y)
1Ié!l"
Macroblock SISkt ne
Y
Block %o Y5 S ° L '

Figure 9.2.1: The layered MPEG syntax.
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9.2 Watermarking MPEG video bit streams

Before discussing the low complexity watermarking techniques, we first briefly
describe the MPEG video compression standard [ISO96] itself. The MPEG video bit
stream has a layered syntax. Each layer contains one or more subordinate layers, as
illustrated in Figure 9.2.1. A video Sequence is divided into multiple Group of Pictures
(GOPs), representing sets of video frames which are contiguous in display order.
Next, the frames are split in slices and macro blocks. The lowest layer, the block
layer, is formed by the luminance and chrominance blocks of a macro block.

The MPEG video compression algorithm is based on the basic hybrid coding
scheme {Gir87]. As can be seen in Figure 9.2.2 this scheme combines interframe
coding (DPCM) and intraframe coding to compress the video data.

Video in Intra lntm Video out
o f b > -4 .
i Encoder Decoder 1
Intra Frame
Decoder Memory -
.
L 4
Frame
e
h Memory
Motion . H
Estimation

Encoder Decoder

Figure 9.2.2: Motion compensated hybrid coding scheme.

Within a GOP the temporal redundancy among the video frames is reduced by the
application of temporal DPCM. This means that the frames are temporally predicted
by other motion compensated frames. Subsequently, the resulting prediction error,
which is called the displaced frame difference, is encoded. Three types of frames are
used in the MPEG standard: (I) Intraframes, which are coded without any reference
to other frames, (P) Predicted frames, which are coded with reference to past I- or P-
frames, and (B) Bi-directionally interpolated frames, which are coded with
references to both past and future frames. An encoded GOP always starts with an I-
frame, to provide access points for random access of the video stream. In Figure 9.2.3
an example of a GOP with 3 frame types and their references is shown.
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Figure 9.2.3: GOP with 3 frame types and the references between the frames.

The spatial redundancy in the prediction error of the predicted frames and the I-
frames, represented by the luminance component Y and the chrominance
components U and V, is reduced using the following operations: First the
chrominance components U and V are subsampled. Next, the DCT transform is
performed on the 8x8 pixel blocks of the Y, U and V components, and the resulting
DCT coefficients are quantized. Since the de-correlating DCT transform concentrates
the energy in the lower frequencies and the human eye is less sensitive to the higher
frequencies, the high frequency components can be quantized more coarsely. The
DCT coefficient with index (0,0) is called the DC-coefficient, since it represents the
average value of the 8x8 pixel block. The other DCT coefficients are called AC-
coefficients.

8x8 block Tuples (run,level) VLC codewords

5-3 A» 4 0: ;1/ ,6:-; (0,5), (0,3), (0,2), (2,4), 001001100
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7 T AT 4,1), (4,2) 01000

0,0 600009 0000000101000
0.2 AN 0000 00000010100
o0 1o ol e 001001000
010" 01070707070 001110
ot S 0000000101000
o0 ooy 9 K/ 9 001100
6O 6907 610 04-0 00000011110

10
coefficient domain (cd) run-level domain bit domain (bd)

Figure 9.2.4: DCT-block representation domains.
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In the lowest MPEG layer, the block layer, the spatial 8x8 pixel blocks are
represented by 64 quantized DCT coefficients. Figure 9.2.4 shows the three domains
in which the block layer can be divided. The first domain is the coefficient domain (cd),
where a block contains 8x8 integer entries that correspond with the quantized DCT
coefficients. Many of the entries are usually zero, especially those entries that
correspond with the spatial high frequencies. In the run-level domain, the non-zero
AC coefficients are re-ordered in a zigzag scan fashion and are subsequently
represented by a (run,level) tuple, where the run is equal to the number of zeros
preceding a certain coefficient and the level is equal to the value of the coefficient. In
lowest level domain, the bit domain (bd), the (run level) tuples are entropy coded and
represented by variable length coded (VLC) codewords. The codewords for a single
DCT-block are terminated by an end of block (EOB) marker.

A real-time watermarking algorithm for MPEG compressed video should
closely follow the MPEG compression standard to avoid computationally
demanding operations, like DCT and inverse DCT transforms or motion vector
calculation. Therefore, the algorithm should work on the block layer, the lowest
layer of the MPEG stream. A watermarking algorithm that operates on the coefficient
domain level only needs to perform VLC coding, tuple coding and quantization
steps. This process is illustrated in Figure 9.2.5.

Watermark Embedd
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Figure 9.2.5: Coefficient domain watermarking concept.

A watermarking algorithm that operates on the bit domain level only needs the VLC
coding processing step. Here, a complete watermark embedding procedure can
consist of VLC-decoding, VLC-modification and VLC-encoding. This process is
illustrated in Figure 9.2.6.

In Section 9.3 an overview is given of two real-time correlation-based
watermarking algorithms from literature. The first method described in this section
is applied in the coefficient domain. The second method is more advanced and
operates on a slightly higher level than the coefficient domain, since it needs a full
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MPEG decoding operation for drift compensation and watermark detection, and an
additional DCT operation. The new watermarking methods proposed in Sections 9.4
and 9.5 operate on the lowest level domain, the bit domain, and are therefore
computationally the most efficient methods. The DEW algorithm proposed in
Chapters 10 and 11 is applied completely in the coefficient domain.

Watermark Embedding

y Video

VLD - = VLC .

MPEG Video

MPE(

Figure 9.2.6: Bit domain watermarking concept.

9.3 Correlation-based techniques
in the coefficient domain

9.3.1 DC-coefficient modification

In [Wu97] a method is proposed that adds a DCT transformed pseudorandom
pattern directly to the DC-DCT coefficients of an MPEG compressed video stream.
The watermarking process only takes the luminance values of the I-frames into
account. To embed a watermark the following procedure is performed: First a
pseudorandom pattern consisting of the integers {—1,1} is generated based on a secret
a key. This pattern has the same dimensions as the I-frames. Next, the pattern is
modulated by a watermark bit string and multiplied by a gain factor, as described in
Section 8.2.2. Finally, the 8x8 block DCT transform is applied to the modulated
pattern and the resulting DC-coefficients are added to the corresponding DC-values
of each I-frame. The watermark can be detected using correlating techniques in the
DCT domain or in the spatial domain, as described in Section 8.2.2.

The authors report that the algorithm decreases the visual quality of the video
stream drastically. Therefore, the gain factor of the watermark has to be chosen very
low (<1) and the number of pixels per watermark bit has to be chosen extremely
high (>> 100,000) to maintain a reasonable visual quality for the resulting video
stream. This is mainly due to the fact that the watermark pattern is embedded in just
one of the 64 DCT coefficients, the DC-component. Furthermore, the pattern consists
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only of low frequency components to which the human eye is quite sensitive. For
comparison, the algorithm described in Section 8.2.2 uses a gain factor of 2 and
about 1000 pixels per watermark bit.

9.3.2 DC- and AC-coefficient modification with drift compensation

9.3.2.1  Basic watermarking concept

In [Har96], [Har97a], [Har97b], [Har97c] and [Har98] a more sophisticated
watermarking algorithm is proposed that embeds a watermark not only in the DC-
coefficients, but also in the AC-coefficients of each I-, P- and B-frame. Here the
watermark is also a pseudorandom pattern consisting of the integers {-1,1}
generated by means of a secret key. This pattern has the same dimensions as the
video frames. The pattern is modulated by a watermark bit string and multiplied by
a gain factor k as described in Section 8.2.2.

To embed the watermark, the watermark pattern W(x,y) is divided into 8x8
blocks. These blocks are transformed to the DCT domain and denoted by W, (u,0),
where x,y=0,8,16... and u,v=0...7. Next, the two-dimensional blocks W, (u,0) are re-
ordered in a zigzag scan fashion and become arrays W, (i), where i=0...63. W, (0)
represents the DC-coefficient and W, (63) denotes the highest frequency AC-
coefficient of a 8x8 watermark block. Since the corresponding MPEG encoded 8x8
video content blocks are encoded in the same way as [, (i), these arrays can be used
directly to add the watermark. For each video block I (i) out of an I-, P-, or B-frame
the following steps are performed:

1. The DC-coefficient is modulated as follows:

Ly O =1 ,(0)+W,,(0) (9.3.1)

Which means that the average value of the watermark block is added to the
average value of the video block.

2. To modulate the AC-coefficients, the bit stream of the encoded video block is
searched VLC-by-VLC for the next VLC code word, representing the next non-
zero DCT coefficient. The run and level of this code word are decoded to
determine its position i along the zigzag scan and its amplitude I, (i).
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A candidate DCT coefficient for the watermarked video block is generated,
which is defined as:

Ly, O)=L,O+W, () =0 (9.32)

Now the constraint that the video bit rate may not increase comes into play. The
size Sz, of the VLC needed to encode I (i) and the size Sz, of the VLC needed to
encode [, (i) are determined using the VLC-Tables B.14 and B.15 of the MPEG-
2 standard [ISO96]. If the size of VLC encoding the candidate DCT coefficient is
equal to or smaller than the size of the existing VLC, the existing VLC is replaced.
Otherwise the VLC is left unaffected. This means that the DCT coefficient I (i) is
modulated in the following way:

If Sz, <Sz then I, ()=1,,O)+W,,0) 9.3.3)
else 1, ()=1,,0)

This procedure is repeated until all AC-coefficients of the encoded video block
have been processed.

To extract the watermark information, the MPEG encoded video stream is first fully
decoded and the watermark bits are retrieved by correlating the decoded frames
with the watermark pattern W(x,y) in the spatial domain using the standard
techniques as described in Section 8.2.2.

9.3.2.2  Drift compensation

A major problem of directly modifying DCT coefficients in an MPEG encoded video
stream is drift or error accumulation. In an MPEG encoded video stream predictions
from previous frames are used to reconstruct the actual frame, which itself may
serve as a reference for future predictions. The degradations caused by the
watermarking process may propagate in time, and may even spread spatially. Since
all video frames are watermarked, watermarks from previous frames and from the
current frame may accumulate and result in visual artefacts. Therefore, a drift
compensation signal Dr must be added. This signal must be equal to the difference
of the (motion compensated) predictions from the unwatermarked bit stream and
the watermarked bit stream. As a drift-compensated watermarking scheme,
Equation 9.3.2 becomes:
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Ly, ()=1,,O)+W, i)+ Dr, (i) 9.34)

A disadvantage of this drift signal is that the complexity of the watermark
embedding algorithm increases substantially, since an additional DCT operation and
a complete MPEG decoding step are required to calculate the drift compensation
signal. The increase in complexity compared to the complexity of the coefficient
domain methods is illustrated in Figure 9.3.1.
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Figure 9.3.1: Increase of complexity due to drift compensation.

9.3.2.3  Evaluation of the correlation-based technique

Due to the bit rate constraint, only around 10-20% of the DCT coefficients are altered
by the watermark embedding process, depending on the video content and the
coarseness of the MPEG quantizer. In some cases, especially for very low bit rate
video, only the DC-coefficients are modified. This means that only a fraction of the
watermark pattern W(x,y) can be embedded, typically around 0.5...3% [Har98].
Since only existing (non-zero) DCT coefficients of the video stream are watermarked,
the embedded watermark is video content dependent. In areas with only low
frequency content, the watermark automatically consists of only low frequency
components. This complies with the Human Visual System. The watermark energy
is mainly embedded in areas containing a lot of video content energy.

The authors [Har98] report that the complexity of the watermark embedding
process is much lower than the complexity of a decoding process followed by
watermarking in the spatial domain and re-encoding. The complexity is somewhat
higher than the complexity of a full MPEG decoding operation. Typical parameter
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settings for the embedding are k=1...5 for the gain factor of the watermark and
P=500,000...1,000,000 for the number of pixels per watermark bit, yielding
watermark label bit rates of only a few bytes per second. The authors claim that the
watermark is not visible, except in direct comparison to the unwatermarked video,
and that the watermark can withstand linear and non-linear operations like filtering,
noise addition and quantization in the spatial or frequency domain.

9.4 Parity bit modification in the bit domain

9.4.1 Bit domain watermarking concept

In Section 8.4.1 we saw that watermarking algorithms based on LSB (least significant
bit) modification have an enormous payload and are computationally not
demanding. In this section, this LSB modification principle is directly applied in the
bit domain of MPEG compressed video, resulting in a computationally highly
efficient watermarking algorithm with an extremely high payload [Lan96b],
[Lan97b] and [Lan98a].

We embed a watermark consisting of I label bits b/ (G=01,2,.., 1) in the
MPEG-stream by selecting suitable VLCs and forcing the least significant bit of their
quantized level to the value of b. To ensure that after decoding the change in the VLC
is perceptually invisible and the MPEG-bit stream has kept its original size, we select
only those VLCs for which another VLC exists with:

¢ the same run length
¢ alevel difference of 1
e the same code word length

A VLC that meets this requirement is called a label bit carrying VLC (lc-VLC).
According to Table B.14 and B.15 of the MPEG-2 standard [IS096], an abundance of
such Ic-VLCs exists. Furthermore, all fixed length coded DCT coefficients following
an Escape code meet the requirement. Some examples of Ic-VLCs are listed in Table
9.4.1, where the symbol s represents the sign bit. This sign bit represents the sign of
the DCT coefficient level.

The VLCs in the intracoded and intercoded macro blocks can be used in the
watermarking process. The DC coefficients are not used, because they are predicted
from other DC coefficients and coded with a different set of VLCs and Escape codes.
Furthermore, replacing each DC coefficient in intracoded and intercoded frames can
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result in visible artefacts due to drift. If only the AC coefficients are taken into
account, the watermark is adapted more to the video content and the drift is limited.

Variable length code | VLC Run Level LSB of Level
size
001001105 8+1 0 5 1
00100001 s 8+1 0 6 0
0000 0001 1101 s 12+1 0 8 0
0000 0001 1000 s 12+1 0 9 1
0000 00001101 0s 13+1 0 12 0
0000 000011001 s 13+1 0 13 1
0000 0000 011111 s 14+1 0 16 0
000000000111 10s 14 +1 0 17 1
0000 0000 0011 101 s 15+1 1 10 0
0000 0000 0011 100 s 15+1 1 11 1
0000 0000 0001 0011s | 16+1 1 15 1
0000 0000 0001 0010s |16+ 1 1 16 0

Table 9.4.1: Example of lc-VLCs in Table B.14 of the MPEG-2 Standard.

Original MPEG video stream

LSB 0: T S
le-VLCs

LSB 1: : : <l

Label bits: by=0 b,=0 b,=1

Watermarked MPEG video stream

Figure 9.4.1: Example of the LSB watermarking process.

To add the label bit stream L to an MPEG-video bit stream, we test the VLCs in each
macro block. If an Ic-VLC is found and the least significant bit of its level is unequal
to the label bit &, (j=0,1,2,...,I-1), this VLC is replaced by another, whose LSB-level
represents the label bit. If the LSB of its level equals the label bit b, the VLC is not
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changed. The procedure is repeated until all label bits are embedded. In Figure 9.4.1
an example is given of the watermarking process, where 3 label bits are embedded
in the MPEG video stream.

To extract the label bit stream L we test the VLCs in each macro block. If an Ic-
VLC is found, the value represented by its LSB is assigned to the label bit b. The
procedure is repeated for j=0,1,2,...,I-1 until Ic-VLCs are no longer found.

9.4.2 Evaluation of the bit domain watermarking algorithm

94.21  Test sequence

The maximum label bit rate is the maximum number of label bits that can be added
to the video stream per second. This label bit rate is determined by the number of lc-
VLCs in the video stream and is not known in advance. Therefore, we first
experimentally evaluate the maximum label bit rate by applying the watermarking
technique to an MPEG-2 video sequence. The sequence lasts 10 seconds, has a size of
720 by 576 pixels, is coded with 25 frames per second, has a GOP-length of 12 and
contains P-, B- and I-frames. The sequence contains smooth areas, textured areas and
sharp edges. During the 10 seconds of the video there is a gradual frame-to-frame
transition, but at the end the camera turns fast to another view. A few frames of the
sequence are shown in Figure 9.4.2. This sequence is coded at different bit rates (1.4,
2,4, 6 and 8 Mbit/s) and used for all experiments in Part II of this book. It will be
referred to as the “sheep sequence”.

Figure 9.4.2: A few frames of the “sheep sequence”.
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9.4.2.2  Payload of the watermark

In Table 9.4.2 the results of the watermark embedding procedure are listed. Only the
Ic-VLCs in the intracoded macro blocks, excluding the DC coefficients, are used to
embed watermark label bits. In this table the “number of VLCs” equals the number
of all coded DCT coefficients in the intracoded macro blocks, including the fixed
length coded coefficients and the DC-values. It appears that it is possible to store up
to 7 kbit of watermark information per second in the MPEG streams if only
intracoded macro blocks are used.

Video bit rate Number of Number of Ic-VLCs | Max. label bit rate
VLCs
1.4 Mbit/s 334,433 1,152 (0.3%) 0.1 kbit/s
2.0 Mbit/s 670,381 11,809 (1.8%) 1.2 kbit/s
4.0 Mbit/s 1,401,768 34,650 (2.5%) 3.5 kbit/s
6.0 Mbit/s 1,932,917 52,337 (2.7%) 5.2 kbit/s
8.0 Mbit/s 2,389,675 69,925 (2.9%) 7.0 kbit/s

Table 9.4.2:  Total number of VLCs and number of Ic-VLCs in the intracoded macro blocks
of 10 seconds MPEG-2 video coded using different bit rates and the maximum label bit rate.

If also the Ic-VLCs in the intercoded blocks are used, the maximum label bit rate
increases to 29 kbit/s. The results of this experiment are listed in Table 9.4.3. In this
case the “number of VLCs” equals the number of all coded DCT coefficients in the
intracoded and intercoded macro blocks, including the fixed length coded
coefficients and the DC-values.

Video bit rate Number of Number of Ic-VLCs | Max. label bit rate
VLCs
1.4 Mbit/s 350,656 1,685 (0.5%) 0.2 kbit/s
2.0 Mbit/s 1,185,866 30,610 (2.6%) 3.1 kbit/s
4.0 Mbit/s 4,057,786 135,005 (3.3%) 13.5 kbit/s
6.0 Mbit/s 7,131,539 222,647 (3.1%) 22.3 kbit/s
8.0 Mbit/s 10,471,557 289,891 (2.8%) 29.0 kbit/s

Table 9.4.3: Total number of VLCs and number of lc-VLCs in the intracoded and intercoded
macro blocks of 10 seconds MPEG-2 video, coded using different bit rates and the maximum
label bit rate.
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@) Unwatermarked [-frame (8 Mbit/s) (b) Watermarked I-Frame (8 Mbit/s)

i) Difference W(x,y)=I I, (8Mbit/s) (d) Difference W(x,y)=I I, (4Mbit/s)
label bit rate 29.0 kbit/s label bit rate 13.5 kbit/s

Figure 9.4.3: Watermarking by VLC parity bit modification.

9.4.23  Visual impact of the watermark

Informal subjective tests show that the watermarking process does not result in any
visible artefacts in the streams coded at 4, 6 and 8 Mbit/s. It was not possible to
reliably evaluate the quality degradation due to watermark embedding at less than 2
Mbit/s, because the unwatermarked MPEG-streams are already of poor quality, as
these contain many compression artefacts. Although the visual degradation of the
video due to the watermarking is not noticeable, the degradations are numerically
measurable. In particular the maximum local degradations and the drift due to
accumulation are relevant. In Figure 9.4.3a an original I-frame of the “sheep
sequence” is represented. The sequence is MPEG-2 encoded at 8 Mbit/s. Figure
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9.4.3b shows the corresponding watermarked frame. In Figure 9.4.3c the strongly
amplified difference between the original I-frame and the watermarked frame is
presented. Figure 9.4.3d shows the difference between the original I-frame coded at
4 Mbit/s and the corresponding watermarked frame. Since more bits are stored in an
I-frame of a video stream coded at 8 Mbit/s, more degradations are introduced
(Figure 9.4.3¢) than in an I-frame of a video stream coded at 4 Mbit/s (Figure 9.4.3d).

According to Figure 9.4.3 most differences are located around the edges and in
the textured areas. The smooth areas are left unaffected. In order to explain this
effect the location of the Ic-VLCs is investigated. In Figure 9.4.4 a histogram is shown
of the “sheep sequence” coded at 8 Mbit/s. The number of all VLCs (including the
fixed length codes) that code non-zero DCT coefficients and the number of Ic-VLCs
are plotted along the logarithmic vertical axis, represented by respectively white and
gray bars. The DCT coefficient index scanned in the zigzag order ranging from 0 to
63 is shown on the horizontal axis.

Number of

DCT-Coefficient index scanned in zigzag order

Figure 9.4.4: Number of VLCs and Ic-VLCs in 10s MPEG-2 video coded at 8Mb/s.

Figure 9.44 shows that the Ic-VLCs are fairly uniformly distributed over the DCT-
spectrum. Therefore, we can expect each non-zero DCT coefficient represented by a
VLC to have an equal probability of being modified. If we take into account that
according to Table 9.4.3 at most 3.3% of all VLCs are Ic-VLCs, the probability of a
VLC being modified can roughly be estimated as follows:

P[VLC modified] = P[VLC = Ic-VLC] - Pllabel bit = LSB level VL(] (94.1)
P[VLC modified] < 0.033 - %2 =0.016
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Smooth blocks are coded with only one or a few DCT coefficients. Because only 1.6%
of them is replaced, most of the smooth areas are left unaffected. The textured blocks
and the blocks containing sharp edges are coded with far more VLCs. These blocks
will therefore contain the greater part of the Ic-VLCs.

The maximum local degradation (the number of Ic-VLCs per block) must be as

low as possible. The visual impact of the watermarking process will be much smaller
if the degradations introduced by modifying an lc-VLC are distributed more or less
uniformly over the frame, instead of concentrated and accumulated in a relatively
small area of the frame, or even worse, accumulated in a single DCT-block.
In Figure 9.4.5 a histogram is shown of 10 seconds of the watermarked “sheep
sequence” coded at 8 Mbit/s. On the vertical axis the number of lc-VLCs per 8x8
block is shown. The number of 8x8 blocks that contain this amount of Ic-VLCs is
plotted along the logarithmic horizontal axis.

30 Video bit rate: 8 Mbit/s

2 Label bit rate: 29 kbit/s

g
=
o

=3
8

—
w

Number of lc-VLCs per 8x8 block
]
=

7 186662
0 7 1422845

1 10 100 1000 10000 100000 1000000 10000000
Number of 8x8 blocks

Figure 9.4.5: Log histogram of the number of Ic-VLCs per 8x8 block.

This figure shows that 87% of all coded 8x8 blocks do not contain any Ilc-VLC. The
rest of the coded 8x8 blocks contain one or more Ic-VLCs. Most blocks (186.662)
contain only one Ic-VLC, which is about 64% of all Ic-VLCs in the sequence. These
numbers can be explained by Table B.14 and B.15 of the MPEG-2 standard [ISO96].
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The most frequently occurring run-level pairs are coded with short VLCs. Almost all
short VLCs do not qualify as an Ic-VLC. This means that the chance of a large
number of lc-VLCs in one 8x8 block is relatively low.

To limit the maximum number of Ic-VLC replacements per DCT-block to T,, we
can use a threshold mechanism. If the number of Ic-VLCs exceeds T,, only the first T,
Ic-VLCs are used for the watermark embedding; the other Ic-VLCs are left
unchanged. In Table 9.4.4 the label bit rates for the “sheep sequence” coded at 8
Mbit/s are listed for several values of T,. If at most two Ic-VLC replacements per
block are allowed (T, = 2), the label bit rate is only decreased to 83% of the
maximum label bit rate for which T, = unlimited. So by limiting the number of Ic-VLC
replacements per block we can avoid unexpected large local degradations without
drastically affecting the maximum label bit rate.

T _=max. lc-VLC replacements per block Max. label bit rate
2 24.2 Kbit/s
4 26.9 Kbit/s
6 28.1 Kbit/s
8 28.6 Kbit/s
10 28.8 Kbit/s
Unlimited 29.0 Kbit/s

Table 9.4.4: Label bit rates using a threshold for at most T, Ic-VLC replacements per 8x8
DCT-block (Video bit rate 8 Mbit/s).

94.24  Drift

In an MPEG-video stream P-frames are predicted from the previous I- or P-frame.
The B-frames are predicted from the two nearest I- or P-frames. Since intracoded and
intercoded macro blocks are used for the watermark embedding, errors are
introduced in all frames. However, error accumulation (drift) from the frames used
for the prediction occurs in the predicted P- and B-frames. The drift can clearly be
seen in Figure 9.4.6, where the difference AMSE = MSE-MSE, is plotted. The MSE, is
the Mean-Square-Error (MSE) per frame between the original uncoded “sheep
sequence” and the “sheep sequence” coded at 8 Mbit/s. The MSE, is the MSE per
frame between the uncompressed sequence and the watermarked sequence coded at
8 Mbit/s.

In Figure 9.4.6 it can be seen that the I-frames (numbered 1,13,25,37...) have the
smallest AMSE; in the worst case the AMSE of a predicted B-frame is 2 to 3 times
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larger than the error in the I-frames. The average Peak Signal-to-Noise Ratio (PSNR)
between the MPEG-compressed original and the uncompressed original is 37dB. If
the watermarked compressed video stream coded at 8 Mbit/s is compared with the
original compressed stream, the AMSE causes an average APSNR of 0.1dB and a
maximum APSNR of 0.2dB. From these APSNR values we conclude that the drift can
be neglected and no drift compensation signal is required.

0.6
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Figure 9.4.6: AMSE of the watermarked “sheep sequence” coded at 8 Mbit/s with a label bit
rate of 29.0 kbit/s.

9.4.3 Robustness

A large label bit stream can be added and extracted in a very fast and simple way,
but it can also be removed without significantly affecting the quality of the video.
However, it still takes a lot of effort to completely remove a label from a large MPEG
video stream. For example, decoding the watermarked MPEG-stream and encoding
it again using another bit rate will destroy the label bit string. But re-encoding is an
operation that is computationally demanding and requires a high capacity disk.

The easiest way to remove the label is by watermarking the stream again using
another label bit stream. In this case the quality is slightly affected. During the re-
labeling phase the adapted Ic-VLCs in the watermarked video stream can either
return to their original values or change to VLCs that represent DCTs that differ two
quantization levels from the original ones in the unwatermarked video stream. Non-
adapted Ic-VLCs in the watermarked video stream can change to a value that differs
one quantization level from the one in the original video stream. This means that
there is some extra distortion, although the quality is only slightly affected. Since re-
labeling of a large MPEG video stream still requires special hardware or a very
powerful computer, the bit domain watermarking method is more suitable for
consumer applications requiring moderate robustness.
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9.5 Re-labeling resistant bit domain
watermarking method

By reducing the payload of the watermark drastically we can easily change the bit
domain watermarking algorithm described in Section 9.4.1 to a re-labeling resistant
algorithm. The watermark label bits b, are now not stored directly in the least
significant bits of the VLCs, but a 1-dimensional pseudorandom watermark pattern
W(x) is generated consisting of the integers {-1,1}, based on a secret key, which is
modulated with the label bits b, as described in Section 8.2.2. The procedure to add
this modulated pattern to the video stream is similar to the procedure described in
Section 9.4.1.

However, we now select only those VLCs for which two other VLCs exist
having the same run length and the same codeword length. One VLC must have a
level difference of +6 and the other VLC must have a level difference of -6. Most lc-
VLCs meet these requirements for a relatively small & (e.g. § = 1,2,3). For notational
simplicity we call these VLCs pattern-carrying VLCs (pc-VLCs).

Original MPEG video stream

LSB -1
pc-VLCs

LSB +1

Pattern W W W,=-1 W

Watermarked MPEG video stream

Figure 9.5.1: Example of the re-labeling resistant watermarking method.

To embed a watermark in a video stream, we simply add the modulated watermark
pattern to the levels of the pc-VLCs. To extract the watermark, we collect the pc-VLCs
in an array. The watermark label bits can now be retrieved by calculating the
correlation between this array of pc-VLCs and the secret watermark pattern W(x). In



224 CHAPTER 9

Figure 9.5.1 an example is given of the watermark embedding process. About
1,000...10,000 pc-VLCs are now required to encode one watermark label bit b, , but
several watermark label bit strings can be added without interfering with each other,
if independent pseudorandom patterns are used to form the basic pattern W(x).

9.6 Conclusions

The most efficient way to reduce the complexity of real-time watermarking
algorithms is to avoid computationally demanding operations by exploiting the
compression format of the host video data. An advantage of this approach is that the
watermark automatically becomes video content dependent. Since lossy
compression algorithms discard the video information to which the human visual
system is less sensitive and only encode visual important information, the
watermark is only embedded in visual important areas. A disadvantage of closely
following a compression standard and applying the constraint that the compressed
video stream may not increase in size is that the number of locations to embed
watermark information is limited significantly. The distortions caused by a
watermark that is applied on a compressed video stream differ also from the
distortions caused by a watermark applied on an uncompressed video stream. Due
to block-based transformations and motion compensated frame prediction,
distortions may spread over blocks and accumulate over the consecutive frames.

In this chapter we discussed four low complexity watermarking algorithms.
The first correlation-based algorithm only uses the DC-coefficients. Although the
algorithm can be performed completely in the coefficient domain, the low frequency
watermark causes too many visible artefacts. The second correlation-based method
does not only take into account the DC-coefficients, but also the AC-coefficients and
applies drift compensation to prevent that the watermark becomes visible. Since it
utilizes more locations to embed the watermark energy, the watermark is more
robust. However, adding a drift compensation signal and extracting the watermark
information cannot be performed in the coefficient domain, since a full MPEG
decoding operation is required. The algorithm is therefore more complex than an
algorithm that can be applied completely in the coefficient domain. The third LSB-
modification method that we proposed fully operates in the bit domain, and is
therefore the method that is computationally most efficient, but the least robust.
Other advantages of this method are the enormous payload and the invisibility of
the watermark. The fourth method extends the LSB-modification method and
achieves a higher robustness by reducing the payload of the watermark.
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There are two important differences between the correlation-based methods
and the LSB-modification methods. A watermark embedded by a correlation-based
method can still be extracted from the decoded raw video, since the watermarking
procedure adds a spatial noise pattern to the pixel values. If the pixel values are
available in raw format or in another compressed format the watermark can still be
detected. Once a video stream watermarked by the LSB-modification methods is
decoded, the watermark is lost, because the watermark embedding and extraction
procedures are completely dependent on the MPEG structure of the video. This
structure disappears or changes when the video is decoded or re-encoded at another
bit rate. Since full MPEG decoding and encoding is a task that is computationally
quite demanding, this is not really an issue for consumer applications requiring
moderate robustness. Furthermore, correlation-based methods and LSB-
modification methods differ considerably in complexity. LSB-modification methods
are computationally far more efficient since they can operate on the lowest level in
the bit domain.

For real-time applications that require the same level of robustness as the
correlation-based methods but do not have enough computational power to perform
full MPEG decoding for drift compensation and watermark detection, we have
developed a completely new watermarking concept, which is presented in Chapters
10 and 11.
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Chapter 10

Differential Energy
Watermarks (DEW)

10.1 Introduction

In Chapter 9 we noticed that correlation-based watermarking techniques have the
advantage that watermarks can be extracted from decoded or re-encoded video
streams. However, in order to embed or detect an invisible correlation-based
watermark, a full MPEG decoding operation is required. This might be
computationally too demanding. On the other hand, we have seen that the Least
Significant Bit (LSB) based algorithms are computationally highly efficient. But
watermarks embedded by these algorithms cannot be extracted from decoded or re-
encoded video streams. For real-time consumer applications that require the same
level of robustness as the correlation-based methods and the same computational
efficiency as the LSB-based methods, we therefore developed the Differential Energy
Watermarking (DEW) concept [Lan97a}, [Lan97b], [Lan98a] and [Lan99b]. As can be
seen in Figure 10.1.1 the DEW concept can be applied directly on MPEG/JPEG
compressed video as well as on raw video.

In the case of MPEG/JPEG encoded video data, the DEW embedding and
extracting procedures can be performed completely in the coefficient domain (see
Section 9.2). The encoding parts of the coefficient-domain watermarking concept can
even be omitted. This means that the complexity of the DEW algorithm is only
slightly higher than the LSB-based methods discussed in Section 9.4, but its
complexity is considerably lower than the correlation-based method with drift
compensation discussed in Section 9.3.

227
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The application of the DEW concept is not limited to MPEG/JPEG coded video only;
it is also suitable for video data compressed using other coders, for instance
embedded zero-tree wavelet coders [Sha93]. The DEW algorithm embeds label bits
by selectively discarding high frequency coefficients in certain video frame regions.
The label bits of the watermark are encoded in the pattern of energy differences
between DCT blocks or hierarchical wavelet trees.

DEW DEW DEW
Embedding Embedding / Extracting Extraction
| |
v v v
F  WPEEG™ F  BWweEe™ OV
Encoder Decoder
Raw Video Bit Stream Raw Video

Figure 10.1.1: DEW embedding / extracting in compressed and raw video.

In Section 10.2 the general DEW concept for MPEG/JPEG coders is explained,
followed by a more detailed description in Section 10.3. In Section 10.4 the DEW
concept is evaluated for MPEG compressed video. Section 10.5 explains the general
DEW concept for embedded zero-tree wavelet coded video. Finally the results are
discussed in Section 10.6.
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Figure 10.2.1: Label bit positions and region definitions in a frame.
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10.2 The DEW concept for MPEG/JPEG encoded video

The Differential Energy Watermarking (DEW) method embeds a watermark
consisting of [ label bits b,. (j=0,1,2,..,1I1) in a JPEG image or in the I-frames of an
MPEG video stream. Each bit out of the label bit string has its own label-bit-carrying
region, the lc-region, consisting of n 8x8 DCT luminance blocks.
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Figure 10.2.2: Energy definitions in an Ic-region of n=16 8x8 DCT blocks.

For instance the first label bit is located in the top-left-corner of the image or I-frame
in an lc-region of n=16 8x8 DCT blocks, as illustrated in Figure 10.2.1. The size of this
lc-region determines the label bit rate. The higher n, the lower the label bit rate. In
case the video data is not DCT compressed, but in raw format, the DEW algorithm
requires a block-based DCT transformation as preprocessing step.

A label bit is embedded in an Ic-region by introducing an “energy” difference
D between the high frequency DCT coefficients of the top half of the lc-region
(denoted by lc-subregion A) and the bottom half (denoted by B). The energy in an lc-
subregion equals the squared sum of a particular subset of DCT coéfficients in this
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Ic-subregion. This subset is denoted by 5(c), and is illustrated in Figure 10.2.2 by the
white triangularly shaped areas in the DCT-blocks.

We define the total energy in S(c), computed over the n/2 blocks in subregion A
as:

n/2-1

EenQ,)= > Y. (8., ) (10.2.1)

d=0 &S(c)

Here 6, denotes the non-weighted zigzag scanned DCT coefficient with index i in
the d-th DCT block of the lc-subregion A under consideration. The notation
U0 e indicates that, prior to the calculation of E,, the DCT coefficients of JPEG
compressed video are optionally re- or pre-quantized using the standard JPEG
e FOr embedding labels bits
into MPEG compressed I-frames a similar approach can be followed, but here we
restrict ourselves to the JPEG notation without loss of generality. The pre-

quantization procedure [Pen93] with quality factor Q,

quantization is done only in determining the energies, but is not applied to the actual
video data upon embedding the label. The energy in lc-subregion B, denoted by E,,
is defined similarly.

S(c) is typically defined according to a cutoff index c in the zigzag scanned DCT
coefficients.

S(c) = {he {1,63} | (h=0)) (10.2.2)

The selection of suitable cutoff indices for lc-regions is very important for the
robustness and the visibility of the label bits and will be discussed in the next
section. First we focus on how the watermarking procedure works, assuming that
we have available suitable cutoff indices ¢ for each lc-region. The energy difference
D between top and bottom half of an lc-region is defined as:

D(cn,Q,.) = EfenQ,.) - EcnQ,.) (10.2.3)

In Figure 10.2.2 the complete procedure to calculate the energy difference D of an lc-
region (n=16) is illustrated.

We now define the label bit value as the sign of the energy difference D. Label
bit “0” is defined as D>0 and label bit “1” as D<0. The watermark embedding
procedure must therefore adapt E, and E, to manipulate the energy difference D. If
label bit “0” must be embedded, all energy after the cutoff index in the DCT-blocks
of le-subregion B is eliminated by setting the corresponding DCT coefficients to zero,
so that:
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D=E, -E, = E,-0 = +E, (10.2.4)

A
If label bit “1” must be embedded, all energy after the cutoff index in the DCT-blocks
of lc-subregion A must be eliminated, so that:

D=E,-E, = 0-E, = -E, (10.2.5)

There are several reasons for computing this energy difference over the triangularly
shaped areas. The most important reason is that it is easy to calculate the difference in
energy and to change E, and E; accordingly in the compressed stream. All DCT
coefficients needed for the calculation of E, or E, are conveniently located at the end
of the compressed 8x8 DCT-block after zigzag ordering. The coefficients can be
forced to zero to adapt the energy without re-encoding the stream by shifting the
end of block marker (EOB) towards the DC-coefficient. Figure 10.2.3 illustrates the
procedure of calculating E in a single compressed DCT-block and changing E by
removing DCT coefficients located at the end of the zigzag scan (i.e. high frequency
DCT coefficients).

8x8 DCT-block
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Figure 10.2.3. Calculating and adapting energy in an 8x8 compressed DCT-block.
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Adding a watermark by removing coefficients has two advantages. Since no
coefficients are adapted or added to the stream, the encoding parts of the coefficient
domain watermarking concept can be omitted, as illustrated in Figure 10.2.4. This
means that the DEW algorithm has only half the complexity of other coefficient
domain watermarking algorithms.
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Figure 10.2.4. Complexity difference between the DEW algorithm and other Coefficient
domain watermarking algorithms.

Furthermore, removing coefficients will always reduce the size of the watermarked
compressed video stream compared to the unwatermarked video stream. If it is
necessary that the watermarked compressed video stream keeps its original size,
stuffing bits can be inserted before each macro block.

10.3 Detailed DEW algorithm description

The energies present in lc-subregions A and B defined by Equations 10.2.1 and 10.2.2
play a central role in the watermark embedding and extraction process. The values
of E, and E, are determined by 4 factors:

» the spatial content of the Ic-subregions A and B

e the number of blocks n per lc-region

e the pre- or re-quantization JPEG quality factor Q,.
o the size of subset S(c) (i.e. the triangularly shaped areas )
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If the spatial content of an lc-region is very smooth and only coded by de DC-DCT
coefficients, the AC-energy will be zero. The energy will be larger for regions
containing a lot of texture or edges. The more DCT-blocks are taken to form the lc-
region, the higher the energy will be, since the energy is the sum of the energies in
all individual DCT-blocks in the lc-region.

The optional pre- or re-quantization JPEG quality factor Q,  controls the
robustness of the watermark against re-encoding attacks. In a re-encoding attack the
watermarked video data is partially or fully decoded and subsequently re-encoded
at a lower bit rate. Our method anticipates the re-encoding at lower bit rates up to a
certain minimal rate. The smaller Q. is chosen, the more robust the watermark is
against re-encoding attacks. However, the smaller Q,. 18 chosen, the smaller the
energies E, and E, will be, since most high frequency coefficients are quantized to
zero, and can no longer contribute to the energy.
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(a) Subset 5(c) of DCT coefficients defined by zigzag scan and cutoff index

.I.. I‘

(b) Energy dependent on subset size

Figure 10.3.1: (a) Examples of subsets and (b) energies for several cutoff indices.

The size of subset 5(c) (Equation 10.2.2) is determined by the standard zigzag scan
and a cutoff index c. If the zigzag scanned DCT coefficients are numbered from 0 to
63, where the coefficient with index 0 represents the DC-component and the
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coefficient with index 63 represents the highest frequency component. This subset
consists of the DCT coefficients with indices c...63 (c>0). In Figure 10.3.1 some
examples are shown of subsets defined by increasing cutoff indices. The
corresponding experimentally determined energies are plotted below. This figure
shows that increasing the cutoff index decreases the energy.

To enforce an energy difference, the watermark embedding process has to
discard all DCT coefficients in the subset S(c) in lc-subregion A or B. Since discarding
coefficients introduces visual distortion, the number of discarded DCT coefficients
has to be minimized. This means that the watermark embedding algorithm has to
find a suitable cutoff index for each lc-region that defines the smallest subset S(c) for
which the energy in both lc-subregions A and B exceeds the desired energy
difference. To find the cutoff index that defines the desired subset, we first calculate
the energies E (c,n,Q,,) and E(c,n,Q,,) for all possible cutoff indices ¢ = 1...63. If D is
the energy difference that is needed to represent a label bit in an lc-region, the cutoff
index ¢ is found as the largest index of the DCT coefficients for which (10.2.1) gives
an energy larger than the required difference D in both subregions A and B.

8x8 requantized DCTs
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Figure 10.3.2: Embedding label bit b=0 in an lc-region of n=2 DCT blocks.

In controlling the visual quality of the watermarked video data, we wish to avoid
the situation that the important low frequency DCT coefficients are discarded. For
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this reason, only cutoff indices larger than a certain minimum c,,, may be selected.
Mathematically, this gives the following expression for determining c:

c(nQ,.Dc,,)= maxic,,, max{ge {1,63} | (E A81,Q,) > DYA(EL81,Q,,)> D)} (103.1)

Figure 10.3.2 shows an example of the embedding of label bit b;=0 with an energy
difference of D=500 in an lc-region consisting of n=2 DCT blocks. The maximum
cutoff index for which the energy E, exceeds D=500 is 35, while for E, a cutoff index
of 36 is sufficient. This means that the algorithm must select a cutoff index c of 35 so
that both lc-subregions A and B have sufficient energy. Since the label bit to be
embedded is zero, a positive energy difference has to be enforced by setting E, to
zero (Equation 10.2.4). This is done by discarding all non-zero DCT coefficients with
indices 35...63 in lc-subregion B.

To extract a label bit from an lc-region we have to retrieve the cutoff index that
was used for that lc-region during the embedding process. We therefore first
calculate the energies E,(c,n,Q,,) and E(cn,Q,.) for all possible cutoff indices ¢ =
1...63. Since either in lc-subregion A or lc-subregion B several DCT coefficients have
been eliminated during the watermark embedding, we first find the largest index of
the DCT coefficients, for which Equation 10.2.1 gives an energy larger than a
threshold D’<D in either of the two lc-subregions. The actually used cutoff index is
then found as the maximum of these two numbers:

™ (n,Q’,,,D’) = max { max{ge {1,63} | E,(gn,Q",.)>D’},

jpeg

maxige {1,63} | Egn,Q’,.)>D'}) (10.3.2)

Jreg
which are used in the embedding phase. The detection

In the above procedure, the parameters D’ and Q
parameters D and Q,,,
threshold D’ influences the determination of the cutoff index. This value must be
smaller than the enforced energy difference D, but larger than 0. If D" = 0 the label

can be extracted correctly, but only if the video stream is not affected by processing

can be chosen equal to the

like adding noise, filtering or re-encoding. However, if a small amount of noise is
introduced in the highest DCT coefficients, cutoff indices will be detected which are
higher than the originally enforced ones. D’ determines which amount of energy will

be seen as noise. The re-quantization step can also be omitted (Q’,,,=100) without

significantly influencing the reliability of the label bit extraction. Since Q,,.

not fixed parameters but may vary per image, the label extraction procedure must be

and D are

’

able to determine suitable values for Q’, and D’ itself. The most reliable way for
doing this is to start the label bit string with several fixed label bits, so that during
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’

the label extraction those values for Q’, . and D’ can be chosen that result in the

fewest errors in the known label bits.
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Figure 10.3.3: Extracting label bit b, from an Ic-region of n=2 DCT blocks.

In Figure 10.3.3 an example is given of the extraction of label bit b, from the lc-region
consisting of n=2 DCT blocks watermarked in Figure 10.3.2. For the extraction
D’=D=500 is used. The maximum cutoff index for which the energy E, exceeds
D’=500 is 35; for E, this cutoff index is 33. This means that the watermark embedding
algorithm has used a cutoff index of 35. The energy difference E,(35)-E,(35)=+725.
Since the energy difference is positive, the value zero is assigned to label bit b,.

The algorithm applied in this form is heavily dependent on the video content.
Figure 10.3.4 shows several examples of this content dependency. In Figure 10.3.4a
an lc-region is depicted in which the lc-subregions A and B both contain edges,
smooth and textured areas. These are typical examples of regions with average
energy in the AC DCT coefficients. In this case, the watermark embedding
procedure will select a subset 5(c) with a cutoff index somewhere in the middle of
the range 1...63. This means that some coefficients in the highest and middle
frequency bands are discarded. If the amount of energy that is discarded in these
frequency bands is limited, the label bit will not be noticeable. Since re-quantization
by re-encoding at a lower bit rate will not seriously affect the energy difference in
the middle frequency band, the label bit will survive a re-encoding attack.
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Figure 10.3.4: Examples of subset sizes depending on video content.

In Figure 10.3.4b two lc-regions are presented in which the lc-subregions are both
very smooth or both very textured. If there is not much energy in a smooth lc-region,
a very large subset S(c) has to be chosen. This means that low frequency DCT
coefficients are discarded. The human eye is quite sensitive to these, so block
artefacts and distorted edges are the result. If there is much energy in a textured lc-
region, a very small subset S(c) is sufficient to find the required energy difference.
Since here only the highest frequency components are discarded, the label bit will
not be noticeable. However, since re-quantization by re-encoding at a lower bit rate
will seriously affect the energy difference in the highest frequency bands, the label
bit will not survive a re-encoding attack.

The worst-case situation is depicted in Figure 10.3.4c, where one lc-subregion is
completely smooth, while the other one is textured and contains sharp edges. If a
positive energy difference D = E, - E, must be generated in this lc-region, all AC
DCT coefficients in lc-subregion B must be eliminated by selecting an extremely
large subset S(c) to make E, >E,. The presence of the label bit obviously becomes
clearly visible in lc-subregion B.
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From these situations we conclude that it is not desirable to select very small subsets
5(c) defined by high cutoff indices, since energy differences embedded in the highest
frequency bands do not survive re-encoding attacks. Furthermore, the selection of
large subsets defined by low cutoff indices should be avoided, since energy
differences enforced in the lowest frequency bands cause visible artefacts like
blocking and distortion of sharp edges.

Label:@0®1001@1011101 ..

Ic-region:
6 8x8
blocks

1 8x8
block

lc-subregion:

I-frame I-frame in which all 8x8 blocks are randomly shuffled

Figure 10.3.5: Label bit positions and region definitions in a shuffled frame.

In order to avoid the use of an extremely high or low cutoff index, we
pseudorandomly shuffle all DCT-blocks in the image or I-frame using a secret key
prior to embedding the label bits, as illustrated in Figure 10.3.5.

This does not pose any problems when we use MPEG or JPEG streams in
practice, because effectively we now select randomly DCT-blocks from the
compressed stream to define an Ic-region, instead of spatially neighboring blocks. As
a result of the shuffling operation, smooth 8x8 DCT-blocks and textured 8x8 DCT-
blocks will alternate in the lc-subregions. The energy is now distributed more
equally over all lc-regions, significantly diminishing the chance of a completely
smooth or a completely textured lc-subregion. Another major advantage of the
shuffle operation is that each label bit is scattered over the image or frame, which
makes it impossible for an attacker to localize the lc-subregions. The complete
watermark embedding and extraction procedures are shown in Figure 10.3.6.
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Watermark embedding procedure:

 Shuffle all 8x8 DCT luminance blocks of an image or I-frame pseudorandomly
* FOR all label bits b, in label string L. DO

e Select Ic-subregion A consisting of 1/2 8x8 DCT-blocks,
Select lc-subregion B consisting of n/2 other blocks (Fig. 10.3.5)
e Calculate cutoff index c:

«(nQ,D.c,,) = max{c,,, max{ge {1,63} | (E,(§.1,Q,,) > D) A (E,(gnQ,) > D))}

ni2-1

where £ (c,n0,)=2 Y (6,.1,.)

d=0 €5(c)
S(c)=1the {1,63} | (h=¢)}

e IF (b= 0) THEN discard coefficients of area B in S(c)
IF (b, = 1) THEN discard coefficients of area A in 5(c)
¢ Shuffle all 8x8 DCT luminance blocks back to their original locations

Watermark extraction procedure:

* Shuffle all 8x8 DCT luminance blocks of an image or I-frame pseudorandomly
* FORall label bits b, in label string L DO
¢ Select ic-subregion A consisting of n/2 8x8 DCT-blocks,
Select lc-subregion B consisting of n/2 other blocks (Fig. 10.3.5)
¢ Calculate cutoff index ¢:

c‘“"“‘"(n,Q’m,D’) = max { max{ge {1,63} | E,(¢n,Q",.)> D"},
max{ge {1,63} | E(gnQ’,)>D}}
ni2-1

where £ (cn0,)= (©.4)o,, "

% 5o
S(c) =the {163} | (h=c)}
e Calculate energy difference:
D =E (" nQ ) - E™ Q')

IF (D>0) THEN 5=0
ELSE b=l

Figure 10.3.6: Complete procedure for watermark embedding and extraction.
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10.4 Evaluation of the DEW algorithm
for MPEG video data

10.4.1 Payload of the watermark

To evaluate the effect of the label bit rate on the visual quality of the video stream
we applied the DEW algorithm to the “sheep sequence” coded at different bit rates.
The label bit rate is fixed and determined by 1, the number of 8x8 DCT-blocks per lc-
region. In the experiments we omitted the optional re-quantization stage (Q,,,=100).
Over a wide range of sequences we have found a reasonable setting for the energy
difference D = 20 and the detection threshold D’ = 15. The cutoff indices ¢ for each
label bit are allowed to vary in the range from 6 to 63 (c,,=6). Informal subjective
tests show that the watermark, embedded with n = 32, is not noticeable in video
streams coded at 8 and 6 Mbit/s. If MPEG streams coded at a lower bit rate are
labeled with n = 32, blocking artefacts appear around edges of smooth objects. By
increasing n further to 64 we make these artefacts disappear in the MPEG stream
coded at 4 Mbit/s. At a rate of 1.4 and 2 Mbit/s the compression artefacts always
dominate the additional degradations due to watermarking.

min

Video bit rate n Discarded bits % Bit errors Label bit rate
1.4 Mbit/s 64 1.6 kbit/s 24.6 0.21 kbit/s
2.0 Mbit/s 64 4.6 kbit/s 0.1 0.21 kbit/s
4.0 Mbit/s 64 3.8 kbit/s 0.0 0.21 kbit/s
6.0 Mbit/s 32 7.2 kbit/s 0.0 0.42 kbit/s
8.0 Mbit/s 32 6.6 kbit/s 0.0 0.42 kbit/s

Table 10.4.1: Number of 8x8 DCT-blocks per bit, number of bits discarded by the
watermarking process, percentage label bit errors and label bit rate for the “sheep sequence”
coded at different bit rates.

In Table 10.4.1 the results of the experiments are listed. The third column shows the
number of bits discarded by the watermark embedding process. The fourth column
presents the percentage bit errors found by extracting the label L’ from the
watermarked stream and comparing L” with the originally embedded one, L. Bit
errors occur when the embedding algorithm selects cutoff indices below c,,,. In this
case the energy difference cannot be enforced. It appears that not enough high
frequency coefficients exist in the compressed stream coded at 1.4Mbit/s to create
the energy differences D for the label bits, since only 75% of the extracted label bits
are correct.
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10.4.2 Visual impact of the watermark

In Figure 10.4.1a the original I-frame of the MPEG-2 coded “sheep sequence” is
represented. The sequence is MPEG-2 encoded at 8 Mbit/s. Figure 10.4.1b shows the
corresponding watermarked I-frame. In Figure 10.4.1c the strongly amplified
difference between the original I-frame and the watermarked frame is presented.
Figure 10.4.1d shows the difference between the original I-frame coded at 4Mbit/s
and the corresponding watermarked frame.

(a) Unwatermarked frame I (8 Mbit/s) (b) Watermarked Frame [, (8 Mbit/s)

(c) Difference W(x,y)=I-I,, (8 Mbit/s)  (d) Difference W(x,y)=I-1,, (4 Mbit/s)
label bit rate 0.42 kbit/s label bit rate 0.21 kbit/s

Figure 10.4.1: DEW watermarking by discarding DCT coefficients.
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It appears that all degradations are located in DCT-blocks with a relatively large
number of high frequency DCT-components, textured blocks and blocks with edges.
If we compare Figure 10.4.1 with Figure 9.4.3, we see that the DEW watermarking
method causes fewer differences per frame than the LSB-based method described in
Section 9.4, although the differences per block are larger. If the Bit Domain Labeling
method is used, a DCT coefficient is only altered by one quantization level, while
here the DCT coefficients are completely discarded.

1000000 OVLCs in I/P/B-frames
. OVLCs in I-frames
- I A | - |- M Discarded VLCs
100000 -I'---. i ™ 0

10000

number of VLCs

i o —_

18
¥

DCT-Coefficient index scanned in zigzag order

Figure 10.4.2: Number of VLCs coding non-zero DCT coefficients in 10 s MPEG-2 video
coded at 8 Mbit/s vs. number of VLCs discarded by the watermark.

In Figure 10.4.2 a histogram is shown of the “sheep sequence” coded at 8 Mbit/s.
The number of all VLCs (including the fixed length codes) that code non-zero DCT
coefficients, the number of all VLCs in the I-frames and the number of discarded
VLCs are plotted along the logarithmic vertical axis. The DCT coefficient index
scanned in the zigzag order ranging from 0 to 63 is shown on the horizontal axis.
Figure 10.4.2 shows that only high frequency DCT coefficients with an index above
33 are discarded for this particular parameter setting.

The histograms of the cutoff indices in the “sheep sequence” coded at 1.4 and 8
Mbit/s are plotted in Figure 10.4.3. The minimum cutoff index for the “sheep
sequence” coded at 8 Mbit/s is 33; for a stream coded at 1.4 Mbit/s the minimum is
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equal to the minimum cutoff index c,,=6. The lower the bit rate is, the lower the
cutoff indices have to be because of the lack of high energy components in the
compressed video stream.

The visual impact of the labeling will be much smaller if the degradations
introduced by discarding DCT coefficients are distributed more or less uniformly
over the frame. Removing all VLCs from a few textured blocks will cause visible

artefacts.
O8Mbit/s
= B1.4M
2
=
x
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Figure 10.4.3: Histograms of the cutoff indices in an MPEG-2 sequence coded at 1.4 and 8
Mbit/s, label bit rates are respectively 0.21 kbit/s and 0.42 kbit/s.

In Figure 10.4.4 a histogram is shown of 10 seconds of the watermarked “sheep
sequence” coded at 8 Mbit/s. On the vertical axis the number of discarded VLCs per
8x8 DCT-block is shown. The number of 8x8 DCT-blocks that contain this amount of
discarded VLCs is plotted along the logarithmic horizontal axis.

It appears that 95% of all coded 8x8 blocks in the I-frames are not affected by
the DEW algorithm. From an lc-region only the DCT coefficients above a certain
cutoff index in the half, an Ic-subregion, are eliminated. This means that only a few
8x8 blocks from an Ic-subregion (average 10%) have energy above the cutoff index.
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Figure 10.4.4: Number of discarded VLCs per 8x8 DCT-block.

Like in the Bit Domain watermarking algorithm described in Section 9.4, per 8x8
block a limit T, can be set on the number of VLCs that are discarded during the
watermarking process. Whereas in the Bit Domain watermarking algorithm this
limit decreases the label bit rate, the DEW algorithm has a fixed label bit rate.
Instead, setting a limit T, affects the robustness of the label. If some DCT coefficients
in one 8x8 block of an Ic-subregion are not eliminated because the limit T,, prohibits it,
in the worst case one label bit error can occur if the label extracted from this stream
is compared with the originally embedded one. However, since each label bit is
dependent on n 8x8 blocks, the likelihood that this error occurs is relatively small.

T, =Max. number of discarded VLCs per Worst case % bit
block errors
2 17%
3 9%
4 5%
5 3%
6 2%
Unlimited 0%

Table 10.4.2. Worst case % label bit errors introduced by limit T,, the maximum number of
discarded VLCs per 8x8 block (Video bit rate 8 Mbit/s, Label bit rate 0.42 kbit/s).
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In Table 10.4.2 the worst case percentages of bit errors introduced in the label of the
“sheep sequence” coded at 8 Mbit/s are listed for several values of T,. By applying
proper error correcting codes on the label stream, we can greatly reduce the number
of VLCs to be removed. In this way we obtain a better visual quality without
significantly affecting the label retrieval.

10.4.3 Drift

Since P- and B-frames are predicted from I- and P-frames, the degradations in the I-
frames introduced by watermarking also appear in the predicted frames. Because
the P- and B-frames are only partially predicted from other frames and partially
intracoded, the degradations will fade out. No degradations are introduced in the
intracoded parts of the predicted frames by the labeling. The error fade-out can
clearly be seen in Figure 10.4.5, where the difference MSE-MSE, is plotted. The MSE,
is the Mean-Square-Error (MSE) per frame between the original uncoded “sheep
sequence” and the “sheep sequence” coded at 8 Mbit/s. The MSE, is the MSE per
frame between the uncompressed sequence and the watermarked sequence coded at
8 Mbit/s.
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Figure 10.4.5: AMSE of the watermarked “sheep sequence” coded at 8 Mbit/s with a label
bit rate of 0.42 kbit/s.

The average PSNR between the MPEG-compressed original and the uncompressed
original is 37dB. If the watermarked video stream coded at 8 Mbit/s is compared
with the original compressed stream, the AMSE causes an average APSNR of 0.06dB
and a maximum APSNR of 0.3dB. It appears that this method has less impact on the
average APSNR and more impact on the maximum APSNR than the method
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described in Section 9.4. From the APSNR values we conclude that no drift
compensation signal is required.

10.4.4 Robustness

Unlike the watermark embedded by means of the LSB-based methods described in
Section 9.4, the watermark embedded by the DEW algorithm cannot be removed by
watermarking the video stream again using another watermark if another
pseudorandom block shuffling is used. Other, more time-consuming methods,
which are computationally more demanding and require a larger memory (disk)
have to be applied to the watermarked compressed video stream in an attempt to
remove the watermark. For simple filtering techniques the compressed stream must
be decoded and completely re-encoded. A less complex method requiring lesser disk
space, but which is still computationally highly demanding would be transcoding.
To see if the watermark is resistant to transcoding or re-encoding at a lower bit rate,
we performed the following experiment. The “sheep sequence” is MPEG-2 encoded
at 8 Mbit/s and this compressed stream is watermarked {n = 32). Hereafter, the
watermarked video sequence is transcoded at different lower bit rates.

40 -
35
30 4
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20
15
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54
0 —————————
4 45 5 55 6 65 7 75 8
Video bit rate

Label bit rate 0.42 |

% bit errors

Figure 10.4.6: % Bit errors after transcoding a watermarked 8 Mbit/s MPEG-2 sequence at
a lower bit rate.

The label bit strings are extracted from the transcoded video streams and each label
bit string is compared with the originally embedded label bit string. If 50% bit errors
are made the label is completely removed. The bit errors introduced by decreasing
the bit rate are represented in Figure 10.4.6. We see that if the video bit rate is
decreased by 25%, only 7% label bit errors are introduced. Even if the video bit rate
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is decreased by 38%, 79% of the label bit stream can be extracted correctly. Error
correcting codes can further improve this result.

To embed a label bit in an lc-region, the DEW algorithm removes some high
frequency DCT coefficients in one of the lc-subregions. This can be seen as locally
applying a low-pass filter to an lc-subregion. To detect the label bit, the amount of
high frequency components in the two lc-subregions is compared. If small
geometrical distortions are applied to the video data, e.g. shifting, there is a
mismatch between the lc-regions chosen during the embedding phase and the lc-
regions chosen during the detection phase. Parts of the lc-region chosen during the
embedding phase are in the detection phase replaced by adjacent lc-regions.
Although the adjacent lc-regions introduce high frequency components in the low-
pass filtered lc-subregions, the difference in high frequency components is still
measurable if the geometrical distortions are relatively small. The DEW algorithm
should therefore exhibit some degree of resistance to geometrical distortions like line
shifting. The experiments performed in the next chapter show that the DEW
algorithm is resistant to line shifts up to 3 pixels.

10.5 Extension of the DEW concept
for EZW-coded images

The DEW concept is not only suitable for MPEG/JPEG compressed video data, but
can also be applied to video compressed using embedded zero-tree wavelets
[Sha93]. For an explanation about wavelet-based compression the reader is referred
to [Aka96], [Bar94] and [Vet95]. In MPEG/JPEG compressed video data the natural
starting point for computing energies and creating energy differences is the DCT-
block. In embedded zero-tree wavelet compressed video data the natural starting
point is the hierarchical tree structure. Instead of embedding a label bit by enforcing
an energy difference between two lc-subregions of DCT-blocks, we now enforce
energy differences between two sets of hierarchical trees. Figure 10.5.1 shows a
typical tree structure that is used in the wavelet compression of images or video
frames.

As can be seen in Figure 10.5.1, a tree in this 3-level wavelet decomposed image
or video frame starts with a root Discrete Wavelet Transform (DWT) coefficient in
the LL, band and counts 64 DCT coefficients. Unlike in the DCT situation, where the
discarding of high frequency DCT coefficients is implicitly restricted by the zigzag
scan order, in wavelet compressed video data different ways of pruning the
hierarchical trees can be envisioned.
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Figure 10.5.1: Hierarchical tree structure of a DWT 3-level decomposition.

The simplest way of removing energy is to truncate the trees below the hierarchical
levels. A scheme in which trees are pruned coefficient-by-coefficient allows for fine-
tuning the energy difference and for minimization of the visual impact. Therefore
we have numbered the DWT coefficients of the hierarchical tree and defined a
pseudo zigzag scan order, as illustrated in Figure 10.5.2.

This pseudo zigzag order is not the only possible way to order the DWT
coefficients. More sophisticated orderings are possible, which take the human visual
system into account. The advantage of using the straightforward numbering defined
by Figure 10.5.2 is that we can use the same scheme as we used for the DCT
situation. Only two minor changes are required. First, the quantization step in the
energy definitions has to be adapted, as the DWT coefficients are now optionally re-
or pre-quantized using a uniform quantizer instead of the standard JPEG
quantization procedure. Second, not the 8x8 blocks are shuffled, but the roots of the
hierarchical trees are pseudorandomly shuffled.

The complete procedure to calculate the energy difference in an lc-region is
illustrated in Figure 10.5.3. In Figure 10.5.4a an example is given of the DEW
algorithm applied to the embedded zero-tree wavelet coded “Lena image” using a 3-
level wavelet decomposition. Here a label bit string of 64 label bits is embedded, for
which end lc-regions of 64 hierarchical trees are used. One can see clearly that the
watermark in this variation of the DEW algorithm also adapts to the image content.
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Figure 10.5.2: DWT coefficient numbering and pseudo zigzag scan order.

n pixel n/2 DWT- n/2 (re-) quantized
blocks trees DWT-trees

+
Eg=3(dwt in—)?

T,
/D’m

le-region le-subregions

Cutoff indexc —

Figure 10.5.3: Energy difference calculation in an Ic-region.
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(a) Watermarked image (b) Difference W(x,y)=I(x,y)-I,.(x.y)

Figure 10.5.4: Level 3 EZW coded image watermarked using the DEW concept.

10.6 Conclusions

In this chapter we introduced the Differential Energy Watermarking (DEW) concept.
Unlike the correlation-based method with drift compensation described in Section
9.3.2, the DEW embedding and extraction algorithm can completely be performed in
the coefficient domain and does not require a drift compensation signal. The
encoding parts of the coefficient domain watermarking concept can even be omitted.
The complexity of the DEW watermarking algorithm is therefore only slightly
higher than the LSB methods described in Section 9.4. Furthermore, the DEW label
bit rate is about 25 times higher than the label bit rate of the correlation-based
methods described in Section 9.3. Like these correlation-based methods, a
watermark embedded with the DEW concept can also be embedded and extracted
from raw video data and the label string is resistant to re-labeling. Besides the low
complexity and the much higher label bit rate the advantages the DEW concept has
over other methods are that it provides a parameter Q, . to anticipate to re-encoding
attacks, that it exhibits some degree of resistance to geometrical distortions like line
shifting and that it is directly applicable to video data compressed using other
coders, for instance embedded zero-tree wavelet coders. Since many parameters are
involved in the watermark embedding process of the DEW algorithm (n, Q,,., D and
¢,..) heuristically determining optimal parameter settings is a quite elaborate task.
Therefore in the next chapter a statistical model is derived that can be used to find
these optimal parameter settings for DCT based coders.



Chapter 11

Finding Optimal Parameters
for the DEW Algorithm

11.1 Introduction

The performance of the DEW algorithm proposed in the previous chapter greatly
depends on the four parameters used in the watermark embedding phase. All
parameters involved in the watermarking process are presented in Figure 11.1.

Video data I: .
2 : ; Extracted W:
frame or image—>{ Watermark Watermark LT 7 dhss
. L — . - & L‘ > ? E
Watermark W embedding > Iiy—>  extraction =3 bbb =
Sy algorithm algorithm e g s
Label bi string R ~Ties P
yom g : A A A A A A A
Lie Uplfyeasl
parameters: n Q, .. D ¢ n Q D’

Figure 11.1: Parameters involved in the DEW watermarking process.

The first parameter is the number of 8x8 DCT blocks n used to embed a single
information bit of the label bit string. The larger 7 is chosen, the more robust the
watermark becomes against watermark-removal attacks, but the fewer information
bits can be embedded into an image or a single frame of a video sequence.
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The second parameter controls the robustness of the watermark against re-encoding
attacks. In a re-encoding attack the watermarked image or video is partially or fully
decoded and subsequently re-encoded at a lower bit rate. Our method anticipates
the re-encoding at lower bit rates up to a certain minimal rate. Without loss of
generality we will elaborate on the re-encoding of JPEG compressed images, where
we express the anticipated re-encoding bit rate by the JPEG quality factor setting
Q- The smaller Q. , the more robust the watermark is against re-encoding attacks.
However, for decreasing Q. increasingly more (high to middle frequency) DCT
coefficients have to be removed upon embedding of the watermark, which leads to
an increasing probability that artifacts become visible due to the presence of the
watermark.

The third parameter is the energy difference D that is enforced to embed a label
bit. This parameter determines the number of DCT coefficients that are discarded.
Therefore, it directly influences the visibility and robustness of the label bits.
Increasing D increases the probability that artifacts become visible and increases the
robustness of the label.

The fourth parameter is the so-called minimal cutoff index c,,. This value
represents the smallest index — in zigzag scanned fashion — of the DCT coefficient
that is allowed to be removed from the image data upon embedding the watermark.
The smaller c,, is chosen, the more robust the watermark becomes but at the same
time, image degradations due to removing high frequency DCT coefficients may
become apparent. For a given c,,, there is a certain probability that a label bit cannot
be embedded. Consequently, sometimes a random information bit will be recovered
upon watermark detection, which is denoted as a label bit error in this chapter.
Clearly, the objective is to make the probability that label bit errors occur as small as
possible.

min

In order to optimize the performance of the DEW watermark technique, the
settings of the above-mentioned parameters have to be determined. In the previous
chapter we have used experimentally determined settings for these parameters. For
a given watermark and image or video frame this is, however, an elaborate process.
In this chapter we will show that it is possible to derive an expression for the label

bit error probability P, as a function of the parameters n, Q. and c,,. The relations

that we derive analytically describe the behavior of the watermarking algorithm,
and they make it possible to select suitable values for the three parameters (n, Q,,,
€...), as well as suitable error correcting codes for dealing with label bit errors
[Lan99b] and [Lan99¢]. Although the expressions in this chapter are derived and
validated for JPEG compressed images, they are also directly applicable to MPEG

compressed I-frames.
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In Section 11.2, we derive an analytical expression for the probability mass
function (PMF) of the cutoff indices. In Section 11.3, this PMF is verified with real-
world data. After deriving and validating the obtained PMF, we use the PMF to find
the probability that a label string cannot be recovered correctly in Section 11.4 and
the optimal parameter settings (1, Q,,., ¢,,,) in Section 11.5. Subsequently in Section
11.6, we experimentally validate the results from Section 11.5. The chapter concludes
with a discussion on the DEW watermarking technique and its optimization in
Section 11.7.

11.2 Modeling the DEW concept
for JPEG compressed video

When operating the DEW algorithm, different values for the cutoff index are
obtained. Insight in the actually selected cutoff indices is important since the cutoff
indices determine the quality and robustness of the DEW. Therefore, in this section
we will derive the probability mass function (PMF) for the cutoff index based on a
stochastic model for DCT coefficients. This PMF depends only on the parameters
Qe and 1.

11.2.1 PMF of the cutoff index
The optimal cutoff index varies per label bit that we wish to embed. Therefore, it can
be interpreted as a stochastic variable that depends on n, Qe D, and ¢

C(n,Q,.D.c,,)- Mathematically, this gives the following expression for determining
C (see Sections 10.2 and 10.3):

ie.

min/

C(nQ,.D.c,,)=max{c,,, max{ge {163} | (E,(g.1,Q,.)>D)A(E,(gn,Q,)>D)}} (11.2.1a)

ni2-1

where E (c,n,0,,) = Z([e,,d]gm ) (11.2.1b)
d

=0 i€ S(c)
S(c)=the {163} | (h=0)} (11.2.1¢)
In order to be able to compute the PMF of the cutoff index, we assume that the
energy difference D in Equation 11.2.1a is chosen in the range [1,D,,(Q,,)]. Here
D,.(Q,,) indicates the maximum of the range of energies defined by Equation

11.2.1b that do not occur in quantized DCT blocks because of the JPEG or MPEG
compression process.
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Figure 11.2.1: Energy histogram of E, , for a wide range of parameters (c,n,Q

ipex) .

Figure 11.2.1 illustrates this effect; it is a histogram of the energy E(c,n,Q,,) for a
wide range of values of ¢, n, and Q,_. We notice a clear “gap” in the histogram for
smaller energies, because DCT blocks with that small amount of energy can no
longer exist after compression.

In general the maximum D, (Q. ) depends on the extent to which the image

peg:
has been compressed, i.e. it depends on Q. . The smaller Q. the larger D, (Q, ).

ipeg”
Mathematically this relation is given by:

D (@) =(F(Qyeg) min(W, )|

(11.2.2)
FQ, e )= <50 / Q/’”g ijfg <50
7 \(100-Q,,,)/ 50 Qjpeg 250

where F(Q,,,) denotes the coarseness of the quantizer used, and W, is the i-th element

(i€ [cpin,03]) of the zigzag scanned standard JPEG luminance quantization table
[Pen93].

Theorem I:

If the enforced energy difference D is chosen in the range [1,D,,(Q,,)], where

D, (Q,.) is defined by Equation 11.2.2, and if we do not constrain the cutoff index
by c,,., the PMF of the cutoff index is given by:

min/
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P[C(1,Q,,)=c] = P[E(c;n,Q,)# O - P[E(c+1,1,Q,, )% OF (11.2.3)

jpeg

where E(cn,Q,,.
C(n,Q,,,) — besides being not constrained by c,,,

to the wide range of values in which D can be selected.

) is defined in Equation 11.2.1b. Observe that in this theorem
—is no longer dependent on D due

Proof:

We first rewrite the definition of the cutoff index in Equation 11.2.1a to avoid the
maximum operators as follows:

P[C(n,Q,,.,D)=c] = PLA(E(c,1,Q,,)>D) A (Ey(c1,Q,,)>D)} A
((EA(c+1,1,Q,)<D) v (E(c+1,n,Q, )<D)} ] (11.24)

In the following, we will drop the dependencies on n and Q,,, of the energies for
notational simplicity. To calculate Equation 11.2.4, we need to have an expression for
probabilities of the form P[E,(c)>D]. As illustrated by Figure 11.2.1, the histogram of
E (c) is zero for small E {(c)s because the quantization process maps many small DCT
coefficients to zero. As a consequence, the energy defined in Equation 11.2.1b is
either equal to O (for instance for large values of c), or the energy has a value larger
than the smallest non-zero squared quantized DCT coefficient in the Ic-subregion
under consideration. This value has been defined as D, (Q,,) in Equation 11.2.2.
Since we always choose the value of D smaller than D,,(Q,..), Equation 11.2.4 can be
simplified to:

PIC(n,Q.,.)=c] = P[ {(E,(c)}#0) A (E,(c#0)} A {(E, (c+1)=0) v (E,(c+1)=0)} ] (11.2.5)

jpeg
Due to the random shuffling of the positions of the DCT blocks, we can now assume
that E,c) and E,c) are mutually independent. Following several standard
probability manipulations, Equation 11.2.5 can then be rewritten as follows:

P[C(n)=c] = P[(E (c)}*0) A (E4(c)#0) A (E (c+1)=0)]
+P[(E (c)#0) A (E,(c)£0) A (E,(c+1)=0)] +
- P[(E,(c)20) A (E,(c)%0) A (E,(c+1)=0) A (Ey(c+1)=0)]
= PI(E,(c)}#0) A (E,(c+1)=0)] P[E(c)=0) ]
+P[(E,(c)20) A (E,(c+1)=0)] P[E,(c)#0)]
- P[(E,(©)%0) A (E (c+1)=0)] P[(E,(c)=0) A (E,(c+1)=0)] (11.2.6)

We first expand the first term of Equation 11.2.6 using conditional probabilities:
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P[(E,(c)#0) A (E,(c+1)=0)]
=1- P[(E,(c+1)=0) A (E (c)=0)] - P[(E ,(c+1)#0) A (E (c)=0)]
- P[(E,(c+1)=0) A (E (c)=0)]
=1-P[E,(c+1)=0 / E (c)=0] P[E,(c)=0]
- P[E (c)#0 /E (c+1)=0] P[E (c+1)=0]
- P[E,(c)=0 / E {(c+1)=0] P[E (c+1)»0] (11.2.7)

From the definition in Equation 11.2.1b we know that E,(c) is a strictly non-
increasing function. Therefore, if there is no energy above cutoff index ¢, i.e., E,(c)=0,
there is also no energy above c+1, i.e. E,(c+1)=0. This yields P[E,(c+1)=0 / E (c)=0] =
1. On the other hand, if there is energy above cutoff index c+1, the same amount of
energy or more must be present above cutoff index ¢, therefore P[E,(c)#0 /E (c+1)20]
=1and P[E,(c)=0 / E (c+1)#0] = 0. Substitution of these conditional probabilities into
Equation 11.2.7 gives the following result:

P[(E,(c)20) A (E,(c+1)=0)] =1 - P[E,(c)=0] - P[E,(c+1)%0]
= P[E,(c)#0] - P[E,(c+1)#0] (11.2.8)

A similar approach can be followed to simplify the other terms in Equation 11.2.6.
This results in the following expression:

P[C(n)=c] = (P[E,(c)#0] - P[E,(c+1)=0]) P[E (c)=0]
+ (P[E,(c)#0] - P[E,(c+1)#0]) P[E (c)=0]
+ (P[E,(c)#0] - P[E,(c+1)=0]) (P[E(c)=0] - P[E(c+1)=0])
= P[E (c)20] P[E,(c)=0] - P[E (c+1)#0] P[E(c+1)=0] (11.2.9)

Since the lc-subregions are both built-up from block-shuffled image data, we can
assume that the probabilities in Equation 11.2.9 do not depend on the actual lc-
subregion for which they are calculated, i.e. P[E,(c)#0] = P[E,(c)#0] = P[E(c)=0].
Substitution of this equality results in Equation 11.2.3.

11.2.2 Model for the DCT-based energies
Theorem II:
If the PDF of the DCT coefficients is modeled as a generalized Gaussian

distribution with shape parameter y, then the probability that the energy
E,(cn,Q,,) is not equal to zero is given by:
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63 y -1 hy %

PE(c,n,Q,,,) % 0]=1- []’[ [1_ v [ ("’th;) m (11.2.10)
i=c h=0 M

where

v1=1,2,3, ... (112.11a)

_wWF(Q,,) |Gy =Dt
vQ,= %, ,f D! (11.2.11b)

Further, F(Q.

Ipeg:
1122, o’ represents the variance of the i-th DCT coefficient (in zigzag scanned

) denotes the coarseness of the quantizer as defined in Equation

fashion), and w, represents the corresponding element of standard JPEG
luminance quantization table.

Proof:

The expression for P[E,(c) #0] can be derived using Equation 11.2.1b. First we need a
probability model for the DCT coefficients 6. Following the usual course of action
taken in the literature at this point, we use the generalized Gaussian distribution
[Mul93] and [Var89] with shape parameter y:

PO)=Ee " (11.2.12a)

where

S Jh8 S _L Gy =D 1
5"2@-'—1)1 and “’*‘Glm for y'=1.23,... (11.2.12b)

This PDF has zero mean and variance o;. Typically, the shape parameter y takes on
values between 0.10 and 0.50. In a more complicated model, the shape parameter
could be made to depend on the index of the DCT coefficient. We will, however, use
a constant shape parameter for all DCT coefficients. Using Equation 11.2.12 we can
now calculate the probability that a DCT coefficient is quantized as zero:

2 14 v 77171 Iy
P, =01= [ £ dp, = 1~ -{Z——(W'Q‘) ] (11.2.13)

rer R
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where (), is the coarseness of the quantizer applied to the DCT coefficients. The
probability that E,(cn,Q,,) is equal to zero is now given by the probability that all
quantized DCT coefficients with an index larger than c in all #/2 DCT blocks are

equal to zero:

P[E(c)=0]= (]'[ P, = 01) (11.2.14)

Equations 11.2.13 and 11.2.14 use the quantizer parameter Q. In JPEG this parameter
is determined by the parameter w, and the function F(.), which depends on the user
parameter Q. via Equation 11.22. Taking into account that JPEG implements
quantization through rounding operations yields:

Q=% w F(Q,,) (11.2.15)

peg

Combining Equations 11.2.12 - 11.2.15 yields Equation 11.2.10.

0.15 T T —Tr s — T T
PMF(c) . —— Estimated PMF(C=c)

16 [ Calculated PMF(C=c)
Qn 50 X using Equation (5.2.3)
jeg

(A0

0051

0

Figure 11.3.1: Probability mass function of the cutoff index P[C(n,Q,, )=c] as a function of
¢, calculated as a normalized histogram directly from watermarked images (solid line), and
calculated using the derived Theorem I (dotted line).

11.3 Model validation with real-world data

We validate Theorem I as follows. From a wide range of images we calculate the
normalized histogram of P[E(c,n,Q,,) # 0] as a function of c. As an example we show

the situation where Q.

=00 and n=16. Using this histogram we evaluate Equation
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11.2.3 to get an estimate of the PMF P[C(n,Q,,)=c]. The resulting PMF is shown in
Figure 11.3.1 (dotted line). Using the same test data, we then directly calculate the
histogram of P{C(n,Q,,.)=c] as a function of c. The resulting (normalized) histogram
is also shown in Figure 11.3.1 (solid line). The figure shows that both curves fit well,
which validates the correctness of the assumptions made in the derivation of
Theorem L

For the validation of Theorem II, we first need a reasonable estimate of the
shape parameter y and the variance o, of the DCT coefficients. In fitting the PDF of
the DCT coefficient we concentrated on obtaining a correct fit for the more important
low frequency DCT coefficients, and obtained y=1/7.

o 1e? T T T T T —T
1°10°
100
10
1
0.1
001 0 :0 2‘0 ;0 ‘i() ;0 ;0 i

Figure 11.3.2: Measured variances of the unquantized DCT coefficients as a function of the
coefficient number along the zigzag scan.

The variances of the DCT coefficients were measured over a large set of images,
yielding Figure 11.3.2. For the time being, we will use these experimentally
determined variances, but later on we will replace these with a fitted polynomial
function.

In Figure 11.3.3a normalized histograms of the energy E(c,n,Q,,)#0 are plotted

for n=16 and several values of Q  as a function of c. In Figure 11.3.3b the

peg
probabilities P[E(c,n,Q,,)#0] are shown as calculated with Equation 11.2.10 from
Theorem II using the measured variances of the DCT coefficients. Comparing the
Figures 11.3.3a and 11.3.3b, we see that the estimated and calculated probabilities

match quite well. There are some minor deviations for very small values of Q.
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(Q,,,<15), which is the result of the imperfect model! for the DCT coefficients of real
image data. We consider these deviations insignificant since they occur only at very
high image-compression factors. We conclude that the models underlying Theorem
IT give results for P[E(c,n,Q,,)#0] that are sufficiently close to the actually observed
data.

P[E()#0] |

08
0.6
04

02

(a) P[E(c,n,Q,,)#0] calculated as normalized histogram
directly from watermarked images

P[E(c}0] |

08 ™

06 [~

02 ™~

(b) P{E(c,n,Q

peg:

)=0] calculated using Theorem II

Figure 11.3.3: The probabilities P[E(c,n,Q,,.)#0] as functions of ¢ for n=16.
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(a) PMF of C(n,Q,,.) for n=16 and Q,,.=20
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(b) PMF of C(n,Q. ) for n=16 and Q. =80

Jpeg jpeg

Figure 11.3.4: Probability mass function of C( n,Qm), calculated as the normalized
histogram directly from watermarked image data (solid line), and calculated using Equations
11.2.3 and 11.2.10.

By combining Theorem I and II, we can derive PMFs of the cutoff index as a function
of the parameters n and (,, based merely on the variances of the DCT coefficients.
To validate the combined theorems we compared the PMFs calculated using
Equations 11.2.3 and 11.2.10 with the normalized histograms directly calculated on a
wide range of images. In Figure 11.3.4 two examples of the PMFs are plotted. In

these examples, the solid lines represent the normalized histograms of C(n,Q,,,)
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calculated from watermarked image data, while the dotted lines represent the PMF
P[C(n,Q,)=c] calculated using Equations 11.2.3 and 11.2.10. The greatly varying
behavior of these curves as a function of ¢ is mainly due to the zigzag scanning order
of the DCT coefficients. We observe that an acceptable fit between the two curves is
obtained with some deviations for higher cutoff indices. Since the PMF
P[C(n,Q,,)=c] will be used for calculating the probability of a label bit error, i.e. the
probability that the watermarking procedure selects a cutoff index smaller than the
minimum allowed values c,,, slight deviations at higher values for the cutoff index
are not relevant to the purpose of this chapter.

The final step is to use the relation (11.2.3) and (11.2.10) to analytically estimate
the PMF P[C(n,Q, )=c] of the cutoff index for different values of the parameters Qi
and n. In this final step we rid ourselves of the erratic behavior of the curves in
Figure 11.3.2 and 11.3.4 due to the zigzag scan order of the DCT coefficients by
approximating the variances of the DCT coefficients in Figure 11.3.2 by a second-
order polynomial function. The overall effect of using a polynomial function for the
DCT coefficients is the smoothing of the PMF P[C(n,Q,,)=c].

0.1 T T T T T T
PIC(m,Q,5=c] 0=20
0.08 [~ ;30 -3
’ \\
’ Ay
\
0.06 [ =, -
;o\ @50
1 \
1] ) \
] / \QEZO = 0
0.04 [~ ! / YoNTS —
' / ¢ \ ~
Co 7 N
'y . AN N
0.02 [~ N / 4 AN < -
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7 AN ~ .
N oI SETTRTSINY
10 20 30 40 50 60

Figure 11.3.5: Analytically calculated PMF P[C(n,Q,, )=c] using Theorem I and II for
various values of Q.. and n=16.

In Figures 11.3.5 and 11.3.6 the analytically calculated PMFs are shown. These curves
are computed using Theorems I and II with only the shape parameter y and the
fitting parameters of the DCT variances as input. In Figure 11.3.5 P[C(n,Q,,)=c] is

shown as a function of Q  where n is kept constant, and in Figure 11.3.6

1peg
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P[C(n,Q,)=c] is shown as a function of n where Q. is kept constant. It can clearly be
seen that decreasing n or Q. leads to an increased probability of lower cutoff
indices. This complies with our earlier experiments in Section 10.4.1, which showed
that watermarks embedded with small values for n yield visible artifacts due to the
removal of high frequency DCT coefficients.

0.1 | T I I | I
PIC(1,Q, =]

0.05

Figure 11.3.6: Analytically calculated PMF P[C(n,Q, J)=c] using Theorem I and II for
various values of n and Q,, =50.

11.4 Label error probability

In the analysis of the DEW algorithm, we have seen that depending on the
parameter settings (1,Q,,,) certain cutoff indices are more likely to occur than others.
In this analysis, however, the selection of the cutoff index by the watermarking
algorithm has been carried out irrespective of the visual impact on the image data.
To ensure an invisible watermark, the cutoff indices must be larger than a certain

minimum c,,. Consequently, it may happen in certain lc-regions that a label bit

cannot be embedded. This random event is typically the case in lc-(sub)regions that
contain insufficient high frequency detail.

Using Theorems I and II, we are able to derive the probability that this
undesirable situation occurs, and obtain an expression for the label bit error probability
P, that depends on , , n and c,,. If a label bit cannot be embedded because of the
minimally required value of the cutoff index ¢, there is a probability of 0.5 that

during the extraction phase a random bit is extracted which equals the original label

min’/
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bit. We assume that due to the random shuffling of DCT blocks, the occurrence of a
label bit error can be considered as a random event, independent of other label bit
errors. The probability that a random error occurs in a label bit can therefore be
computed as follows:

Po(1,QyCoi) = 05 P[ C(1,Q,.) < €] = 0.53"“: PIC(n,0,,,)=¢] (11.4.1)

Using this relation, we can calculate the label bit error probability for each value of
C,., as a function of Q,, and n. As an example Figure 11.4.1 shows the analytically
computed label bit error probability P,(n,Q,...c,,) as a function of Q, and n for
¢,.»=3. From this example it is immediately clear that for a given c,, certain (Q,, , n)
combinations must be avoided in practice because they lead to unacceptably high

label bit error probabilities.

min

=3.

min~

Figure 11.4.1: The bit error probability P, as a function of Q. and n for c

P8
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Using the label bit error probability in Equation 11.4.1, we can now derive the label
error probability P, which is here defined as the probability that one or more label
bit errors occur in the embedded information bit string. Assuming image dimensions
of NxM, the number of information bits [ that the image can contain is given by

I(N, M,n) = int(N M ) (11.4.2a)
64-n

with which the label error probability can be calculated as:

P, (1,Q g sCrins Ns M) = 1= (1= By (11.4.2b)

Let us consider one particular numerical example. If, for instance in a broadcast
scenario, one incorrect label is accepted per month in a continuous 10 Mbit/s video
stream, the label bit error rate should be smaller than 10”. For selecting the optimal
setting for Q. and n that comply with this label bit error rate, we use the curves of
the combinations Q. and n for which P, equals 10” shown in Figure 11.4.2. Different
curves refer to different values of ¢
dimensions NxM = 1024 x 768.

Further we have assumed the image

min®

Qe 100
" P, >107

below curves

80

60—

s

20—

0

Figure 11.4.2: Combinations of Q,, and n for which P=10".
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11.5 Optimal parameter settings

Using results such as the ones shown in Figure 11.4.2, we can now select optimal
settings for Q,.m and n for specific situations. We consider three different cases,
namely:

e optimization of re-encoding robustness;
¢ optimization of the number of information bits [;
¢ optimization of the watermark invisibility.

In all cases the parameter D must be chosen in the range [1, D, (Q,,)] to ensure the
validity of the models in Theorem I and II and the validity of the analytical results
obtained from these models.

If we tune the DEW watermark such that it is optimized for maximum re-
encoding robustness, typical choices are to anticipate re-encoding up to a JPEG
quality factor of Q. =25, and to allow a minimal cutoff index of c,,,=3. In this case —
using Figure 11.4.2 — we need at least n=54 DCT blocks per label bit (which directly
determines the number of information bits that can be stored in an image) to achieve
the required label error probability of 107.

If we require a large label and robustness against re-encoding attacks is not an
issue, we can store more than 3 times as many bits in a label with the same label
error probability of 107. A typical parameter setting would be for instance, Q. =75,

1peg
n=16 and c,, =3, as can be seen from Figure 11.4.2.

If visual quality is the most important factor, we must make sure that the
minimal cutoff index is sufficiently large. For instance we choose c,,=15. Clearly, to
obtain the same label bit error probability more DCT blocks per label bit are required
since the allowed minimal cutoff index is larger than the one in the previous
example. Using Figure 11.4.2, we find the optimal settings Q=75 and n=48.

The performance of any watermarking system can be improved by applying
error-correcting codes (ECCs). Since we know that the label bit errors occur
randomly and independently of other label bit errors, we can compute the
probability for label error in case an ECC is used that can correct up to R label bit
errors, namely
PECO 0,0 o s N, M) = 1=

/P!

ACET A R (11.5.1)

RFMMM

j=0

with the label bit error probability P, given by Equation 11.4.1.



FINDING OPTIMAL PARAMETERS FOR THE DEW ALGORITHM 267

In Figure 11.5.1 the label error probability P*“® is shown as a function of the
number of DCT blocks used to embed a single label bit (n) for R=0, 1, 2, Q, =25 and
¢,,=3. We had already found that for a watermark optimized for robustness without
error correcting codes, the optimal value is n=54 for a required bit error probability
of P<10”. From Figure 11.5.1 we see that the same label error probability can be

obtained using smaller values for n if we apply error correcting codes.

Pe scclo T T T |
1

0.1

0.01
110 >
T

110
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80 1 100

Figure 11.5.1: Label error probability with (R=1,2) and without (R=0) error correcting codes
for Q,..=25and c,,=3.

min~

For instance, by using an ECC that can correct one error, n can be decreased from 54
to 33. Obviously the use of ECCs introduces some redundant bits. However, this
overhead is small compared to the increase in capacity due to the use of a smaller
value of n. Table 11.5.1 gives some examples of the effective length of labels that can
be embedded for NxM = 1024 x 768. In this table standard BCH codes [Rhe89] are
used that can correct one or two errors.

ECC-Type R n Parity- | Label size corrected
check for extra parity-
bits ECC check bits
no-ECC 0 54 0 227
BCH (511,502) 1 33 9 363
BCH (511,493) 2 27 18 437

Table 11.5.1: Effective number of bits per label that can be embedded into an image of size
NxM= 1024 x 768, with required performance parameters c,,=3, Q. =25 and P*“® <10’

jpeg
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11.6 Experimental results

In this section, we will compare the robustness of labels embedded using settings
=3, n=16, ijeg=75, and D=25 with
labels embedded using settings optimized for robustness, namely c,, =3, n=64*,
Q,,,=25, and D=400.

min

optimized for maximum label size, namely c

(a) Watermarked image (b) Difference W(x, )=I-I,,

Figure 11.6.1: DEW watermarking using optimal settings for maximum label size.

(a) Watermarked image (b) Difference W(x, )=I-1,,

Figure 11.6.2: DEW watermarking using optimal settings for robustness.

* Our software implementation choices require that n=16-K, where k=1,2,3.... We therefore
selected n=64 instead of the optimal value n=54.
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Figure 11.6.3: Percentage bit errors after re-encoding (a) using parameter settings optimized
for label size; (b) using parameter settings optimized for robustness.

The “Lena image” watermarked with the DEW algorithm using settings optimized
for maximum label size and the corresponding strongly amplified watermark are
presented in Figure 11.6.1. Figure 11.6.2 shows the same images resulting from the
DEW algorithm using settings optimized for robustness.

We will first check the robustness against re-encoding. Images are JPEG
compressed with quality factor of 100. From these JPEG compressed images two
watermarked versions are produced; one for each parameter setting. Next, the
images are re-encoded using a lower JPEG quality factor. The quality factor of the re-
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encoding process is variable. Finally, the watermark is extracted from the re-encoded
images and compared bit by bit with the originally embedded watermark. For the
labels embedded using settings optimized for maximum label size, we used the
extraction parameters D'=40 and Q’,=75. For the labels embedded using settings
optimized for robustness, we used the extraction parameters D'=400 and Q’, =80.
With this experiment, we find the percentages of label bit errors due to re-encoding
as a function of the re-encoding quality factor. In Figure 11.6.3 the resulting label bit

error curves are shown for nine different images.
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Figure 11.6.4: Percentage bit errors after shifting over r pixels (a) using parameter settings
optimized for label size; (b) using parameter settings optimized for robustness.
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Although we expect that the percentages of label bit errors are very small for JPEG
quality factors between 75 and 100, because the parameter Q].pgg is set to 75, we see in
Figure 11.6.3a a small increase in bit errors for images re-encoded using a JPEG
quality factor of 90. This effect is caused by the two consecutive quantization steps
using JPEG quality factors 90 and 75, which are performed before the energy
differences are calculated. These quantization steps introduce minor differences in
the DCT coefficients. If these minor differences are squared and accumulated over 16
DCT blocks, the energy differences can significantly differ from the originally
enforced small energy differences (D=25). This effect can be canceled by omitting the
=100) during the watermark extraction phase, or by

,

optional quantization step (Q’,,,
increasing the enforced energy difference D.

Comparing Figure 11.6.3a (parameter setting optimized for label length using
C,»=3, n=16, Q, =75, and D=25) and Figure 11.6.3b (parameter setting optimized for
label robustness using ¢, =3, n=64, Q,=25, and D=400), we see an enormous gain in
robustness. In Figure 11.6.3b, we see a breakpoint around Q, =25. For higher re-
encoding qualities, the percentage label bit errors is below 10%.

min

In the previous chapter we noticed that the DEW watermarking technique is
slightly resistant to line shifting. To investigate the effect of the parameter settings
optimized for robustness on the resistance to line shifting, we carry out the following
experiment. Images are JPEG compressed with a quality factor of 85. These JPEG
images are watermarked using the parameter settings optimized for label size or for
robustness. Next the images are decompressed, shifted to the right over r pixels and
re-encoded using the same JPEG quality factor. Finally, a watermark is extracted
from these re-encoded images and compared bit by bit with the originally
embedded watermark. Consequently, we find the percentages of bit errors due to
line shifting. In Figure 11.6.4 the bit error curves are shown for nine different images.
As in the previous experiment, we see an improvement in robustness between
Figure 11.6.4a and Figure 11.6.4b. Using the parameter settings optimized for
robustness, the DEW watermark becomes resistant to line shifts of up to 3 pixels.

11.7 Conclusions

In this chapter we have derived, experimentally validated, and exploited a statistical
model for our DCT-based DEW watermarking algorithm. The performance of the
DEW algorithm has been defined as its robustness against re-encoding attacks, the
label size, and the visual impact. We have analytically shown how the performance

is controlled by three parameters, namely Q, ., n and c,,. The derived statistical

model gives us an expression for the label bit error probability as a function of these
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three parameters Q,,, 7 and c,,. Using this expression, we can optimize a watermark
for robustness, size or visibility and add adequate error correcting codes.

The obtained expressions for the probability mass function of the cutoff indices
can also be used for other purposes. For instance, with this PMF an estimate can be
made of the variance of the watermarking “noise” that is added to an image by the
DEW algorithm. This measure, possibly adapted to the human visual perception,
can be used to carry out an overall optimization of the watermark embedding
procedure using the (perceptually weighted) signal-to-noise ratio as optimization
criterion.

min*



Chapter 12

Benchmarking the DEW
Watermarking Algorithm

12.1 Introduction

In literature many watermarking algorithms have been presented in recent years.
Most authors claim that the watermark embedded by their algorithm is robust and
invisible. However, they all use different robustness criteria and quality measures.
Furthermore, the term "robustness” is hard to define and it is even questionable if it
can be defined formally. A watermark that is fully resistant to lossy compression
techniques may be very vulnerable to a dedicated attack, which may consist of some
low complexity processing steps like concatenated filtering. Besides robustness and
visibility, the payload and complexity of the embedding and extraction procedure
may play an important role. Also the weighting of these performance factors varies
significantly for different applications. This makes the comparison of the
performance of the different algorithms a difficult task. In spite of this, we attempt in
this chapter to derive a fair benchmark for the DEW algorithm by taking into
account attacks known from the literature and by weighting the performance factors
according to the requirements imposed by the application.

In Section 12.2 two watermark benchmarking approaches from literature are
discussed. In Section 12.3 two dedicated watermark attacks are presented, which can
be part of a benchmarking process. The performance of the DEW algorithm is
compared to the real-time spread spectrum method of Hartung and Girod [Har98]
and the basic spread spectrum method of Smith and Comiskey [Smi96] in Section
12.4. Section 12.5 concludes the chapter.

273
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12.2 Benchmarking methods

In literature two watermark benchmarking methods are proposed, namely [Fri%9a]
and [Kut99]. The authors of both methods notice that the robustness is dependent on
the payload and the visibility of the watermark. Therefore, to allow a fair
comparison between different watermarking schemes, watermarks are embedded in
a pre-defined video data set with the highest strength, which does not introduce
annoying effects according to a pre-defined visual quality metric. Subsequently
processing techniques and attacks are applied to the watermarked data and the
percentages bit errors are measured to estimate the performance of the
watermarking schemes.

The two benchmarking methods differ in the choice of the payload of the
watermark, the visual quality metric and the processing techniques. In [Fri99] the
payload of the watermark is fixed to 1 or 60 bits. To evaluate the visual quality of the
watermarked video data, the spatial masking model of Girod [Gir89] is used. This
model is based on the human visual system and accurately describes the visibility of
artefacts around edges and flat areas in video data. The watermark strength is
adjusted in such a way that Girod’s model indicates less than one percent of pixels
with visible changes. Subsequently, the watermarked data is subject to the
processing operations listed in Table 12.2.1 and the bit error rate is measured as a
function of the corresponding parameters.

Operation Parameter
JPEG compression Quality factor
Blurring Kernel size
Noise addition Noise amplitude (SNR)

Gamma correction Gamma exponent
Permutation of pixels Kernel size
Mosaic filter Kernel size
Median filter Kernel size

Histogram equalization -

Table 12.2.1: List of processing operations to which the robustness of a watermarking
method is tested.

The authors [Fri99a] do not claim that this list is exhaustive; other common lossy
compression techniques, such as wavelet compression should probably be included.
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Using the benchmarking approach described in [Kut99] the payload of the
watermark is fixed to 80 bits. To evaluate the visual quality of the watermarked
video data, the distortion metric proposed by Van den Branden Lambrecht and
Farrell [Bra96] is used. This perceptual quality metric exploits the contrast sensitivity
and masking phenomena of the Human Visual System and is based on a multi-
channel model of the human spatial vision. The unity for this metric is given in units
above threshold, also referred to as Just Noticeable Difference (JND). In [Kut99] this
quality metric is normalized using the ITU-R Rec. 500 quality rating [ITU95]. In
Table 12.2.2 the ratings and the corresponding visual perception and quality are
listed.

Rating Impairment Quality
5 Imperceptible Excellent
4 Perceptible, not annoying | Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad

Table 12.2.2: ITU-R Rec. 500 quality ratings on a scale from 1 to 5.

The ITU-R quality rating Q,,,, is computed as follows:

5

_ 12.2.1
Orm 1+ CN + MD ( )

where MD is the measured distortion according to the model of Van den Branden
Lambrecht and Farrell and CN is a normalization constant. CN is usually chosen
such that a known reference distortion maps to the corresponding quality rating.
The results generated by the model cannot be used to determine if for instance an
image with quality rating Q;,=4.5 looks better than an image with quality rating
Q;7,=4.6. The results should be interpreted in combination with a threshold: images
with quality ratings above Q,,=4 may only contain perceptible, and not annoying
artefacts.

The watermark strength is adjusted in such a way that the quality rating is at
least 4. Subsequently, the watermarked data is subject to a list of processing
operations, including lossy JPEG compression, geometric transformations and filters.
Most of these processing operations are implemented in one single program called
StirMark, which is described in the next section. Instead of applying each processing
operation listed in Table 12.2.1 to the watermarked data, only StirMark is applied to
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the data, which has the same effect as performing the transformations separately
with various parameters. Finally, the error rate for the retrieved bits is measured.

12.3 Watermark attacks

12.3.1 Introduction

Watermarks are vulnerable to processing techniques. Therefore, every processing
technique that does not significantly impair the perceptual quality of the
watermarked data can be considered as an intentional or unintentional watermark
attack. In [Har99] the watermark attacks are classified in four groups:

A. "Simple attacks” are conceptually simple attacks that attempt to impair the
embedded watermark by manipulations of the whole watermarked data, without
attempting to identify and isolate the watermark. Examples include linear and
general non-linear filtering, lossy compression techniques like JPEG and MPEG
compression, noise addition, quantization, D/A conversion and gamma
correction.

B. "Detection-disabling attacks” are attacks that attempt to break the correlation and
to make the recovery of the watermark impossible for the watermark detector,
mostly by geometrical distortions like scaling, shifting in spatial or temporal
direction, rotation, shearing, cropping and removal or insertion of pixel clusters.
A typical property of this type of attacks is that the watermark remains in the
attacked data and can still be recovered with increased intelligence of the
watermark detector.

C. "Ambiguity attacks” are attacks that attempt to confuse by producing fake
original data or fake watermarked data. This attack is only useful for copyright
purposes and therefore outside the scope of this book. An example of this attack
is the inversion attack described in [Cra96], which attempts to discredit the
authority of the watermark by embedding additional watermarks so that it is
unclear which was the first watermark and who the legitimate copyright owner
is.

D. "Removal attacks” are attacks that attempt to analyze the watermarked data,
estimate the watermark or the host data, and separate the watermark from the
watermarked data to discard the watermark.
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The authors [Har99] note that the distinction between the groups is sometimes
vague, since some attacks belong to two or more groups. In Section 12.3.2 the
StirMark attack is discussed, which belongs to groups A and B. A removal attack on
spatial spread spectrum watermarking techniques belonging to group D is presented
in Section 12.3.3.

12.3.2 Geometrical transforms

StirMark is a watermark removal attack that is based on the idea that although many
watermarking algorithms can survive simple video processing operations, they
cannot survive combinations of them [Pet98b] and [Pet99]. In its simplest form
StirMark emulates a resampling process. It applies minor geometrical distortions by
slightly stretching, shearing, shifting and/or rotating an image or video frame by an
unnoticeable random amount and then resampling the video data using either bi-
linear or Nyquist interpolation. In addition, a transfer function that introduces a
small and smooth distributed error into all sample values is applied. This emulates
the small non-linear analog/digital converter imperfection typically found in
scanners and display devices. In Figure 12.3.1b an example is given of how StirMark
resamples the data. The distortions are exaggerated for viewing purposes. As can
be seen the distortion of each pixel is the greatest at the borders of the video data
and almost zero at the center.

(a) Original data (b) StirM: '!".-l]"i':"l! (c) St '.\']""l"""'r'!'i"": with

Figure 12.3.1: Exaggerated example of distortions applied by StirMark.
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In addition to this procedure StirMark can also apply global bending to the video
data. This results in an additional slight deviation for each pixel, which is greatest at
the center of the video data and almost zero at the borders. The bending process is
depicted in Figure 12.3.1c. Finally the resulting data is compressed with the lossy
JPEG algorithm using a quality factor for medium visual quality.

In Figure 12.3.2b an example is shown of the “Lena image” after applying
StirMark. Figure 12.3.2c shows the difference between the original image and the
StirMarked image. It can be seen that although some pixels are shifted over more
than 3 pixels, the image quality is not affected seriously.

(a) Original image (b) StirMarked image (c) Difference (a)-(b)

Figure 12.3.2: Example of an image after applying StirMark.

The StirMark attack confuses most watermarking schemes available on the market
[Pet98b]. Only watermarking schemes with a very low payload can survive this kind
of attack.

12.3.3 Watermark estimation

12.3.3.1 Introduction

The spatial spread spectrum watermarking methods described in Chapter 8
basically add a pseudorandom pattern to an image in the spatial domain to embed a
watermark. This watermark can be detected by correlating with the same pattern or
by applying other statistics to the watermarked image. In this section two attacks are
discussed to estimate the pseudorandom spread spectrum watermark from the
watermarked image only. If a nearly perfect estimation of the watermark can be
found, this estimated watermark can be subtracted from the watermarked image. In
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this way the watermark is removed without affecting the quality of the image
[Lan98b] and [Lan98c].

For our initial experiments we use the basic spread spectrum implementation
of Smith and Comiskey [Smi96]. If we apply this method to an image I, a random
pattern W consisting of the constants -k and +k is added to obtain the watermarked
image I,,= I+W, where k is a positive integer value. The watermark energy resides in
all frequency bands. Compression and other degradations may remove signal
energy from certain parts of the spectrum, but since the energy is distributed all over
the spectrum, some of the watermark remains. The random pattern W is
uncorrelated with image I, but correlated with I..;

cov(W [+ W)= var(W)+ cov(I,W) = var(W)+ 0

_ cov(W, [+ W) _ | var(#)
POV I+ W)= Jvar(W)Jvar( + w) - V var(I + W) (123.1)

k

Jvar(I + W)

Evaluation of Equation 12.3.1 for typical images yields the conclusion that p ranges

oW, 1+ W)~

from 0.02 to 0.05. However, if the watermarked images are compressed using the
JPEG algorithm or distorted, the approximation in Equation 12.3.1 does not hold.
Indeed, the correlation coefficients decrease by a factor 2, while the variance of (I+W)
nearly equals the variance of the JPEG compressed version of (I+W).

If an arbitrary random pattern W, is used, the correlation coefficient wiil be
very small:

coviW. I+ W) =cov(W W)+ cov(W ,I)=0+0
cov(W I+ W) (12.3.2)
p= ~0
J var(Wx)\/ var(l + W)

This holds only if W and W, are orthogonal and W, is not correlated with I. Typical
values for correlation coefficients between I, and arbitrary random watermark W,
are a factor 10° smaller than p(W,1,,).

A simple estimation attack would be to search for all possible random patterns
and take the one with the highest correlation value as the possible watermark
pattern. This approach has several disadvantages. In the first place the search space
is huge. Even if the watermark pattern consisting of the integers [-1,1] should meet
the requirement that the number of -1s and the number of +1s need to be equal,

more than 4x10™ possible patterns have to be checked for a 32x32 pixel watermark.
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As a first step, we carried out experiments with a genetic algorithm to search the
random pattern with the highest correlation coefficient with I, = [+W. In some cases
the genetic algorithm found a pattern with a relatively high correlation (0.3} with I,
and no correlation with W (10°). This means that the pattern is adapted to the image
contents and not to the watermark. To avoid that the genetic algorithm finds random
patterns that have higher correlation coefficients than the embedded watermark we
must adapt our optimization criterion. From the properties of spread spectrum
watermarks we know the following about W:

e p(W,1)e [0.01..0.05]
* p(W, D=0
e Wis pseudorandom and has a flat spectrum

If the image is distorted by compression, p(W, I,,) is unknown. Too many patterns
meet the requirement p(W, I) ~ 0. The additional information that W is random and
has a flat spectrum is not enough either to create a suitable optimization criterion
function. If we have several different images with the same watermark to our
disposal, there are several possibilities (e.g. collusion attacks). A fitness function for
the genetic algorithm dependent on all images can be used, and if there are enough
images, the average of the images can be taken as estimation of the watermark.

In [Kal98b] and [Lin98] the watermark is estimated by analyzing the
watermark detector. However, if different watermarks are used for each image and
the watermark detector is not available, we have to follow other approaches that
estimate the watermark from only the watermarked data. In [Mae98] an approach is
proposed to estimate spatial spread spectrum watermarks by histogram analysis.
The results of this approach depend very much on the content of the images.
Watermarks can be estimated quite accurately for images with peaky histograms,
but the results for images with a smooth histogram are poor. In the next subsection
we propose a watermark estimation approach which is based on non-linear filtering.

12.3.3.2 Watermark estimation by non-linear filtering

In general, a watermark can be regarded as an enforced distortion in the image that
is perceptually invisible. In most cases, this distortion is not correlated to the image
contents. If we could apply a nearly perfect image model to the watermarked image
I, = I+W, we could predict the image content I and estimate the watermark: W =1, -
1. Because perfect image models and perfect noise filters do not exist, [ will be
different from I and W will be different from W. Our objective is to separate I,
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=] +W in such a way that the watermark is totally removed from [ and resides
completely in W [Lan98b] and [Lan98c]. This means that image contents may
remain in the predicted watermark.

We tested the performance of the following separation operations to divide I,
in 7and W: an AR-model, linear smoothing filters (3x3 and 5x5), Kuwahara filters
[Kuw76] (several sizes), non-linear region based filters and filters based on
thresholding in the DCT-domain (coring). In some cases, the watermark can be
retrieved from both /and W, while I has still a reasonable quality and ¥ does not
contain any image information. In other cases the watermark can only be retrieved
from W, but the quality of [ is significantly affected and the image contents,
especially the edges, remain in # .

We select some candidates from the separation operations that totally destroy
the watermark in 7, p(W, I ) = 0. From these candidates we select the operation that
has the highest correlation coefficient p(W, W) in a test set of 9 images. In Table
12.3.1 the correlation coefficients for several separation operations are listed.

Separation Operation p(W , W)
Misc. Noise Reduction Filters 0.08-0.12
Autoregressive Model 0.10-0.17
Median 3x3 0.13-0.22

Table 12.3.1: Correlation coefficients p(W , W) using different separation operations.

The 3x3 median filter turns out to be the best separation operation and is used for
the rough estimation of W= I,-med, (I,). However, correlation coefficients p(W , W)
between 0.13 and 0.22 are still too low and W must be refined further by using
information about the watermark properties.

The estimate # does still contain edge information. To protect the edges in I,
we limit the range of W from [-128..128] to [-2..2] before we subtract W from I, In
Figure 12.3.3 the modulus of the Fourier Transform of the truncated # is presented.

The horizontal, vertical and diagonal patterns in Figure 12.3.3 clearly indicate
that some dominating low frequency components are present in the spectrum. Since
a spread spectrum watermark should not contain such dominating components,
these come certainly from the image content. To remove these components a 3x3
linear high-pass filter is applied to the non-truncated W . Truncating the filtered #
to the range [-2,2] results in the Fourier spectrum as presented in Figure 12.3.4. The
correlation coefficients between the high-pass filtered W and W, p(W, W) now
increase to values around 0.4.
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Figure 12.3.4: Power density Spectrum of high-pass filtered (W), ,.

If this watermark W is subtracted from the watermarked image I,, the watermark is
not completely removed. This is not surprising, since we are not able to predict the
low frequency components of the watermark. These components are discarded
during the high-pass filtering stage of W or are left in I by the median filter. The
low frequency components, which cannot be estimated properly, give a positive
contribution to correlation of the watermark detector, while subtracting the
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estimated watermark W, which mainly consists of high frequency components,
gives a negative correlation contribution. By amplifying the estimated watermark w
with a certain gain factor G before subtraction, the overall correlation of the
watermark detector can be forced to zero. The complete scheme for removing a
watermark is represented in Figure 12.3.5.

‘W I'3x3'Median| - B> "-'-.?Iih;_:h- = ‘T'I_Il'k'dlli . R .\111}"1.”\' | 4 @ J‘_
| Filter image [-2,2] x G

Filter $ [Pas ki

Figure 12.3.5: The complete watermark removing scheme (WRS).

The value of G is dependent on the image content and the amount of energy in the
embedded watermark. If G is chosen too high, the watermark inverts and one can
still retrieve it from / by inverting the image before retrieving the watermark.

The value G is experimentally determined. A watermark is added to an image
using the method of Smith and Comiskey [Smi%6], 32x32 pixels are used to store one
bit of watermark information and the watermark carrier consists of the integers {-
2,2}. The watermark removing scheme is applied to the watermarked image with
several values for G. The percentage watermark bit errors is plotted as a function of
G in Figure 12.3.6. If 50% bit errors are made, the watermark is removed; if 100% bit
errors are made, the watermark is totally inverted. According to Figure 12.3.6 the
gain factor G should have a value between 2 and 3 to remove the watermark from
this image. The values of the gain factor vary for different kinds of images but are
typically in the range from 2 to 3. We therefore fixed the gain factor G to 2.5 for all

images.
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Figure 12.3.6: % bit errors as a function of gain factor G.
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We tested the watermark removing scheme (WRS) represented in Figure 12.3.5
on a set of 9 true color images. Informal subjective tests were performed to
determine the quality of the images. Some images hardly contain any textured areas
and sharp edges, some contain many sharp edges and much detail, others contain
both smooth and textured areas. First, the WRS (G=2.5) is applied to the methods of
Bender et al [Ben95] and Pitas and Kaskalis [Pit95]. The watermarks in the 9 test
images are all removed while the quality of the images is not reduced significantly.

Subsequently the WRS (G=2.5) is applied to the more robust watermarking
method of Smith and Comiskey [Smi%6]. The watermarks are added using P pixels
per bit and a gain factor of k, where k=1 or 2. If higher gain factors k are used, the
watermark becomes visible. For the values P=8x8, 16x16, 32x32, 64x64 and k=1,2 the
watermarks can be removed without affecting the visual quality significantly. An
example is given in Figure 12.3.7. An image is watermarked using the parameters
k=2, P=32x32. To remove the watermark completely (about 44% bit errors) using the
JPEG compression algorithm, we have to use a quality factor Q=10. The result of this
compression operation is presented in Figure 12.3.7a. If we apply the WRS to the
watermarked image, the watermark is completely removed (>50% bit errors) and we
obtain the image which is shown in Figure 12.3.7b. This image is hardly distorted. If
the number of pixels per bit P is increased further to 128x128 or 256x256, the
watermark is fully removed in smooth images, but only partially in textured images.

(a) Removal by JPEG compression (b) Removal by the WRS scheme

Figure 12.3.7: Removing a watermark from a watermarked image.
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Finally, the WRS (G=2.5) is applied to the method of Langelaar et al [Lan97a]. This
watermarking method determines the gain factor k for each watermark bit
automatically. Therefore only the number of pixels per bit P can be changed. All
watermarks added with this method can be removed for P=8x8, 16x16, 32x32. For
P=64x64, 128x128, ... the watermarks are only partially removed. In this case the
watermark information is only removed from the smooth regions of the images, but
remains in the more textured regions, since here the watermark estimate is not
accurate enough.

Some methods (e.g. [Wol96]) first subtract the original image from the
watermarked image and apply the watermark retrieval operation on this difference
image. However, the WRS also removes the watermarks in this case. Other methods
using a similar approach as [Smi9] are not tested, but we expect that such
watermarks will be affected in the same way as those in [Smi%6], since these
methods use the same basic principle.

12.4 Benchmarking the DEW algorithm

12.4.1 Introduction

In this section the DEW algorithm is compared to other watermarking methods
known from literature. Section 12.4.2 discusses the performance factors on which the
comparison is based. In Section 12.4.3 the real-time DEW algorithm for MPEG
compressed video is compared to the basic spread spectrum technique of Smith and
Comiskey [Smi%96], which operates on raw video data, and to other real-time
watermarking algorithms that operate directly on the compressed data. In this
comparison the emphasis is on the real-time aspect. This holds for both the
watermarking procedures and the watermark removal attacks. The attacks are
therefore limited to transcoding operations.

In Section 12.4.4 the DEW algorithm for JPEG compressed and uncompressed
still images is compared to the basic spread spectrum method of Smith and
Comiskey [Smi96]. Since the latter method is not specially designed for real-time
operation on compressed data, the real-time aspect is neglected in this comparison.
In our evaluation we follow the guidelines of the benchmarking methods from
literature described in Section 12.2.
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12.4.2 Performance factors

To evaluate the performance of the DEW algorithm we have to compare it to other
watermarking algorithms with respect to complexity, payload, impact on the visual
quality, and robustness. Of these performance factors, the impact on the visual
quality is most important. A watermark may not introduce annoying effects; in that
case, watermarking algorithms will not be accepted as protection techniques by the
users, who expect excellent quality of digital data. The weighting of the other
performance factors depends heavily on the application of the watermarking
method.

As already mentioned in Section 7.4, Part Il of this book focuses mainly on the
class of watermarking algorithms which can, for instance, be used in fingerprinting
and copy protection systems for home-recording devices for the consumer market.
For this class of watermarking algorithms the complexity of the watermark
embedding and extraction procedures is an important performance factor for two
reasons. On one hand, because the algorithms have to operate in real-time and on
the other hand, because the algorithms have to be inexpensive for the use in
consumer products.

Another performance factor is the payload of the watermark. For
fingerprinting applications and protection of intellectual property rights a label bit
rate of at least 60 bits per second is required to store one identification number per
second that is similar to the one used for ISBN or ISRC [Kut99]. For copy protection
purposes, a label bit rate of one bit per second is usually sufficient to control digital
VCRs.

The last performance factor is the robustness of the watermark. The robustness
is closely related to the payload of a watermark. The robustness can be increased by
decreasing the payload and visa versa. Sections 12.2 and 12.3 gave an overview of
processing techniques to which watermarks are vulnerable. Most of these processing
techniques require that the compressed video stream is decoded and completely re-
encoded. This task is computationally demanding and requires a lot of storage
space. The most obvious way to intentionally remove a watermark from a
compressed video stream is to circumvent these MPEG decoding and re-encoding
steps. This can be done, for instance, by transcoding the video stream.

12.4.3 Evaluation of the DEW algorithm for MPEG compressed video

To evaluate the DEW algorithm for MPEG compressed video we compare it with the
real-time watermarking algorithms known from literature as described in Chapter 9.
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Since the bit domain methods do not survive MPEG decoding and re-encoding, we
restrict ourselves here to the correlation-based methods described in Section 9.3.
Because the method described in [Wu97] decreases the visual quality of the video
stream drastically, the method described in [Har98] is the only comparable real-time
watermarking method that operates directly on compressed video and keeps the
video bit rate constant.

The authors [Har98] report that the complexity of their watermark embedding
process is much lower than the complexity of a decoding process followed by
watermarking in the spatial domain and re-encoding, but that it is somewhat higher
than the complexity of a full MPEG decoding operation. Since the DEW algorithm
adds a watermark only by removing DCT coefficients and no DCT, IDCT or full
decoding steps are involved, the complexity of the DEW algorithm is less than half
the complexity of a full MPEG decoding operation.

Normalized execution time

Figure 12.4.1: Normalized execution times of software MPEG-2 re-encoding and decoding
operations in comparison to two real-time watermarking techniques.

In Figure 124.1 an indication is given of the execution times of the following
operations on 60 frames of MPEG-2 encoded video. The first bar represents the
execution time of a full software MPEG decoding step followed by an MPEG re-
encoding step. These steps are necessary if we want to embed a watermark to the
compressed video data, for instance using the method of [Smi96]. The second bar
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represents the execution time of a full software MPEG decoding step. This step is
required to extract a watermark from the compressed video data, for instance by
means of the method of [Smi96]. The third and fourth bars represent the execution
times of the fastest software implementation of the correlation-based watermarking
algorithm described in Section 9.3 [Har98] and the DEW algorithm. The execution
times are normalized such that the execution time of MPEG-2 decoding 60 frames
equals 10.

Concerning the payload of the watermark, the DEW algorithm clearly
outperforms the real-time correlation-based method. The authors [Har98] report
maximum watermark label bit rates of only a few bytes per second, while the DEW
algorithm has a watermark label bit rate of up to 52 bytes per second (see Table
10.4.1).

Since no experimental results about robustness against transcoding are
reported in literature for the real-time correlation-based method [Har98], we
compare the DEW algorithm with the basic spread spectrum method of Smith and
Comiskey [Smi%6]. Although the real-time method of [Har98] uses the same basic
principles as the method of [Smi%], the latter method can embed 100% of the
watermark energy instead of 0.5-3% and has a much higher payload, since it is not
limited by the constraint that the watermark embedding process must take place in
the compressed domain.

To evaluate the resistance to transcoding or re-encoding at a lower bit rate, we
performed the following experiments. The “sheep sequence” described in Section
9.42.1 is MPEG-2 encoded at 8 Mbit/s. This compressed stream is directly
watermarked with the DEW algorithm using 3 different parameter settings:

e n=32,D=20,c,,=6, D" =15, without pre-quantization (0.42kbit/s)

niin

e n=64,D=20,c,,=6 D’ =15, without pre-quantization (0.21kbit/s)

e n=64,D=20,c
(0.21kbit/s)

=6, D’ = 15, with pre-quantization in the embedding stage

min

Pre-quantization means here that, prior to the calculation of the energies (Equation
10.2.1), the DCT coefficients of MPEG compressed video are pre-quantized using the
default MPEG intrablock quantizer matrix [ISO96]. The DCT coefficients are divided
by this matrix, rounded and multiplied by the same matrix.

Next, the “sheep sequence” encoded at 8Mbit/s is watermarked with the
spatial spread spectrum method [Smi96] (Section 8.2.2) by subsequently decoding,
watermarking the I-frames and re-encoding the video stream. For the watermarking
procedures the following settings are used:
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o k=1, P=64x64, without pre-filter in the detector (0.21kbit/s)
¢ k=1, P=64x64, with pre-filter in the detector (0.21kbit/s)
» k=2, P=64x64, without pre-filter in the detector (0.21kbit/s)
o k=2, P=64x64, with pre-filter in the detector (0.21kbit/s)

As pre-filter a 3x3 edge-enhance filter is applied to the pixels of the I-frames before
the correlation is calculated. The convolution kernel of the filter is given by Equation
8.2.5. Hereafter, the watermarked video sequences are transcoded at different lower
bit rates. The label bit strings are extracted from the transcoded video streams and
each label bit string is compared with the originally embedded label bit string. If
50% bit errors are made, the label is completely removed. The percentages label bit
errors that are introduced when the bit rate is decreased, are represented in Figure
12.4.2.
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Figure 12.4.2: % Bit errors after transcoding a watermarked 8 Mbit/s MPEG-2 sequence at
a lower bit rate.

From this figure several conclusions can be drawn. First, with respect to the DEW
algorithm, increasing the number of 8x8 DCT blocks per label bit does not
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significantly increase the robustness to transcoding. This shows that n only needs to
be increased if the watermarking process results in visual artefacts; otherwise n
should be chosen as low as possible and error correcting codes should be used to
improve the robustness.

Second, the robustness of the DEW algorithm increases drastically if pre-
quantization is used during the embedding stage. We take a closer look at the results
of the video stream transcoded to 5Mbit/s. Instead of using the averages over 21
frames (Figure 12.4.2), we look at the percentages of label bit errors of each separate
frame (Figure 12.4.3). It now becomes clear that in some frames still no errors occur
after transcoding (frame numbers: 1,2,7,20). However, in some other frames the
percentage of label bit errors is quite high (frame numbers: 12,13). This is due to the
fact that for the experiments a fixed pre-quantization level is used for each frame.
This is not an optimal solution, since in MPEG coded video streams the quantization
levels vary not only temporally, but also spatially, depending on the video bit rate,
the video content and the buffer space of the encoder. The robustness of the DEW
algorithm can therefore be improved further by locally adapting the pre-
quantization.

% label bit errors
—
1)

O o N e e T B o e e i
1 23 45 6 7 8 9101112131415 16 17 18 19 20 21

I-frame number

Figure 12.4.3: % Bit errors after transcoding an 8 Mbit/s MPEG-2 sequence water-marked
using the DEW algorithm (n=64, with pre-quantization) at 5 Mbit/s.

The third and last conclusion that can be drawn from Figure 12.4.2 is that the DEW
algorithm outperforms the correlation-based method [Smi96] with respect to the
transcoding attack for bit rates between 8 and 5 Mbit/s.

Since due to the bit rate constraint, the real-time correlation-based version
described in [Har98] is only capable of embedding 0.5...3% of the total watermark
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energy, which is embedded using [Smi%6], it can be expected that this method
performs less than the method of [Smi96] and the DEW algorithm concerning the
transcoding attack.

12.4.4 Evaluation of the DEW algorithm for still images

To evaluate the DEW algorithm for JPEG compressed and uncompressed still
images we compare it to the basic spread spectrum method of Smith and Comiskey
[Smi%6]. For all experiments in this section we use the parameter settings optimized
for robustness for the DEW algorithm, namely c,,=3, n=64, Q,,.=25 and D=400. For
the watermark extraction the parameters n=64 and D'=400 are used. Since the
detector results are significantly influenced by the pre-quantization stage in the
detector, a value for Q’, . is chosen out of the set [25, 80, 99] such that the error rate
of the detector is minimized. This process can be automated by, for instance, starting
the label bit string with several fixed label bits, so that during the extraction the
value Q' can be chosen that results in the fewest errors in the known label bits.

For all experiments in this section with the method of [Smi96], P=64x64 pixels
are used to store each label bit, while the watermark carrier consists of the integers
{-2,2} (k=2). This means that the watermarks embedded with both methods have the
same payload. Since we noticed in the previous section that pre-filtering
significantly improves the performance of the correlation-based method [Smi%96], we
apply a 3x3 edge-enhance filter to the watermarked images before calculating the
correlation. The convolution kernel of the filter is given by Equation 8.2.5.

We watermarked a set of twelve images with the two watermarking methods
using the parameter settings described above. First we calculate the ITU-R Rec. 500
quality ratings of the watermarked images using the approach described in Section
12.2 (Equation 12.2.1) and test the robustness of the watermarks against the attacks
described in Section 12.3. In Table 12.4.1 the results of these experiments are listed
for the DEW algorithm. For the StirMark attack version 1.0 is used, using the default
parameter settings. In this version only the geometrical distortions are performed as
described in Section 12.3.2, the final JPEG compression step is not implemented.

For the images watermarked with the method of [Smi96] the ITU-R Rec. 500
quality ratings are in the range of 4.7...4.8, the percentages of label bit errors after
the StirMark attack exceed 40% for all images and the percentages of label bit errors
after the watermark removal attack by non-linear filtering exceed 30% for all images.
From Table 12.4.1 it can be concluded that the DEW algorithm affects the visual
quality marginally more than the correlation-based method. However, the ITU-R
quality ratings are far above the required minimum of 4. Further it can be concluded
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that for both watermark removal attacks the DEW algorithm clearly outperforms the
correlation-based method.

Image name Size | ITU-R Rec. | % Label bit errors

500 rating StirMark WRS

Attack[Pet98b] [Lan98b]

Bike 720x512 4.3 34% 7%
Bridge 720x512 4.5 16% 17%
Butterfly 720x512 4.6 11% 7%
Flower 720x512 4.5 15% 5%
Grand Canyon | 720x512 44 24% 13%
Lena 512x512 4.6 17% 6%
Parrot 720x512 47 28% 8%
Rafter 720x512 4.3 24% 7%
Red Square 720x512 4.6 15% 7%
Sea 720x512 4.4 15% 4%
Temple 720x512 4.6 17% 5%
Tree 720x512 4.3 9% 13%

Table 12.4.1: ITU-R Rec. 500 quality ratings and percentages label bit errors for the DEW
algorithm after applying the StirMark attack based on geometrical distortions (Q’, =99) and
the Watermark Removing Scheme (WRS) based on watermark estimation (Q°, =25).

jreg

To evaluate the robustness of both algorithms against common simple processing
techniques we further tested the robustness against re-encoding, linear and non-
linear filtering, noise addition, simple geometrical transformations, gamma
correction, dithering and histogram equalization.

A set of twelve images is watermarked with both watermarking methods. The
images are re-encoded using a lower JPEG quality factor. The quality factor of the re-
encoding process is made variable. Finally, the watermarks are extracted from the
re-encoded images and compared bit by bit with the original embedded watermarks.
From this experiment, we find the percentages of label bit errors caused by re-
encoding as a function of the re-encoding quality factor. In Figure 12.4.4 the
resulting label bit error curves are shown for twelve different images.

As can be seen in Figure 12.4.4 the DEW algorithm is slightly more robust to re-
encoding attacks than the correlation-based method. To test the robustness against
non-linear filtering we filtered the test set of twelve images watermarked with both
watermarking methods using a median filter with a kernel size of 3x3. To test the
robustness against linear filtering we first filtered the watermarked images with a
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3x3 smoothing filter F,,,, and subsequently with an edge-enhance filter F, , where

F,. and F,, are given by the following convolution kernels:
111 -1 -1 -1
F..=|15 1//13 and F,, =|-1 10 -1{/2 (12.4.1)
111 -1 -1 -1
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Figure 12.4.4: Percentages of bit errors after re-encoding (a) using the DEW algorithm; (b)
using the correlation-based method of [Smi96].
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Image name % Label bit errors
Median Filtering 3x3 Linear Filterin
DEW Corr.-based DEW Corr.-based

Bike 160/0 30/0 10% Oo/o
Bridge 9% 8% 0% 0%
Butterﬂy 15% 30/0 00/0 0%
Flower 9% 0% 0% 0%
Grand Canyon 18% 4% 2% 0%
Lena 50/0 2‘70 0% 00/0
Parrot 220/0 30/0 1% 00/0
Rafter 150/0 2% 1% 0%
Red Square 14% 10% 0% 0%
Sea 10% 7% 0% 0%
Temple 13% 8% 0% 0%
Tree 21% 15% 0% 0%

Table 12.4.2: Percentages of label bit errors for the DEW algorithm (Q’  =99) and for the

correlation-based method of [Smi96] after non-linear and linear filters were applied to the
watermarked images.

Table 12.4.2 presents The percentages of label bit errors in the labels extracted from
the non-linear and linear filtered images. Table 12.4.2 shows that both methods are
more vulnerable to non-linear filtering than to linear filtering. The correlation-based
method is slightly more robust to filtering than the DEW algorithm. The reason for
this is that the energy of the DEW algorithm is located more or less in a middle
frequency band, and the energy of the correlation-based method is distributed
uniformly over the spectrum. If some frequency bands are affected by filtering
operations, there is enough energy left in other frequency bands in the case of the
correlation-based method.

Correlation-based methods are quite resistant to uncorrelated additive noise.
Experiments show that uniformly distributed noise in the range from -25 to 25
added to images watermarked with the method of [Smi96] does not introduce label
bit errors in the extracted labels (0%). To investigate the robustness of the DEW
algorithm against additive noise, we add noise to the watermarked images, where
the noise amplitude [-N,,N,] varies between 0 and 25. The results of this experiment
are shown in Figure 12.4.5. This figure shows that the DEW algorithm is also quite
insensitive to additive noise.

Robustness against geometrical distortions is very important, since shifting,
scaling and rotating are very simple processing operations that hardly introduce
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visual quality loss. We already tested the robustness of the DEW algorithm against
line shifting followed by lossy JPEG compression in Section 11.6 and the resistance
to minor geometrical distortions applied by StirMark at the beginning of this section.
Nevertheless here we perform some additional experiments to check the robustness
against scaling and rotating. We enlarge the watermarked images 1% and crop them
to their original size. Next, we rotate the watermarked images 0.5 degree and crop
them to their original size. Finally, the watermark labels are extracted and compared
bit by bit with the original embedded ones. The percentages of label bit errors in the
labels extracted with the DEW algorithm from the scaled and rotated images are
presented in Table 12.4.3. It appears that these geometrical transformations, line
shifting, scaling and rotating, completely remove the watermarks embedded by the
correlation-based method (percentages of bit errors > 40). From Table 12.4.3 and the
experiments performed in Section 11.6 we can conclude that the DEW algorithm
clearly outperforms the correlation-based method concerning geometrical

transformations.
g 60 T 1 I T
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Figure 12.4.5: Percentages of label bit errors after labels have been extracted from images
affected with additive noise using the DEW algorithm.

Both the DEW algorithm and the correlation-based method are insensitive to gamma
correction and histogram equalization. Even quantization of the color channels from
256 levels to 32, 16 or 8 levels followed by dithering does not affect the watermarks
embedded by the DEW algorithm (Q’, =25) or by the correlation-based method.

jreg
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Image name % Label bit errors
Zoom 1% and crop Rotate 0.5° and crop

Bike 14% 17%
Bridge 3% 5%
Butterfly 0% 7%
Flower 7% 9%
Grand Canyon 17% 6%
Lena 0% 6%
Parrot 11% 10%
Rafter 10% 6%
Red Square 10% 3%
Sea 10% 10%
Temple 7% 8%
Tree 3% 0%

Table 12.4.3: Percentages of label bit errors for the DEW algorithm (Q
or rotating and cropping the watermarked images.

=99) after scaling

14
jpeg

12.5 Conclusions

Benchmarking watermarking algorithms is a difficult task. Performance factors like
visibility, robustness, payload and complexity have to be taken into account, but the
weighting of these factors is application dependent. Furthermore it is questionable if
robustness can be defined formally.

In this chapter we discussed two benchmarking approaches for watermarking
methods and two dedicated watermark removal attacks. The benchmarking
approaches discussed here only give some general guidelines on how watermarking
methods can be evaluated. More research and standardization is necessary to derive
more sophisticated benchmarking systems. Also the attacks discussed here are just
examples to show that robustness against simple standard image processing
techniques is not enough to call a watermarking method robust. Other simple
processing techniques exist or may be developed that do not significantly affect the
image quality, but can defeat most watermarking schemes.

The attacks presented here can be counterattacked by increasing the
complexity of the watermark detectors. But the attacks can also be improved by
taking these changes of the detectors into account. For instance, the watermark
removal technique presented in Section 12.3.3 can be counterattacked by applying a
special low-pass pre-filter in the detector {Har99]. However, by replacing the 3x3
high-pass filter in the removal scheme by a filter with a larger kernel and
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appropriate coefficients, this counterattack can be rendered useless. Furthermore an
attack can be improved by combining it with a different attack, for instance,
combining a watermark estimation attack with a geometrical transformation attack
will defeat any watermarking scheme.

In spite of the problems mentioned above, we evaluated the DEW algorithm in
this chapter taking into account the benchmarking approaches and attacks
mentioned in the literature. We found that of all real-time watermarking algorithms
for MPEG compressed video known from literature, the correlation-based method
described in [Har98] is the only algorithm that can directly be compared with the
DEW algorithm. In this comparison it turned out that the DEW algorithm has only
less than half the complexity of this correlation-based method. Furthermore, the
payload of the DEW algorithm is up to 25 times higher and the DEW algorithm is
more robust against transcoding attacks than the correlation-based methods in the
spatial domain. The robustness of the DEW algorithm can even be improved further
by making the pre-quantization step variable.

For still images we compared the DEW algorithm to the basic spread spectrum
method of [Smi%], which is not designed for real-time watermarking in the
compressed domain.

In this comparison it turned out that the DEW algorithm and the correlation-
based method perform equally well concerning the robustness against linear
filtering, histogram equalization, gamma correction, dithering and additive noise.
The DEW algorithm clearly outperforms the correlation-based method where it
concerns the dedicated watermark removal attacks, geometrical transformations and
re-encoding attacks using lossy JPEG compression.
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Chapter 13

Information Retrieval:
An Introduction

13.1 Information retrieval systems:
From needs to technical solutions

There is hardly a better way to describe the development stage of our civilization at
the end of the second millennium than as the information era, and this has a quite
obvious reason: never before was the impact of information on the human lifestyle
and way of thinking as enormous as it is in the second half of the 20th century.
People are not only exposed to information all the time, this experience also becomes
more intensive, which greatly contributes to broadening their views; they acquire
knowledge and awareness about the environment and the world in general. This
process globalizes society, and as such, creates new living and educational
standards.

We can explain such an impact mainly as a consequence of an overwhelming
digital revolution, which started some decades ago and has continuously gained in
strength. On the one hand, the digital way of representing information opened
completely new perspectives for further developments in information technology. It
became possible to compress information, which resulted in a strong reduction of
the time and channel capacity required for its transmission and of the space required
for its storage. Information can be transmitted or manipulated without quality loss
and it is possible to combine and transmit or process different types of information
together, like audio, visual or textual: multimedia was born. On the other hand,
digital hardware technology has rapidly developed and grown in the last decades,
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so that the performance-versus-price ratio of various digital systems, storage and
transmission media steadily increased. All this has led to continuous advances in the
quality of transmitted and received audiovisual information [Hua99a], in digital
telecommunication networks providing high-speed information transfer
(“information superhighway”), in fast digital signal processors and in compact high-
capacity storage media like Digital Versatile Disc (DVD), which is seen by many as
“the epitome of the digital age” [TNO97]. In view of such technological growth, it is
not difficult to understand that an average information consumer easily raises his
expectations regarding the amount, variety and technical quality of the received
information, as well as of the systems for information receiving, processing, storage
and re- or display. It will soon become quite usual that each household is equipped
with receivers for Digital Video and Audio Broadcasting (DVB [ETS94] and DAB
[ETS97]) providing together hundreds of high-quality audiovisual channels,
accompanied by a broadband Internet connection, which gives access to countless
on-line information archives all over the world.

However, it is beyond human capabilities to digest all the received information
in an on-line manner. Large volumes of digital information obtained from digital
TV/radio channels, Internet etc. will need to be stored temporarily, or if they are of
long-term value, permanently. In this sense, we witness a strong development of
home digital multimedia archives [SMA]. And, naturally, with an increasing
information production even larger digital multimedia archives appear at service
providers (e.g. TV and radio broadcasters, Internet providers, etc.). Thus, the issue of
digital information storage steadily becomes more and more interesting and we can
talk about emerging digital libraries. This term stands for a (large-scale) collection of
stored digital information of any type (e.g. audio, visual, textual), made for either
professional or consumer environments; examples of this are digital museum
archives, Internet archives, video libraries available to commercial service providers
and private information collections in the home, all of them being characterized by a
quickly increasing capacity and content variety.

The development of digital libraries is not only related to technological
advances in high-capacity storage media. The issue of efficiently retrieving the
information stored in these libraries becomes of utmost importance as larger data
volumes are stored. Actually, it can be said that the missing possibility to quickly
access stored information degrades the high technological value of new high-
capacity storage media and seriously jeopardizes the usability of the stored
information. As nicely formulated in the preface of [Sme97], “anyone who has
surfed the Web has exclaimed at one point or another that there is so much
information available, so much to search and so much to keep up with”. This citation
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describing a particular problem of finding a desired information on the World-Wide
Web (WWW) can analogously be applied to a digital library of any type:

If information of interest is not easily accessible within a large digital library, that
information can be of no use, in spite of its value and the fact that it is present in that
library.

Manually searching through GBytes of unorganized stored data is a tedious and
time-consuming task. Consequently, with increasing information volumes the need
grows for shifting the information retrieval to automated systems. There, algorithms
are applied capable of performing any information retrieval task with the same
reliability and with the same or even higher efficiency as when the retrieval is done
manually.

Realizing this shifting in practice is not a trivial problem, especially in the case
of images or video. To explain this, we here analyze some characteristic retrieval
tasks, such as “find me an image with a bird”, “find me the movie scene where
Titanic hits the iceberg”, “find me the CNN business news report from 15 November
1999”, “find me a ‘western’ movie in the database”, “classify all the images
according to the place where they were taken” or “find me all images showing
Paris”. These retrieval tasks are formulated on a cognitive level, according to the
human capability of understanding the information content and analyzing it in
terms of objects, persons, sceneries, meaning of speech fragments or the context of a
story in general. Opposed to this, the only feasible analysis of a video or an image at
the algorithmic or system level can be in terms of their features, such as color, texture,
shape, frequency components, audio and speech signal characteristics, and using the
algorithms operating on these features. Such algorithms are, for instance, image
segmentation, detection of moving objects, extraction of textures and shapes,
recognition of color compositions, determination of relations among different objects
or analysis of the frequency spectrum of the audio or speech signal. These
algorithms can be developed using the state-of-the-art in image and audio analysis
and processing, computer vision, statistical signal processing, machine intelligence,
pattern recognition and other related areas.

As illustrated in Figure 13.1, we can understand an automated feature-based
content analysis as a system-level parallel to the cognition-based analysis. There the
features are chosen and algorithms are developed in the way that the retrieval

" Within the context of this book we refer to video as to a program in its entirety, consisting of an
image sequence and the eventual accompanying audio/speech stream.
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results are similar at the end of each branch of the scheme. Experience shows,
however, that the parallelism in Figure 13.1 is not viable in all cases. We can explain
this with the example of searching for an image containing a bird. While such a
search performed by a human will always succeed, this cannot be said for the
feature-based image analysis, simply because a complicated and large feature set
describing the characteristics of a bird in general is required as well as complex
algorithms operating on that feature set, which would enable the system to
recognize the appearance of any arbitrary bird, in any possible pose and also in cases
where parts of a bird are occluded. Finding a suitable feature set and developing
related algorithms for such a retrieval task is very difficult. Consequently, the
development of feature-based content analysis algorithms for the scheme in Figure
13.1 has not been directed to enable queries on the highest semantic level, such as
the above example with a bird, but mainly towards extracting certain semantic
aspects of the information which would allow for a reduction of the overall large
search space. This tendency can be recognized in numerous algorithms proposed in
recent literature, many of which will be explained in detail in further chapters of this
book.
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Figure 13.1: Cognitive versus feature-based retrieval
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For instance, an algorithm in [Vai98] is able to classify with high accuracy
images showing a city versus those showing a landscape. Further in [Vai99}, a
Bayesian framework is presented for semantic classification of outdoor vacation
images. There, landscape images can be classified into those showing a sunset, a
forest or mountains. Similar examples can also be found in the area of digital video
libraries. The algorithms proposed in [Han99b] and [Yeu97] provide the possibility
to detect episode or scene boundaries of a TV broadcast (movie, situation comedy,
etc.). A methodology for detecting commercial breaks in a TV news program is
presented in [Liu98]. There, the audio track of the broadcast is analyzed and
commercial breaks are efficiently separated from the rest of the program because of
their specific audio characteristics. An approach to detect commercial breaks in an
arbitrary TV broadcast is presented in [McG99], based on parallel investigation of
several feature types. Also a sophisticated feature-based analysis is applied in [Fis95]
in order to classify video programs in different genres. Another class of approaches
[DeM98], [Han97c], [Han00], [Pfe96] concentrates on video abstraction, i.e. compact
representation of long video sequences by extracting and organizing a number of its
most representative frames and segments.

Even the feature-based content-analysis techniques belonging to the current
technological state-of-the-art and developed with the objective of search-space
reduction can be used to build efficient tools for multimedia information retrieval,
since they provide the user with reliable directions for browsing efficiently through
a digital library and lead them quickly to the information of interest. The MPEG-7
standardization platform [ISO97] addresses ways to define standard sets of
descriptors for multimedia information based on features which should provide
further directions for the development of feature-based content-analysis algorithms.
And with new solutions, the performance of information retrieval systems can only
improve, leading to a further reduction of the search space and user’s involvement
during the search procedure. The material presented in Chapters 14 to 17, which is
briefly outlined in the next two sections of this chapter, is a further contribution to
this positive development.

13.2 Scope of Part III

Part III of this book concentrates on a feature-based analysis of the visual content of
images and video, enabling an easier image and video retrieval from large-scale
multimedia digital libraries.

The scheme in Figure 13.2 presents a series of video processing/analysis steps
which provide an organizational structure allowing efficient reviewing of the global
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video content (e.g. story flow of a movie, topic series of a news program, etc.) and a
fast access to and retrieval of any arbitrary part of a video (e.g. an arbitrary movie
episode, a news report on a certain topic, a highlight of a sport program, etc.). The
scheme depicts a generally known video-analysis procedure which first breaks up a
video into temporally homogeneous segments called video shots, then condenses
these segments into a set of characteristic frames called key frames and finally
performs a high-level analysis of a video content. This high-level analysis basically
includes determining “semantic” relationships among shots (e.g. their grouping into
news reports, movie episodes, etc.) using temporal characteristics of shots and
suitable features of their key frames. As indicated in the scheme, beside of being
used for high-level video analysis key frames also directly participate in forming the
organizatorial video-content structure described above. There, they provide visual
keys to different aspects of a video content. A large number of algorithms was
presented in recent literature for all three mentioned processing/analysis steps,
aiming at a robust and high-quality performance with as much automation as
possible. We contribute to these efforts in this book and dedicate each of the
Chapters 14 to 16 to one of the processing/analysis steps in Figure 13.2.
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Figure 13.2: A video-content analysis scheme
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Then we consider the fact that the prevailing amount of information reaching the
digital libraries and being stored there will be in a compressed form. This is because
large and fast advances in the compression area are gladly employed to maximally
utilize the available storage space in digital libraries, but also to increase the
information-transmission rate and density. Consequently, compressed images and
video need to be expected as inputs into feature-based content-analysis algorithms,
which, however, must not influence the efficiency of these algorithms compared to
the case where they operate on uncompressed data. The most important issue
related to this efficiency is the possibility to easily reach all the necessary features in
a compressed image/video. We address this issue in Chapter 17 for the case of
image compression.

13.3 Overview of Part III

Dividing a video sequence into shots is the first step towards video-content analysis
and content-based video browsing and retrieval. A video shot is defined as a series
of interrelated consecutive frames, taken contiguously by a single camera and
representing a continuous action in time or space [Bor93]. As such, shots are
considered to be the primitives for higher-level content analysis, indexing and
classification, discussed in later chapters of this book. Chapter 14 presents a
statistical framework for shot-boundary detection based on minimization of the
average detection-error probability. We model the required statistical functions
using a robust metric for visual content discontinuities (based on motion
compensation) and take into account knowledge about the shot-length distribution
and visual discontinuity patterns at shot boundaries. Major advantages of the
proposed framework are its robust and sequence independent detection
performance, as well as its capacity to detect different types of shot boundaries
simultaneously.

Abstracting a video by extracting a number of characteristic or key frames is
useful for different applications in video libraries. The form and the size of the key-
frame abstract needs, however, to be adapted to the structure of the video material,
as well as to the targeted application. Chapter 15 presents two methods for
extracting key frames, aiming at different applications in video-retrieval systems.
The first method is characterized by the possibility to control the total number of key
frames extracted for the entire sequence. While this number does not exceed the
prespecified maximum, key frames are spread along a video such that the quality of
capturing all relevant variations of its visual content is maximized and that a
storyboard of a video is provided. The objective of the second approach to key-frame
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extraction presented in Chapter 15 is to minimize the size of the key-frame abstract
while providing all the necessary aspects of the visual content of a video. This
algorithm is designed to produce a set of key frames which capture the content of a
video in a similar way as when key frames are extracted manually based on human
cognition.

As already mentioned in Section 13.1, information retrieval from digital
libraries by formulating queries on the highest semantic level is not realistic in view
of the current technological state-of-the art. However, examples were also shown
where certain semantic components can be recognized in the stored information and
be used to organize the information in such a way that the overall large search space
is reduced as far as possible. Using, for instance, the algorithm from [Vai98] for city-
versus-landscape image classification, the time for finding an image showing the
New York skyline can be considerably reduced since only relevant images, i.e. those
showing cities, are submitted to the user. Although he/she still needs to browse
through the city image collection and must search for the particular image of interest
(New York), the number of images he/she needs to check is much smaller than the
entire image library.

In Chapter 16 we first present an idea how to translate the above image-search
example to the case of video retrieval, and especially retrieval of movies, which is a
very important program category in video storage systems. We assume that a typical
movie can be represented as a series of high-level semantic contexts called episodes,
which correspond to different classes in an image database. If a movie is segmented
into episodes, a search for different movie segments showing specific faces or
sceneries can be performed only within the relevant episode, which reduces the
overall search space and, therefore, also the retrieval time. We develop a feature-
based algorithm for automatically segmenting movies into logical story units, which
are the approximates for the actual movie episodes.

Movie segmentation into logical story units is followed by the description of an
algorithm for analyzing TV news programs at a high level. The algorithm detects the
appearance of anchorperson shots, which can be considered as the first step in
recovering the report structure of a news program at a later stage.

Chapter 17 addresses the issue of content accessibility in compressed images
and video. This accessibility is analog to the efficiency of regaining the features of
content elements being important for a given retrieval task. Since current
compression standards, like JPEG or MPEG are not optimized regarding the content
accessibility, a high computational load in reaching image and video features
combined with large amount of information stored in a database, can negatively
influence the efficiency of the interaction with that database.
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In order to make the interaction with a database more efficient, it is necessary
to develop compression methods which explicitly take into account the content
accessibility of images and video, together with the three classical optimization
criteria that are (1) minimizing the resulting bit rate, (2) maximizing the quality of
the reconstructed image and video and (3) minimizing the computational costs. This
challenge can also be formulated as to reduce the computational load in obtaining
the features from a compressed image or video. As a concrete step in this direction a
novel image compression methodology is presented where a good synergy among
the four optimization criteria is reached.
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Chapter 14

Statistical Framework for
Shot-Boundary Detection

14.1 Introduction

The basis of detecting shot boundaries in video sequences is the fact that frames
surrounding a boundary generally display a significant change in their visual
contents. The detection process is then the recognition of considerable discontinuities
in the visual-content flow of a video sequence. The process of shot-boundary
detection, having as input two frames k and k+! of a video sequence, is illustrated in
Figure 14.1. Here [ is the interframe distance with a value 1>1.

Shot-boundary detection
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Figure 14.1: Illustration of the process for detecting a shot boundary between frames k and
k+l
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In the first step of the process, feature extraction is performed. Within the context of
this book, extracted features depict various aspects of the visual content of a video.
Then, a metric is used to quantify the feature variation from frame k to frame k+.. The
discontinuity value z(k,k+l) is the magnitude of this variation and serves as an input
into the defector. There, it is compared against a threshold T. If the threshold is
exceeded, a shot boundary between frames k and k+I is detected.

To be able to draw reliable conclusions about the presence or absence of a shot
boundary between frames k and k+I, we need to use the features and metrics for
computing the discontinuity values z(k,k+I), that are as discriminating as possible.
This means that a clear separation should exist between discontinuity-value ranges
for measurements performed within shots and at shot boundaries. In the following, we
will refer to these ranges as R and R, respectively. The problem of having
unseparated ranges R and R is illustrated in Figure 14.2, where some discontinuity
values within shot 1 belong to the overlap area. Such values z(k,k+I) make it difficult
to decide about the presence or absence of a shot boundary between frames k and k+1
without avoiding detection mistakes, i.e. missed or falsely detected boundaries.

Range
overlap
/{ . . .
N Shot 1 Shot 2 Shot 3
»
R
»-
- > -
Shot Shot Shot
boundary boundary boundary

Figure 14.2: The problem of unseparated ranges R and R
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We realistically assume that the visual-content differences between consecutive
frames within the same shot are mainly caused by two factors: object/camera motion
and lighting changes. Depending on the magnitude of these factors, the computed
discontinuity values within shots vary and sometimes lie in the overlap area, as
shown in Figure 14.2. Thus, an effective way to better discriminate between
discontinuity values belonging to ranges R and R is to use features and metrics that
are insensitive to motion and lighting changes. However, this is not the only
advantage of using such features and metrics. Since different types of sequences can
globally be characterized by their average rates and magnitudes of object/camera
motion and lighting changes {e.g. high-action movies vs. stationary dramas),
eliminating these distinguishing factors also provides a high level of consistency of
ranges R and R across different sequences. If the ranges R and R are consistent,
the parameters of the detection system (e.g. the threshold T) can first be optimized
on a set of training sequences to maximize the detection reliability, and then the
system can be used to detect shot boundaries in an arbitrary sequence without any
human supervision, while retaining a high detection reliability.

As will be shown in the following section, motion compensating features and
metrics can be found, capable of considerably reducing the influence of motion on
discontinuity values. However, the influence of strong and abrupt lighting changes,
induced by flashes or a camera directed to a light source, cannot be reduced in this
way. For instance, one could try working only with chromatic color components,
since the common lighting changes can mostly be captured by luminance variations.
But this is not an effective solution in extreme cases, where all color components are
changed. Strong and abrupt lighting changes can result in a series of high
discontinuity values, which can be mistaken for the actual shot boundaries. In the
remainder of this chapter we define possible causes for high discontinuity values
within shots as extreme factors. These factors basically include strong and abrupt
lighting changes, as well as some extreme motion cases, which cannot be captured
effectively by motion compensating features and metrics.

While the influence of extreme factors on discontinuity values cannot be
neutralized by choosing suitable features and metrics, it is possible to neutralize
such influences by embedding additional information in the shot-boundary detector.
For instance, the temporal patterns formed by consecutive discontinuity values can be
investigated for this purpose. Then, the decision about the presence or absence of a
shot boundary between frames k and k+I made by the detector is not only based on
the comparison of the computed discontinuity value z(k k+I) and the threshold T, but
also based on the match between the pattern formed by consecutive discontinuity



326 CHAPTER 14

values surrounding z(k,k+I) and a known pattern that is specific for a shot boundary.
This is illustrated in Figure 14.3.

Different types of shot boundaries need to be taken into account during the
detection process, where each of these types is characterized by its own
characteristic temporal pattern. We can distinguish abrupt boundaries, which are the
most common boundaries and occur between two consecutive frames k and k+1,
from gradual transitions, such as fades, wipes and dissolves, which are spread over
several frames.

Beside the information on temporal boundary patterns, the a priori information
describing global knowledge about the visual-content flow can also be taken into
account when detecting shot boundaries. An example of such information is the
dependence of the probability for a shot boundary on the shot length. While being
almost zero at the beginning of a shot, this probability rises with increasing shot
length and converges to “1”. In this way, the information on shot lengths is also
highly efficient in preventing false detections due to extreme factors.
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Figure 14.3: Matching of the temporal pattern formed by N consecutive discontinuity values
and a temporal pattern characteristic for a shot boundary. The quality of match between two
patterns provides an indication for boundary presence between frames k and k+1

If we combine the usage of motion compensating features and metrics for computing
the discontinuity values with embedding the additional information in the detector
to reduce the influence of extreme factors on these values, we are thus likely to
obtain highly reliable detection results. The scheme of such a detection procedure is
illustrated in Figure 14.4.
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Compared to the detector in Figure 14.1, the threshold T does not remain
constant but has a new value at each frame k. This is the consequence of the
embedded additional information which regulates the detection process by
continuously adapting the threshold to the quality of the pattern match for each new
series of consecutive discontinuity values and the time elapsed since the last
detected shot boundary. The remaining issue is to find the function T(k) providing
the optimal detection performance. Statistical detection theory provides means for
solving this problem efficiently. Using the statistical properties of discontinuity
values and the additional information embedded in the detector, we can compute
the threshold function T(k) such, that the average probability for detection mistakes
is minimized.

After reviewing existing approaches to shot-boundary detection in Section 14.2,
we develop in Section 14.3 a statistical framework for shot-boundary detection as
shown in Figure 14.4, which addresses all the issues discussed above. Due to the
consistent ranges R and R, a high generality of functions and parameters used is
provided, so that our framework can operate without human supervision and is
suitable for implementation into fully automated video-analysis systems. In Section
14.4 we apply the proposed detection framework to abrupt shot boundaries and
evaluate the detection performance. Finally, some conclusions about the material
presented in this chapter can be found in Section 14.5.
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Figure 14.4: A shot-boundary detector with improved detection performance regarding a
reduction of the false-detection rate
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14.2 Previous work on shot-boundary detection

The problem of reliably detecting shot boundaries in a video has been the subject of
substantial research over the last decade. In this section we give a concise overview
of the relevant literature. The overview concentrates, on the one hand, on the
capability of features and metrics to reduce the motion influence on discontinuity
values. On the other hand, it investigates existing approaches to shot-boundary
detection, involving the threshold specification, treatment of different boundary
types and usage of additional information to improve the detection performance.

14.2.1 Discontinuity values from features and metrics

Different methods exist for computing discontinuity values, employing various
features related to the visual content of a video. Characteristic examples of features
used are pixel values, histograms, edges and motion smoothness. For each selected
feature, a number of suitable metrics can be applied. Good comparisons of features
and metrics used for shot-boundary detection with respect to the quality of the
obtained discontinuity values can be found in overview papers [Fur95}, [Aha%6],
[Bor96] and [Lie99].

The simplest way of measuring the discontinuity between two frames is to
compute the mean absolute intensity change for all pixels of a frame [Kik92]. We
first define I(x,y) as the intensity of the pixel at coordinates (x,y) and compute the
absolute intensity change of that pixel between frames k and k+/ as

Dy (e, ) =1 (x, ) =1 (o, ) | (14.2.1)

The values (14.2.1) are then summarized over all pixels of the frame with dimensions
X and Y, and averaged to give the discontinuity value, that is

2k, k+1)= % Y Disn(xy) (14.2.2)

x=1y=1

A modification of this technique is only counting the pixels that change considerably
from one frame to another [Ots91]. Here, the absolute change of the intensity I(x,y) is
compared with the prespecified threshold T,, and is only considerable if the
measured absolute difference exceeds the threshold, that is

U LG y) - Loy 1>T

D, (x,y) = <O else (14.2.3)



STATISTICAL FRAMEWORK FOR SHOT-BOUNDARY DETECTION 329

An important problem of the two approaches presented above is the sensitivity of
discontinuity values (14.2.2) to camera and object motion. To reduce the motion
influence, a modification of the described techniques was presented in [Zha93],
where a 3x3 averaging filter was applied to frames before performing the pixel
comparison. Much higher motion independence show the approaches based on
motion compensation. There, a block matching procedure is applied to find for each
block b,(k) in frame k a corresponding block b, , (k+1) in frame k+l, such that it is
most similar to the block b, (k) according to a chosen criterion (difference formula)
D, that is:

Dyt = D(b; (), by, (k+ D)= _min  D(b,(k), b, (k+1) (14.2.4)

J=1--N candiutes

Here, N, is the number of candidate blocks b, (k+I), considered in the
procedure to find the best match for a block b;(k). If k and k+I are neighboring
frames of the same shot, the values D,,,, (/) can generally be assumed low. This is
because for a block b, (k) almost the identical block b, (k+I) can be found due to a
global constancy of the visual content within a shot. This is not the case if frames k
and k+! surround a shot boundary, since, in general, the difference between
corresponding blocks in the two frames will be large due to a radical change in
visual content across a boundary. Thus, computing the discontinuity value z(kk+I)
as a function of differences D, ., (i) is likely to provide a reliable base for detecting
shot boundaries.

An example of computing the discontinuity values based on the results of
block-matching procedure is given in [Sha95a]. There, a frame k is divided into
N4 =12 nonoverlapping blocks and differences D(b; (k),b; ;(k+1)) are computed
by comparing pixel-intensity values within blocks. Then, the obtained differences

D, .,(i) are sorted and normalized between 0 and 1 (where 0 indicates a perfect
match), giving the values d,,,,(i). These values are multiplied with weighting
factors ¢; and summarized over the entire frame to give the discontinuity values,
that is

NB!DCIG

z(k, k+1)= Zc d; i (14.2,5)

A popular alternative to pixel-based approaches is using histograms as features.
Consecutive frames within a shot containing similar global visual material will show
little difference in their histograms, compared to frames on both sides of a shot
boundary. Although it can be argued that frames having completely different visual
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contents can still have similar histograms, the probability of such a case is small.
Since histograms ignore spatial changes within a frame, histogram differences are
considerably more insensitive to object motion with a constant background than
pixel-wise comparisons are. However, a histogram difference remains sensitive to
camera motion, such as panning, tilting or zooming. If histograms are used as
features, the discontinuity value is obtained by bin-wise computing the difference
between frame histograms. Both grey-level and color histograms are used in
literature, and their differences are computed by a number of metrics. A simple

metric is the sum of absolute differences of corresponding bins, with Ny, being the
total number of bins, that is
NBms
2k, k+1)= > |H,(j)-H,,, ()] (14.2.6)
j=1
when comparing grey-level histograms and
Npins
2k, k+1)= Y I HEG) - HR, ()W HE ()~ HE, () WHE ()~ HE, () (142.7)

i1

if color histograms are compared [Yeo95a]. In (14.2.6), H,(j) is the j-th bin of the
grey-value histogram belonging to frame k. In (14.2.7), H[(j), H;(j) and H](j) are
the j-th bins of histograms of the R-, G- and B-color component of the image k.
Another popular metric is the so-called y’-test, proposed in [Nag92] for grey-level
histograms:

Nael H, (j)~ Hy., ()
kk+Dh= k -
kel = 2 =00

(14.2.8)

However, according to experimental results reported in [Zha93], the metric (14.2.8)
does not only enhance the discontinuities across a shot boundary, but also the effects
caused by camera/object motion. Therefore, the overall detection performance of
(14.2.8) is not necessarily better than that from (14.2.6), whereas it does require more
computational power.

A metric involving histograms in the HVC color space [Fur95] (Hue - color
type, Value - intensity, luminance, Chroma — saturation, the degree to which color is
present) exploits the advantage of the invariance of Hue under different lighting
conditions. This is useful in reducing the influence of common (weak) lighting
changes on discontinuity values. Such an approach is proposed in [Arm93a], where
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only histograms of H and C components are used. These one-dimensional
histograms are combined into a two-dimensional surface, serving as a feature. Based
on this, the discontinuity is computed as

k k+ l) z Z kk+1 x’ IX AHue x AChmma} (1429)

x=1 y=1

where &, ,,,(x,y) is the difference between the bins at coordinates (x,y) in HC-
surfaces of frames k and k+/, and A, and A, are the resolutions of Hue and
Chroma components used to form the two-dimensional histogram surface.

Also the histograms computed block-wise can be used for shot-boundary
detection, as shown in [Nag92]. There, both the images k and k+I are divided into 16
blocks, histograms H, ; and H,,,; are computed for blocks b;(k)and b,(k+I) and
the y*-test is used to compare corresponding block histograms. When computing
the discontinuity as a sum of region-histogram differences, 8 largest differences were
discarded to efficiently reduce the influence of motion and noise. An alternative to
this approach can be found in [Ued91], where first the number of blocks is increased
to 48, and then the discontinuity value is computed as the total number of blocks
within a frame, for which the block-wise histogram difference exceeds a prespecified
threshold T,, that is

z(k, k+1)= Z D(b,(k), b, (k+1)) (14.2.10)

with

1 i 1 NE"B(Hk,i(j) - Hk+l,i(j))2
D(b,-(k)r bi(k+l))= 4 N

0 else

2 G " (142.11)

Bins j=1

According to [Ots93], the approach from [Ued91] is much more sensitive to abrupt
boundaries than the one proposed in [Nag92]. However, since emphasis is put on
blocks, which change most from one frame to another, the approach from [Ued91]
also becomes highly sensitive to motion.

Another characteristic feature that proved to be useful in detecting shot
boundaries is edges. As described in [Mai95], first the overall motion between
frames is computed. Based on the motion information, two frames are registered and
the number and position of edges detected in both frames are compared. The total
difference is then expressed as the total edge change percentage, i.e. the percentage
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of edges that enter and exit from one frame to another. Due to registration of frames
prior to edge comparison, this feature is robust against motion. However, the
computational complexity of computing the discontinuity values is also high. Let p,
be the percentage of edge pixels in frame k, for which the distance to the closest edge
pixel in frame k+I is larger than the prespecified threshold T;. In the same way, let
Pi. be the percentage of edge pixels in frame k+I, for which the distance to the
closest edge pixel in frame k is larger than the prespecified threshold T,. Then, the
discontinuity value between these frames is computed as

z(k, k+1) = max(p,,p..;) (14.2.12)

Finally, we discuss the computation of the discontinuity value z(kk+l) using the
analysis of the motion field measured between two frames. An example for this is
the approach proposed in [Aku92], where the discontinuity value z(kk+1) between
two consecutive frames is computed as the inverse of motion smoothness. For this
purpose, we first compute all motion vectors o(b;(k),b, , (k+1)) between frames k
and k+1 and then check if they are significant by comparing their magnitude with a
prespecified threshold T;:

1 i 186,06, b, (k+D)| >T,

14.2.13
0 otherwise ( 3)

w, (k)= <

Then, we also take into consideration the frame k+2 and check if a motion vector
between frames k and k+1 significantly differs from the related motion vector
measured between frames k+1 and k+2. This is done by comparing their absolute
difference with a prespecified threshold T,:

1 if 13(b,(k), b, ,(k+1) - 3(b(k+1),b,,(k+2)) 1> T,

14.2.13b
0 otherwise ( )

w, (k)= <

The sum of values (14.2.13a) for all blocks b, (k) is the number of significant motion
vectors between frames k and k+1, and can be understood as a measure for
object/camera velocity. Similarly, the sum of values (14.2.13b) is the number of
motion vectors between frames k and k+1 that are “significantly” different from their
corresponding vectors between frames k+1 and k+2, and can be understood as the
measure for motion continuity along three consecutive frames of a sequence. Using
these two sums, we can now compute the motion smoothness at frame k as
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N piocgs

2w (k)
M= —— (14.2.14)

Naiocks

Z w;, (k)

The more motion vectors change across consecutive frames, the lower is the motion
smoothness (14.2.14). Finally, the discontinuity value can be obtained as an inverse
of (14.2.14), that is

) 3w, , (k)
T = (14.2.15)
z w; , (k)

i=1

14.2.2 Detection approaches
Threshold specification

The problem of choosing the right threshold for evaluating the computed
discontinuity values has not been addressed extensively in literature. Most authors
work with heuristically chosen global thresholds [Nag92], [Ots91], [Arm93a]. An
alternative is given in {Zha93], where the authors first measure the statistical
distribution of discontinuity values within a shot. Then they model the obtained
distribution by a Gaussian function with parameters 4 and o, and compute the
threshold value as

Tep+ro (14.2.16)

where r is the parameter related to the prespecified tolerated probability for false
detections. For instance, when r=3, the probability of having falsely detected shot
boundaries is 0.1%. The specification of the parameter r can only explicitly control
the rate of false detections. The rate of missed detections is implicit and cannot be
regulated, since the distribution of discontinuity values measured on boundaries is
not taken into account.

However, even if they can be specified in a non-heuristic way, as shown by
(14.2.16), the crucial problem related to the global threshold still remains, as
illustrated in Figure 14.5. If the prespecified global threshold is too low, many false
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detections will appear in the shot, where high discontinuity values are caused by
extreme factors, as defined in Section 14.1. If the threshold is made higher to avoid
falsely detected boundaries, then the high discontinuity value corresponding to the
shot boundary close to frame 500 will not be detected.

A much better alternative is to work with adaptive thresholds, i.e. with
thresholds computed locally. The improved detection performance that results from
using adaptive threshold function T(k) instead of the global threshold T is also
illustrated in Figure 14.5. If the value of the function T(k) is computed at each frame k
based on the extra information embedded in the detector (Figure 14.4), high
discontinuity values computed within shots can be distinguished from those
computed at shot boundaries. Three detection approaches applying adaptive
thresholds can be found in recent literature.

2500 T T T T T T
Abrupt shot
boundary

N
[=)
(=)
[+]

T
!

Abrupt shot
boundary

1500 | adaptive threshold i
%)

/\ Abrupt shot
000 /2\ global threshold T | h boundary

Discontinuity value z(kk+1)

\

0 1 I3 1 1 1 1
400 420 440 460 480 500 52¢

Frame index &

Figure 14.5: Improved detection performance when using an adaptive threshold function
T(k) instead of a global threshold T.

A method for detecting abrupt shot boundaries using an adaptive threshold is
presented in [Yeo95a]. There, the values T(k) are computed using the information
about the temporal pattern that is characteristic for abrupt boundaries. The authors



STATISTICAL FRAMEWORK FOR SHOT-BOUNDARY DETECTION 335

compute the discontinuity values with the interframe distance I=1. As shown in
Figure 14.6, the N last computed consecutive discontinuity values are considered,
forming a sliding window. The presence of a shot boundary is checked at each
window position, in the middle of the window, according to the following criterion:

if 2k k+1)= max (Vak+ik+1+1)) A 2k k+1)2az,

) (14.2.17)
= abrupt shot boundary

In other words, an abrupt shot boundary is detected between frames k and k+1 if the
discontinuity value z(k,k+1) is the window maximum and « times larger than the
second largest discontinuity value z_, within the window. The parameter a can be
understood as the shape parameter of the boundary pattern. This pattern is
characterized by an isolated sharp peak in a series of discontinuity values. Applying
(14.2.17) to such a series at each position of a sliding window is nothing else than
matching the ideal pattern shape and the actual behavior of discontinuity values
found within the window. The major weakness of this approach is the heuristically
chosen and fixed parameter o . Because o is fixed, the detection procedure is too
coarse and too inflexible, and because it is chosen heuristically, one cannot make
statements about the scope of its validity.

Sliding window Sliding
Lf'[r'n't]un

(3

Last computed
discontinuity value

Figure 14.6: llustration of a sliding window approach from [Yeo95a]

In order to make the threshold specification in [Yeo95a] less heuristic, a detection
approach was proposed in [Han97a] and [Han97b], which combines the sliding
window methodology with the Gaussian distribution of discontinuity values
proposed in [Zha93]. Instead of choosing the form parameter a heuristically, this
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parameter is determined indirectly, based on the prespecified tolerable probability
for falsely detected boundaries. Zhang et al. observe in [Zha93] that the
discontinuity values (there obtained by comparing color code histograms) can be
regarded as a realization of an uncorrelated Gaussian process if no shot change or
motion is present. This observation is extended in [Han97b] to any other temporal
segment with a uniform content development, independent of the present amount of
action. Within a single shot, the series of discontinuity values can then be modeled
either as a single uncorrelated Gaussian process or as a temporal concatenation of
multiple uncorrelated Gaussian processes. Shots themselves are separated by
individual large-valued outliers, or peaks. Based on this a statistical model for the
discontinuity values is defined that has the following properties:

e Each discontinuity value measured along a sequence can be assigned one state of
a two-state model: the state “S” when it is within a Gaussian shot segment, and
the state “D” when it is computed at shot boundaries. A state “S” can be followed
by another state “S” or by a state “D”. State “D” is always followed by state “S”;

¢ Each state “S” has three parameters, determining the process that generates the
discontinuity value z(k,k+1) in that state, namely: the duration of the state L, the
mean and the variance of the corresponding Gaussian process;

e State “D” has duration 1.

Figure 14.7 shows the defined statistical model of a fictive series of discontinuity
values, with each Gaussian segment “S” represented by its mean value. The
detection procedure is activated only if the discontinuity value in the middle of the
sliding window is the window maximum. As shown in Figure 14.8a, it is assumed
that the series of discontinuity values captured by the window and lying at each side
of the window maximum can be described by one and the same Gaussian
probability density function. We define these functions as p,,(z,k) and p,,,(z,k).
The new threshold value T(k), illustrated in Figure 14.8b together with the defined
Gaussian distributions, is computed as the solution of the following integral
equation:

@

P= I(pleﬂ (ZI k) + pright (Z/ k))dZ (142.18)
T(k)

N |
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Here, P is the given tolerable probability for falsely detected boundaries. As in
[Zha93], the rate of missed detections cannot be regulated, since the distribution of
discontinuity values measured on boundaries is not taken into account. Note that
the form parameter « is “hidden” in the computed threshold value T(k).

Sliding direction

Z D Sliding >
window
Shot boundary
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- »
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Figure 14.7: Temporal segment structure of the series of consecutive discontinuity values
computed along a sequence

PialZ) ; (z.K) T(k)

Sliding window z(k,k+1)

(aj

Figure 14.8: Moment situation within a sliding window. (a) A “D” state in the middle of the
window surrounded by unbroken segments of “S” states, each of them described by one and
the same Gaussian distribution. (b) The threshold T(k) together with Gaussian probability
density functions of discontinuity values on both sides of the window maximum
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Different types of shot boundaries

One way in which the additional information embedded in the detector can
influence the process of shot-boundary detection much more effectively is using the
statistical detection theory. One of the first applications of the statistical detection
theory to signal analysis can be traced back to the work of Curran [Cur65]. A
characteristic example of recent works in this area can be found in [Vas98]. There,
the proposed statistical method for detecting abrupt shot boundaries includes the a
priori information based on shot-length distributions, which can be assumed
consistent for a wide range of sequences. However, this 4 priori information is the
only type of information embedded in the detector, and is, by itself not sufficient to
prevent false detections caused by extreme factors. A more robust statistical
framework for shot-boundary detection is presented in Section 14.3 of this chapter.

Different boundary types were considered in most of the approaches presented
in recent literature, although the emphasis was mostly put on the detection of abrupt
boundaries. This preference can be explained by the fact that there is no strictly
defined behavior for discontinuity values around and within gradual transitions.
While the abrupt boundaries are always represented by an isolated high
discontinuity value, the behavior of these values around and within a gradual
transition is not unique, not even for one and the same type of transition. In the
following we will present some recent approaches to detecting non-abrupt
boundaries.

One of the first attempts for detecting non-abrupt boundaries can be found in
[Zha93], where a so-called twin-comparison approach is described. The method
requires two thresholds, a higher one, T,, for detecting abrupt boundaries, and a
lower one, T;, for detecting gradual transitions. First the threshold T, is used to
detect high discontinuity values corresponding to abrupt boundaries, and then the
threshold T, is applied to the rest of the discontinuity values. If a discontinuity value
is higher than T, it is considered to be the start of a gradual transition. At that point,
the summation of consecutive discontinuity values starts and goes on until the
cumulative sum exceeds the threshold T,. Then, the end of the gradual transition is
set at the last discontinuity value included in the sum.

In [Ham94], a model-driven approach to shot-boundary detection can be
found. There, different types of shot boundaries are considered to be editing effects,
and are modeled based on the video production process. Especially for dissolves and
fades, different chromatic scaling models are defined. Based on these models feature
detectors are designed and used in a feature-based classification approach to
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segment the video. The described approach takes into account all types of shot
boundaries defined by the models.

One further method for detecting gradual transitions can be found in [Men95],
which investigates the temporal behavior of the variance of the frame pixels. Since
within a dissolve different visual material is mixed, it can be assumed that frames
within a dissolve loose their sharpness. This can be observed in the temporal
behavior of the frame variance, which starts to decrease at the beginning of the
transition, reaches its minimum in the middle of the transition and then starts to
increase again. A characteristic parabolic pattern of variance behavior is reported.
The detection of the transition is then reduced to detecting the parabolic curve
pattern in a series of measured variances. In order to be recognized as a dissolve, the
potential pattern has to have a width and the depth that exceeds the prespecified
thresholds.

In [Son98], a chromatic video edit model for gradual transitions is built based
on the assumption that discontinuity values belonging to such a transition form a
pattern consisting of two piece-wise linear functions of time; one decreasing and one
increasing. Such linearity does not apply outside the transition area. Therefore, the
authors search for close-to-linear segments in the series of discontinuity values by
investigating the first and the second derivative of the slope in time. A close-to-
linear segment is found if the second derivative is less than a prespecified
percentage of the first derivative.

Although each of the described models is reported to perform well in most
cases, strong assumptions are made about the behavior of discontinuity values
within a transition. Furthermore, several (threshold) parameters need to be set
heuristically. The fact that patterns which are formed by consecutive discontinuity
values and correspond to a gradual transition can strongly vary over different
sequences still makes the detection of gradual transitions an open research issue
[Lie99].

14.3 A robust statistical framework
for shot-boundary detection

In this section we develop the statistical framework for shot-boundary detection,
which is in accordance to the scheme in Figure 14.4. In contrast to detection
methodologies we discussed earlier, our statistical framework includes all aspects
discussed until now relevant for maximum detection performance:
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 In order to provide a high level of discrimination between ranges R and R, we
compute the discontinuity values using motion compensating features and
metrics.

e We use both the information on temporal boundary patterns and on shot-length
distributions in the detector to compute the adaptive threshold T(k). Here we
apply the sliding window methodology and compute the threshold value at each
window position.

* We apply statistical detection theory to build a robust boundary-detection
framework. This theory provides means to effectively embed the extra
information from the previous item and compute the threshold value T(k) using
the criterion that the average probability for detection mistakes must be
minimized.

In terms of the statistical detection theory, shot-boundary detection can be
formulated as the problem of deciding between the two hypotheses:

¢ S5-boundary present between frames k and k+l
e S-noboundary present between frames k and k+1

In order to take into account the information about temporal boundary patterns, we
consider the N last computed consecutive discontinuity values together, in this way
forming a sliding window. We define the vector z(k) as

g(k)=<z(k—i,k+l—i), i=——2—,..,7> (14.3.1)

We also define the likelihood functions p(zlS) and p(glg), which indicate at which
degree an arbitrary series of discontinuity values z(k), defined by (14.3.1), belongs to
series not containing any shot boundary and those containing a shot boundary,
respectively, that is

p(z(k)15) = P[Z(k—%,lﬁkl—%]—),..,z(k+l\2[—,k+l+%) ’ s)

and (14.3.2)
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p(z(k)1S) = p[z(k—%,k+l——l;]—),..,z(k+%,k+l+—12\l) ‘ 5)

In terms of statistical detection theory, the defined likelihood functions can be
considered analogous to previously used ranges of discontinuity values R and R.
Consequently, the requirements for a good discrimination between ranges can now
be transferred to the likelihood functions p(zlS) and p(glg) . Further, we define the
priori probability function P(Sk), which defines the probability that there is a
boundary between frames k and k+I based on the number of frames elapsed since the
last detected shot boundary. As the criterion for deriving the rule for deciding
between the two hypotheses, we choose minimizing the average probability for
detection mistakes, given as

P,(k) = (1- P(S,k)) [p(z(k) 1S)dz(k) + P(S, k) [p(z(k) 1S)dz(k) (14.3.3)

Minimization of (14.3.3) provides the following decision rule at the frame k:

KISy § 1-
p(z(k) 5) : 1Pk (14.3.4)
p(z(k)1S) 5 P,k
which can be transformed into
S
/(z(k—ﬂ,kﬂ——l\l),..,z(k+y—,k+l+ﬁ)) 2Tk (14.3.5)
2 2 2 2 5

We call Z; and Z; the discontinuity-value domains belonging to the two hypotheses.
The domain Z; contains all vectors z(k), for which the hypothesis S is chosen in
(14.3.5), and vice versa. However, the N-dimensional likelihood functions (14.3.2) are
difficult to compute. Therefore, we simplify the shot-boundary detector (14.3.4) in
several respects, under the condition that the detection performance is not degraded:

¢ We keep the sliding-window concept, but use only the scalar likelihood functions
p(zIS) and p(zlg) evaluated for the discontinuity value z(kk+l) lying in the
middle of the window.

¢ Instead of capturing the dependencies between elements of the vector z(k) via
their mutual likelihood functions p(zlS) and p(zl S), we pursue the following
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procedure. We first investigate the temporal pattern belonging to a certain
boundary type. Each of these patterns is characterized by specific relationships
among discontinuity values. A typical example is an isolated peak of an abrupt
shot boundary, which can be fully captured by finding the ratio between the
maximal and the second largest value in a discontinuity value series. The higher
this ratio, the more probable is the presence of an abrupt shot boundary at the
place of the maximal discontinuity value. The ratio between the maximal and the
second largest discontinuity value can now be defined as pattern-matching
indication (PMI), ie. an indication that the pattern formed by consecutive
discontinuity values is similar to the one that is characteristic for a certain
boundary type, and therefore also as an indication of having a boundary of a
certain type between frames k and k+l. Thus the PMI can be defined for any
arbitrary type of shot boundary by the following generalized function:

vk, k+1)= F(z(k—ﬁ,k+l—ﬁ),..,z(k+ﬁ,k+l+ﬁ)j (14.3.6)
2 2 2 2

o Atlast, we define the conditional probability function P,,,(yv(k,k+1)1S), which is
the probability of having a shot boundary between frames k and k+I, based on
matching of temporal patterns. It is computed at each window position, and
serves as the modifier for the a priori probability P(S k). The lower the indication
w(k, k+1), the less likely is the presence of a shot boundary between frames and
the lower are the values of P, (y(k,k+1)15). In such cases the a priori probability
is modified downwards. This modification becomes crucial if the a priori
probability and the likelihood functions are in favor of the hypothesis S, whereby
S is the proper hypothesis. In this way, boundaries detected falsely due to
extreme factors can be eliminated. On the other hand, large values w(k, k+1)
indicate a similarity between the pattern formed by the elements of the vector
z(k) and the pattern of a shot boundary. In such cases the probability that high
discontinuity values are caused by extreme factors is small and the correction of
the a priori probability by P,,,(w(k, k+1)1S) is not necessary.

On the basis of the simplifications described above, the general vector detection rule
(14.3.4) has been now reduced to the scalar rule (14.3.7):

p(z(k, k+1)15)
plz(k, k+1)15)

1= P(S, k)P, (w (k, k+ 1) 1)
P(S, k)P, (v (k, K+ 1) 15)

5
<
>
S

(14.3.7)
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Since a different function (14.3.6) is required for each boundary type, we cannot use
one generalized detector (14.3.4) for detecting all shot boundaries, but need separate
scalar detectors (14.3.7) operating in parallel, each being used for one specific type of
shot boundary.

In Section 14.4 we develop the detector (14.3.7) for abrupt shot boundaries. We
start with the computation of discontinuity values based on suitable features and
metrics. This is followed by the definition of the a priori probability function P(S,k)
and by finding the scalar likelihood functions p(ziS) and p(zl S). At last, PMI
function w(k,k+1) and the conditional probability function Ppat,(y/(k,k+l)|5) are
defined.

14.4 Detector for abrupt shot boundaries

Abrupt shot boundaries take place between two consecutive frames of a sequence.
For this reason it is handy to work with discontinuity values, computed with
interframe distance I=1.

14.4.1 Features and metrics

In order to maximize the discrimination of likelihood functions p(zlS) and p(zlg)
we compute the discontinuity values by compensating the motion between video
frames using a block matching procedure, described in Section 14.2.

Similarly as in [Sha95a], we divide frame k into N, . nonoverlapping blocks b, (k)
and search for their corresponding blocks b, ,(k+1) in frame k+1. The block-
matching criterion used here is the comparison of average luminance values of
blocks b,(k)and b, , (k+1), that is

Db, (k). b, (k+1)) =

Youe (0, (0)) = Yoo (B, (k + 1) (14.3.8)

After the corresponding blocks b, ,(k+1) have been found using the formula
(14.2.4), we obtain the discontinuity value z(k,k+1) by summarizing the differences
between blocks b, (k) and b, , (k + 1) in view of block-wise average values of all three

color components Y,,, U, . and V_ , thatis
1 N piocks
2k, k+1)= > D(b,(k), b, (k+1) (14.3.9)

Blocks i=1



344 CHAPTER 14

with

D(bi(k), b, (k +1)) =

Yo (b, ()= Yoo,k + D) +
Upe(b(5)) = Upne (b, m (K + D) + (14.3.10)
‘/ave(bi(k)) - ‘/ave(bi,m(k + 1)){

14.4.2 A priori probability function

Studies by Salt [Sal73] and Coll [Col76], involving statistical measurements of shot
lengths for a large number of motion pictures, have shown that the distribution of
shot lengths for all the films considered matches the Poisson function well [Pap84].
Therefore, we integrate the Poisson function to obtain the a priori probability for a
shot boundary between frames k and k+1, that is

A(k)

P(S, k)= “—' e (14.3.11)
w=0 W:

The parameter i represents the average shot length of a video sequence, w is the
frame counter, which is reset each time a shot boundary is detected, and A(k) is the
current shot length at the frame k. Although in [Col76] and [Sal73] the Poisson
function was obtained for motion pictures, we assume that this conclusion can be
extended further to all other types of video programs. However, to compensate for
possible variations in program characteristics, we adapt the parameter p to different
program types (movies, documentaries, music video clips, etc.) and sub-types (e.g.
an action movie vs. drama). The adjustment of the parameter u is easy and can be
performed automatically, if the program type is known at the input into the video
analysis system. In our experiments we kept u constant at the value 70.

14.4.3 Scalar likelihood functions

We now perform a parametric estimation of scalar likelihood functions p(zlS) and
p(zl S), to be used in the detection rule (14.3.6). In order to get an idea about the most
suitable analytical functions used for such estimation, the normalized distributions
of discontinuity values z(k,k+1) computed within shots and at shot boundaries are
obtained first, using several representative test sequences.
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A normalized distribution of discontinuity values computed within shots is
shown in Figure 14.9a. The shape of the distribution indicates that a good analytic
estimate for this distribution can be found in the family of functions given as

p(218) = b,z e (14.3.12)

The most suitable parameter combination (h,h,,h,) is then found experimentally,
such that the rate of detection mistakes for the test sequences is minimized. The
optimal parameter triplet is found as (1.3, 4, -2). The corresponding analytical
function, serving as parametric estimate of the likelihood function p(zlS), is also
shown in Figure 14.9a.

|||||..__ | J.Mh )

Figure 14.9: (a) The normalized distribution of values z(kk+1) computed within shots
(discrete bins) and its analytic estimate (continuous curve), (b) normalized distribution of
values z(kk+1) computed at shot boundaries (discrete bins) and its analytic estimate
(continuous curve)

The analog procedure is applied to obtain the parametric estimate of the likelihood
function p(zlS). Figure 14.9b shows the normalized distribution of discontinuity
values z(kk+1), computed at shot boundaries, for which the same set of test
sequences as above is used. Judging by the form of the distribution, a Gaussian
function

__1 A5
p(zlS) = " e (14.3.13)
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can be taken as a good analytic estimate of it. Again we found the optimal values for
the pair of parameters (u,c) by experimentally minimizing the rate of detection
mistakes for the set of test sequences. This pair of values was obtained as (42, 10),
resulting in the Gaussian function presented in Figure 14.9b.

z2(k,k+1)
VA
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k

Figure 14.10: Abrupt boundary pattern with characteristic parameters

14.4.4 PMI and the conditional probability functions

Based on the discussion in the previous sections, we can state that the presence of an
isolated sharp peak belonging to an abrupt shot boundary in the middle of the
sliding window can efficiently be described by the ratio of the discontinuity value
z(k,k+1) in the middle of the window and the second largest discontinuity value
z,, within that window. A typical peak of an abrupt shot boundary with values
z(kk+1) and z_, is illustrated in Figure 14.10. The corresponding PMI function to be
used in the detector (14.3.7) is now given as

z(k, k+1)
z

sm

wik k+1)= (14.3.14)

The value of the PMI function (14.3.14) serves as the argument of the conditional
probability function P, (w(k,k+1)1S), defined as

P, (w(k, k+1)15)= %[H e,/(M_l):_dj] (14.3.15)

o erf
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with

erf(x) = % ]e"zdt (14.3.16)

0

The parameters d and o, are the “delay” from the origin and the spreading factor
determining the steepness of the middle curve segment, respectively. The optimal
parameter combination (d,o,,)is found experimentally such that the detection
performance for the test sequences is optimized. The resulting optimal pair of
parameters was found as (13, 5). The conditional probability (14.3.15) is illustrated in
Figure 14.11.

4 Po(y (k, k+1)1S)

vk, k+1)

e

Figure 14.11: The conditional probability function P, (w(k,k+1)1S)

14.4.5 Experimental validation

Achieving a high detection performance was an important issue when we developed
the statistical detection framework. To test the performance of the detector (14.3.7)
for abrupt boundaries, we used 5 sequences that belong to 2 different categories of
programs, movies and documentaries, and that were not previously employed for
training the detection procedure. The results presented in Table 14.1 illustrate a high
detection rate and no falsely detected boundaries. Furthermore, the obtained good
results remain consistent over all sequences.
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Test material Length | Total | Detected Falsely
in frames boundaries | detected
boundaries
Documentary 1 700 3 3 0
Documentary 2 800 5 5 0
Documentary 3 900 6 6 0
Movie 1 10590 90 90 0
Movie 2 17400 95 94 0
Total 30390 199 198 0

Table 14.1: Detection results for abrupt shot boundaries

14.5 Conclusions

Most existing approaches for shot boundary detection are based on explicitly given
thresholds or relevant threshold parameters, which directly determine the detection
performance. Due to such a direct mutual dependence, the detection performance is
highly sensitive to specified parameter values. For instance, a threshold set to 2.3
will interpret a discontinuity value 2.31 as a shot boundary and a value 2.29 as a
regular value within a shot. Beside the sensitivity, the problem of specifying such a
precise threshold remains. And, consequently, the scope of the validity of such a
precise threshold is highly questionable.

Manual parameter specification clearly cannot be avoided in any of the
detection approaches. However, the influence of these parameters on the detection
performance can be diminished and the detection can be made more robust if the
parameters are used at lower levels of the detection framework, so only for the
purpose of globally defining the framework components. Each component then
provides the detector with nothing more than an indication of the presence of a
boundary based on a specific criterion. The decision making about the presence of a
shot boundary is then left solely to the detector, where all the indications coming
from different sources are evaluated and combined. In this way, the importance of a
single manually specified parameter is not as great as when that parameter is
directly a threshold, and can therefore be assumed valid in a considerably broader
scope of sequences. In the statistical detection framework presented in this chapter,
this is the case with parameter sets (h,,h,,h,) and (u,5), which are used to define
the likelihood functions (14.3.12) and (14.3.13), as well as with parameters d and O uf
used to formulate the conditional probability function (14.3.15).
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The only parameter which needs to be adjusted depending on the type of
sequence is p, which is used in the formula (14.3.11) to define the a priori
probability. However, setting the value for p is easy, since it determines the average
shot length characteristic for a certain program type. For instance, the p value for
movies can be set to a value within a range 80-100, and for music TV clips to 30-40.
The adjustment of the u value can be performed fully automatically if the program
type information is available in the shot-boundary detection system. An example is a
video analysis system, as illustrated in Figure 13.2, which operates directly on DVB
streams. Here, each transmitted program compliant to DVB standard also contains a
header, which — among other data — contains the program type (movie,
documentary, music TV clip, etc.). Therefore, u can be set easily by means of a
simple look-up table.

Since the parameters used in our framework can either be assumed generally
valid or be adjusted automatically, no human supervision is required during the
detection procedure. At the same time, since the parameters are optimized for a
general case, similar high detection performance can be expected for any input
sequence. Both of these aspects make the developed framework suitable for an
implementation in a fully automated sequence analysis system. The facts that the
detection method presented in this chapter can operate on a wide range of video
sequences without human supervision, and keep the constant high detection quality
for each of them, are the major advantages the proposed detection framework has
over the methods from recent literature.
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Chapter 15

Automatically Abstracting
Video using Key Frames

15.1 Introduction

A structured collection of selected video frames, or key frames, is a compact
representation of a video sequence and is useful for various applications on a video.
For instance, it can provide a quick overview of the video-database content, enable
access to shots, episodes and entire programs in video-browsing and retrieval
systems and be used for making a commercial for a video. Furthermore, a video
index may be constructed based on visual features of key frames, and queries by
example may be directed at key frames using image-retrieval techniques [Zha%97a].
Also the higher-level video processing and analysis steps involving comparisons of
shots can benefit from visual features captured in key frames [Yeu95a], [Yeu97],
[Han99b]. To enable these applications, key frames can be extracted in various
fashions, such as

e Extracting the most memorable video frames: It is in human nature to remember
some most memorable segments of a video, e.g. a zoom of an actor in a funny
pose, a slow camera pan along a beautiful landscape or an impressive action
scene. A number of key frames can be extracted to represent each of these
segments.

¢ Summarizing the visual content of a video: The visual content of a video can be
“compressed” by first collecting fragments showing all of its relevant elements,
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such as landscapes, objects, persons, situations, etc., and by then searching for a
limited number of frames to represent each of these elements. An alternative
summarizing approach is to investigate the story flow of a video sequence and to
represent each successive logical segment (event, episode) by suitable frames.
Then, by concatenating these frames chronologically, a storyboard can be obtained
giving a compact video overview [Pen%94a].

Key frames can be extracted manually or automatically. Both possibilities are
illustrated in Figure 15.1. If key frames are extracted manually, they comply with
human cognition, that is, human understanding of a video content and human
perception of representativeness and technical quality of a frame. For instance, each
key frame can be extracted based on the role the persons and objects captured
therein play in the context of the target application. From several candidate frames,
the one being most representative (e.g. taken under the best camera angle) is chosen.
Furthermore, it is expected that no blurred or “dark” frames are extracted, or those
with coding artifacts, interlacing effects, etc.

Cognition domain (human)

- = Manual
Cognition-based X |
> : . £+ key-frame ¢
content analysis

extraction
Input :
pec L4
—= ===
Video : e
» Mapping cognition ')
s .
M . onto system?
Retrieval .
task v
" A
e Algorithms for Automated
—* audiovisual §-» key-frame f—§

content analysis extraction

Feature domain (system)

Figure 15.1: Manual vs. automated key-frame extraction
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In order to develop feature-based algorithms for automatically extracting key frames
that have the same quality as those extracted manually, we must map the extraction
criteria complying with human cognition onto the machine criteria. However, such
mapping is highly problematic, not only technically (Chapter 13), but also due to the
missing ground truth for the key-frame extraction.

If several users manually extract key frames from one and the same video and
for the same target application, it can realistically be assumed that each of the
obtained sets will be unique, concerning both the total number of frames contained
therein and the specific frames extracted. One reason for this is the subjectivity of
human perception of a video content. Especially when choosing the most memorable
video segments and extracting the corresponding key frames are concerned, the
dispersion among extraction results obtained by different users will be high {Paa97].
However, even if there is a consensus among users about which segments should be
represented in the visual abstract, again different key-frame sets can be expected. A
trivial example is a stationary shot showing an anchorperson in a news program.
Such a shot can equally well be represented by any of its frames.

Based on the discussion above we conclude that automatically extracting key
frames for the purpose of capturing the most memorable moments of a video
sequence is a difficult problem, mainly due to the subjectivity of the definition what
is memorable. Compared to this, the role of subjectivity in extracting key frames for
making a visual summary of a video is significantly smaller. This can be explained
by the fact that such a summary ideally contains all relevant visual-content elements
(faces, objects, landscapes, situations, etc.) and not a subjective selection of these
elements. In this way, we understand the key-frame based video summary as a unity
of all possible subjective key-frame selections. This makes the extraction of
“summarizing” key frames easier to automate. The only aspect which remains
subjective and therefore difficult to take into account by automation is to choose a
representative frame out of several equally acceptable candidate frames. However,
as illustrated in the example that involves a stationary anchorperson shot, selecting
any of the candidate frames does not considerably influence the quality of the
resulting key-frame set. For this reason, instead of considering the possibility of
selecting any frame out of equally acceptable candidates as a problem for
automation, we hold that it is an additional degree of freedom in the automation of
the key-frame extraction procedure.

We now define the objective of this chapter so as to provide methods for
automatically extracting key frames which summarize the visual content of a video.
Since the complex extraction criteria related to human cognition are difficult to map
onto the system level, we circumvent this mapping by applying a practical
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extraction methodology which is based on reducing the visual-content redundancy
among video frames. In the following, we define and discuss three different groups
of key-frame extraction techniques belonging to this methodology: sequential
extraction in a local context (SELC), sequential extraction in a global context (SEGC) and
non-sequential extraction (NSE).

A typical video can be seen as a concatenation of frame series, each
characterized by a high visual-content redundancy. These frame series can be entire
video shots or shot segments. Then, the redundancy of the visual content found in
such series can be reduced by representing each of them by one key frame. Taking
again as an example a stationary shot showing an anchorperson in a news program,
the frames of such a shot are almost identical and can be compressed to a single
frame. Applied to the entire video sequence, key frames can then be seen as its
(non)equally distributed sample frames [Pen94a]. This we call sequential extraction in
a local context (SELC).

Since a SELC technique extracts key frames only in the local context, similar
key frames may be extracted from different (remote) sequence fragments, which
results in a redundancy within the obtained key-frame set. This indicates that by
using some alternative techniques one can further reduce the number of extracted
key frames while still keeping all the relevant visual information of a sequence. One
of possibilities is to modify SELC approaches by taking into account all previously
extracted key frames each time a new frame is considered. Then, a new key frame is
extracted only if it is considerably different from all other already extracted key
frames. We call such a technique sequential extraction in a global context (SEGC).
Another alternative is a non-sequential extraction (NSE), where all frames of a
sequence are taken and grouped together, based on the similarity of their visual
content. The key-frame set is then obtained by collecting representatives of each of
the groups.

If concatenated, the key frames obtained by means of a SELC technique
represent a “red line” through the story of a video and closely provide a storyboard.
However, for some applications involving video content, having a storyboard of that
video is not required. This is the case with key-frame based video queries in
standard image retrieval tools. In such applications, the redundancy among key
frames makes the query database too large, slows down the interaction process and
puts larger demands on storage space for keeping the key frames than actually
necessary. In these cases, SEGC or NSE techniques are more suitable. While SELC
and SEGC techniques allow for on-the-fly (on-line) key-frame extraction and are
computationally less expensive than the NSE techniques, the NSE techniques
consider the key-frame extraction as a postprocessing step and mostly involve
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complex clustering procedures. However, a higher complexity of NSE techniques is
compensated by the fact that they are more sophisticated and, therefore, provide a
higher representativity of key frames while keeping the number of key frames
minimal.

After a review of existing approaches to automated key-frame extraction in
Section 15.2, we present in Sections 15.3 and 15.4 two novel extraction methods. The
first method belongs to the SELC group of approaches and aims at providing a good
video summary, also including its storyboard, while keeping the total number of
extracted key frames for the entire sequence close to the prespecified maximum. This
controllability is, on the one hand, an important practical issue, regarding the
available storage space and the interaction speed with a video database, but, one the
other hand, it also means an additional constraint that needs to be taken into account
during the key-frame extraction procedure. In contrast to the method in Section 15.3,
the major objective of the method presented in Section 15.4 is minimizing the
redundancy among video frames and providing a set of key frames which is similar
to the one based on human cognition for a given video sequence. We can explain this
objective with the example of a simple dialog sequence, where stationary shots of
each of the two characters participating in a dialog are alternated. Since a user would
summarize such a sequence by taking only two frames, one for each of the
characters, this should be obtained automatically as well. The approach in Section
15.4 belongs to the NSE group; it is based on cluster validity analysis and is designed
to work without any human supervision. Conclusions to this chapter can be found
in Section 15.5.

15.2 Previous work on key-frame extraction

A number of methods for automating the key-frame extraction procedure can be
found in recent literature. As will be shown in this section, some of the methods are
based on the criterion of reducing the visual-content redundancy among consecutive
frames, as defined above. However, some characteristic key-frame extraction
methods based on other criteria will be described as well.

A first attempt to automate key-frame extraction was done by choosing as a
key frame the frame appearing after each detected shot boundary [Sha95b].
However, while one key frame is sufficient for stationary shots, in dynamic
sequences it does not provide an acceptable representation of the visual content.
Therefore, methods were needed to extract key frames that are in agreement with
the visual-content variations along a video sequence. One of the first key-frame
extraction approaches developed in view of this objective is presented in [Zha95a],
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with all details given in [Zha97b]. Key frames are extracted in a SELC fashion
separately for each shot. The first frame of a shot is always chosen as a key frame.
Then, similar methodology is applied as for detecting shot boundaries. The
discontinuity value z(F,,, k) is computed between the current frame k of a sequence
and the last extracted key frame F,, using color histograms as spatial features
(Chapter 14). If this discontinuity value exceeds a given threshold T, the current
frame is selected as a new key frame, that is

Stepl: F

last = 1

Step2: Vke[2,8] if z(F

last 7

B>ToF (15.2.1)

st =k
Here, S is the number of frames within a shot. The extraction procedure (15.2.1) is
then adapted by means of the information on dominant or global motion resulting
from camera operations and large moving objects, according to a set of rules. For a
zooming-like shot, at least two frames will be extracted, at the beginning and at the
end of a zoom. The first frame represents a global and the other one a more detailed
view of a scene. In case of panning, tilting and tracking, the number of frames to be
selected depends on the rate of visual-content variation: ideally, the visual content
covered by each key frame has little overlap, or each frame should capture different
object activities. Usually frames that have less than 30% overlap in their visual
content are selected as key frames. A key-frame extraction method similar to (15.2.1)
can also be found in [Yeu95a]. There, however, the motion information is not used.

Another SELC extraction approach is proposed in [Gun98], where the authors
first compute the discontinuity value between the current frame k and the N
previous frames. This is done by comparing the color histogram of the frame k and
the average color histogram of the previous N frames, that is
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If the discontinuity value (15.2.2) exceeds the prespecified threshold T, the current
frame k is extracted as a new key frame F,

ast 7

if a(k{k-1,..,k-N))>T = F

ast

=k (15.2.3)

A possible problem with the extraction methods described above is that the first
frame of a shot is always chosen as a key frame, as well as those frames lying in shot
segments with varying visual content. As discussed in [Gre97], when a frame is
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chosen that is close to the beginning or end of a shot, it is possible that that frame is
part of a dissolve effect at the shot boundary, which strongly reduces its
representative quality. The same can be said for frames belonging to shot segments
of great camera or object motion (e.g. strong panning or a zoomed object moving
close to the camera and hiding most of the frame surface). Such frames may be
blurred, and thus in some cases not suitable for extraction. A solution to this
problem can be found in [DeM98], where the authors first represent a video
sequence as a curve in a high-dimensional feature space. The 13-dimensional feature
space is formed by the time coordinate and 3 coordinates of the largest “blobs”
(image regions), where 4 intervals (bins) are used for each luminance and
chrominance channel. Then the authors simplify the curve using the
multidimensional curve-splitting algorithm. The result is, basically, a linearized
curve, characterized by “perceptually significant” points, which are connected by
straight lines. A key-frame set of a sequence is finally obtained by collecting frames
found at perceptually significant points. With a splitting condition that checks the
dimensionality of the curve segment that is split, the curve can be recursively
simplified at different levels of detail, that is with different densities of perceptually
significant points. The final level of detail depends on the prespecified threshold,
which evaluates the distance between the curve and its linear approximation. We
consider the main problem of this approach to be evaluating the applicability of
obtained key frames, as it is not clear which level and objective of video
representation is aimed at. For instance, it is unlikely that the objective of the
approach is to provide a good video summary, since there is no proof that extracted
key frames lying at “perceptually significant points” capture all important aspects of
a video. On the other hand, the connection between perceptually significant points
and most memorable key frames according to user’s cognition is not clear either.

An example of NSE key-frame extraction approaches can be found in {Zhu98].
There, all frames in a video shot are classified into M clusters, where this final
number of clusters is determined by a prespecified threshold T. A new frame is
assigned to an existing cluster if it is similar enough to the centroid of that cluster.
The similarity between the current frame k and a cluster centroid c is computed as
the intersection of two-dimensional HS histograms of the HSV color space (H - Hue,
S - Saturation, V - Value). If the computed similarity is lower than the prespecified
threshold T, a new cluster is formed around the current frame k. In addition, only
those clusters that are larger than the average cluster size in a shot are considered as
key clusters, and the frame closest to the centroid of a key cluster is extracted as a
key frame.
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Extraction of key frames in all approaches discussed above is based on
threshold specification. The thresholds used in [Zha95a], [DeM98] and [Zhu98] are
heuristic, while the authors in [Gun98] work with a threshold they obtained by
means of the technique of Otsu [Sah88]. By adjusting the threshold, the total number
of extracted key frames can be regulated. However, such regulation can be
performed only in a global sense, meaning that a lower threshold will lead to more
key frames, and vice versa. An exact or at least an approximate control of the total
number of extracted key frames is not possible. First, it is difficult to relate a certain
threshold value to the number of extracted key frames. Second, one and the same
threshold value can lead to a different number of extracted key frames in different
sequences. A practical solution for this problem is to make the threshold more
meaningful and to relate it directly to the extraction performance. An example is the
threshold specification in form of the maximum tolerable number of key frames for a
given sequence. An NSE approach using this sort of thresholds can be found in
[Sun97]. There, two thresholds need to be prespecified: r, controlling which frames
will be included in the set and N, being the maximum tolerable number of key
frames for a sequence. Key frame extraction is performed by means of an iterative
partitional-clustering procedure. In the first iteration step, a video sequence is
divided into consecutive clusters of the same length L. The difference is computed
between the first and the last frame in each cluster. If the difference exceeds the
threshold 7, all frames of a cluster are taken as key frames. Otherwise, only the first
and the last frame of the cluster are taken as key frames. If the total number of
extracted frames is equal to or smaller than the tolerable maximum N, the extraction
procedure is stopped. If not, a new sequence is composed out of all extracted frames
and the same extraction procedure is applied. The biggest disadvantage of this
method is the difficulty of specifying the threshold 7, since it is not possible to relate
the quality of the obtained key-frame set to any specific r value.

If the total number of extracted key frames is regulated by a threshold, the
qualities of the resulting key-frame set and of the set obtained for the same sequence
but based on human cognition are not necessarily comparable. For instance, if the
threshold is too low, too many key frames are extracted and characterized by a high
redundancy of their visual contents. As a result of a threshold set too high, the key-
frame set might be too sparse. Especially if the rate of visual-content change allows
for only one optimal set of key frames for the best video representation, finding the
threshold value providing such a key-frame set is very difficult.

Authors in [Avr98] and [Wol96] aim at avoiding this problem and propose
threshold-free methods for extracting key frames. In [Avr98], the temporal behavior
of a suitable feature vector is followed along a sequence of frames; a key frame is
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extracted at each place of the curve where the magnitude of its second derivative
reaches the local maximum. A similar approach is presented in [Wol96], where local
minima of motion are found. First, the optical flow is computed for each frame and
then a simple motion metric is used to evaluate the changes in the optical flow along
the sequence. Key frames are then found at places where the metric as a function of
time has its local minima. However, although the first prerequisite for finding good
key frames was fulfilled by eliminating threshold dependence of the extraction
procedure, the two described methods have the same disadvantage as the method
proposed in [DeM98], namely an unclear applicability of the resulting key frames.

Video Phase 1
No : :
Shot-Boundary Modeling visual content
detected . [ variations along shot i

Yes
Phase 2
Y
Assigning K
key frames to shot i

e
Distributing K
key frames along shot i

Figure 15.2: Scheme of the key-frame extraction approach with controlled number of key
frames

15.3 Extracting key frames by approximating the
curve of visual-content variations

In the key-frame extraction method presented in this section we aim at providing a
good video summary while keeping the number of extracted key frames close to the
prespecified maximum. This SELC method can be considered as an alternative to the
approach from [Sun97]. However, it has the advantage that the number of
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thresholds is reduced to one; it is the maximum allowed number of key frames N for
the entire sequence.

As illustrated in Figure 152, key frames are extracted for each shot of a
sequence separately. This is done in two major phases. The first phase starts at the
beginning of a shot 7 and lasts until the boundary to the shot i+1 is detected. During
this time, the variation of the visual content is modeled along a shot i. The result of
this phase is twofold. First, a curve is obtained which models the visual-content
variations along shot i. Second, the total magnitude C, of visual-content variations
along a shot i is available at the moment the boundary between shots i and i+1 is
detected. The second phase starts at the moment the boundary to the shot i+1 is
detected, and consists of two consecutive steps. In the first step, a fraction X, of the
prespecified N key frames is assigned to shot i, proportional to the computed value
C,, and such that the sum of key frames assigned to all shots of a sequence does not
exceed the prespecified maximum N. The number N can be adjusted if we know a
priori the type of the program to be processed. In the second step, a threshold-free
procedure is applied to find optimal positions for the assigned number of key frames
along a shot i. Such an optimal distribution is obtained iteratively, by means of a
suitable numerical algorithm. In the following subsections, we will describe both
extraction phases and all of their steps in more detail.

15.3.1 Modeling visual content variations along a shot

In order to model the variations of the visual content along a shot i, we must
consider relevant content variations, i.e. those that make the extraction of a new key
frame necessary. For instance, object motion by a constant background is not as
relevant for key-frame extraction as, for instance, camera panning, tilting and
tracking. This is because the object motion alone does not result in a drastic change
of the visual content, and does not need to be captured by several key frames.
Opposed to this, a camera motion constantly introduces new visual material, which
needs to be represented by more than one key frame. For efficiently capturing
camera operations while excluding the sensitivity of key-frame extraction to object
motion, we compute the discontinuity values z(k,k+1) using color histograms and
according to (2.2.7), but here in the YUV color space and for /=1:

Npirs
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Figure 15.3: (upper) Discontinuity values for nine shots of a typical movie,
(lower) Functions (15.3.2) modeling the visual content variations

Accumulating the discontinuity values (15.3.1) along a shot and taking the current
cumulative value at each frame k results in the function C,(k), which we consider as
the model for visual-content variations along a shot i:

Ci(k)=

k-1
2(j,j+1) (15.3.2)
=fui

The frame f,;is the first frame of the shot i and the summation process (15.3.2) is
reset at the shot boundary. Since z(k,k+1) can only have non-negative values, C;(k)
is a non-decreasing function. It has a close-to-linear behavior in shot segments with a
uniform rate of visual content variations (e.g. a stationary segment or a constant
camera motion) and changes in steepness wherever changes in the variation rate
occur (e.g. camera motion after a stationary segment). Figure 15.3a shows the
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discontinuity values computed for nine shots of a typical movie sequence and Figure
15.3b the behavior of the corresponding functions C;(k). When the end of a shot is
reached, we obtain with (15.3.3) the total magnitude of visual content variations
along the shot i, with S, being the number of frames in that shot:

§;-1
C,=Ci(S)=>.z(j,j+1) (15.3.3)
j=ha

15.3.2 Distributing N key frames over the sequence

After the total magnitude of visual content variations for the shot i has been
obtained by means of (15.3.3), the total prespecified number N of key frames is
distributed along all shots of a sequence proportional to values C,. The higher C,,
the more diverse visual content is assumed in the shot i, which then requires more
is the number of shots in the
entire sequence, we assign K; key frames to shot i according to the following ratio:

key frames in order to be represented well. As N

shots

K, =——N (15.3.4)
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Figure 15.4: Key-frame assignments according to the procedures (15.3.4) and (15.3.5)
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Equation (15.3.4) assumes that the values C; are known for all shots of a sequence,
so the denominator in (15.3.4) can now be computed. Since, in practice, on-line key-
frame extraction is more appealing, we adapt the assignment rule (15.3.4) so that a
suitable number of key frames can be assigned to a shot i immediately after the
boundary between shots 7 and i+1 has been detected. The adapted assignment rule is
given as follows:

. N =
~int| C; —L— (15.3.5)

Here, S is the total sequence length and §; is the length of the shot j. Compared to
the off-line assignment (15.3.4), the rule (15.3.5) uses only the information available
at the moment when K; is computed. Since the total cumulative variations of the
visual content along the entire sequence (denominator in (15.3.4)) is not known, we
can only summarize until the shot i. This disadvantage is, however, compensated by
taking into consideration also the time parameter, e.g. shot lengths. Thereby we
assume that the ratio between the total sequence length and the values C, for all
shots of a sequence can be well approximated by the ratio between these two
quantities, where both are only taken up to the current shot i.

Assignment results obtained using (15.3.4) and (15.3.5) may differ in the
beginning, that is, for a low shot index i. However, with increasing i we expect the
value (15.3.5) to converge towards the value (15.3.4). In order to show this, we chose
to distribute an unusually large number of N=100 key frames along nine shots of the
sequence illustrated in Figure 15.3a. Assignment results using both methods are
presented in Figure 15.4.

15.3.3 Distributing key frames within a shot

In the final step, K; assigned key frames need to be located within a shot. For the
sake of notation and derivation, in the following we will consider k in (15.3.2) to be a
continuous variable, although a practical implementation will use a discretized
version. If we would interpolate C,(k) for non-integer values of k from neighboring
values for integer k, i.e. C,({k]) and C,([k)), then C,(k) becomes a non-decreasing
function. We will assume this property in the sequel. The underlying theory used
here for distributing key frames along a shot is that K; key frames should be
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distributed along a shot such that the visual content is summarized in the best
possible way. Since the function C, (k) represents the variations of the visual content
along the shot, it also provides the information about the amount of redundancy
present in each of the shot segments. The steeper the function, the less redundancy is
to be found among consecutive frames in that segment, and vice versa.

Consequently, properly distributing key frames along a shot is equivalent to
finding a suitable way of representing the function C;(k) by K, (non-) equidistant
samples, where the sample density is dependent on function steepness and where
each sample is a key frame representing a series of consecutive frames around it. A
key frame F,, j=1,... K;, lies in the middle of the interval (¢, ,,t;) and represents all
frames in that interval. We approximate the function C;(k) along this interval by its
value at frame k = F,, that is, by C,(F,). By doing this for each key frame, a step curve
is obtained, which closely approximates the function C;(k) along a shot i.
Maximizing the quality of such an approximation is now equivalent to properly
placing the horizontal line segments and defining their optimal lengths, which is,
again, equivalent to properly positioning the key frames F, in the middle of these
segments. To achieve such optimal positioning, we choose to minimize the following
L, error function:

t

§F s F bt V=D, 'j|c,. (k)= C, (F, )| dk (15.3.6)
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Note that £, and ¢, are the (known) temporal starting and endpoints of the shot i.
Figure 15.5 illustrates the meaning of (15.3.6). It shows the function C,(k) and how
the key frames are distributed such that the area between this function and the
approximating rectangles, defined by F; and ¢, , is minimized. The minimization of
(15.3.6) is carried out in two steps. First, if we assume that the breakpoints ¢, , and
t; are given, then the partial integral

§(E)= f|C, 00-C, (F, |k (1537)

tia

is minimized by taking as key frame the center of the interval considered:

]_1+t]. )
F = 5 for j=1,2,...,K, (15.3.8)

/
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ionin (15.3.6)

Figure 15.5: Illlustration of the function C;(k), the distribution of key frames F, and
breakpoints t,

Note that this result is independent of the actual cumulative action function on this
interval as long as C;(k)is a non-decreasing function. After substituting (15.3.8) into
(15.3.6), we can minimize the resulting expression with respect to the breakpoints ;.
The resulting solution is given by the following set of K; equations:

C,(t))=3(C,(F,)+Ci(F,,)) for j=1,...,K, (15.3.9)

The interpretation of this set of equations is that the breakpoint ¢;is chosen such that
the value of the function C,(k) at that breakpoint is the average of the C,(k) values
at the key frames preceding and following that breakpoint. Together, (15.3.8) and
(15.3.9) form the solution of the desired key-frame distribution according to the
criterion (15.3.6). To solve the key- frame positions from (15.3.8) and (15.3.9), one can
employ a recursive search algorithm. To this end, we rewrite (15.3.9) as follows:

C,(F.)=2C,(t,)-C,(F,) for j=1,...K, (15.3.10)

If we start with assuming a breakpoint ¢,, then we can compute key frame F, using
(15.3.8). From (15.3.10) we can then compute breakpoint t, (substitute j=1 in
(15.3.10)). Subsequently, from ¢, we can compute F, using (15.3.8), from which
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t;follows (substitute j=2 in (15.3.10)). In this way we can recursively compute for the
assumed value of ¢, the value of £, which should be identical to the given length of
the i-th shot. Depending on the mismatch between the computed and actual value,
the position of the breakpoint #;, can be adjusted. Note that this recursive search
procedure is very close to the one often used for designing scalar quantizers
[Max60].
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Figure 15.6: Distribution of different number of key frames along a fictive video shot with a
variable rate of visual-content variations.

15.3.4 Experimental validation

The major issue in the key-frame extraction approach presented in this section is
related to distributing a given number of key frames along a shot, such that the best
possible summarization of the visual content of a shot is obtained. We therefore
concentrate here on testing the optimization process (15.3.6) in the controlled
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situation. Visual content variations along an arbitrary shot i are modeled by two
artificially produced functions C,(k). The form of the first function is given in the
diagrams of Figure 15.6 and indicates that there is a constant low rate of visual
content variation in the beginning of the shot, followed by an exponentially
increasing variation rate, while the shot ends with a segment having the constant
variation rate, but one that is higher than in the first shot segment. The exponential
form of the second function, shown in diagrams of Figure 15.7, indicates a steadily
increasing rate of visual-content change, for instance, in the case of an accelerated
camera panning, tilting or tracking.
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Figure 15.7: Distribution of different number of key frames along a fictive video shot with
exponential visual-content variations.

Independent of the number K; of assigned key frames, the varying key-frame
density along shot i should follow the visual-content variations modeled by the
function C,(k). Furthermore, in shot segments with a constant variation rate, key
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frames are distributed homogeneously and all shot segments need to be represented.
The last requirement should prevent that all or a large majority of key frames are
concentrated on one small shot segment, while the rest of the shot’s visual material
is not captured by key frames.

We show in Figures 15.6 and 15.7 the results of distributing 2, 3, 5, 6, 7, 11, 12
and 13 key frames along a shot i for both modeling functions C; (k). In all cases, key
frames — represented by vertical lines - were distributed as expected. On the one
hand, it can be seen how in each case the concentration of key frames follows the
dynamic of the function C,(k). On the other hand, from the fact that key frames are
always distributed along the entire shot, it can be concluded that the visual content
of all shot segments is well captured in each of the key-frame sets.

154 Key-frame extraction based on
cluster-validity analysis

The objective of the key-frame extraction method presented in this section is to
minimize the redundancy among video frames and provide a set of key frames for a
given video sequence, which is similar to the one based on human cognition. While
in the method from Section 15.3 key frames are extracted separately for each shot,
the extraction procedure described here can be applied to a sequence containing an
arbitrary number of shots. Furthermore, the method presented in this section does
not require any human supervision or parameter (threshold) specification. This
makes the extraction procedure very user friendly and it supplies the user with a
stable quality of obtained key frames for any arbitrary sequence.

The visual-content redundancy is reduced here by applying a partitional
clustering [Jai88] to all video frames. The underlying idea is that all frames with the
same or similar visual content will be clustered together. Each cluster can be
represented by one characteristic frame, which then becomes a key frame of a
sequence, capturing all the visual material of that cluster. Since frames in different
clusters contain different visual material, the redundancy among obtained key
frames is low. At the same time, all variations of the visual material along a sequence
is captured in its key-frame set.

Consequently, the problem of finding the optimal number of key frames for a
given sequence is reduced to finding the optimal number of clusters in which the
frames of a video can be classified based on their visual content. The main difficulty
here is that the optimal number of clusters needs to be determined automatically. To
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solve this, we apply known tools and methods of cluster validity analysis and tailor
them to our specific needs.

As illustrated in Figure 15.8, the extraction approach in this section consists of
three major phases. First, we apply N times a partitional clustering to all frames of a
video sequence. The prespecified number of clusters starts at 1 and is increased by 1
each time the clustering is applied. In this way N different clustering possibilities for
a video sequence are obtained. In the second step, the system automatically finds the
optimal combination(s) of clusters by applying the cluster-validity analysis. Here,
we also take into account the number of shots in a sequence. In the final step, after
the optimal number of clusters is found, each of the clusters is represented by one
characteristic frame, which then becomes a new key frame of a video sequence.

Video
" Clustering Phase 1
Detecting all =
etecting a 2 23
. =3 > Cluster-validity
shot boundaries ; ' Phase 2
& il analysis :
4
Key frames
= *hase 3
from clusters Phase 2

Figure 15.8: Key-frame extraction scheme based on cluster validity analysis

15.4.1 Clustering

The clustering process is performed on all video frames. For this purpose, each
frame k of a video sequence is represented by a D-dimensional feature vector ¢(k),
consisting of features ¢, (k). The feature vector can be composed using texture,
color, shape information, or any combination of those. Similarly as in the previous
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section, we wish to efficiently capture with key frames the changes introduced in the
visual material, by e.g. camera panning, while the key frames must remain relatively
insensitive to object motion. Therefore, we have chosen a D-dimensional feature
vector, consisting of the concatenated D/3-bin color histograms for each of the
component of the YUV color space. Furthermore, since d(k) is easily computable, we
also compensate in this way for an increased computational complexity of the
overall extraction approach due to the extensive cluster validity analysis, but still
achieve an acceptable frame content representation. The feature vector used in this
chapter is given as

$(k)=(p,(k)lv=1,..,D)=
= <H{ ,..H; (-L;—) H(D),..H (g) HY(1),..H] (E;_)> (15.4.1)

By taking into account the curse of dimensionality [Jai82], we made the parameter D
dependent on the sequence length. Now we compute it as S/5 [Jai82], whereby S is
the number of frames to be clustered, and in this case also the number of frames in
the sequence.

Since the actual cluster structure of the sequence is not known a priori, we first
classify all frames of a sequence into 1 to N clusters. Thereby, the number N is
chosen as the maximum allowed number of clusters within a sequence by taking
into account the sequence length. Since each cluster corresponds to one key frame,
the number N is equivalent to the maximum allowed number of key frames used in
the previous section; here we use the same notation. Although N can be understood
as a threshold parameter, its influence on the key-frame extraction result is minimal.
This is because here we choose N much higher than the largest number of clusters to
be expected for a given sequence. The longer the sequence, the higher is the potential
number of clusters for classifying its video material. We found the variation of N
with the number of sequence frames S defined by the function (15.4.2) suitable for
the wide range of sequences tested:

N=N(S)=10+ int(z—ssj (15.4.2)

When we defined (15.4.2), we took into account that enough alternative options
should be offered to the cluster validity analysis to obtain reliable results and that
the number of options should increase with sequence length. On the other hand, the
value N needs to be kept in limits, since the “noisy” clustering options become more
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probable with an increasing number of clusters and can negatively influence the
cluster validity analysis.

After the clustering phase we perform a cluster-validity analysis to determine
which of the obtained N different clustering options, i.e. which number of clusters, is
the optimal one for the given sequence. In the following we will explain this
procedure in full detail.

15.4.2 Cluster-validity analysis

For each clustering option characterized by n clusters (1<n<N), we find the
centroids ¢; (1<i<n) of the clusters by applying the standard k-means clustering
algorithm to feature vectors (15.4.1) for all frames in the sequence. In order to find
the optimal number of clusters for the given data set, we compute the cluster
separation measure p(n) for each clustering option according to [Dav79] as follows:

p(n)= z max (EI:ELJ , n=2 (15.4.3)

1<j<
js<n A iwj ux‘j

with the following parameters:
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The better all of the n clusters are separated from each other, the lower is p(n) and
the more likely is that the clustering option with n clusters is the optimal one for the
given video material. The value &, is called dispersion of the cluster 7, while u j is the
Minkowski metric [Fri67] of the centroids characterizing the clusters i and j. For
different parameters 7, and 75,, different metrics are obtained [Dav79].
Consequently, the choice of these parameters has also a certain influence on the
cluster-validity investigation. We found that the parameter setting 7,=1 and n,=2
gave the best performance for our purpose. E; is the number of elements in the
cluster i. Note that the p(n) values can only be computed for 2<n< N due to the
fact that the denominator in (15.4.3) must be nonzero. We now take all p(n) values
measured for one and the same sequence and for 2<n < N, and normalize them by
their global maximum. Three different cases are possible for the normalized
p(n)curve, as illustrated in Figure 15.9a-c.
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p(n)

nopt noptl noptz

Figure 15.9: llustration of three possible cases for the normalized p(n)curve.

Case 1: The normalized p(n) curve is characterized by a pronounced global minimum
at n=n,,, as shown in Figure 15.9a. This can be interpreted as the existence of n,,
clear natural clusters in the video material with n opt >1. In this case, we assume a set

of n,, clusters to be the optimal cluster structure for the given video sequence.

Case 2: The normalized p(n)curve has s distinct low values. This means that it is
possible to classify the given video material into s different numbers of clusters with
a similar quality of content representation. An example of this is illustrated in Figure

15.9b for s=2 with options containing n,,,0r n,,, clusters.

Case 3: All values of the normalized p(n) curve are high and remain in the same
range (around 1), as illustrated in Figure 15.9¢c. This case can be interpreted twofold:
either there is no clear cluster structure within the given video material (e.g. an
action clip with high motion) or the video sequence is stationary and it can be
treated as one single cluster. In the remainder of this chapter we will consider a
sequence as stationary if there is no or only non-significant camera or object motion
(e.g. a zoom of a person talking, characterized by head and face motion). In general,
if p(n) curve is obtained as shown in Figure 15.9¢, the decision about the optimal
cluster structure is made depending on the detected number of shots in that
sequence.

As a result of the above, the problem of finding the optimal cluster structure for any
video sequence given by the normalized p(n) values for 2<n<N is reduced to
recognizing the most suitable of the three above cases. To be able recognize this, we
first must sort all the normalized values p(n), 2<n< N, in the ascending order,
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resulting in a sorted set p,,,(m),1<m<N-1. Then, we introduce the reliability
measure r(m), 1< m< N -2, defined as:

p sorted (m)

(15.4.5)
P sorted (m + 1)

r(m) =

Finally, we search for the value of the index m for which the function r(m) has its
minimum. Two possible results of the minimization procedure are given by the

expressions
151,1,,131\1/1 2(r(m)) =r(1) (15.4.6a)
. miglw_z(r(m)) =r(s), s=1 (15.4.6b)

We will interpret these results for two different types of sequences, namely
sequences containing several video shots and sequences corresponding to single
video shots.

Sequences containing several video shots

We first analyze the situation involving sequences which contain more than one
video shot. If there is a pronounced global minimum of the p(n) curve at n=n_,, as
shown in Figure 15.9a, the reliability vector r(m) has its global minimum at m=1.
Therefore, the validity of (15.4.6a) is equivalent to the defined Case 1. Then, the

optimal number of clusters is chosen as

opt 1

Mo = err}'isrl}l(p(n)) (154.7)
If the equation (15.4.6b) is valid, the scope of possible options is constrained either to
Case 2 or to Case 3, where Case 3 can be considered less probable for the following
two reasons: On one hand, the probability that there is a highly stationary content
across several consecutive shots is low. On the other hand, enough distinction of the
visual material belonging to different shots of the sequence can be expected, so that —
if not only one —also several equally acceptable clustering options can be allowed.
Therefore, we relate the validity of (15.4.6b) in case of complex sequences to the
defined Case 2. That is, all cluster sets belonging to p_,,.,(i), 1<i<s, are taken as
possible solutions for grouping the frames of a sequence.
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Single video shots

The probability that one finds a natural cluster structure containing more than one
cluster in sequences consisting of only one video shot is generally much smaller than
finding one in sequences containing several shots. This is because changes of the
visual content within a shot are continuous, mostly characterized by a camera/object
motion without dominant stationary segments. For this reason, a large majority of
p(n) curves obtained for single video shots can be expected to correspond to the
model in Figure 15.9c. Hence, it is crucial that a reliable distinction can be made
between stationary shots and non-stationary shots of which the natural cluster
structure is unclear, as this is the basis of obtaining a suitable abstract structure for
single video shots.

If n,, clusters are suggested by (15.4.7) for a given shot, and if that shot is
stationary, the average intra-cluster dispersion &,,, computed over all n,, clusters
should be similar to the dispersion &, computed for one cluster containing all
frames of that shot. Otherwise, the dispersion ¢&,, can be assumed to be
considerably larger than &, . In view of this analysis, we define the decision rule
(15.4.8) to distinguish stationary shots from the non-stationary ones. For this
purpose we first use (15.4.7) to find n,, clusters for a given shot and compute the
dispersion ¢, . Then we also compute the dispersion ¢,, and compare both with
&xf , which can be understood as the reference for the stationarity and is obtained by
averaging dispersions measured for a large number of different stationary shots.

not stationary

Igane _E’efl Z IE"Dpt —E’qu (1548)

stationary

If the shot is stationary, it is represented by only one cluster, including all frames of a
shot. With non-stationary shots we proceed by checking the evaluations (15.4.6a-b).
If the equation (15.4.6a) is valid, n
indicating that clearly distinguishable natural clusters exist within the shot. If

o 15 chosen as the optimal number of clusters,
(15.4.6b) is valid, we can either assume that there are several clustering options for
the given shot, or that no natural cluster structure can be recognized by the
algorithm. The first possibility is relatively improbable because the range of content
variations within a shot of an average length is limited. Therefore, the validity of
(15.4.6b) for a single shot is related to an unclear cluster structure, which is difficult
to represent. On the one hand, one single cluster is too coarse, since variations of the
visual content are present. On the other hand, choosing too many clusters would
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lead to an over-representation of the shot. For these cases we found the smallest
number of clusters proposed by (15.4.6b) as a good solution for this problem. Thus,
from s clustering options suggested by (15.4.6b), we choose n_ clusters, defined by
(15.4.9), to represent a single video shot with an unclear cluster structure:

M = Min{n;) (15.4.9)

m l<i<s
15.4.3 Key frames from clusters

Once a suitable cluster structure is found for the given video sequence, one
representative frame is chosen from each of the clusters and taken as a key frame of
the sequence. As being usual in the clustering theory, we choose for this purpose the
cluster elements being closest to cluster centroids. We find the key frame F, of the
cluster i by minimizing the Euclidean distance between feature vectors (15.4.1) of all
cluster elements k and the cluster centroid c;, that is

LK) -0, () (15.4.10)

D
F, < min Z (o}
1<k<E; Vel

15.4.4 Experimental validation

In order to test the video-abstraction method presented in this section, we
concentrate here first on the evaluation of the proposed procedure for cluster-
validity analysis, since both the key-frame sets and the preview sequences of a video
abstract are directly dependent on the number and quality of obtained clusters.

We first tested the algorithm performance on sequences consisting of single
video shots. For this purpose, we used 76 shots of a typical Hollywood-made movie
and characterized them manually regarding the variations in their visual contents.
The value of the parameter &rs from (15.4.8) was obtained experimentally as 0.0228,
for which we used a number of stationary shots of different lengths and containing
different visual material, and can therefore be assumed generally valid. As
illustrated in Table 15.1, each of the shots belonging to the test set is assigned a
description of how its content varies in time. From this description, the most suitable
number of clusters for grouping all the frames of a shot is derived and used as a
ground truth. For instance, a stationary shot should get assigned 1 cluster, and a shot
with Q distinct stationary segments should get assigned Q clusters. For 66 shots
(87%) of the test set, their frames were clustered in the same way as given by the
ground truth.
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Shot 2: Frames 42-286 stationary with minor object
motion (1 cluster)

Shot 10: Frames 1582-1751  slight zoom (1 or 2 clusters)

Shot 24: Frames 4197-4358  two stationary camera positions
(2 clusters)

Shot 29: Frames 5439-5776  three stationary camera
positions (3 clusters)

Shot 45: Frames 7218-7330  slow camera panning
(1 or 2 clusters)

Shot 51: Frames 8614-8784  stationary camera, followed by
a strong zoom (2 clusters)

Table 15.1: A fragment of the test set for evaluating the performance of the cluster-validity

analysis algorithm for single shots

In

order to test the performance of the cluster-validity analysis algorithm for

sequences containing several shots, we established a controlled test environment
involving a set of sequences with a clearly defined structure in terms of the

possibilities for clustering their frames. For each of these sequences we estimated the

suitable number of clusters for organizing their visual content and used this

esti
fou

mation as the ground truth. An indication of the algorithm performance can be
nd in Table 15.2 for the following test sequences used:

Sequence 1: A dialog between two movie characters. Due to two fixed
camera positions, two clearly defined clusters are expected, one for each of the
characters.

Sequence 2: Three movie characters in discussion, with the camera showing
each of them separately and all together. Four clear clusters are expected.
Sequence 3: Two major camera positions to be captured by two clear
clusters.

Sequence 4: A long sequence covering different visual material in a series.

Five clear clusters are expected for sequence representation
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Although for the fourth sequence a clear cluster structure containing 5 clusters was
expected, the algorithm suggested two possible clustering options. However, this
was still acceptable, since the 5 clusters found corresponded to the expected ones
and the option with 6 clusters contained the same clusters and an additional one,
capturing a segment with object motion.

Test Expected Expected Obtained Obtained
sequences number cluster number cluster
of clusters | structure of clusters structure
Sequence 1 2 Clear 2 Clear
Sequence 2 4 Clear 4 Clear
Sequence 3 2 Clear 2 Clear
Sequence 4 5 Clear 5,6 Unclear

Table 15.2: Algorithm performance for some video sequences containing more than one video
shot

Based on the results of cluster-validity analysis, key-frame sets and preview
sequences were formed. For each of the obtained clusters, a key frame was extracted
using (15.4.10). Besides of the fact that in each case the obtained cluster combination
corresponded to the one given by the ground truth, we also found the resulting key-
frame set providing a good representation of the video content. This implies that
frames nearest to cluster centroids are suitable to be used as key frames, and that the
cluster-validity analysis is here the crucial step in making the video abstract.

15.5 Conclusions

After discussing the possibilities for automation of the key-frame extraction in the
first section of this chapter, we presented in Sections 15.3 and 15.4 two methods by
which key frames are automatically extracted for making a summary of a video’s
visual content. Both methods were developed such that the human intervention in
dimensioning the extraction process is either limited to easily specified parameters
or not necessary at all. In the method from Section 15.3, the maximal number N of
key frames for the entire sequence is prespecified, while the approach from Section
15.4 is capable of functioning without human supervision. There, the value of the
reference dispersion for stationary shots £rs found in subsection 15.4.4 can be used
for measurements on a wide range of different sequences. Compared to the majority
of key-frame extraction methods from recent literature, such a transparent
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parameter dependence makes the two approaches described in this chapter highly
user-friendly.

Regarding the achieved visual-content representation, we first discuss in more
detail the approach from Section 15.3. Two conclusions related to the ability of the
method to summarize the visual content of a video can be drawn from the
experimentally obtained key-frame distribution in Figures 15.6 and 15.7. First, the
“sampling interval” between consecutive key frames is clearly dependent on the rate
of visual content variation, i.e. on the steepness of the function C,(k). The higher the
variation rate, the more key frames are used to capture the appearing new visual
material. This indicates that all relevant elements of the visual content appearing in a
shot will be represented in the resulting key-frame set. Second, although the
sampling of the function C,(k) is generally not equidistant, key frames are always
distributed such that the entire visual material of a shot is captured. This is opposed
to an alternative where e.g. all K; frames concentrate only on one shot segment.
However, if the total number of key frames or any other threshold parameter is a
constraint, it is difficult to prevent the cases of redundant key frames or to prevent
ending up with too few key frames for a good sequence representation. Clear
practical advantages of this method are the possibility of extracting key frames on-
the-fly and of obtaining a good video summary and storyboard of a video, while
keeping the amount of extracted information limited and closed to the prespecified
one.

By using the extraction method presented in Section 15.4, one can obtain a very
compact set of key frames for an arbitrary sequence, the quality of which is similar to
a key frame set based on human cognition. Each frame selected using (15.4.10) can
be assumed to have a high technical quality, since it corresponds to a cluster
centroid, which is by definition the cluster element most similar to all other elements
of that cluster. For that reason, having an “outlier” as a key frame, lying e.g. in a
high-motion, in a blurred, dissolve or fade segment, is not as probable as having as a
key frame a frame lying in a stationary, minimum-motion and maximum-clarity
sequence segment. Although this method can be applied to a video segment of an
arbitrary length, the segments of interest in this chapter are rather constrained to
specific events, like for instance a dialog discussed before. The reason for this
constraint is that long video segments are mostly characterized by an enormous
variety in their visual contents, which is difficult to classify in a number of distinct
clusters and, consequently, to represent by a limited number of key frames.
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High-Level
Video Content Analysis

16.1 Introduction

Segmenting a video into shots, as discussed in Chapter 14, can be considered an
elementary or a low-level video-analysis step. The reason for such a characterization
is that this process, as well as the obtained tesults, do not depend on the actual
content of the segmented video. In this chapter we concentrate on automatically
analyzing a video at a higher level, at which semantic video segments can be
distinguished.

As illustrated in Figure 16.1, the semantic video segments can be the reports in
news programs, episodes in movies, highlights of sport events, topic segments of
documentary programs, etc., and are concatenations of interrelated consecutive
video shots. This indicates that the objective of high-level video content analysis can
be formulated as finding subsets of all shot boundaries detected along a video, such
that the series of consecutive shots, captured by shot boundaries belonging to these
subsets, correspond to the semantic video segments of interest.

Autonomous systems able to analyze a video at a high (semantic) level can
effectively be used to facilitate the user interaction with large volumes of video
material stored in emerging digital video archives (libraries). Figure 16.2 illustrates
how the results of high-level video analysis are used to organize the incoming or
already stored video material, in order to provide access to semantic video
segments of interest. The target applications of interest can be formulated as, e.g.,

379
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search requests for all news reports on Bosnia, a movie episode containing the
Alpine landscape or a favorite action scene, the “match point” of a tennis game, etc.

High-level analysis

- . Movi s Sport-event Topic segment
News repor Movie episode highlight of a documentary
=8 | 1 ] | >
Shot 1 Shot 2 Shot 3 Shot 4 Shot § Shot 6 Shot 7

Low-level analysis

Figure 16.1: llustration of two different video-analysis levels

Similarly as in the case of key-frame extraction, the possibilities for automation of
high-level video analysis are not unlimited. The first problem, as already discussed
in Chapter 13, is that embedding the human ability of understanding the content of a
video into an autonomous system is technically not feasible. A technically feasible
solution to this problem is to find ways of relating the video semantics to some
specific temporal behavior of suitable low-level features. There are numerous
examples, which can indicate the possibilities for developing such methods. Some of
them are described in sections 16.2, 16.3 and 16.4 of this chapter, such as detecting
TV commercials in various programs, recovering the semantic structure of a news
program or detecting the episodes in movies. However, since low-level features are
powerless in some cases, for instance, when extracting video segments where a
specific actor or the “Alpine landscape” appears, realistic objectives need to be set
when choosing the target applications. Thus, instead of attempting to develop
algorithms capable of finding the movie episode where “Alpine landscape” appears,
alternative algorithms are aimed at, which first find all episode boundaries of a
movie, represent them by a number of key frames and then submit the entire
episode structure together with the key frames to a browsing tool. There, a user can
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easily get an overview of the movie content by looking at episode representation,
recognize the “Alpine landscape” in one of the key frames and quickly retrieve the
corresponding episode. As it will be shown in sections 16.2 and 16.3, detecting
episode boundaries in a movie is possible by analyzing only the temporal
consistency of low-level visual features of a movie.

The second problem concerns the missing ground truth for the results of high-
level video analysis. These are the cases of, for instance, extracting the highlighting
or most memorable video segments: due to a highly subjective human perception of
the video content in such cases, the dispersion among the results obtained by a
subjective analysis of one and the same sequence by several users will be high
[Paa97]. However, in many other analysis cases, the problem of missing ground
truth is not present, for instance, when detecting TV commercials in an arbitrary
video or segmenting news programs into reports. Therefore, only the latter cases are
considered in this chapter, although some examples of extracting semantic segments
with a “questionable” ground truth will be described in Section 16.2.
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- — ¥ | |
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- = e = =

Application Organizing video material

based on high-level analysis |
Y
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-
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Video archive r
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Figure 16.2: High-level video analysis and related operations embedded into an autonomous
system
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An important issue which needs to be taken into account when automating the high-
level video analysis is that no generally applicable analysis methods exist. One
reason for this is that the semantic video segments of interest vary for different
program types, user environments and applications. Furthermore, the characteristics
of such segments, in terms of low-level features being most suitable for their
detection, vary over different programs. Therefore, rather a specific analysis
methodology can be developed for each particular program type. We set as the
objective of this chapter to develop methods for automated high-level analysis of
two specific video types: movies and news programs. In the remainder of this section,
we will explain our motivation for choosing these two particular program types, and
give an overview of methods for their analysis developed in Section 16.3 and Section
16.4 of this chapter.

With respect to the discussion in Chapter 14, we witness a strong development
of home video libraries and expect that the digital storage of video material at home
will soon overtake the current analog video cassette recording systems [Oka93],
[dWi92], [dWi93], [Yan93], and that the volumes of stored data in home video
archives will rapidly grow in time. Stored in these archives we find programs of
various types, such as movies, news, documentaries, TV shows, sport broadcasts,
etc. In view of their large popularity with private users, it can realistically be
assumed that now and in the future, movies belong to the most frequently stored
programs, covering the highest percentage of the stored data volumes in home video
archives. Although the major user interest regarding a movie is simply to watch it,
some other applications involving movie content may be desirable to users as well.
Such applications include, for instance, retrieving and watching of selected movie
scenes, searching for a shot where an actor appears in a funny pose and watching a
short preview of a movie. Although they are still new for a common user, these
applications can be expected to become more and more popular with the emerging
and quickly developing technology [SMA]. The most important objective in this
development is to provide methods and tools for automatically analyzing movie
content and providing the user with semantic video segments of interest, with
minimal user involvement in the analysis process. This is understandable, since
users at home want to be entertained; they do not want to be burdened with
programming or adjusting their video equipment, especially not if this burden
exceeds the level reached by some current VCRs that can be programmed in various
ways, but are already too complicated for an average user.

Regarding the movie analysis in this chapter, we follow the objective of
automatically providing semantically meaningful entry points into a movie. These
points are ideally the boundaries between consecutive movie episodes. We define an
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episode as a series of consecutive shots unified by the same chronological time-frame
of the story. Since we can base our episode-boundary detection only on low-level
features, it is unlikely that the detected boundaries always correspond to the actual
episode boundaries. For this reason, the results of our approach generally do not
reveal movie episodes but their approximates, which we define as Logical Story Units
(LSUs). Compared to episodes, which are defined by their semantic contents, LSUs
are defined in terms of specific spatio-temporal features which were found to be
characteristic for an episode. As it will be explained later, we found the global
temporal consistency of the visual content of an episode a powerful means for
defining an LSU as an episode approximation.

A news broadcast, which is the other program type considered in this chapter,
has been widely recognized as a highly interesting “storing object” in emerging
large-scale digital video databases [Boy99], [Che97]. The main reason lies
undoubtedly in the information content of news programs, which may be useful for
applications in many professional areas (e.g. education, journalism, government) as
well as for private needs. One could think of building up large information archives
containing all available sorts of informative programs, e.g. news, documentaries,
TV-debates, political or social discussions, reportages, etc. In such archives, news is
at least as important as all other mentioned program types, since it concisely covers
huge amounts of topics related to society, daily politics, sports, business, etc. The
importance of news programs may even be larger, since not all daily events get a
thorough coverage through e.g. a dedicated documentary. Collecting news over a
longer time period from different broadcasters can therefore provide a solid top
level for an information collection, whereby other informative programs on certain
topics, if any, are linked to relevant news reports and serve as lower-level (more
detailed) information sources. If large information archives are to be used efficiently,
all the information segments need to be organized, either according to their topics or
to any other specific criteria. Here, the issue of automating the news-program
analysis and reducing human interaction is a great challenge, and becomes more and
more important, if not crucial, as increasing information volumes are stored in video
archives. Such tools should be capable of autonomously segmenting a news program
into reports, recognizing the report topic or fulfilling of the specified application
criteria, and should classify it with all other closely related reports, enabling, in this
way, direct execution of search requests, such as “find me a business report in a
CNN news program from 2.4.1997”, or “give me everything what is available on car
races”.

In this chapter we concentrate on developing methods for automatically
detecting anchorperson shots in an arbitrary news program. Since these shots are
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directly related to news reports and since, in most cases, they directly determine the
report boundaries, their detection can be considered as an important step in
automatically recovering the report structure of a news program, and also in
reaching the overall topic-based organization structure of a news archive. When
developing our method, we made use of a specific visual structure of an
anchorperson shot, which can also be found repeatedly in different segments of a
news broadcast.

Before we present a method for detecting LSU boundaries in movies in Section
16.3 and a method for detecting anchorperson shots in news programs in Section
16.4, in Section 16.2 we give a brief overview of some of the methods reported in
recent literature, which indicate the current possibilities in using low-level features
in extracting semantic aspects out of different types of video. Conclusions belonging
to this chapter can be found in Section 16.5.

16.2 Related work

16.2.1 Detecting different temporal events in a video

We start this section by discussing the method of capturing and characterizing a
video by temporal events, such as dialogues, actions and story units [Yeu97]. The
method consists of two major steps. In the first step, the semantic labeling of all video
shots in a video is performed by applying time-constrained clustering. There, shots of a
video are clustered based on their visual similarity and mutual temporal locality. In
other words, two visually similar shots are not clustered together if they are too far
from each other. G, is the i-th cluster, the shots x, y and w are elements, d the
distance between shots in terms of their visual similarity, T the maximum allowed
temporal distance between two shots within the same cluster and & the maximum
allowed visual dissimilarity between two shots. The clustering procedure can be
defined as follows:

e max d(x,w)<é , VxeG, (16.2.1a)

e max d(x,y)<T ,VxeG, (16.2.1b)
yely

o d(x,w)>6 or d,(x,w)>T, VxeG,, VweG,, j#i (16.2.1¢)

Assuming that all shots of a sequence are clustered in N clusters G, all shots within
one cluster get assigned a label. Then, by replacing each shot of a video by its
corresponding label, we can represent the entire video as a series of labels, that is, as
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ABCADGHBACDKHDBAC... (16.2.2)

In the second step, the label sequence (16.2.2) is investigated for different
prespecified patterns appearing therein and corresponding to dialogs, actions, etc.
For instance, dialog patterns are found as interchanging labels such as

ABAXYZABABABCDEFEDEGHI... (16.2.3)
— — e
Dialog Dialog Dialog

Or, as another example, action patterns are characterized by a series of shots with
contrasting visual contents, expressed by no or only a minimal repetition of shot
labels, that is

ABCDEFBGHI.. (16.2.4)
16.2.2 Detecting scene boundaries in a movie

In [Ken98], the authors consider a movie as a series of consecutive scenes and propose
an approach for finding probable boundaries of scenes. The approach is based on
investigating the coherence measured along a series of consecutive shots and
representing the consistence of the visual material contained therein. We first
introduce the recall between shots s, and s, as SRecall(s,,,s,) being proportional to
the function Sim(s,,,s,) describing their visual similarity and the function TR(s,,,s,)
taking into account their lengths and their relative temporal positions within a video,
that is

SRecall(s,,, s, ) = Sim(s,,,s,) TR(s,,,s,) (16.2.5)

Then we define the total recall of all the shots older than the boundary by all the
shots newer than the boundary as

Recall(s;, s,,)= »_ D SRecall(s,,s,) (16.2.6)

m<in>i+1

The coherence at the boundary between shots s,and s,,, is now computed as the
total recall Recall(s;,s,,,) normalized by the maximum potential recall Ideal(s,,s,,,)
possible at that boundary, that is
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Recall(s,,s;,;)

C h irvi =
(o) (Sz SH’I) Ideal(Si,5i+1)

(16.2.7)

The maximum potential recall Ideal(s;,s,,,) is computed similarly as Recall(s;,s,,,),
except that Sim(s,,,s,) in (16.2.5) is fixed at its maximum value of 1.

The significant local minima of the coherence curve measured along a sequence
indicate the potential scene boundaries. A methodology for high-level video
segmentation based on similar principles as the one from [Ken98] was published in

[Han99b] and [Han99¢] and is explained in detail in Section 16.3.
16.2.3 Extracting the most characteristic movie segments

As discussed in the introduction to this chapter, it is very difficult to develop
methods which automate the detection of semantic content elements for which no
clear ground truth is defined. Therefore, in literature not many approaches can be
found dealing with this problem. In [Pfe96] the most characteristic movie segments are
extracted for the purpose of automatically producing a movie trailer (a short
summary). Movie segments to be included in such a trailer are selected by
investigating the specific visual and audio features and by taking those segments
which are characterized by high motion (action), basic color composition similar to
average color composition of a whole movie, dialog-like audio track, and high contrast.
It is claimed that this method yields good quality movie abstracts, since “all
important places of action are extracted” [Pfe96].

16.2.4 Automated recognition of video genres

The method for detecting video types (genres) presented in [Fis95] is a good example
of an attempt to obtain some conclusions related to an extremely high abstraction
level of a video by simply investigating its low-level features. The proposed
approach consists of three steps. In the first step, the syntactic properties of a digital
video, such as color statistics, shot-boundaries, motion vectors, simple object
segmentation and audio-statistics, are analyzed. The results of the analysis are used
in the second step to derive video-style attributes, such as shot lengths, camera
panning and zooming, types of shot boundaries (abrupt ones vs. dissolves, fades,
etc.), object motion and speech vs. music, which are considered to be the
distinguishing properties for video genres. In the final step, an “educated guess” is
made about the genre to which the video belongs, based on a mapping of the
extracted style attributes with those corresponding to different prespecified genres.
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Experiments were reported using a number of sequences which were to be classified
in one of the following genres: news, car races, tennis, commercials and animated
cartoon. It is interesting to see in which way the style attributes were related to a
particular genre. For instance, for a news program, the appearance of interchanging
low- vs. high-motion video segments is investigated. There, low-motion segments
correspond to anchorperson shots, which are separated by high-motion report
segments. Also, a distinction is made between the anchorperson and some other
“talking head” through the requirement that the periodically appearing low-motion
segments need to be visually similar. This is done by computing and block-wise
comparing the histograms of three subsequent low-motion segments. On the other
hand, tennis is a good example of how audio can be used for detecting a video genre.
As reported in [Fis95], a tennis game has a highly pronounced structure of the audio
stream, characterized by interchanging “bouncing-ball” and speaker phases.

16.2.5 News-program analysis

We now move to high-level analysis of news programs. Due to their defined
“container” structure, these programs are popular targets for developing content-
analysis algorithms. The guiding objective when developing such algorithms is that
these must automatically recognize the report structure of news programs and reach
a topic-based organization of the news material on the system level with maximally
reduced human interaction. While some of the proposed methods address this
objective directly, many of them concentrate only on certain semantic aspects of a
news program, which can be used at some later stages to reach the above objective.
Examples are given in [Fur95], [Ari9%6], where the detection of anchorperson shots
within a news program is performed.

Anchorperson shot detection using temporal shot characteristics

The approach to anchorperson-shot detection, presented in [Fur95], consists of three
major steps. In the first step, potential anchorperson shots are found based on the
fact that these shots are more or less stationary, compared to other shots within a
news program. So, a shot is considered a candidate anchorperson shot if the
following two expressions are valid, with ¢ and o ’being the mean and variance of
discontinuity values z(k,k+1), measured along a shot:

u <T
16.2.8
c*<T, ( )
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Figure 16.3: Spatial structure models of four different types of anchorperson shots

The second step is performed by taking a candidate anchorperson shot and
analyzing the temporal changes in regions A, B and C, indicated on four
characteristic types of anchorperson shots in Figure 16.3. Changes between
consecutive frames along these shots are expected in frame regions where the
speakers are, that is, in regions A and B. Opposed to this, no motion should be
registered in regions C. These conditions can mathematically be formulated as
follows:

p,>Ty>0 c*a>T, >0
uz,>T,>0 and o%>T,>0 (16.2.9)
pc~0 clc~0

If a candidate anchorperson shot fulfills the conditions (16.2.9) for any combinations
of regions, as indicated in Figure 16.3, it can be considered as an anchorperson shot.
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Obviously, this procedure can also provide the information on the
anchorperson-shot type (e.g. one of the four types from Figure 16.3). In view of this,
after the first anchorperson shot is found, it is used to find all anchorperson shots of
the same type among the remaining candidates. This is done by computing the
average frame of the detected anchorperson (model image) and by comparing it to
average frames of candidate shots. The second step of the procedure is repeated until
model images of all anchorperson-shot types appearing in a news broadcast are
computed and all anchorperson shots have been detected.

“Loop points™

*Cut points™

Figure 16.4: “Cut points” and “loop points”

Anchorperson-shot detection using planar graphs

The method for anchorperson-shot detection proposed in [Ari9] uses the results of
shot boundary detection to detect the appearance of an anchorperson. The first frame
of each detected shot is extracted and considered as a “cut point”. Then, a planar
graph is formed with the cut points as nodes and the shots as edges connecting each
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two nodes. Under the assumption that each news report starts and ends with the
same anchorperson shot, a loop structure can be assumed within the obtained graph,
where each loop corresponds to a report starting from one node (anchorperson) and
ending in the same node. This is illustrated in Figure 16.4. Then, in order to detect all
starting frames of anchorperson shots, nodes forming the loop points need to be
detected. For this purpose, a threshold is defined and all nodes with distances
smaller than the threshold are considered as starting frames of anchorperson shots.

Recovering news-program structure by combining different media

An attempt to automatically recover the entire semantic structure of a news
broadcast can be found in [Hua99b]. The proposed approach for high-level news
analysis is based on utilizing cues from different media and has the objective of
recovering semantic segments from broadcast news at different levels of abstraction.
The authors observe a hierarchy of a typical news program, which consists of four
semantic levels. At the lowest level, a news program can be split into news material
and commercials. Then, within the news material, anchorperson shots can be
separated from shots taken outside the studio. Here, the anchorperson shot usually
introduces and summarizes a report, which is followed by detailed reporting from a
site. At the next level, anchorperson shots and related shots from different sites can
be merged into reports.

In order to recover the first hierarchy level, news is separated from commercials
by registering the changes in the audio-waveform, which are mainly caused by the
background music in the commercials. In the second step, the news material is
classified into segments corresponding to anchorperson shots and the rest using text-
independent speaker recognition techniques. These techniques make it possible to
distinguish an anchorperson segment from background speech coming from other
sources (non-anchorperson shots) as well as from various audio segments (e.g. music
in commercials). This step is meant to use the detected anchor’s identity to
hypothesize about a set of report boundaries that consequently partition the
continuous text into adjacent blocks of text, each corresponding to a single report. In
further steps this helps in obtaining higher levels of hierarchy by grouping the text
blocks into reports.

16.2.6 Methods for analyzing sports programs

Instead of movies and news, some authors considered sports programs when they
developed high-level video-analysis methods. The analysis approach presented in
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[Sau97] uses spatio-temporal features to classify the video material of a basketball
sequence in segments such as wide-angle and close-up views, fast breaks, steals,
potential scores, number of ball possessions and possession times. For instance, shots
are classified as wide-angles and close-ups, by an investigation of their motion
intensity. While wide-angle shots are taken from a distance and are relatively
stationary, close-up shots are highly dynamic, since the camera only shows a small
portion of a scene and usually follows an object. The term “fast break” is defined as
a “fast” movement of the ball from one end of the court to the other. In order to
detect fast breaks, one accumulates the magnitude of the motion vectors along a
sequence in such a way that the accumulation is reset to zero each time the motion
changes direction. If the camera follows the ball during a fast break, a long and
persistent pan is registered in these segments. Therefore, the search for fast breaks is
actually the search for extremely long segments in the accumulation curve between
two reset points. By exploring specific camera motion and lengths of corresponding
video segments, one can also characterize steals and ball-possessions.

Also, as referred to in [Sau97], a system is developed in [Gon95], that can
automatically parse TV soccer broadcasts. There, the standard layout of a soccer field
was used to classify the video material into nine different categories, such as
“around the left penalty line” or “near the top right corner”.

16.3 Automatically segmenting movies
into Logical Story Units

As already discussed in Section 16.1, we here present an approach for high-level
movie analysis which was developed with the objective to provide semantically
meaningful entry points into a movie. Although we envision such entry points as
boundaries between consecutive movie episodes, detecting episode boundaries with
great precision is difficult if only spatio-temporal features are used. Approximates of
movie episodes captured by the boundaries detected using our approach are defined
here as Logical Story Units. We start this section by justifying the episode boundaries
as the meaningful semantic entry points into a movie. Then, we choose appropriate
low-level features and define the LSU-boundary procedure such that the detected
boundaries are as close to the actual episode boundaries as possible.

16.3.1 Hierarchical model of a movie structure

We first define a hierarchical model of a movie structure, which consists of three
hierarchy levels, namely
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¢ Shots
e Events
e Episodes

While shots are elementary “technical” temporal units of a video in general, we
define an event as the smallest semantic segment of a movie. Such an event can be a
dialog, an action scene or, generally, any series of shots unified by location or
dramatic incident. However, an event does not need to be an unbroken series of
consecutive shots; it can also alternate with another event. This is often used in the
process of movie generation to represent several events taking place in parallel.
Several alternating events are, all together, a good example of the highest semantic
segment, which we define in this chapter as an episode. There, all events are unified
by the same chronological time frame of the story and form a rounded context, which
is in a certain sense separated from the neighboring contexts.

Descriptive shots

Event shots

-

1y
1A
\ 4
f

»
e}

Episode | Episode 2 Episode 3
i

Figure 16.5: Episodes 1 and 3 cover only one event and have a simple structure. Episode 2
covers two events, presented by their alternating fragments.

An episode does not need to be related to several events; it can also concentrate on a
single event. Since no shot within a movie is isolated but semantically it always
belongs to a certain part of the story, each shot can be said to belong to one or to
another episode. This implies that a movie can be understood as a concatenation of
episodes. The hierarchical model of the movie structure, involving shots, events and
episodes, is illustrated in Figure 16.5. There, we denote the fragment i of the event j
by E/. The model shows how an episode is built up around one movie event or
around several of them taking place in parallel. Thereby a shot can either be a part of
an event or it can serve for its “description” by, e.g., showing the scenery where the
next or the current event takes place, showing a “story telling” narrator in typical
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retrospective movies, etc. In view of such a distinction, we further refer to shots of a
movie as either event shots or descriptive shots.

Based on the above definitions, it can be said that if a movie is segmented into
episodes, each boundary between two consecutive episodes provides an entry point
into a new global segment of a story, having a rounded context and therefore being
suitable for retrieval separately from the rest of the movie.

16.3.2 Definition of LSU

We now define the procedure of detecting the LSU boundaries such that they closely
approximate the actual episode boundaries. In order to do this, we first analyze the
characteristics of an episode and investigate the possibilities to efficiently capture
them using suitable features.

It can realistically be assumed that an event is related to a specific location
(scenery) and to certain movie characters. In other words, every now and then
within an event similar visual content elements (scenery, background, people, faces,
dresses, specific patterns, etc.) appear, and some of them even appear repeatedly.
Since an episode is built around events, the same can be assumed for an episode as
well; it is either related to only one event or to several of them alternating in time:

Assumption: An episode can generally be characterized by a global temporal
consistency of its visual content, that is, by good matches of its visual-content elements
found anywhere within a certain limited time interval.

According to this assumption, approximate episode boundaries can be found by
investigating the temporal behavior of visual low-level features. In this sense, we
define the LSU as follows:

An LSU is a series of temporally contiguous shots which is characterized by
overlapping links that connect shots with similar visual content elements.

Since the definition of an LSU is based only on an assumption about the episode
characteristics, which is not always fulfilled, the LSU boundaries do not exactly
correspond to the episode boundaries in some cases. We will now explain some of
the most characteristic problematic cases in view of the LSU definition and the
movie-structure model in Figure 16.5.

For this purpose, we first investigate a series of shots a to j, as illustrated in
Figure 16.6. Let the boundary between episodes m and m+1 lie between shots e and f.
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We now assume that the shot ¢, although belonging to the episode m, has a different
visual content than the rest of the shots in that episode. This can be the case if, e.g., e
is a descriptive shot, which generally differs from event shots. Consequently, the
content consistency could be followed by overlapping links in the LSU(m) up to shot
d, so that the LSU boundary is found between shots d and e. If the shot e contains
enough visual elements also appearing in the episode m+1 so that a link can be
established, e is assumed to be the first shot of the LSU(m+1) instead of shot f. This
results in a displaced episode boundary, as shown in Figure 16.6. However, if no
content-consistency link can be established between shot ¢ and any of the shots from
the episode m+1, another LSU boundary is found between shots ¢ and f. Suppose
that f is a descriptive shot of the episode m+1, containing a different visual content
than the rest of the shots in that episode, so again no content-consistency link can be
established. Another LSU boundary is found between shots f and g. If the linking
procedure can now be started from shot g, it is considered to be the first shot of the
new LSU(m+1). In this case, not a precise LSU boundary is found but one that is
spread around the actual episode boundary, where all places where the actual
episode boundary can be defined are taken into consideration. Consequently, the
shots e and f are not included in the LSUs, as shown in Figure 16.6.

Episode
boundary

a b cdielflg hij
LSU(m) it LSU(m+1)

Displaced
boundary

Spread
boundary

Figure 16.6: Possible differences between an LSU and an episode boundary.

We now proceed to define the LSU analytically, using the illustration of the LSU
definition in Figure 16.7. The basis of the definition of an LSU given above is that a
visual dissimilarity between two video shots can be measured. For now we assume
that the dissimilarity D(kk+I) between the shots k and k+/ is quantitatively available.
Then, three different cases can be distinguished, depending on the relation of the
current shot k and the m-th LSU.
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Figure 16.7: Hlustration of LSUs characterized by overlapping links connecting similar shots

Case 1: Visual content elements from shot k, reappear (approximately) in shot
k, +p,. Then, shots k, and k, +p, form a linked pair, illustrated in Figure 16.7 by
the arrow. Since shots k; and k, +p, belong to the same LSU(m), consequently all
intermediate shots also belong to LSU(m):

[k o +pile LSUGm) if py = min Dlkk+D <T(k). (16.3.1)
=1,...,C

7

Here c is the number of subsequent shots (look-ahead distance) with which the
current shot is compared to check the visual dissimilarity. The threshold function
T(k) specifies the maximum dissimilarity allowed within a single LSU. Since the
visual content is usually time-variant, the function T(k) also varies with the shot
under consideration.

Case 2: There are no subsequent shots with sufficient similarity to shot k,, i.e. the
inequality in (16.3.1) is not satisfied. However, one or more shots preceding shot k,
link with shot(s) following shot k, (see Figure 16.7). Then, we enclose the current
shot by a pair of shots that belongs to LSU(m), i.e.

[k, —ps, k, +p,le LSU(m)

if (p;.p,>0)<= i:T.iTI.,r l:—?lill,‘...,c Dk, —i,k, +1) < T(k,).

(16.3.2)
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Here r is the number of shots to be considered preceding the current shot k, (look-
back distance).

Case 3: If for the current shot k, neither (16.3.1) nor (16.3.2) is fulfilled, and if shot
k, links with one of the previous shots, then shot k, is the last shot of LSU(m). This
can also be seen in Figure 16.7.

1 0. X
GO~~~ 0O~ O~~~ 0~~~ OO0~
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LSU(m) LSU(m+1)

Figure 16.8: Illustration of the LSU boundary-detection procedure. The shots indicated by
(a) and (b) can be linked and are by definition part of LSU(m). Shot (c) is implicitly declared
part of LSU(m) since the shot (d) preceding (c) is linked to a future shot (e). Shot (e} is at the
boundary of LSU(m) since it cannot be linked to future shots, nor can any of its r
predecessors.

16.3.3 Novel approach to LSU boundary detection

The objective is to detect the boundaries between LSU’s, given the definition of an
LSU and the concept of linking shots described by Cases 1-3 from the previous
section. In principle one can check equations (16.3.1) and (16.3.2) for all shots in the
video sequence. This, however, is computationally intensive and also unnecessary.
According to (16.3.1), if the current shot k is linked to shot k+p (link between shots
(a) and (b) in Figure 16.8), all intermediate shots automatically belong to the same
LSU, so they need not to be checked. Only if no link can be found for shot k (shot (c)
in Figure 16.8), it is necessary to check whether at least one of r shots preceding the
current shot k can be linked with a shot k+p (for p>0, as stated in (16.3.2)). If such a
link is found (link between shots (d) and (e) in Figure 16.8), the procedure can
continue at shot k+p; otherwise shot k is at the boundary of LSU(m) (shot (e) in
Figure 16.8). The procedure then continues with shot k+1 for LSU(m+1).
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In order to determine whether a link can be established between two shots, we
need the threshold function T(k). We compute this threshold recursively from
already detected shots that belong to the current LSU. For this purpose we define
the content inconsistency value u(k) of shot k as the minimum of D(k,n) found in
(16.3.1) (or in (16.3.2) if (16.3.1) does not hold), that is

_ D(k,, k, +p,) %f (4.3.1) holds (1633)
D(k, - p,, k, + p,) if (4.3.2) holds
Then the threshold function T(k) we propose is:
a &
T(k)= k-1)+ 16.3.4
(k) Nk+1[§u( i) uoj (16.3.4)

Here o is a fixed parameter whose value is not critical between 1.3 and 2.0. The
parameter N, denotes the number of links in the current LSU that have led to the
current shot k, while the summation in (16.3.4) comprises the shots defining these
links. Essentially the threshold T(k) adapts itself to the content inconsistencies found
so far in the LSU. It also uses as a bias the last content inconsistency value #, of the
previous LSU for which (16.3.1) or (16.3.2) is valid.

Figure 16.9: Comparison of shot k with shot n by matching HxW blocks from each key frame
of shot image k with shot image n. Shot k had 2 key frames and shot n had 3 key frames.
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16.3.4 Inter-shot dissimilarity measure

The LSU detection algorithm and the computation of the threshold function require
the use of a suitable dissimilarity function D(k,n). We assume that the video
sequence is segmented into shots, and that each detected shot is represented by one
or multiple key frames so that its visual information is captured in the best possible
way.

For each shot, all key frames are merged in one large variable-size image,
called the shot image, which is then divided into blocks of HxW pixels. Each block is
now a simple representation of one visual-content element of the shot. Since we
cannot expect an exact shot-to-shot match in most cases, and because the influence of
those details of a shot’s visual content which are not interesting for an LSU as a
whole should be as small as possible, we choose to use only those features that
describe the blocks globally. In view of this we only use the average color in the
L*u*v* uniform color space as a block feature.

For each pair of shots (k,n), with k<n, we would now like to find the mapping
between the blocks b, and b,, each being an HxW block from the shot image k and #,
respectively, such that

e each block b, in a key frame of shot image k has a unique correspondence to a
block b, in shot image n. If a block b, has already been assigned to a block b, of a
key frame belonging to shot image k, no other block of that key frame may use it.
All blocks b, are only available when a new key frame of shot k is to be matched.
Figure 16.9 illustrates this in more detail.

o the average distance in the L*u*v* color space between corresponding blocks of
the two shot images is minimized:

all possible gpoc}}}ombinaﬁons all l;ljlsbk ! b" ) (1635)
where
- . 2 . . 2 . . 2
d(b,,b,) = \KL (B)-L b)) +(w'E)-u'®,) +{v'(b)-2'®,)) (16.3.6)

and where all possible block combinations are given by the first item. Unfortunately
this is a problem of high combinatorial complexity. We therefore use a suboptimal
approach to optimize (16.3.5). The blocks b, of a key frame of shot k are matched in
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the unconstrained way in shot image n, starting with the top-left block in that key
frame, and subsequently scanning in the line-fashioned way to its bottom-right
block. If a block b, has been assigned to a block b,, it is no longer available for
assignment until the end of the scanning path. For each block b, the obtained match
yields a minimal distance value, d,(b,). This procedure is repeated for the same key
frame in the opposite scanning fashion, i.e. from bottom-right to top-left, yielding a
difference mapping for the blocks b, and a new minimal distance value for each
block, denoted by d,(b,). On the basis of these two different mappings for a key frame
of shot k and corresponding minimal distance values 4,(b,) and d,(b,) per block, the
final correspondence and actual minimal distance d,_(b,) per block is constructed as
follows:

e d.(b)=4d(b), if d(b)=4d,(b) (16.3.7a)

o d (b)=4d(®),if d{b)<d,(b) and d(b,) is the lowest distance value measured for
the assigned block in the shot image n (one block in shot image n can be assigned
to two different blocks in a key frame of shot k: one time in each scanning
direction) (16.3.7b)
d_(b) = o© , otherwise. (16.3.7¢)

o d_(b)=4d\b),if d(b)<d(b)and d,(b,) is the lowest distance value measured for

the assigned block in the shot image n (16.3.7d)
d_(b,) = o0 , otherwise. (16.3.7¢)

where 0 stands for a fairly large value, indicating that no objective best match for a
block b, could be found. The entire procedure is repeated for all key frames of a shot
k, leading to one value d_(b,) for each block of a shot image k. Finally the average of
the distances d_(b,) of the B best-matching blocks (those with lowest 4_(b,) values) in
the shot image k is computed as the final inter-shot dissimilarity value:

D(k,n) = 1 >d,(b,) (16.3.8)

B best matching
blocks

The reason for taking only the B best-matching blocks is that two shots should be
compared only on a global level. In this way, we allow for inevitable changes within
the LSU, which, however, does not degrade the global continuity of its visual
content.
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16.3.5 Experimental validation

We illustrate the performance of the proposed LSU boundary-detection approach
with the example of two full-length movies which belong to quite different
categories in view of their dynamics and the variety of their contents. The objective
of the evaluation is to compare the obtained LSU boundaries with the actual episode
boundaries and to investigate the consistency of results for both different types of
movies.

Establishing the ground truth

In order to evaluate the performance of our segmentation procedure, we need
reference episode boundaries, serving as a ground truth. Generally, such reference
boundaries can be obtained if the information about the movie generation process is
available, i.e. the movie script. Since such information was not available for our tests,
the first step in the evaluation procedure was to obtain a set of reference boundaries
which (closely) correspond to the ground truth. This was done by a number of test
subjects, who manually segmented both movies in units which they believed to be
episodes. The obtained segmentation results differed mainly in the number of
episode boundaries that were detected; this was especially noticeable in the complex
movie segments and can be explained by the fact that each subject perceived that
episode to be constructed differently. On the basis of manual segmentation results,
we defined two different classes of episode boundaries

e Probable boundaries — registered by all test subjects
o Potential boundaries — registered by some of the test subjects

In total, 19 probable and 17 potential boundaries were detected for the first movie
and 26 probable and 16 potential boundaries for the second one. Since the probable
boundaries were those all test subjects had selected, we considered them to be
fundamental, and relevant for evaluating our detection method. This is not the case
with potential boundaries, and they are, therefore, not considered in the boundary set
belonging to the ground truth.

Parametrizing the LSU-boundary detection procedure

After establishing the ground truth, we had our algorithm perform the automatic
segmentation of the movies for different values of parameters B and a. Thereby, we
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limited the range of the parameter a only to [1.4-1.5], while B, here expressed as a
percentage of the total number of blocks in a shot, varied in the range 40-70%. We
learned that taking less than 30% of the blocks makes the inter-shot comparison too
coarse. On the other hand, more than 70% makes the comparison too detailed.
Although both parameters determine the sensitivity of the detection procedure and,
consequently, also the number and positions of detected boundaries, parameter B is
more interesting since it defines the limits of inter-shot comparison, concerning both
the amount of detail taken into account and how “global” this comparison should
be. On the other hand, we left the parameters ¢ and r, defined in (16.3.1) and (16.3.2),
constant at values ¢=8 and r=3, since the segmentation results were fairly insensitive
to the setting of these parameters. We represented each shot by two subsampled key
frames, taken from the first and last shot segment. Dimensions of key frames were
88x72 and 80x64, and the parameters H and W determining the size of the blocks to
compute (16.3.8) were chosen correspondingly, as 8.

Evaluation

We now evaluate the performance of the detection algorithm for each parameter
pair (B, a). In view of the possible tolerable displacements between an LSU and the
corresponding episode boundary (Figure 16.6), we consider here an automatically
obtained LSU boundary as properly detected if it was close enough to the one
detected manually. For this purpose we set the maximum tolerable distance to 4
shots. Any other automatically detected boundary was considered to be false. Also, if
no LSU boundary was detected within 4 shots of the actual episode boundary, it was
considered missing.

In order to quantitatively estimate the quality of the automated boundary
detection for a certain parameter combination (B, o), we used the following
expression:

_ Properly detected probable boundaries

Q (16.3.9)

1+ Falsely detected boundaries

The parameter () denotes the quality of the boundary detection, depending on the
number of properly detected LSU boundaries and the number of falsely detected
ones for a given parameter combination. As it will be shown by the obtained
experimental results, the quality parameter Q is rather sensitive to the number of
falsely detected boundaries. This was also the main intention when we defined the
function (16.3.9), since the objective of the detection procedure, presented in this
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section, is to provide semantically meaningful entry points into a movie. Such points
can only be found at properly detected boundaries, while the number of falsely
detected ones needs to be kept low. After computing the quality parameter Q for
each parameter combination (B, o) belonging to ranges defined above, we sorted all
values of () and ranked them in descending order. The parameter combination
having the largest Q gets the rank “1”. Parameter combinations having the same
value of () are assigned the same rank.

MOVIE 1 MOVIE 2
Overall
B,a quality
Detected | Detected | Falsely | Quality | Detected | Detected | Falsely | Quatity | ranking
probable | potential | detected | ranking | probable | potential | detected | ranking
bounds bounds bounds bounds bounds bounds
40, 1.4 11/19 2/17 0 (2) 18/26 6/16 4 (6) 4)
40,1.5 9/19 1/17 0 3) 18/26 5/16 3 4 3)
50, 1.4 12/19 3/17 0 (1) 19/26 4/16 2 3) 1)
50, 1.5 11/19 1/17 0 2) 18/26 4/16 3 [©) (2)
60, 1.4 14/19 417 1 4) 19/26 4/16 2 3) 3)
60, 1.5 12/19 417 1 (6) 19/26 5/16 1 2) )
70,14 14/19 6/17 2 (@) 21/26 4/16 1 (1) (5)
70, 1.5 13/19 4/17 ) (5) 20/26 7/16 4 (5) (6)

Table 16.1: LSU boundary-detection results for different parameter settings. Bold numbers
indicate the parameter combination providing the optimal overall detection performance.
Combinations with the same Q values have been assigned the same ranking.

The first column of Table 16.1 shows all parameter combinations (B, o) used in the
experiments. The other columns show for each of the movies the number of
probable and potential boundaries that were detected, the number of false alarms
and the ranking for each parameter combination according to the computed
detection quality Q. In the final step, ranks of all pairs (B, a) obtained for both
movies have been added up and the obtained results have been sorted in ascending
order. The parameter combination with the lowest sum of two ranks was assigned
the overall rank “1” and considered as the optimal combination for both movies.

As shown by the overall ranking list in the last column of the table, the best
performance for both movies is obtained when 50% of blocks are considered for
computing the overall inter-shot difference value and when the threshold
multiplication factor « is 1.4. It can also be observed that the quality of a parameter
combination decreases the more it differs from the optimal parameter set. This is
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mainly due to the influence of parameter B: if less blocks are taken into account
when (16.3.8) is computed, the inter-shot comparison becomes too global, resulting
in an unacceptably low number of detected boundaries. On the other hand, the large
number of blocks considered in (16.3.8) can make the boundary detection too
sensitive, resulting in an increased number of falsely detected boundaries.

For the chosen optimal parameter combination B=50% and « =1.4, the average
percentage of detected probable boundaries is 69%, with only 5% of false detections.
This is compatible with the requirement that, while as many boundaries as possible
are properly detected, the number of falsely detected boundaries should be kept
low, since they do not correspond to semantically meaningful entry points into the
movie. However, absolutely seen, the obtained total percentage of 69% of properly
detected boundaries for the optimal parameter combination is low. This is mainly
the consequence of insufficient changes of visual features at certain episode
boundaries or, in other words, of having two consecutive episodes each containing
mutually similar visual content.

Table 16.1 also shows that the efficiency of the algorithm concerning the
detection of probable and potential boundaries is not the same. The higher
percentage of probable boundaries that were detected can be explained by the fact
that those boundaries were characterized by a radical change of the scenery, which
could easily be recognized by the algorithm. On the other hand, most of the potential
boundaries were marked by some of the users in highly complex parts of the
movies, where clearly distinguishing different episodes was a difficult task. Since
our assumption about the temporal consistency of the visual content within an
episode, i.e. its change at an episode boundary, was often not fulfilled in such
complex movie segments, no good detection performance could be expected there.

16.4 Detecting anchorperson shots in news programs

A typical news report consists of one or several consecutive segments, each of them
containing one or several concatenated video shots and belonging to one of the
following categories:

¢ An anchorperson shot
» A news shot series (e.g. a series of shots taken by a reporter on a site, outside the
studio)

Although the commercial segments can also be found in many news broadcasts, we
do not consider them here, since they can easily be detected and separated from the
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actual news program by using any of the approaches proposed in recent literature
{(e.g. [Liu98]). In order to recover the next semantic level of a news-program
structure, we must first classify the entire news material into one of the above two
categories. Such classification is required since the beginning and the end of an
anchorperson shot represents a potential report boundary which cannot be
determined otherwise, e.g. by just analyzing the audio track of a news broadcast.
After the classification is completed, the reports can be formed by merging related
anchorperson shots and news shot series. A method to recover the report structure
in this way can be found in [Hua99b] (explained in Section 16.2).

In this section, we concentrate on the problem of automatically detecting
anchorperson shots in an arbitrary news program and propose a new approach for
performing this operation. Compared to already existing anchorperson-shot
detection methods described in Section 16.2, we believe our method can yield an
increase in detection robustness, mainly due to the minimized usage of different
thresholding parameters and, at the same time, maximal exploitation of inherent
properties of the news program structure, related to anchorperson shots.

16.4.1 Assumptions and definitions

We base our anchorperson shot detection approach on the assumption that an
anchorperson shot is the only type of video shots in a news program that has
multiple matches of most of its visual content along the entire news program. Other
(news) shots may match well only in their closest neighborhood (e.g. within a single
report) where they can eventually find enough similar visual features. Such an
assumption is realistic due to specific visual characteristics of anchorperson shots
and their regular appearance along a news sequence. We also assume that the first
anchorperson shot k,,in a news program containing S video shots certainly appears
within the interval [1, N], where N<S is assumed to be around 5 shots. In order to
make the detection as robust as possible, we took into account different types of
anchorperson shots, including non-stationary ones. We introduce now the following
definition:

Anchorperson shots are visually characterized by studio background and by one or two
news readers sitting at the desk, appearing separately or together, also with some
possible variations of a camera angle and the magnitude of a zoom. These shots can be
static or dynamic (containing some camera operations like zooming or panning). They
all generally contain a certain (high) percentage of the same or similar visual features.
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During the detection procedure we compare video shots based on their key frames.
Hereby, we assume that, prior to the anchorperson shot detection procedure, a news
sequence has already been segmented into video shots, and that each shot is
represented by a visual abstract consisting of a limited number of key frames. The
proposed anchorperson shot detection approach consists of two steps:

e A threshold-free procedure of finding the sequence-specific template for
anchorperson shots,
e Using the template to detect all anchorperson shots in a sequence by applying

adaptive thresholding.
All video shots of a news sequence

< >

First anchorperson shot Other anchorperson shots
i \ A+ Ak 7 S
L4 L o4 P X h A ]
; o () 5 L & 1

{
Dik,n)
D(L,S)

Figure 16.10: Obtaining a dissimilarity values set for the shot k

16.4.2 Finding a template

Based on assumptions made above, we start the procedure for finding the
anchorperson- shot template by matching each shot ke[1,N], N<S, with all other
news shots n € [k + Ak, 5], as shown in Figure 16.10. In this way, a set of dissimilarity
values {D(k,k+ Ak), ..., D(k,S)} is obtained for each shot k. The dissimilarity
measure used here to compute values D(k,n) compares two shots on basis of their
abstracts (key frames) and is the same as the one used in the previous section. The
“security” interval [k, k + Ak ] serves to avoid a possible good match of a news shot
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with its surrounding shots and, consequently, to separate the shot k,, even stronger
from the rest. For each shot k< [1, N] we now take the P best matches (lowest values)
from the set of dissimilarities and average them to compute the overall matching
value. The shot with the lowest overall matching value is assumed to be an
anchorperson shot, and is used as the template for finding all other anchorperson
shots of a news sequence. With k being the j-th of the P shots, between which
and the shot k; the lowest dissimilarity D is measured, we find the shot k,, using
the following expression:

mini, j

P
k,, < miin Z D(k;, K ini ;) (16.4.1)

j=1
16.4.3 Template matching

After the template has been found, again the inter-shot dissimilarity metric D(k,n) is
used on all shots of a sequence to test which are anchorperson shots. Low
dissimilarity values will be obtained when the template is matched with another
anchorperson shot. For each shot k of a sequence we now define its similarity with
the template shot as

1

(k) = D(temp, k)

(16.4.2)

whereby D(temp k) is the dissimilarity between the template temp and the shot k. In
order to perform the detection of anchorperson shots automatically, we use the
similar adaptive threshold T(k) as in the previous chapter, defined here as the
function of the similarity (16.4.2):

T(k)=

(i s(tk—1)+ 50) (16.4.3)

i=1

N, +1

Here o is again a fixed threshold parameter, as in the previous section. The
parameter N, denotes the number of shots until ¥ and since the last detected
anchorperson shot. It also uses the similarity value s, computed before the last
detected anchorperson shot as a bias. For each shot k, a value s(k) is available as well
as the threshold value T(k). An anchorperson shot is detected when s(k)>T(k).
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16.4.4 Experimental validation

We now illustrate the performance of the developed algorithm on the example of
two news sequences produced by different broadcasting companies and having the
following global characteristics:

e Sequence 1: 12 minutes long, 5 anchorperson shots, one news reader, first
appearance in the first sequence shot,

e Sequence 2: 25 minutes long, 17 anchorperson shots, two news readers, first
appearance in the third sequence shot.

We represented each video shot by two subsampled key frames with sizes 165x144
for Sequence 1 and 180x144 for Sequence 2. The parameter setting for both sequences
was N=5, P=3, Ak=25 and a =3.1. For computing the inter-shot differences (16.3.8)
we chose the dimensions of the blocks in shot images H=W=8 and found 70% of all
blocks in a shot image to be a good value for B. With this parameter setting we will
now evaluate each of the two steps separately.

Relative Total number of Detected False
distance anchorperson anchorperson detections
o(w, 1) shots shots
Sequence 1 73 % 5 5 0
Sequence 2 17 % 17 17 1

Table 16.2: Reliability evaluation of the template finding procedure and AP detection results

On both sequences we applied the template-finding procedure and managed to find
the proper template for each of them. Figure 16.11 shows the matching results of two
template-candidates along the Sequence 2. We then measured the relative distance

Sy, A)= 100(%- 1)% (16.4.4)
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between the chosen minimum overall matching value i corresponding to the
template, and the second smallest matching value y corresponding to the major
other competitor shot for template selection. The larger the relative distance, the
more reliable is the found template. Table 16.2 shows in its second column these
relative distances for both sequences. The lower relative distance in the second
sequence is most probably the result of the particular sequence structure, which
shows an introduction for the coming reports after the first anchorperson shot. This
introduction contains very similar visual information as the shots in the later parts of
that sequence, which partially violates the assumptions made at the beginning of
this section.
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Figure 16.11: Results of the matching procedure for two different templates k € [1,N] and
shots [k + Ak, S]

We then matched the found templates along the corresponding sequences to detect
all anchorperson shots. The results of the template-matching procedure are given in
the third and fourth column of Table 16.2 in terms of missed and false detections.
Only one shot of Sequence 2 was falsely interpreted as the anchorperson shot. This
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shot featured an interview between the news reader and a reporter outside the
studio. Both the news reader and the reporter were positioned within their
“windows” and the background of the screen in terms of its color composition fully
corresponded to the studio background found in regular anchorperson shots.
Similar color compositions were, thus, the most probable reason for a falsely
interpretation of this shot as a regular anchorperson shot.

An idea about the robustness of the method presented in this section can be
obtained by analyzing the types of anchorperson shots detected by each of the
templates, and the visual content of a template itself. The first sequence contained
three different variations of an anchorperson shot with one news reader. In some
cases, the news reader was on the left side, zoomed in or zoomed out, with a news
icon in the top right corner. In one of the shots, the news reader was in the middle of
the screen and no news icon was present. This shot was also chosen as the template
for Sequence 1.
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Figure 16.12: Detection diagram for Sequence 2 and a =3.1
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All 17 anchorperson shots from Sequence 2 were distributed as follows: 13 of them
show the first (7 shots) or the second (6 shots) news reader on the right side of the
screen with a news icon on the opposite side, 2 of them show the first news reader in
the middle of the screen and no news icon, and 2 of them show both news readers
together from two different camera positions. Two anchorperson shots were highly
dynamic and characterized by a strong zoom from the studio to a news reader. As
the template, one of the shots showing the first news reader on the right side of the
screen was chosen.

Reliability of the detection process can be evaluated by analyzing the heights of
the detection peaks in s(k) curves. One such curve, corresponding to the second
sequence, is shown in Figure 16.12 together with the adaptive threshold T(k).

16.5 Conclusions

As already mentioned in the introduction to this chapter, the need for tools capable
of automatically managing large amounts of information will steadily become larger
with increasing volumes of video contents stored in emerging video archives. A
high level of sophistication is required by such tools, since video material needs to
be analyzed at the semantic level. The examples described in Section 16.2, as well as
the methods for high-level analysis of movies and news in Sections 16.3 and 16.4,
respectively, have shown a high potential of the low-level feature space in
recovering the semantic information. This potential needs to be further exploited in
the future.

In Section 16.3 an approach was presented for automatically segmenting
movies into units which closely approximate actual movie episodes. The
segmentation is based on an investigation of the visual content of a movie sequence
and its temporal variations, as well as on the assumption that the visual content
within a movie episode is temporally consistent. Consequently, an LSU is defined
on the basis of overlapping links, which connect shots with similar visual content.
We determine whether a link between two shots exists or not by applying an
adaptive threshold function to shot dissimilarities. Based on the assumptions and
definitions made in Section 16.3, the number of missed episode boundaries for a
particular movie primarily depends on the degree with which an episode boundary
corresponds to a large discontinuity in the global visual content flow. Similarly, the
number of falsely detected boundaries is directly related to the global temporal
consistency of the visual content within an episode.

Regarding the results in Table 16.1, it can be seen that, although the percentage
of the detected LSU boundaries is relatively low, the large majority of all detected
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boundaries indeed provide meaningful entry points into a movie. This is because
the percentage of non-meaningful entries (falsely detected boundaries) is low. Since
this corresponds to the objective of the approach, the results obtained for the
optimal parameter combination can be considered good. A strong improvement of
the performance, in terms of increasing the percentage of properly detected
boundaries, is not possible by using only the visual information. We expect that
involving of the audio-track analysis into the proposed procedure will be helpful.
Also, the results of applying the algorithm to two movies belonging to quite
different movie categories did not differ much, indicating that the detection
performance, and therefore also the defined LSU model, are sufficiently consistent
for different types of movies. And, finally, as the proposed technique computes the
detection threshold recursively, and only looks ahead at a limited number of shots,
the entire process, including the shot-change detection, key-frame extraction, and
LSU boundary detection, can be carried out in a single pass through a sequence.

Reports in a news program can be considered equivalent to episodes in a
movie, since they can also be retrieved separately from the news program due to
their rounded context. In this sense, a report boundary is the same type of a
meaningful entry point into a news program as the episode boundary is for a movie.
However, while episode boundaries can approximately be determined by
investigating only the visual content of a movie, this cannot be said for the report
boundaries. This is due to the fact that a news report is composed out of “lossy”
shots, describing the report topic from different aspects and having generally a
totally different visual content. Besides this, also no visual content can be related to a
certain topic. An example for this is a report about a soccer match consisting of 4
higher-level segments: an anchorperson shot characterized by a news reader and a
studio background, a series of shots from the soccer field, another anchorperson shot
and the series of shots showing the press conference.

The furthest we can get by analyzing only the visual content of a news
program is detecting the anchorperson shots. This is because anchorperson shots are
characterized by a relatively constant visual content along the entire news program.
A technique developed for the detection of anchorperson shots was demonstrated in
Section 16.4. As shown by experimental results, the detection can be performed with
acceptable reliability under the given assumptions. The most important assumption
is that no shot of a news sequence other than anchorperson shot can be used to find
P good matches along the entire sequence. And indeed, a definite probability for
failure of this condition can be the major reason for lowering the algorithm’s
robustness in a general case, which can be observed on a lower relative distance for
the second sequence in Table 16.2. We believe that this problem can be solved by
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further improving the inter-shot dissimilarity metric so that different types of
anchorperson shots are distinguished better from the rest of the sequence, while at
the same time it allows for variation among these types.



Chapter 17

Compression Trends:
The “Fourth Criterion”

17.1 Introduction

For a long time, a considerable scientific and technical effort has been invested in the
development and improvement of high-quality image and video compression with
respect to three important “classical” criteria:

e minimization of bit rate,

e minimization of distortion in decompressed images and video

 reaching balanced and low computational costs on both the encoder and decoder
side.

It is without a doubt that the excellent performance of the existing compression
methodologies has strongly contributed to a fast growth of telecommunication
networks, visual-information production, distribution and exchange. However, it
becomes obvious that these methods will soon not be able to cope with all aspects
being consequent to this growth. The most characteristic example of these aspects
are content-based operations in large-scale image and video databases, such as video
analysis and abstraction steps explained in Chapters 14 to 16, a query-by-example or
a content-based classification. These applications require a high content accessibility
for all images and videos stored in a database. In view of the analysis in Chapter 13
we define here the image and video content on the cognitive level as a set of content
elements like objects, persons and sceneries captured by a camera as well as their

413



414 CHAPTER 17

spatio-temporal positions and mutual relations in an image or a video clip. Content
elements are characterized by features including their color, shape, texture and
(mutual) spatio-temporal position coordinates. Then, the content accessibility on the
system level becomes analog to the efficiency of regaining the features of content
elements which are important for a given content-based operation. This efficiency is
low in case the existing compression methodologies are applied to images and
videos stored in a database, because most of the features being interesting for
content-based operations can be obtained only after performing complex
decompression steps. Since query or classification generally involves large number
of images or videos which all need to be decompressed first, the cumulative
computational load resulting from the decompression alone can considerably
increase the total interaction time between the user and a database and so decrease
the user friendliness of a database. In order to illustrate this extra computational
load we analyze a database of 100.000 JPEG compressed images. If each image needs
to be decompressed prior to performing a query-by-example and if we assume that
JPEG decompression lasts only for 0.01 second, there are 1000 seconds of extra time
in interacting with the database due to decompression alone. Such increase in the
interaction time in case of video query or classification is expected to be even higher
in view of considerably larger amount of data contained therein compared to single
images.

The problem of quickly accessing the content of compressed images and video
has been known already for some years. The solutions towards speeding up the
interaction with large volumes of compressed images or video were, however, so far
mostly proposed in the way not to jeopardize the existing compression standards. In
other words, a large majority of attempts to regain the content from compressed
images or video were constrained by what the structural properties of e.g. the JPEG
or MPEG format allowed. Since JPEG is based on a frequency transformation (DCT -
Discrete Cosine Transform), methods were proposed in [Cha95a], [Cha95b] and
[Smi%94] for extracting some image features for retrieval applications in the frequency
domain, that is, directly from the DCT-properties of JPEG-compressed images.
Similarly to this, the authors in [Men95] and [Men96] propose techniques for
extracting certain content elements directly from MPEG compressed video by
exploiting properties of the MPEG video format. So in [Men95], an algorithm is
proposed for detecting boundaries between neighboring video shots which requires
minimal decoding of an MPEG compressed video and detects abrupt and gradual
shot boundaries using DCT DC coefficients and motion vectors. This technique is
extended in [Men96], where motion vectors are used for camera operation detection
and estimation, such as zoom and pan, as well as for moving object detection and
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tracking. An indication about the increase in efficiency when performing the
operations on images in a DCT-compressed domain directly is given in [Smi93]
where the authors propose a series of methods for image manipulation without the
need for their decompression. Very good results are reported, such as 50 to 100 times
faster processing compared to the case where images need to be decompressed first.

DC image

l 1 ‘

“Lena” image DCT coefficients grouped according
to their frequency correspondence

Figure 17.1: Subsampled version of the original image, which can be obtained after partial
image decompression

As an alternative to feature extraction approaches described above, a fast access to
content-related information in JPEG-compressed images and MPEG-compressed
video can be provided by performing a partial decompression. Such decompression
involves only the steps preceding the computationally expensive inverse DCT and
results in a low-resolution (subsampled) version of an image or a video. As shown in
Figure 17.1 on the example of a “Lena” image, the subsampled version obtained
from a JPEG-compressed image consists of collected DC coefficients of all DCT
image blocks. The method for obtaining a so-called DC sequence from MPEG-
compressed video was proposed in [Yeo95b]. In that approach, DC images are
created for all [ frames and the approximations of subsampled P and B frames are
obtained by performing a motion compensation in the DCT domain. The proposed
approach results in a video sequence consisting of subsampled frames, which
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proved to be suitable for performing some basic steps of video analysis, such as
shot-boundary detection, key-frame extraction and even for some higher-level
analysis steps (Chapter 16). However, the possibilities for performing content-based
operations on subsampled images and video frames are generally rather limited.
This is mainly due to the missing high-frequency components and small dimensions
of subsampled image versions (e.g. eight times smaller height and width in case of
the JPEG-DC image or the MPEG-DC video frame), which allow for performing
content-based operations only in view of some global content aspects of an image or
a video, such as color composition and some dominant shapes (objects) or motion.

A possibility to provide an access to the content of images and video without
having to analyze and process them first is to provide them a priori with side
information containing so-called “content descriptors”. These descriptors can be of
various types, and are meant to represent certain aspects of the image or video
content which may be of interest for a potential content-based operation, such as
query or classification. Then, a content-based operation on images or videos from a
database can be performed using weakly coded descriptors, without any need for
decompressing the images or videos themselves. The development and
standardization of suitable content descriptors for audiovisual information is the
objective of MPEG-7 [ISO97]. Nevertheless, this alternative for providing a fast
content access to compressed images and video has the disadvantage that the
descriptors reveal only certain aspects of image content and cannot take into account
all possible image features required for an arbitrary query or classification scenario,
applied to a database. Thus, while it is highly practical for specific applications, this
alternative is not sufficiently general to ensure unconstrained interaction with an
image or a video database.

The first move in an entirely new direction regarding the compression of visual
information was made in [Pen94b]. There, images in a large thematic database were,
instead of compressing them using e.g. JPEG, represented by small sets of
perceptually significant coefficients, making in this way direct search on compressed
image content possible and introducing a new great challenge for the research
community. In [Pic95b], providing a fast access to the content of compressed images
and video has been proposed as the additional, fourth optimization criterion when
developing new compression methods.

Figure 17.2 shows an idea of how to include the fourth criterion into the
development of an image or video CODEC*.

* CODEC is a common abbreviation for a joint COder-DECoder system
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Figure 17.2: Image/video compression enabling fast content access. Content is easily
accessible by quickly decoding transparently encoded CA

In this scheme, an arbitrary image or video is represented by its Content Abstract
(CA) for which we set the following requirements:

» CA is considerably compacter than the original representation of an image or
video,

o CAiseasy to generate from the original image or video,

e It is possible to reconstruct the original image or video from CA quickly and with
a low distortion,

o The characteristics of any content element being relevant to given content-based
application (e.g. analysis, query or classification) can be regained from CA much
more efficiently than if one of the existing compression methodologies (JPEG,
MPEQG) is applied.
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If CA is sufficiently compact, a good compression of the original is guaranteed
already by generating the CA. Figure 17.2 also shows the possibility of encoding the
generated CA in order to further reduce the bit rate. This encoding needs, however,
to be “transparent”, i.e. such that only a small computational load is required for
decoding the CA.

In the remaining sections of this chapter we present a newly developed image
CODEC which by far complies to the scheme in Figure 17.2. The concept on which
this CODEC is based is presented in Section 17.2. This is followed by an analysis of
CODEC components in Section 17.3 and a performance evaluation in Section 17.4.
The conclusions relevant to this chapter are given in Section 17.5.

17.2 A concept of an alternative image CODEC

We approach the development of our CODEC by considering the following issues.
First, the definition of an image or video content from the previous section indicates
that the content elements are to be searched for mainly in the spatio-temporal
domain. This means that any transformation of an image or a video signal into a
frequency domain, such as DCT or Wavelet, actually decreases the content
accessibility in a general case. Exceptions can only be found by those content
elements which are easily identifiable in the frequency domain as well. For this
reason, we concentrate here on spatial-domain image compression techniques,
examples of which are Vector Quantization (VQ) [Ger92] and Fractal Image
Compression [Jac92]. Second, it is not realistic to expect that a full-resolution spatial
(pixel-level) image content is available in the compressed domain if a good
compression ratio needs to be obtained. This is simply because of the fact that the
compression is based on reducing the redundancy and the irrelevancy of this
content, so that only non-redundant and relevant content components are available
in the compressed format. However, in order to obtain an increase in the efficiency
of image-database operations we require that non-redundant and relevant image
information contained in the compressed format is already usable for performing
some of the image-database operations. We also require that the full-resolution
spatial image content should quickly be reconstructable from its non-redundant and
relevant elements, or in other words, that the complexity of the image-
decompression procedure is considerably reduced if compared to transform-based
decoders. In the following, we first recapitulate the principles of fractal image
compression from Section 8.4.4 and describe vector quantization. Subsequently we
choose the most suitable of the two techniques as the base for developing our
CODEC.
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In case of fractal compression, an image is first partitioned at two different
levels: in range blocks of size NxN at the first level, and in domain blocks of size
2Nx2N at the second level. A transformed domain block is searched for each range
blocks such that the mean square error between the two blocks is minimal. Hereby
the following transformations are performed on the domain blocks: they are first
subsampled by factor two to get the same dimensions as the range blocks. Then,
eight isometries of subsampled domain blocks are found, including the rotated
original block and its mirrored versions (mirroring over 0, 90, 180 and 270 degrees).
Finally, an adjustment of the scale factor and the luminance offset is performed.
Consequently, a fractal compressed image is defined by a set of relations for each
range block, the index number and the orientation of the best fitting domain block,
the luminance scaling and the luminance offset. Using this description, the decoder
can reconstruct the compressed image by taking any initial random image and by
calculating the content of each range block from its associated domain block. This
reconstruction is repeated iteratively by taking the resulting image as a new initial
image until the desired quality of the reconstructed image is reached.

As illustrated in Figure 17.3, compressing an image using VQ is the process of
taking an image block of NxN pixels and finding its corresponding (most similar)
block in a code book. A code book is a collection of representative blocks, constructed
on the basis of a number of training images. Each image block is then represented by
the code-book address, where the corresponding block is found. Consequently, a
VQ-compressed image is simply a concatenation of addresses, collected for all image
blocks. If the same code book is available at the receiver side, a VQ-compressed
image can easily be decoded by filling in the blocks from a code book in the proper
positions in the image, according to the addresses received by the decoder.

Because of the above descriptions of Fractal and VQ image CODECs, we find
the CODEC based on Vector Quantization more suitable for our needs. First, it
realizes image decompression as a fast “look-up-and-fill” procedure and involves no
iterations. Second, VQ-compressed images can be compared and classified based on
their block correspondences. This is because these correspondences directly depict
the image content with respect to the code book used. Compared to this, a list of
geometric and luminance transformations of domain blocks describing the Fractal-
compressed images do not provide a clear impression about the image content and,
therefore, cannot be used as efficiently for image-database operations as the block
correspondences and code book of the VQ. However, not all the characteristics of the
basic VQ scheme are suitable for direct usage for the CODEC development in this
chapter. Therefore, we adapt the basic VQ scheme in order to better suit the
applications addressed here.
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Figure 17.3: Scheme of an image CODEC based on vector quantization

The adaptation is related mainly to the highly complex and time-consuming process
of code-book generation. This process basically includes a partitional clustering of the
visual material collected from a set of training images. Its high complexity is due to a
large amount of data to be clustered and due to the iterative nature of the clustering
process. Consequently, the code book is made only once and used to compress and
decompress all images in a database. It is also optimized to provide the maximal
quality of all reconstructed images from that database. This optimization is
performed such that, first, the training images are selected as the most representative
for all the images contained in a database. Second, the clustering process is designed
to take into account all linear and non-linear dependencies among blocks to be
found in training images. Each cluster is then represented by one most
representative image block, which then becomes an element of a code book. The
described process of code-book generation by the basic VQ implies that the code
book can be used effectively only for compressing images that belong to the same
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categories as those from the training set. This is, however, unpractical for
applications in general image databases because of the following reasons. First,
images can be very diverse, so that one single code book might not be sufficient for
coding all of them with an acceptable quality. Second, if a database is extended by
new images belonging to a different class, a time-consuming update of a code book
is required. Third, image exchange among different databases (users) is difficult if
different code books are used.

To provide a good solution to these problems, we apply in our CODEC a
strongly simplified procedure for code-book generation, which - due to a reduced
complexity - allows for generating a code book for each individual image. Using
image-specific code books not only makes it unnecessary to perform highly complex
code-book generation/update and to have one code book for the entire database; it
has several other important advantages as well. First, the quality of reconstructed
images can only improve since an image is abstracted and later reconstructed using
the same (its own) blocks. Second, in contrast to the basic VQ, here the code book
needs to be included in the compressed image format. As will be shown in Section
17.4, this makes it even easier to perform various image-database operations without
the need for image decompression.

Code-book |+ Block correspondences
generation == 4

4

- : Stre: stisie
ENCODER tream formatting

Direct Y

content |

access | Compressed |
image

Image-database
operations

Content access

after decompression

DECODER

Fast image reconstruction

Figure 17.4: Image CODEC enabling an easy content access in compressed images
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17.3 Image CODEC based on simplified VQ

Figure 17 4 illustrates all components of our new image CODEC in formof a block
diagram. The first two steps of the encoder are the processes of making a code book
and of finding the correspondences of image blocks with those belonging to a code
book. Subsequently, a compressed image stream is formatted, where we only use as
many bits as necessary to encode all the addresses in order to minimize the resuiting
bit rate. Apart from the fact that the code book used is image specific and therefore
included into the compressed stream, the decompression process fully complies with
the one of the basic VQ. As indicated in the scheme by the full arrow, a low
computational complexity on the decoder side is already one possibility for a fast
content access. The other possibility indicated by the dashed arrow is related to the
direct usage of the image-specific code book and block correspondences for content-
based operations.

In view of the scheme in Figure 17.2, the code book obtained for an image
forms together with block correspondences the CA of that image. Similarly, the bit-
stream formatting with the objective of minimizing the number of bits used for block
correspondences can be understood as “transparent” coding of the CA. The issues
regarding the compactness of obtained CA, the total computational load related to
CA generation and image reconstruction from CA, as well as the content
accessibility on the obtained CA will be discussed in detail in Section 17.4. In the
following we proceed by defining all major components of the CODEC scheme in
Figure 17 4.

17.3.1 Code-book generation

We first define an efficient methodology for generating an image code book. For this
purpose, an image is first divided into non-overlapping square pixel blocks b, with
dimensions NxN, and each block is represented by the average color (L*u*v* color
space) of all block pixels. We choose to work with relatively small blocks, i.e. with N
=2 as the code book will have to be included into the compressed image format. The
experiments have shown that if a similar quality of reconstructed images is to be
achieved, and larger blocks, e.g. N=4, are used, the code-book size becomes
unacceptably large (up to 20% of an image).

As shown in Figure 17.5, the code-book generation starts by including the first
image block b, into the code book. Each further block along the arrow is compared
with all blocks already in the code book. For this purpose, the Euclidean distance is
computed for the three components of the average colors of blocks, that is
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a0, b) = (L G- L b)) +(w G- b)) +(0'B) -0, (173.)

A block b; joins the code book if it cannot be matched well with any of already
selected blocks, i.e. when the distance (17.3.1) between the block b, and each block
from the code book exceeds the threshold T.

b T = ,_“.-‘ = —
- b,
- —»
=+ _—
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Figure 17.5: Illustration of the simplified procedure for making a VQ code book. Grey blocks
are included in the code book.

While the code book of the basic VQ is obtained by a sophisticated procedure which
optimally represents the visual material of training images, the major objective of the
sequential procedure from Figure 17.5 is to quickly generate a code book. In order to
achieve a code-book quality similar to that of the basic VQ, the described fast
procedure for code-book generation requires some fine tuning. For this purpose, we
make the threshold T locally adaptive, based on the following analysis. Since coding
artifacts are particularly visible in smooth image regions (e.g. artifacts like false
contours), the threshold function needs to be chosen such that these regions are
represented by a sufficient number of code-book vectors. On the other hand, the
number of blocks extracted from textured regions can be kept low since the coding
artifacts are less visible there. This implies that it is convenient to make the threshold
value at each block b, dependent on the amount of texture present in its
surroundings, that is

T=T(b,) = f(texture around b, (17.3.2)
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By properly choosing the threshold function (17.3.2), a number of code-book blocks
can be extracted that is similar to using a fixed value of T. However, the extracted
blocks are distributed better over an image, providing at a later stage a higher
overall quality of the reconstructed image. In other words, the number of code-book
vectors representing textured image regions slightly decreases in favor of those
representing smooth regions.

Figure 17.6: Zero coefficients in a DCT block obtained by applying the quantization

We now define the threshold function T(b,;) by suitably modeling the variations of
the amount of texture over an image. This is done by first dividing the gray-scale
version of an image into nonoverlapping blocks B; with dimensions 8x8 pixels, and
by applying the Discrete Cosine Transform (DCT) to each of them. Then, all the
elements of the DCT block are quantized according to the following procedure,
which is analog to the one from JPEG:

50

, g<50
ROUND(M], with Qg)=( 7 (17.3.3)
QW) W(w, ) 10-9 .
50 © 17

We call g the quantization parameter which can vary in the range 0<g<100. Q is the
gain factor depending on g4 and W(u,v) is the corresponding element of the JPEG
luminance quantization table.

As a consequence of the quantization, a number m; of DCT coefficients of the
block B; will become zero, which is mainly the case with those corresponding to
higher frequencies, as shown in Figure 17.6. The more texture is present in an image
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area, the stronger are the high-frequency components of the image signal in that
area. Then, the DCT coefficients corresponding to these components are also high,
and therefore will hardly ever become zero after quantization. This is not the case
with smooth regions, where a large number of zero coefficients are present after the
quantization. For this reason we relate the number m, of zero-DCT coefficients to
the presence or absence of a texture and formulate the threshold function as follows:

i

m;—64
if beB, = T(bi)zpl—pz[e Ps J (17.3.4)

Parameters p,, p, and p, define the behavior of the threshold function and are to be
specified experimentally. Since the parameter g directs the DCT quantization process
(17.3.3), the threshold-function behavior can indirectly be adjusted by specifying a
value for 4. The higher the g, the lower is the gain factor (, the smaller is the
quantization step, the less DCT coefficients are zero and the threshold function
(17.3.4) is shifted upwards.
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Figure 17.7: Code book extraction for an image using a constant and a variable threshold: a)
original image, b) image blocks included in the code book by using a constant threshold, c)
image blocks included in the code book by using the threshold function (17.3.4)

Figure 17.7a shows an image from our test set, for which we generated two code
books of a similar size. The first one is obtained by using a fixed threshold. The
positions from which image blocks are taken and included into the code book are
indicated as black spots in Figure 17.7b. Then we used the variable threshold to
generate another code book, where we adjusted the function (17.3.4) by choosing a
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suitable g such that a similar number of blocks is extracted, as in Figure 17.7.b. The
positions from where image blocks are taken using the threshold (17.3.4) are
indicated by black spots in Figure 17.7c. It can be seen that the prevailing majority of
blocks in Figure 17.7b are concentrated in high-texture regions, leaving the smooth
regions insufficiently represented.

17.3.2 Finding the block correspondences

The step of generating the code book is followed by the search for correspondences
between image blocks b; and blocks ¢; of the code book. In this way, each block b,
is represented by an address in the code book, which is embedded into the
compressed image format and determines which block c; is used to approximate
block b; during the image reconstruction in the decoder.

We find that block ¢; corresponds to the image block b, by comparing b, with
all blocks ¢, using the distance function (17.3.1) and then by minimizing (17.3.1) for
all indices j. As S is the total number of blocks b, in an image, and M the number of
code-book blocks, the procedure of establishing the block correspondences can
analytically be formulated as

Vie[l,5] b xc, < d(bi,ct)zpirﬂ}ld(bi,cj) (17.3.5)
<j<

17.3.3 Compressed image format specification

The format of an image, compressed using the CODEC presented in this chapter, is
illustrated in Figure 17.8, and consists of the following information:

» File header
e Code book
o List of addresses for block correspondences

0 10 10+3N*M
IITTITTIT !I!'ll][lillil[_lb_xl]
Header M i 5 Rl Addresses EIIO(),,lvOH
1 2 3 t M N
Code book T !

Figure 17.8: Format of a compressed image file
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We will now define each of these components in detail.
File header
The file header contains 10 Bytes, which represent (in the order of appearance):

¢ the format identification mark (3 Bytes),
¢ image width and height (4 Bytes)
¢ the number M of blocks in a code book (3 Bytes)

Code book

All code-book blocks ¢;, je1l.M are addressed in the order in which they are
extracted. In the compressed bit stream, they are represented by the RGB triplets of
all of their pixels, ordered in the 1-dimensional uncompressed array of 3MN ?Bytes,
that is

RyGiBy RGinBiy- RasGuBavRi B+ RiaiGraBo-- RenGrvBoay (17.3.6)
Block correspondences

The code book is followed by the list of addresses for block correspondences. For the
total number of S blocks b; in an image, there are S addresses varying in the range
1..M. In order to reduce the size of this bit stream component, we use only so many
bytes as are necessary to represent all addresses of characteristic blocks. For M
blocks in a code book, the minimum required number w of bytes is computed as

w=(Llog. M+1) (17.37)

17.4 Performance evaluation

In this section we evaluate the performance of the developed image CODEC. We
concentrate in Subsection 17.4.1 on the CODEC performance with respect to the
obtained compression factor, the quality of reconstructed images and the overall
computational costs. For this purpose we use a test-image set containing 54 different
color images with dimensions 320x320 pixels. We experimentally found good
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parameter values in (17.3.4) as p,=5.35, p,=4, and p,=3, and used them in our
experiments. Subsequently, in Subsection 17.4.2 we evaluate the content accessibility

for the CODEC we developed.
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Figure 17.9: Measurements for one test image: a) Compression factor as function of g, b)
average PSNR of the R, G and B color component as a function of the compression factor

17.4.1 CODEC performance regarding classical criteria

We first investigate a typical range of the compression factor, which is to be obtained

using our CODEC. For this purpose we took one image from our test set and

compressed it for values of the quantization parameter g in (17.3.3) varying between

5 and 95. The compression factor as a function of the parameter g is displayed in

Figure 17.9a. The obtained range for this factor is [4.25, 7.93] for the test image used.
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Then, we took the same test image and measured the PSNR (Peak-to-Peak
Signal-to-Noise Ratio) for R, G and B color component over the entire range of the
compression factor in order to see how the quality of reconstructed images depends
on compression efficiency. We averaged the PSNR values of the three color channels
at each measurement point and displayed them over corresponding compression
factors in Figure 17.9b. A range of the average PSNR values was obtained as [30.74,
34.57]. In order to get a better impression of the above results, we also compressed
the same test image using JPEG. We let the JPEG quality factor vary in its entire
effective range from 5 to 95 and obtained the compression factors between 9.02 and
94.3 and PSNR between 24.62 and 39.97. Especially for the range of the compression
factor obtained for our CODEC, the PSNR varied in the case of JPEG compression
between 39.97 and 43.6, as also shown in Figure 17.9b. A comparison of the curves in
Figure 17.9b indicates that JPEG performs better in terms of compression efficiency
and resulting image distortion.

T T T T T T T T T T
14} .
—— Varying compression factor
ster | == Average compression factor: 6.57 | -
8
c
S
[723
[%]
[
=4
£
[
(&
2 1 1 1 1 ] 1 1 1 1 1

5 10 15 20 25 30 35 40 45 50
Image index k
45 T T T T T T T T Y T
——  Varying PSNR
o e Average PSNR: 29.17 | |

5 10 15 20 25 30 35 40 45 50
Image index k

Figure 17.10: Variations of the compression factor and PSNR for all test images and =30
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)

Figure 17.11: Reconstructed images followed by the originals. The following quantitative
data were obtained for g=30: a) code-book size 2%, compression factor 8, b) code-book size 5.3
%, compression factor 6, c) code-book size 4.1%, compression factor 6.4
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Besides compression efficiency and image distortion, the classical criteria also
include the overall computational complexity. Compared to the basic VQ, the JPEG
CODEC is characterized by well-balanced computational costs on the encoder and
decoder side, which makes it more practical. Thus, in order to make the VQ
competeable with JPEG regarding the cost balance, a strong reduction of the encoder
complexity would be required. This was one of the objectives when developing the
methodology for a simplified code-book generation in Subsection 17.3.1. Although
we managed to considerably reduce the encoding complexity in our CODEC
compared to the basic VQ, this complexity is still relatively large. This is mainly due
to small block dimensions, which, as explained before, were chosen such to increase
the compression efficiency. For instance, only 4% of image information, contained in
the code book of an image with dimensions 320x320 pixels, corresponds to 1024
blocks with dimensions 2x2 pixels. Consequently, for each of the 25600 blocks of that
image, 1024 computations of difference values (17.3.1), threshold (17.3.4) and their
mutual comparisons are required.

The above comparison of our CODEC and JPEG regarding the classical
optimization criteria has shown that JPEG has a better performance. We, however,
took this into account with a reference to the fact that a CODEC that performs well
regarding the three classical criteria is not necessarily optimal when it comes to the
fourth criterion: providing a higher content accessibility [Pic95b].

To complete the evaluation of the CODEC performance regarding the
compression efficiency and image distortion, we also investigated the consistency of
the CODEC performance regarding these criteria for different images. For this
purpose we fixed the quantization parameter g to the value 30 and computed the
compression factor and PSNR for all images from our test set. The results are
displayed in Figure 17.10. The variations of computed values can be explained by
the variability of the code-book size, which depends on image content and is the
only variable segment of the compressed image stream. In our measurements, the
relative code-book size varied between 1.4% and 9.78%, with an average of 4.6%.
Perceptual quality of the reconstructed images for g=30 can be evaluated by
comparing the originals and decompressed images in Figures 17.11a-c.

17.4.2 Increase of content accessibility

We address in this section some of the possibilities for easy content access in images
which are compressed using the CODEC developed in this chapter. These access
possibilities are:



432 CHAPTER 17

¢ Easy image or image-region decompression
o Easy access to some spatial image features directly in the compressed domain
(dominant and less important colors, image and image-region histograms)

An advantage of having the VQ as the underlying principle of the CODEC presented
here is that decompressing an image is a simple “look-up-and-fill” procedure.
Namely, a VQ-compressed image can easily be decoded by filling it with blocks
from a code book, according to addresses received by the decoder. This is a clear
advantage regarding the computational complexity of the decoder, if compared i.e.
with the JPEG decompression procedure, characterized by a computationally
complex inverse DCT. Further, since the list of addresses in the compressed image
format (Figure 17.8) preserves the information about image structure, no
decompression of the entire image is required in order to fully reconstruct any of its
regions. Such a reconstruction is easily performed by simply choosing the region
blocks in the address list, finding their corresponding blocks in the code book and
filling the image regions of interest. However, an image, or any of its regions does
not need to be reconstructed in order to obtain certain spatial image features; an
image-database application involving these features can be performed directly on
compressed images.

As a first example, the image-specific code book itself, which is directly
accessible in the compressed image format (Figure 17.8), can effectively be used for
performing global classification of images or some more general image queries. In
our approach, a block is selected in a code book if the average color of its pixels is
sufficiently representative for that image. This implies that if average colors are
computed for all code-book blocks c;, a general idea can be obtained about the
colors present in the image. In this way, images containing drastically different color
content can be separated from each other, or — if different from the query image
regarding their colors - not given by the system as query results.

Image classifications and queries based on image-specific code books can be
made even more specific if also the information related to the usage of code-book
blocks for image reconstruction is taken into account. This information can easily be
retrieved from the list of addresses for block correspondences. Then, by counting the
numbers of times g4,, that a code-book block ¢; is present in the address list, the
image and an arbitrary image region can be represented as

image < [a,c,,..ayCy] (17.4.1a)

image region < [a,c,,,..a,c,] (17.4.1b)

non
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After the average color of each block ¢, has been computed, the expressions (17.4.1a-
b) can provide a global idea about the color composition of the image (region), both
in terms of which general colors are present there and in which amount. The higher
the number a,, the more important role plays the block c; in the image (region), and
thus also the average color of its pixels, that is

maxd; = Ao = Caomnae = dOMinant average color (174.2)
i

As an example, we now estimate the computational complexity of obtaining the
information on a general color composition of an image based on (17.4.1a) and on
computing the average color of each block c;,. We estimate the complexity by

determining the number of reading (O,,,,), adding (O,,, ), multiplying (O ) and

multiply

comparing (O operations which are to be performed.

)

compare
With S addresses to be found in the last segment of the compressed image

format in Figure 17.8, the number of operations required to obtain all the coefficients

4, can be estimated as follows:

C

o =50, +0,4) (17.4.3)
Then, the average color is computed for each block of the code book with the
following amount of operations:

C.. =3(N*0ys +Opiy ) (17.4.4)

The entire complexity of obtaining the information on a general image color
composition complying with (17.4.1a) is now given as

o =C, +MC, +MO (17.4.5)

color composition multiply
As another example, histograms for image (regions) can easily be computed by
collecting pixels of blocks ¢, and taking into account the values a4,. Here, we
compute the bins h of an 1-dimensional color histogram H(h), where h can be the
value of any pixel-color component K (K=R, G or B) and where only characteristic
blocks ¢ , used for reconstruction of an image region (17.4.1b), are considered:

HR,G,B (b= Z" a,v, (1) (17.4.6a)
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with
i pixel(K=h)ec
o) = <0, otherwise (17.4.6b)

The function v,(i) indicates whether a pixel with its K color component
corresponding to k is present in the block c;, and in which amount /;,. Also by
counting the number of operations required for the expression (17.4.6a), we estimate
the complexity of obtaining an image region histogram directly from the compressed
image in Figure 17.8 as

Chin = Co, + (=) N*(Orras + Oramure )+ (i + )Outs + Oy ) (17.4.7)

We now like to compare the C,,, from (17.4.7) with the complexity of computing the
same histogram on the decoded image. This last complexity is given as:

C = Cdecumpressed + XY (Oread + O + Oadd ) (1748)

hist, decompressed compare

Since the size of the code book M is only a small fraction (average of 4.6% in our
tests) of the total number of pixels in an image obtained by multiplying both image
dimensions X and Y, and since 0</,, <N 2 with N=2, the second summand in
(17.4.8) can be considered considerably larger than the second summand in (17.4.7).
Further, if, for instance, JPEG CODEC is used as alternative, the first summand
C tecompressea 101 (17.4.8) includes the total (high) number of operations required for JPEG
decompression. As such, this summand can realistically be assumed far larger than
the value C, in (17.4.7). Therefore, it can be said that the histogram computation
using (17.4.6) is computationally considerably less expensive than if performed after
e.g. a JPEG-compressed image is decoded.

17.5 Conclusions

The image CODEC presented in this chapter was developed to suit emerging
applications on large-scale image databases, where a fast and easy access to image
content can considerably improve the efficiency of interacting with an image
database. While the currently available CODECs are optimized with respect to the
classical criteria (bit rate, image distortion and overall computational complexity),
introducing an additional fourth criterion on content accessibility has the effect that
existing CODECs are no longer optimal and, as discussed in Section 17.1, that the
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development of new CODECs is needed. It would be best if we could retain an
excellent compression efficiency, low distortion of reconstructed images and nicely
balanced and low computational complexity of JPEG in newly developed CODECs
and still be able to easily perform any operation on image content. Such a perfect
balance among the four optimization criteria needs indeed to be the guiding
objective of research in this area. The development of the CODEC in this chapter can
be understood as a first step in the process of reaching this objective. We deliberately
left the powerful concept of transform-based CODECs in order to remain in the
spatial domain and so to provide means for accessing the image content more easily.
In this way we expected a priori a lowering of the compression efficiency and the
quality of the reconstructed images, compared to JPEG. Also we took into account a
possible misbalance and an increase of computational complexity at the encoder
side. However, as a compensation, we are able to decompress an image much more
quickly and to reach some of the characteristic image features directly in the
compressed domain. Although we can say that in some way we found an acceptable
trade-off between four optimization criteria, we are also aware of the fact that the
developed CODEC is far from optimal. Nevertheless, we hope with our CODEC to
provide a solid base for further research in this area.
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