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INTRODUCTION TO THE SERIES 
"Advances in Image Communication" 

Dear Colleague, 

Image Communication is a rapidly evolving multidisciplinary field on the development 

and evaluation of efficient means for acquisition, storage, transmission, representation, 

manipulation and understanding of visual information. Until a few years ago, digital image 

communication research was still confined to universities and research laboratories of tele- 

communication or broadcasting companies. Nowadays, however, this field is witnessing 

the strong interest of a large number of industrial companies due to the advent of narrow 

band and broadband ISDN, GSM, the Internet, digital satellite channels, digital over-the- 

air transmission and digital storage media. Moreover, personal computers and workstations 

have become important platforms for multimedia interactive applications that advantage- 

ously use a close integration of digital compression techniques (JPEG, MPEG), Very Large 

Scale Integration (VLSI) technology, highly sophisticated network facilities and digital 

storage media. 

At the same time, the scope of research of the academic environment on Image 

Communication has further increased to include model- and knowledge-based techniques, 

artificial intelligence, motion analysis, and advanced image and video processing techni- 

ques. The variety of topics on Image Communication is so large that no one can be a spe- 

cialist in all the topics, and the whole area is beyond the scope of a single volume, while 

the requirement of up-to-date information is ever increasing. 

This was the rationale for Elsevier Science Publishers to approach me to edit a book series 

on 'Advances in Image Communication', next to the already existing and highly successful 

Journal: "Signal Processing: Image Communication". The book series was to serve as a 

comprehensive reference work for those already active in the area of Image 

Communication. Each author or editor was asked to write or compile a state-of-the-art 

book in his/her area of expertise, including information until now scattered in many jour- 

nals and proceedings. The book series therefore would help Image Communication spe- 

cialists to gain a better understanding of the important issues in neighbouring areas by rea- 

ding particular volumes. It would also give newcomers to the field a foothold for doing 

research in the Image Communication area. 
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In order to produce a quality book series, it was necessary to ask authorities well known in 

their respective fields to serve as volume editors, who would in turn attract outstanding 

contributors. It was a great pleasure to me that ultimately we were able to attract such an 

excellent team of editors and authors. 

Elsevier Science and I, as Editor of the series, are delighted that this book series has alre- 

ady received such a positive response from the image communication community. We 

hope that the series will continue to be of great use to the many specialists working in this 

field. 

Jan Biemond 

Series Editor 
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Preface 

Along with the advancement in multimedia and Internet technology, large-scale 

digital image and video databases have emerged in both the professional and consumer 

environments. Although digital representations have many advantages over analog 
representations, vast amounts of (old) film and video material are still in analog 

format. Re-using this material in digital format and combining it with newly 

produced audiovisual information is, however, only feasible if the visual quality 

meets the standards expected by the modern viewer, which motivates the need for 
automated image restoration. At the same time, service providers are reluctant to 

offer services in digital form because of the fear for unrestricted duplication and 

dissemination of copyrighted material. This has led to worldwide research on 

watermarking techniques to embed a secret imperceptible signal, a watermark, 

directly into the Video data. Further, with steadily increasing information volumes 

stored in digital image and video databases, it is crucial to find ways for efficient 
information retrieval. 

This book provides an in-depth treatment of the three aforementioned 

important topics related to image and video databases: restoration, watermarking and 

retrieval. It is an outgrowth of the participation of the Delft University of Technology 

in the European Union ACTS program, a pre-competitive R&D program on 

Advanced Communications Technologies and Services (1994-1998). In particular the 

book has benefited from participation in the AURORA and SMASH projects on 
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respectively automated film and video restoration and storage for multimedia 
systems (watermarking & retrieval). 

The research has been performed in the Information and Communication 
Theory Group, Department of Mediamatics, Faculty of Information Technology and 
Systems of the Delft University of Technology, The Netherlands, as part of the 
Visual Communications research program (http://www-ict.its.tudelft.nl) and has 
been published extensively. The restoration task was performed by P.M.B. van 
Roosmalen, the watermarking task by G.C. Langelaar, and the retrieval task by A. 
Hanjalic under the guidance of the professors J. Biemond and R.L. Lagendijk. 

Delft, February 2000 
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Outline 

In recent years, technology has reached a level where vast amounts of digital 

audiovisual information are available at a low price. During the same time, the 

performance-versus-price ratio of digital storage media has steadily increased. 

Because it is easy and relatively inexpensive to obtain and store digital information, 

while the possibilities to manipulate such information are almost unlimited, large- 

scale image and video databases in the professional and consumer environments have 

grown rapidly. Examples are databases of museum records, Internet image and 

video archives, databases available to commercial service providers and private 

collections of digital audiovisual information at home. All of these are characterized 

by a quickly increasing capacity and content variety. This book addresses three 

important topics related to efficient practical realization and utilization of digital 

image and video databases: image restoration, copy-protection by watermarking and 

efficient information retrieval. 

The first topic, restoration, is addressed in Part I of this book. It considers 

unique records of historic, artistic, and cultural developments of every aspect of the 

20th century, which are stored in huge stocks of archived moving pictures. Many of 

these historically significant items are in a fragile state and are in desperate need of 

conservation and restoration. Preservation of visual evidence of important moments 

in history and of our cultural past is notonly of purely scientific value. Moreover, it 

is possible to digitize these historic records and combine them with newly produced 



programs for broadcasting or database-building purposes. On the one hand, huge 

collections of movies, soaps, documentaries, and quiz shows currently held in store 

provide a cheap alternative to the high costs of creating new programs. On the other 

hand, emerging databases in some professional spheres, such as journalism, politics 

or social sciences, can largely benefit from preserved and easily accessible historic 

records. Re-using old film and video material is, however, only feasible if the visual 

and audio quality meets the standards expected by the modern viewer. There is a 

need for an automated tool for image restoration due to the vast amounts of 

archived film and video and due to economical constraints. The term automated 
should be stressed because manual image restoration is a tedious and time- 

consuming process. At the Delft University of Technology, algorithms were 

developed for correcting three types of artifact common to old film and video 

sequences, namely intensity flicker, blotches and noise. 

Intensity flicker is a common artifact in old black-and-white film sequences. It 

is perceived as unnatural temporal fluctuations in image intensity that do not 

originate from the original scene. We describe an original, effective method for 

correcting intensity flicker on the basis of equalizing local intensity mean and 

variance in a temporal sense. 

Blotches are artifacts typically related to film that are caused by the loss of 

gelatine and dirt particles covering the film. Existing techniques for blotch detection 

generate many false alarms when high correct-detection rates are required. As a 

result, unnecessary errors that are visually more disturbing than the blotches 
themselves can be introduced into an image sequence by the interpolators that 

correct the blotches. We describe techniques to improve the quality of blotch 

detection results by taking into account the influence of noise on the detection pro- 

cess and by exploiting the spatial coherency within blotches. Additionally, a new, 

fast, model-based method for good quality interpolation of blotched data is 

developed. This method is faster than existing model-based interpolators. It is also 

more robust to corruption in the reference data that is used by the interpolation 

process. 

Coring is a well-known technique for removing noise from still images. The 

mechanism of coring consists of transforming a signal into a frequency domain and 

reducing the transform coefficients by the coring function. The inverse transform of 

the cored coefficients gives the noise-reduced image. We develop a framework for 

coring image sequences. The framework is based on 3D (2D space and time) image 

decompositions, which allows temporal information to be exploited. This is 

preferable to processing each frame independently of the other frames in the image 

sequence. Furthermore, a method of coring can be imbedded into an MPEG2 
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encoder with relatively little additional complexity. The MPEG2 encoder then 

becomes a device for simultaneous noise reduction and image sequence 

compression. The adjusted encoder significantly increases the quality of the coded 
noisy image sequences. 

Not only does image restoration improve the perceived quality of the film and 

video sequences, it also, generally speaking, leads to more efficient compression. 

This means that image restoration gives better quality at fixed bitrates, or, 

conversely, identical quality at lower bitrates. The latter is especially important in 

digital broadcasting and storage environments for which the price of 

broadcasting/storage is directly related to the number of bits being broad- 

cast/stored. We investigate the influence of artifacts on the coding efficiency and 

evaluate how much is gained by restoring impaired film and video sequences. We 

show that considerable savings in bandwidth are feasible without loss of quality. 

The second topic, copy-protection by watermarking, is addressed in Part II of 

this book. Although digital data have many advantages over analog data, service 

providers are reluctant to offer services in digital form because they fear unrestricted 

duplication and dissemination of copyrighted material. The lack of adequate 
protection systems for copyrighted content was for instance the reason for the 

delayed introduction of the DVD. Several media companies initially refused to 

provide DVD material until the copy protection problem had been addressed. 

To provide copy protection and copyright protection for digital audio and 

video data, two complementary techniques are being developed: encryption and 

watermarking. Encryption techniques can be used to protect digital data during the 

transmission from the sender to the receiver. However, after the receiver has 
received and decrypted the data, the data is in the clear and no longer protected. 
Watermarking techniques can complement encryption by embedding a secret 
imperceptible signal, a watermark, directly into the clear data. This watermark 
signal is embedded in such a way that it cannot be removed without affecting the 

quality of the audio or video data. The watermark signal can for instance be used for 
copyright protection by hiding information about the author in the data. The 
watermark can now be used to prove ownership in court. 

Another interesting application for which the watermark signal can be used is 

to trace the source of illegal copies by using fingerprinting techniques. In this case, the 

media provider embeds watermarks in the copies of the data with a serial number 

that is related to the customer's identity. If now illegal copies are found, for instance 

on the Internet, the intellectual property owner can easily identify customers who 

have broken their license agreement by supplying the data to third parties. The 

watermark signal can also be used to control digital recording devices by indicating 
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whether certain data may be recorded or not. In this case, the recording devices must 

of course be equipped with watermark detectors. Other applications of the 

watermark signal include: automated monitoring systems for radio and TV 

broadcasting, data authentication and transmission of secret messages. 

Each watermarking application has its own specific requirements. 

Nevertheless, the most important requirements to be met by most watermarking 

techniques are that the watermark is imperceptible in the data in which the 

watermark is hidden, that the watermark signal can contain a reasonable amount of 

information and that the watermark signal can not easily be removed without 

affecting the data in which the watermark is hidden. 

In Part II of this book an extensive overview is given of different existing 

watermarking methods. However, the emphasis is on the particular class of 

watermarking techniques that is suitable for real-time embedding watermarks in 

and extracting watermarks from compressed video data. This class of techniques is 

for instance suitable for fingerprinting and copy protection systems in home- 

recording devices. To qualify as a real-time watermarking technique for compressed 

video data, a watermark technique should meet the following requirements besides 

the already mentioned ones. There are two reasons why the techniques for 

watermark embedding and extracting cannot be too complex: they are to be 

processed in real time, and as they are to be used in consumer products, they must 

be inexpensive. This means that fully decompressing the compressed data, adding a 

watermark and subsequently compressing the data again is not an option. It should 

be possible to add a watermark directly to the compressed data. Furthermore, it is 

important that the addition of a watermark does not influence the size of the 

compressed data. For instance, if the size of a compressed MPEG-video stream 

increases, transmission over a fixed bit rate channel can cause problems, the buffers 

in hardware decoders can run out of space, or the synchronization of audio and 

video can be disturbed. The most efficient way to reduce the complexity of real-time 

watermarking algorithms is to avoid computationally demanding operations by 

exploiting the compression format of the video data. We introduce two new 

watermarking concepts that directly operate on the compressed data stream, namely 

the least significant bit (LSB) modification concept and the Differential Energy 

Watermark (DEW) concept. 

The end of Part II is dedicated to the evaluation of the DEW-concept. Several 

approaches to evaluate watermarking methods from literature are discussed and 

applied. Furthermore, watermark removal attacks from literature are discussed and 

a new watermark removal attack is proposed. 
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While Parts I and II are mainly related to the process of creating an image or 

video database in terms of providing visual material of acceptable quality 

(restoration) and protecting the ownership of that material (watermarking), the topic 

addressed in Part III of this book, information retrieval, concerns the efficiency of 

using image and video databases, that is, of handling large amounts of not-indexed 

audiovisual information stored therein. 

With steadily increasing information volumes stored in image and video 

databases, finding efficient ways to quickly retrieve information of interest becomes 

crucial. Since searching manually through GBytes of unorganized stored data is 

tedious and time-consuming, the need grows for transferring information retrieval 

tasks to automated systems. Realizing this transfer in practice is, however, not 

trivial. The main problem is that typical retrieval tasks, such as "find me an image 

with a bird!", are formulated on a cognitive level, according to the human capability 

of understanding the information content and analyzing it in terms of objects, 

persons, sceneries, meaning of speech fragments or the context of a story in general. 

Opposed to this, an image or a video is analyzed at the algorithmic or system level in 

terms of features, such as color, texture, shape, frequency components, audio and 

speech characteristics, and using the algorithms operating on these features. Such 

algorithms are, for instance, image segmentation, detection of moving objects in 

video sequences, shape matching, recognition of color compositions, determination 

of spatio-temporal relations among different objects or analysis of the frequency 

spectrum of the audio or speech stream. These algorithms can be developed using 

the state-of-the-art in image and audio analysis and processing, computer vision, 

statistical signal processing, artificial intelligence, pattern recognition and other 

related areas. Experience has shown, however, that the parallelism between the 

cognition-based and feature-based information retrieval is not viable in all cases. 
Therefore, the development of feature-based content-analysis algorithms has not 
been directed to enable queries on the highest semantic level, such as the above 

example with a bird, but mainly towards extracting certain semantic aspects of the 

information that would allow for a reduction of the overall large search space. The 

material presented in Part III of this book is meant to contribute further to research 
efforts in this direction. 

We first introduce a series of novel algorithms for video analysis and 

abstraction. These algorithms are developed to provide an overview of the video- 

database content and logical entry points into a video when browsing through a 

video database. Also a video index may be constructed based on visual features 

contained in the abstract, which can then be used for video queries using image 

retrieval techniques. On the one hand, algorithmic solutions are provided for 
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segmenting a video into temporally homogeneous fragments called video shots, for 

condensing each of the shots into a set of characteristic frames called key frames and 

for performing a high-level analysis of a video content. This high-level analysis 

includes determining semantic relationships among shots in terms of their temporal 

characteristics and suitable features of their key frames, and identification of certain 

semantically interesting video shots. Examples are merging the shots of a movie into 

scenes or episodes or the identification of anchorperson shots in news programs. On 

the other hand, we develop an algorithm for automatically summarizing an arbitrary 

video by extracting a number of suitable key frames in such a way that the result is 

similar as when that video is summarized manually. One characteristic application 

where having such abstracts is useful is browsing through a video and searching for 

a scene of interest. The user only needs to check a limited amount of information 

contained in an abstract instead of going through the entire video in the fast- 

forward/rewind mode, while still having available all the characteristic information 

related to the video content and thus being able to understand and follow that 

content exclusively on the basis of the abstract. 

The second contribution of Part III is the search for suitable compression 

methodologies which are to be applied to images and videos stored in databases. 

Large scientific and industrial efforts have been invested over the years in 

developing and improving high-quality digital image and video compression 

methods. Hereby, three classical optimization criteria were taken into account: (1) 

minimizing the resulting bit rate, (2) maximizing the quality of the reconstructed 

image and video and (3) minimizing the computational costs. The invested efforts 

have resulted in many efficient image and video compression methods, the most 

suitable of which were standardized (e.g. JPEG, MPEG). These methods are, 

however, not optimized in view of content accessibility which is analog to the 

efficiency of regaining the features of content elements being important for a given 

retrieval task. This means that a high computational load in reaching image and 

video features combined with large amount of information stored in a database, can 

negatively influence the efficiency of the interaction with that database. 

In order to make the interaction with a database more efficient, it is necessary 

to develop compression methods which explicitly take into account the content 

accessibility of images and video, together with the classical optimization criteria. 

This challenge can also be formulated as to reduce the computational load in 

obtaining the features from a compressed image or video. As a concrete step in this 

direction a novel image compression methodology is presented where a good 

synergy among the four optimization criteria is reached. 
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Chapter I 

Introduction to Restoration 

1.1 Background 

If one considers that archived film and video sequences will be preserved by 

transferring them onto new digital media, there are a number of reasons why these 

sequences should be restored before renewed storage. First, restoration improves the 

subjective quality of the film and video sequences (and it thereby increases the 

commercial value of the film and video documents). Second, restoration generally 

leads to more efficient compression, i.e., to better quality at identical bitrates, or, 

conversely, to identical quality at lower bitrates. The latter is especially important in 

digital broadcasting and storage environments for which the price of broadcast- 

ing/storage is directly related to the number of bits being broadcast/stored. 

There is a need for an automated tool for image restoration due to the vast 

amounts of archived film and video and due to economical constraints. The term 

automated should be stressed because manual image restoration is a tedious and 

time-consuming process. Also, the restoration tool should operate in real-time in 

order to allow for bulk processing, and to reduce the high costs of manual labor by 

requiring a minimum of human intervention. 

1.2 Scope of Part I 

Detecting and restoring selected artifacts from archived film and video material with 

real-time hardware places constraints on how that material is processed and on the 
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complexity of the algorithms used. It is stressed here that these constraints do not 

restrict the complexity of the methods for image restoration presented here, with the 

exception of the work presented in Chapter 3. Even though much of the work 

described here is too complex (meaning too expensive) to be implemented in 

hardware directly, it gives good insight into the nature of the investigated artifacts. 

The material presented in Chapters 1 to 6 gives an upper bound on the quality that 

can be achieved under relaxed constraints. 

We restrict ourselves to black-and-white image sequences for two reasons. 

First, a large proportion of the films that require restoration is in black and white. 

Second, most of the algorithms can easily be extended to color, though perhaps in a 

suboptimal manner. An example of this would be a situation in which a color image 

sequence is restored by applying the restoration algorithms to the R, G, and B 

channels separately. Multi channel approaches [Arm98], [Ast90] could be taken from 

the start, at the cost of increased complexity and at the risk of achieving little 

significant gain compared to what single channel processing already brings. 

As an inventory of impairments found in old film and video sequences, a list of 

over 150 entries emerged that indicates the nature of the defects and the frequency of 

their occurrence. From this list, the most important impairments are noise [Abr96], 

[Arc91], [Bra95], [Don94b], [Dub84], [Hir89], [Kle94], [Ozk92], [Ozk93], [Roo97], 

blotches [Fer96], [Goh96], [Ka197], [Kok98], [Kok95a], [Kok95b], [Mu196], [Nad97], 

[Roo99a], [Roo98b], [Ve188], line scratches [Kok98], [Mor96], film unsteadiness [Vla96], 
and intensity flicker [Fer96], [Mu196], [Ric95], [Roo99b], [Roo97]. Figure 1.1 shows 
some examples of these artifacts. This figure shows frames that are corrupted by 

multiple artifacts. This is often the case in practice. 
Not only the quality of video has been affected by time, audio tracks often 

suffer degradations as well. However, restoration of audio is beyond the scope of 

this book. 

Even though a single algorithm for restoring all the artifacts at hand in an 

integral manner is conceivable, a modular approach was chosen to resolve the 

various impairments. A divide-and-conquer strategy increases the probability of (at 

least partial) success. Furthermore, real-time systems for video processing require 

very fast hardware for the necessary computations. Modular systems allow the 

computational complexity to be distributed. Figure 1.2 shows a possible system for 

image restoration using a modular approach that was largely implemented for the 

purposes of this book. 

The first block in Figure 1.2,flicker correction, removes disturbing variations in 

image intensity in time. Intensity flicker hampers accurate local motion estimation; 

therefore, it is appropriate to correct this artifact prior to applying any restoration 
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technique that relies on local motion estimates. Next, local motion is estimated. 

Instead of designing (yet another) motion estimator that is robust to the various 

artifacts, we use a hierarchical block matcher [Bie88], [Haa92], [Tek95] with 

constraints on the smoothness of the motion vectors. 

Figure 1.1: (a,c,e) Three consecutive frames from a Charlie Chaplin film impaired by noise, 
blotches, and line scratches. There are also differences in intensity, which are less visible in 
print than on a monitor though. Zooming in on (b) noise, (d) a blotch, and (~ a scratch. 
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Where the motion vectors are not reliable, due to the presence of artifacts, a 

strategy of vector repair is applied when necessary [Che97], [Has92], [Kok98], 

[Lam93], [Nar93]. Next, blotch removal detects and removes dark and bright spots 

that are often visible in film sequences. Scratch removal, which is not a topic of 

research in this book, removes vertical line scratches. Noise reduction reduces the 

amount of noise while it preserves the underlying signal as well as possible. Finally, 

image stabilization makes the sequence steadier by aligning (registering) the frames of 

an image sequence in a temporal sense. Image stabilization is not a topic of research 

in this book. 

Figure 1.2: Schematic overview of a modular system towards image restoration. 

In Figure 1.2, blotches and scratches are addressed prior to noise because they are 

local artifacts, corrections thereof influence the image contents only locally. Noise 

reduction is a global operation that affects each and every pixel in a frame. 

Therefore, all processes following noise reduction are affected by possible artifacts 

introduced by the noise reduction algorithm. Image stabilization, for which very 

robust algorithms exist, is placed at the back end of the system because it too affects 

each and every pixel by compensating for subpixel motion and by zooming in on the 

image. Zooming is required to avoid visible temporal artifacts near the image 

boundaries. As already mentioned, intensity flicker correction is an appropriate 

front end to the system. It is applied prior to the algorithms that require local motion 

estimates. 
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At the starting point in Figure 1.2 are digital image sequences instead of 

physical reels of film or tapes containing analog video. Rather than investigating the 

large number of formats and systems that have been used in one period or another 

over the last century, it is assumed that the archived material has been digitized by 

skilled technicians who know best how to digitize the film and video from the 

various sources. When the source material is film, digital image sequences are 

obtained by digitizing the output of the film-to-video telecine. It must be kept in 

mind that the earlier telecines have their limitations in terms of noise characteristics 

and resolution. Sometimes a copy on video tape obtained from an earlier telecine is 

all that remains of a film. 

The output of the system in Figure 1.2 forms the restored image sequence. 

Subjective evaluations using test panels assess the improvement in perceived quality 

of the restored sequence with respect to the impaired input sequence. 

1.3 Overv iew of Part I 

Chapter 2 commences with general remarks on model selection, parameter 

estimation, and restoration. The key to an automatic restoration system lies in 

automatic, reliable parameter estimation. Models for noise, blotches, line scratches, 

film unsteadiness, and intensity flicker are reviewed. Motion estimation is an 

important tool in image sequence restoration, and its accuracy determines the 

quality of the restored sequences. For this reason, the influence of artifacts on motion 

estimation is investigated. It is likely that archived material selected for preservation 

is re-stored in a compressed format on new digital media. To appreciate the possible 

benefits of image restoration with respect to compression, the influence of artifacts 

on the coding efficiency of encoders based on the MPEG2 video compression 

standard is investigated. 

Chapter 3 develops a method for correcting intensity flicker. This method 

reduces temporal fluctuations in image intensity automatically by equalizing local 

image means and variances in a temporal sense. The proposed method was 

developed to be implemented in hardware; therefore, the number of operations per 

frame and the complexity of these operations have been kept as low as possible. 

Experimental results on artificially and naturally degraded sequences prove the 

effectiveness of the method. 

Chapter 4 investigates blotch detection and removal. Existing methods, both 

heuristic and model based, are reviewed. Improved methods are developed. 

Specifically, the performance of a blotch detector can be increased significantly by 

postprocessing the detection masks resulting from this detector. The postprocessing 
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operations take into account the influence of noise on the detection process; they also 

exploit the spatial coherency within blotches. Where blotches corrupt the image 

data, the motion estimates are not reliable. Therefore, benefits of motion-vectt)r 

repair are investigated. Finally, a new, relatively fast model-based method for good- 

quality interpolation of missing data is presented. 

Chapter 5 investigates coring. Coring is a well-known technique for removing 

noise from images. The mechanism of coring consists of transforming a signal into a 

frequency domain and reducing the transform coefficients by the coring function. 
The inverse transform of the cored coefficients gives the noise-reduced image. This 

chapter develops a framework for coring image sequences. The framework is based 

on 3D image decompositions, which allows temporal information to be exploited. 

This is preferable to processing each frame independently of the other frames in the 

image sequence. Furthermore, this chapter shows that coring can be imbedded into 

an MPEG encoder with relatively little additional complexity. The adjusted encoder 
significantly increases the quality of the coded noisy image sequences. 

Chapter 6 evaluates the image restoration tools developed in this book. First, it 

verifies experimentally that the perceived quality of restored image sequences is 
better than that of the impaired source material. Second, it verifies experimentally 
that, for the artifacts under consideration, image restoration leads to more efficient 
compression. 



Chapter 2 

Modeling and Coding 

2.1 Modeling for image restoration 

Model selection and parameter estimation are key elements in the design process of 

an image restoration algorithm. Section 2.1.1 reviews these key elements so that their 

presence can be recognized clearly in subsequent chapters. It is argued that robust 

automatic parameter estimation is essential to an automatic image restoration 

system. Section 2.1.2 models common degradations that affect old film and video 

sequences. These models form a basis for the restoration techniques developed in 

this book. They are also used for evaluation purposes. Section 2.1.3. investigates the 

influence of artifacts on the accuracy of motion estimation. 

2.1.1 Model selection and parameter estimation 

Image model. Many models that define various aspects of natural images and of 

image sequences are described in literature. For example, for still images, the 

magnitude of the Fourier spectrum has a lff characteristic [Sch98], and local pixel 

intensities depend on each other via markov random fields [Gem84], [Ros82], 

[Won68], [Woo72]; for image sequences, there is a very high correlation between 

frames in time for image sequences [Has92]. 

The choice of the image model to be used depends on the problem at hand. In 

the case of image restoration, it is appropriate to select image models with ordinary 

parameter values that are affected as much as possible by the degradations under 
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investigation. The reason for this is apparent. Suppose the model parameters of the 

assumed image model are not affected at all by a certain degradation. Then that 

image model provides no information that can be used for determining the severity 

of that degradation, nor does it provide any indication of how to correct the 

degradation. 

Degradation model. Degradation models describe how data are corrupted; they 

imply how the model parameters for unimpaired images are altered. Models for 

specific degradations are obtained through a thorough analysis of the mechanisms 

generating the artifacts. The analysis is not always straightforward because the 

physical processes that underlie an impairment can be very complex and difficult to 

qualify. Often there is a lack of detailed knowledge on how a signal was generated. 

In practice, approximations and assumptions that seem reasonable have to be made. 

For example, in Section 2.1.2, the overall influence of the various noise sources 

affecting pictures in a chain of image capture, conversion, and storage is 

approximated by a single source instead of taking into account all the individual 

noise contributions explicitly. 

Restoration model. Ideally, restoration would be modeled as the inverse operation 

of the degradation with its model parameters. Unfortunately, "the inverse" does not 

exist in many cases due to the singularities introduced by the degradation and due 

to the limited accuracy with which the model parameters are known. There are 

many solutions to a restoration problem that give identical observed signals when 

the degradation model (though be it with different parameters) is applied to them. 

For example, image data corrupted by blotches can be restored by a number of 

methods (Chapter 4), each of which gives a different solution. However, none of the 

solutions conflict with the degradation process and with the observed data that 

result from the degradation process. 

The restoration problem is ill posed in the sense that no unique inverse to the 

degradation exists. A unique solution can be found only by reducing the space of 

possible solutions, by setting constraints in the form of criteria that must be fulfilled 

as well as is possible: the characteristics of the restored image are required to fit an 

image model. The goal of image restoration is to restore an image so that it 

resembles the original scene as closely as possible. Therefore, an often used 

additional criterion is that, in the spatial domain, the mean squared error between 

the restored image and the original, uncorrupted image must be as small as possible. 

Estimating model parameters. Figure 2.1 shows how the image, degradation, and 

restoration models relate to each other. The central element that links the models is 

parameter estimation (system identification). The quality of a restored image sequence 

is determined by the quality of the estimated model parameters. Indeed, the quality 
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of a restored image sequence can be worse than that of the degraded source material 

if poor choices are made for the values of the model parameters. Therefore, the level 

of automation for which model parameters can be estimated in a robust manner and 

with sufficient accuracy determines the extent to which a restoration system 

performs its function without user intervention. For this reason, automatic 

parameter estimation from the observed signals is an important part of each of the 

methods for image restoration presented in this book. 

Image Model ] 

[ Degr/d/tl~ I ~ 

Parameter] I  e toration ] Estimation ~ Model 

Figure 2.1: Relationships between model selection and parameter estimation. 

Automatic parameter estimation is a non-trivial task in many cases due to the fact 

that insufficient numbers of data are available and due to the presence of noise. The 

term noise has a broad meaning in this context, and often it includes the signal to be 

restored from the observed data themselves. For example, estimating the noise 

variance (as a parameter for some algorithm) is hampered by the fact that it is very 

difficult to differentiate between noise and texture in natural images. Again, 

approximations and assumptions that seem reasonable have to be made. 

Note that the quality of the estimated model parameters, e.g., determined by 

means of a direct numerical comparison to the true parameters, is not necessarily a 

good indication of the quality of the restoration result. This is because the quality of 

the restoration result varies in a different way for estimation errors in each of the 

parameters [Lag91]. 

2.1.2 Impairments in old film and video sequences 

Chapter I mentions the most common impairments in old film and video sequences, 

and Figure 1.1 shows some examples of these artifacts. This subsection gives models 

for the various impairments. Figure 2.2 indicates the sources of the artifacts in a 

chain of recording, storage, conversion, and digitization. 
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Figure 2.2: Sources of image degradation in a chain of recording, storage, conversion and 
digitization. 

Noise.  Any recorded signal is affected by noise, no matter how precise the recording 

apparatus. In the case of archived material, many noise sources can be pointed out. 

There is granular noise on film, a result of the finite size of the silver grains on film, 

that can be modeled by signal-dependent random processes [Bi175], [Jai89], [Ozk93], 

[Pra91]. There is photon or quantum noise from plumbicon tubes and charged coupled 
devices (CCDs) that is modeled as a signal-dependent Poisson process [Dav92]. There 

is also thermal noise, introduced by electronic amplifiers and electronic processing, 

that is modeled as additive white gaussian noise [Dav91], [Pra91]. There is impulsive 

noise resulting from disturbances of digital signals stored on magnetic tape [Jus81]. 
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Finally, in the case of digital signal processing, the digitizing process introduces 

quantization noise that is uniformly distributed [Rob87]. 

Many historical (and modern) film and video documents contain a combination 

of all the types of noise mentioned. For instance, such is the case for material 

originating on film that has been transferred to video. Modeling noise is often 

complicated by the band-limiting effects of optical systems in cameras and by the 

nonlinear gamma correction that makes the noise dependent on the signal [Kle94]. 

Quantitative analysis of the contributions of each individual noise source to a 

recorded image is extremely difficult, if not impossible. In practice, it is often 

assumed that the Central Limit Theorem [Leo94] applies to the various noise sources. 

This implies the assumption that the various noise sources generate independent and 
identically distributed (i.i.d.) noise. 

Unless mentioned otherwise, it is assumed in Chapters I to 6 that the combined 

noise sources can be represented by a single i.i.d, additive gaussian noise source. 

Hence, an image corrupted by noise is modeled as follows. Let y(i) with i=(i, j, t) be 

an image with discrete spatial coordinates (i, j) recorded at time t. Let the noise be 

r/(i). The observed signal z(i) is then given by: 

z(i) = y(i) + ~l(i) (2.1) 

Many very different approaches to noise reduction are found in the literature, 
including optimal linear filtering techniques, (nonlinear) order statistics, scale-space 

representations, and bayesian restoration techniques [Abr96], [Arc91], [Bra95], 

[Don95], [Don94a], [Don94b], [Dub84], [Hir89], [Kle94], [Ozk92], [Ozk93], [Roo96]. 
Blotches. Blotches are artifacts that are typically related to film. In this book, the 

term blotch is used to indicate the effects that can result from two physical 
degradation processes of film. Both degradations lead to similar visual effects. The 

first degradation process is a result of dirt. Dirt particles covering the film introduce 

bright or dark spots on the picture (depending on whether the dirt is present on the 
negative or on the positive). The second degradation process is the loss of gelatin 

covering the film, which can be caused by mishandling and aging of the film. In this 

case, the image is said to be blotched. A model for blotches is given in [Kok98]: 

z(i)=(1- d(i)) y(i) + d(i) c(i) (2.2) 

where z(i) and y(i) are the observed and the original (unimpaired) data, respectively. 

The binary blotch detection mask d(i) indicates whether each individual pixel has 

been corrupted: d(i)~ {0, 1}. The values at the corrupted sites are given by c(i), with 

c(i) ~ y(i). A property of blotches is that the intensity values at the corrupted sites 
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vary smoothly; that the variance c(i) within a blotch is small. Blotches seldom appear 

at the same location in a pair of consecutive frames. Therefore the binary mask d(i) 

will seldom be set to one at two spatially co-sited locations in a pair of consecutive 

frames. However, there is spatial coherence within a blotch; if a pixel is blotched, it is 

likely that some of its neighbors are corrupted as well. 

Figure 2.3: Measured intensities (solid line) 
and approximated intensities (dashed line) 
from a cross section of the vertical scratch in 
Figure 1.1e 

Figure 2.4: Example of a frame affected by a 
horizontal scratch on a two-inch video tape. 
(Photo by courtesy of the BBC). 

Films corrupted by blotches are often restored in a two-step approach. The first step 

detects blotches and generates binary detection masks that indicate whether each 

pixel is part of a blotch. The second step corrects pixels by means of spatio-temporal 

interpolation [Fer96], [Goh96], [Ka197], [Kok95a], [Kok95b], [Mu196], [Nar93], 

[Roo99a], [Roo98b], [The92]. Sometimes an additional step of motion estimation is 

included prior to interpolation because motion vectors are less reliable at corrupted 

sites. An alternative approach is presented in [Kok98], where blotches are detected 

and corrected simultaneously. 

Line scratches. A distinction can be made between horizontal and vertical line 

scratches. Vertical line scratches are impairments that are typically related to film 

[Kok98], [Mor96]. They are caused by sharp particles scratching the film in a 

direction parallel to the direction of film transport within the camera. Line scratches 

are often visible as bright or dark vertical lines. The fact that vertical lines appear in 

nature frequently makes it difficult for an algorithm to distinguish between scratches 

and real-image structures. A one-dimensional cross-Section of a scratch can be 
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modeled by a damped sinusoid (Figure 2.3): 

Ic-il)  l(i) = A k Ic-il c o s  + f0 
w 

(2.3) 

where A depends on the dynamic range of the intensities over the cross-section of a 

scratch, k is the damping coefficient, c indicates the central position of the scratch, w 

indicates the width of the scratch, and f0 is an offset determined by the local mean 

gray level. Once detected, line scratches can be restored by spatial or spatio-temporal 

interpolation. 
In the case of video, horizontal scratches disturb the magnetic information 

stored on the tape. As a result of the helical scanning applied in video players, a 

horizontal scratch on the physical carrier does not necessarily give a single 

horizontal scratch in the demodulated image. For example, a horizontal scratch on a 

two-inch recording results in local distortions all over the demodulated image. 

Figure 2.4 is an example. 
Film unsteadiness. Two types of film unsteadiness are defined, namely interframe 

and intraframe unsteadiness. The first and most important category is visible as 

global frame-to-frame displacements caused by mechanical tolerances in the 

transport system in film cameras and by unsteady fixation of the image acquisition 

apparatus. A model for interframe unsteadiness is: 

z(i)= y(i-qi(t) , j-qj(t) , t)  (2.4) 

Here qi(t) and qj(t) indicate the global horizontal and vertical displacement of 

frame t with respect to the previous frame. Intraframe unsteadiness can be caused by 

transfers from film to video where the field alignment is off (many older telecines 

used separate optical paths for the odd and even fields). This leads to interference 

patterns that are perceived as variances in luminance. Unsteadiness correction is 

estimated from the displacements and misalignments by maximizing temporal and 

spatial correlation, followed by resampling of the data. See [Vla96], for example. 

Intensity flicker. Intensity flicker is defined as unnatural temporal fluctuations in 

the perceived image intensity that do not originate from the original scene. There are 

a great number of causes, e.g., aging of film, dust, chemical processing, copying, 

aliasing, and, in the case of the earlier film cameras, variations in shutter time. This 

book models intensity flicker as: 

z(i)=a(i) y(i)+~(i) (2.5) 
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where fluctuations in image intensity variance and in intensity mean are represented 

by the multiplicative a(i) and additive fl(i). It is assumed that a(i) and fl(i) are 

spatially smooth functions. Histogram equalization has been proposed as a solution 

to intensity flicker [Fer96], [Mu196], [Ric95]. This book presents a more robust 

solution [Roo99b]. 

Other artifacts are line-jitter [Kok98], [Kok97], color fading, blur [Ban97], 

[Lag91], echoes, drop-outs and moir6 effects. These are beyond the scope of this 

book. 

Frame 1 
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Figure 2.5: Scheme for measuring the influence of image degradations on the accuracy of 
estimated motion vectors. 

2.1.3 Inf luence  of artifacts on mot ion  es t imat ion  

For image sequence restoration, temporal data often provide additional information 

that can be exploited above that which can be extracted from spatial data only. This 

is because natural image sequences are highly correlated in a temporal sense in 

stationary regions. In nonstationary regions, object motion reduces the local 

temporal correlation. Therefore, increasing the stationarity of the data via motion 

estimation and compensation is beneficial to the restoration process. Many motion 

estimation techniques have been developed in the context of image compression. 

Examples are (hierarchical) block matchers, pel-recursive estimators, phase cor- 

relators, and estimators based on bayesian techniques [Bie87], [Bie88], [Haa92], 

[Kon92], [Pea77], [Tek95]. 

This book uses a hierarchical motion estimator with integer precision and some 

constraints on the smoothness of the motion vectors. The constraints on smoothness 



MODELING AND CODING 17 

are imposed by increasingly restricting the allowed deviation from the local 

candidate vectors passed on from lower resolution levels to higher resolution levels. 

Appendix A describes the details of this motion estimator. A motion-compensated 

frame representing a frame y(i) recorded at time t computed from a reference frame 

recorded at time t+k will be denoted as y~( i , t  + k). 

The scheme depicted in Figure 2.5 was used for some experiments to get some 

feeling for the influence of various artifacts on the accuracy of this motion estimator. 

In this scheme, two consecutive frames from a sequence are degraded and the 

motion between the objects in the degraded frames is estimated. The mean squared 

error (MSE) between the original (unimpaired) frames is then computed. One of 

these frames is compensated for motion with the estimated vectors. Let N indicate 

the number of pixels per frame. Then, the MSE between the current frame and the 

motion-compensated next frame is defined as: 

1 
MSE(y(i), ymc(i,t + 1))= ~ - ~  y .  (y(i, j , t ) -  ymc(i, j , t , t  + 1)) 2 

J 

(2.6) 

The rationale behind this scheme is the following. In the case that the motion 

estimator is not influenced much by the degradations, the correct vectors are found 

and the MSE is low. As the influence of the degradations on the estimated motion 

vectors becomes more severe, the MSE increases. 

The scheme in Figure 2.5 was applied to three test sequences to which 

degradations of various strength are added. The first sequence, called Tunnel, shows 

a toy train driving into a tunnel. The background is steady. The second sequence, 

MobCal, has slow, subpixel motion over large image regions. The third sequence, 

Manege, shows a spinning carousel and contains a lot of motion. Table 2.1 indicates 

the severity of the impairments for various levels of strength. Strength zero indicates 

that no degradation has been added, strength four indicates an extreme level of 

degradation. The latter level does not occur frequently in naturally degraded image 

sequences. 

Figure 2.6 plots the MSE for each of the test sequences as a function of the 

strength of the impairments. Before going into the details of the results, a few details 

are noted from this figure. First, in the absence of degradations, the MSE is relatively 

large for the Manege sequence. The reason for this is that the motion estimation, 

which was computed on a frame basis, was hampered by the strong interlacing 

effects. Second, the trends of the results are identical for all test sequences, i.e., the 

results are consistent. 
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Noise. Block-matching algorithms estimate motion by searching for maximal 

correlation between image regions in consecutive frames. If the signal-to-noise ratio 

is low, there is a risk that the maximum results largely from correlating noise. In the 

case the noise spectrum is white, hierarchical motion estimators are more robust to 

noise than full-search block matchers. Most of the signal energy of natural images is 

concentrated in the low frequencies. For a hierarchical block matcher this means that 

at the lower resolution levels, which are obtained by low-pass filtering the data, the 

signal-to-noise ratio is higher than at the higher resolution levels. Therefore, the 

probability of spurious matches is reduced. The influence of noise at the higher 

resolution levels is reduced by the constraints placed on the smoothness of the 

candidate motion vectors. Figure 2.6a shows the MSE computed for the three test 

sequences to which various amounts of white gaussian noise have been added. 

Strength 0 

Noise (variance) 0 
Blotches (% corrupted) 
Number of Scratches 

Strength I Strength 2 

14 
0 0.41 
0 2 

Flicker (MSE) 0 19 

Strength 3 

56 127 
0.62 1.04 

5 8 
72 161 

Strength 4 

225 
1.90 
11 

281 

Table 2.1: Average strength of various impairments added to test sequences. For noise the 
measure is the noise variance; for blotches, the measure is the percentage of pixels corruptecb 
for scratches, the measure is the number of scratches; and for intensity flicker, the measure is 
the MS E between original and corrupted frames. 

Blotches. A hierarchical block matcher will find the general direction in which data 

corrupted by blotches move, provided that the sizes of the contaminated areas are 

not too large. Because of the subsampling, the sizes of the blotches are reduced and 

they will have little influence on the block-matching results at the lower resolution 

levels. At the higher resolutions, the blotches cover larger parts of the blocks used 

for matching, and blotches will therefore have great influence on the matching 

results. However, if the number of candidate vectors is limited (e.g., in case the 

motion is identical in all neighboring regions) the correct motion vector may yet be 

found. Figure 2.6b shows the MSE computed for the three test sequences to which 

various numbers of blotches have been added. 

Line scratches. The temporal consistency of line scratches is very good. As a result, 

motion estimators tend to lock onto them, especially if the contrast of the scratches is 

great with respect to the background. If the background motion is different from that 
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of the line scratches, considerable errors result. Figure 2.6c shows the MSE computed 

for the three test sequences. 
Unsteadiness. Measuring the influence of unsteadiness on motion estimates with 

the scheme in Figure 2.5 is not meaningful. Estimating motion between frames from 

an unsteady sequence is not unlike estimating motion between frames from a 

sequence containing camera pan. A motion estimator that performs its function well 

does not differentiate between global and local motion. In practice, unsteadiness 

(and camera pan) does have some influence. First, there are edge effects due to data 

moving in and out of the picture. Second, motion estimators are often intentionally 

biased towards zero-motion vectors. Third, the motion estimation can be influenced 

by aliasing if the data are not prefiltered correctly. This third effect is not of much 

importance because natural images have relatively little high-frequency content. 
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Figure 2.6: MSE versus strength of impairment (0 = no impairment, 4 = greatly impaired): 
(a) noise, (b) blotches, (c) line scratches, (d) intensity jqicker. Note the differences in scale 
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Intensity Flicker. Many motion estimators, including the hierarchical motion 

estimator used in this book, assume the constant luminance constraint [Tek95]. This 

constraint, which requires that there be no variations in luminance between 

consecutive frames, is not met in the presence of intensity flicker. Figure 2.6d shows 

the MSE computed for the three test sequences to which varying amounts of 

intensity flicker have been added. The dramatic influence of this artifact on the 

quality of the estimated motion vectors compared to the other the artifacts examined 

becomes clear when the scale in Figure 2.6d is compared to those in Figures 2.6a-c. 

In conclusion, artifacts can have a considerable impact on the accuracy of 

estimated motion vectors. In some cases, this leads to a chicken-and-egg problem: in 

order to obtain good motion estimates, the artifacts should be restored; and in order 

to restore the artifacts, good motion estimates are required. This problem can often 

be overcome by applying iterative solutions where estimates of the motion vectors 

and of the restored image are obtained in an alternating fashion. Alternatively, 

restoration methods that do not rely on motion estimates might be devised (Chapter 

3) or a strategy of motion-vector repair can be applied after the severity of the 

impairments has been determined (Chapter 4). 

2.2 Image restoration and storage 

Restoration of archived film and video implies that the restored sequences will once 

again be archived. It is very likely that the restored documents are stored in new 

digital formats rather, than in analog formats similar to those from which the 

material originated. Most restored material will be re-archived in a compressed form 

due to the high costs associated with renewed storage of the vast amounts of 

material being held in store currently. This section investigates the effects of various 

impairments on the coding efficiency and uses the MPEG2 compression standard as 

a reference. The results of this investigation indicate the possible benefits that can be 

obtained by applying image restoration prior to encoding. 

2.2.1 Brief description of MPEG2 

The ISO/IEC MPEG2 coding standard developed by the Motion Pictures Expert 

Group is currently the industry standard used for many digital video 

communication and storage applications. As a result of the requirements on its 

versatility, it has become a very complex standard with a description that fills 

several volumes [IEC1], [IEC2], [IEC3]. The following describes only the basics of 

MPEG2 that are relevant to the restoration. 
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To achieve efficient compression, the MPEG2 encoding scheme exploits spatial 

and temporal redundancy within elementary units of pictures. Such an elementary 

unit is called a group of pictures (GOP) (Figure 2.7). MPEG2 defines three types of 

pictures that can be used within a GOP, namely intra frames (I frames), predicted 

frames (P frames), and bi-directionally interpolated frames (B frames). A GOP cannot 
consist of a random collection of I, B, and P frames. There are some rules that must 

be adhered to, e.g., the first encoded picture in a GOP is always an I frame. 

Figure 2.8 gives a schematic overview of the hybrid coding scheme that forms the 

heart of the MPEG2 coding system. 

Figure 2.7: Subdivision of an image sequence into groups of pictures (GOPs). In this exam- 
ple, the GOP has length 7 and it contains L P and B frames. The arrows indicate the predic- 
tion directions. 

I frames. To encode I frames, spatial information is used only. Therefore, temporal 

information for decoding I frames is not required. This is important because it allows 

random access to the image sequence (on the level of GOPs anyhow) and it limits 

error propagation in the temporal direction resulting from possible bit errors in a 

stream of encoded data. 

Efficient compression of I frames requires reduction of spatial redundancy. The 

MPEG2 standard reduces the spatial redundancy by subdividing I frames into 8 by 8 

image blocks and applying the discrete cosine transform (DCT) to these blocks. The 

decorrelating properties of the DCT concentrate much of the signal energy of natural 

images in the lower-frequency DCT coefficients. A quantizer Q quantizes the 
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transform coefficients and thereby reduces the number of representation levels and 

sets many coefficients to zero. Note that, as the eye is less sensitive to quantization of 

high frequencies, the high-frequency components can be quantized relatively 

coarsely. Entropy coding codes the remaining coefficients efficiently by applying 

run-length coding followed by variable length coding (VLC) to each 8 by 8 block of 

quantized DCTs. The result forms the encoder output. 

The decompression of I frames is straightforward: the inverse DCT is applied 

to 8 by 8 blocks in which the quantized coefficients are ordered after the entropy- 

coded data are decoded. 

Digital 
Video In + ~ ~  DCT ] 

.J 

Frame 
Stores 

Mot ion  
Est imator  

r 

J I VLC [ 
"1 I "1 I " 

iL 
Bitstream 
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Figure 2.8: Schematic overview of the hybrid coding scheme used in MPEG2. 

B and P frames. Efficient compression of P frames and B frames is achieved by 

exploiting both temporal and spatial redundancy. P frames are predicted from single 

I frames or P frames coded previously, for which motion estimation and 

compensation is often used. The prediction error signals, which contain spatial 

redundancy, are encoded as are the I frames, i.e., by means of the DCT and 

quantization. B frames are predicted from two coded I frames or P frames and are 

encoded like the P frames. The motion vectors are transmitted as well; these are 

encoded with differential coding. Note that, in the case of P frames and B frames, the 
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encoder may well decide that it is more efficient to encode the original contents of an 

image region instead of encoding the prediction error signals. 

Decompression consists of decoding the error signal and adding it to the 

motion-compensated prediction made in the decoder. 

Video In 
J Degrade [ ~1 CODEC ! 

Strength of degradation 

~] PSNR 
,,7 

Bitrate 

I Out 

Figure 2.9: Experimental setup for evaluating the influence of artifacts on the coding 
efficiency. 

2.2.2 Influence of artifacts on coding efficiency 

Figure 2.9 shows an experimental setup used for evalua~g the quantitative 

influence of artifacts on the coding efficiency of an MPEG2 encoder. Coding 

efficiency is defined as the amount of distortion introduced by a codec under the 

condition of a limited bitrate, or, vice versa, as the bitrate required by a codec under 

condition of limited distortion. The scheme in Figure 2.9 measures the peak-signal-to- 
noise-ratio (PSNR) of a degraded image sequence after encoding and decoding z~(i). 
The degraded sequence prior to encoding Zo(i ) serves as the reference. The PSNR is 
defined as: 

2242 
PSNR[zo(i),zc(i)]= 10log 1 +~-~(z~ 

-d 
(2.7) 

The numerator in (2.7) is a result of the dynamic range of the image intensities. The 

allowed range of intensities is restricted here to values between 16 and 240. If the 

degradations have little influence on the coding efficiency, the differences zo(i)-zc(i ) 
will be small and the PSNR will be large. As the influence of the degradations on the 

coding efficiency increases, the PSNR decreases. 
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Figure 2.10: Peak-signal-to-noise ratio (PSNR) between input image and MPEG2 
encoded~decoded result as a function of bitrate and strength of artifacts: (a) noise, (b) 
blotches, (c) line scratches, (d) unsteadiness, (e) intensity flicker and (f) all artifacts 
combined. 
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The degradations are introduced by applying the models for the artifacts in Section 

2.1.2. Figure 2.10 plots the PSNR as a function of the bitrate of the encoder and of the 

strength of the impairments (Table 2.1) for the MobCal sequence. From this figure it 

can be seen that, if the strength of the impairments is held constant, the PSNR 

increases with increasing bitrate. This is to be expected, of course, because a signal 

can be encoded more accurately if more bits are available. When the bitrate is kept 

constant, it can been seen that the coding efficiency decreases with an increasing 

level of impairment. The reason for the latter is explained for each impairment in the 

qualitative analysis that follows. 

Figure 2.11: (a) Variance of DCT coefficients (in zig-zag scan order) of a clean frame from 
the MobCal sequence, (b) variance of DCT coefficients from same frame but now with white 
gaussian noise with variance 100. 

Noise. A property of white noise is that the noise energy spreads out evenly over all 

the transform coefficients when an orthonormal transform is applied to it. The DCT 

is an orthonormal transform. Therefore, in MPEG2, the presence of additive white 

gaussian noise leads to fewer transform coefficients that are zero after quantization. 

Furthermore, on average, the amplitudes of the remaining coefficients are larger 

than in the noise-free case. See Figure 2.11. Both these effects lead to a decrease in 

coding efficiency; more coefficients must be transmitted and, on average, the 

codewords are longer. Similar arguments hold for the encoding of the error signals 

of the P frames and B frames. Note that the noise variance in the error signal is larger 

than that in I frames. This is so because the error signal is formed by subtracting two 

noisy frames. The benefits of noise reduction prior to MPEG2 encoding are shown 

by [Ric85], [Roo], [Roo98a]. 
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Blotches. Blotches replace original image contents with data that have little relation 

to the original scene. Large prediction errors will result for P frames and B frames at 

spatial locations contaminated by blotches. Large prediction errors imply nonzero 

DCT coefficients with large amplitudes, they therefore imply a decrease in coding 

efficiency. The overall influence of blotches on the coding efficiency is usually less 

than that of noise because blotches are local phenomena that often affect only a small 

percentage of the total image area. 

Line scratches. Scratches are image structures that, depending on their sharpness, 

have high energy in the frequency domain in orientations perpendicular to that of 

the scratch in question. For I frames this implies nonzero coefficients with large 

amplitudes, i.e., a decrease in coding efficiency. The situation is slightly better for P 

frames and B frames if the spatial locations of the scratches do not vary too much 

from frame to frame. In such cases, the prediction errors are small. 

Unsteadiness. In principle, the influence of film unsteadiness on prediction errors 

for P frames and B frames is countered by motion compensation. At first glance, the 

overhead due to nonzero motion vectors is neglible because of the differential 

coding: adjacent regions affected by global motion have only zero differential 

motion. However, because the codeword for no motion takes fewer bits than that for 

zero differential motion [Erd98], unsteadiness influences the coding efficiency in a 

negative sense. Furthermore, near the image edges, the prediction errors can be large 

due to data moving in and out of the picture. 

Intensity flicker. Intensity flicker decreases the coding efficiency of P frames and B 

frames for two reasons. First, the prediction error increases due to the fluctuations in 

image intensities. Thus the entropy of the error signal increases. Second, in the 

presence of intensity flicker the constant luminance constraint [Tek95] under which 

many motion estimators operate is violated. The result is that the motion vectors are 

more erratic, which leads to larger differential motion. The larger the differential 

motion, the more bits are required for encoding. The positive effects of reducing 

intensity flicker prior to compression are shown by [Ric85], [Roo]. 

The analysis given here shows that artifacts have a negative influence on the 

coding efficiency of MPEG2. Therefore removing artifacts prior to encoding is 

beneficial. It is difficult to quantify the benefits beforehand because they depend 

strongly on the nature of the unimpaired signal, the strength of the impairments, 

and the effectiveness of the restoration algorithms. It should be noted that not all 

impairments decrease the coding efficiency. For example, image blur [Ban97], 

[Lag91] is beneficial to compression because removes high frequency contents and 

thus nullifies the high-frequency transform coefficients. 
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Intensity flicker correction 

3.1 Introduction 

Intensity flicker is a common artifact in old black-and-white film sequences. It is 

perceived as unnatural temporal fluctuations in image intensity that do not originate 

from the original scene. Intensity flicker has a great number of causes, e.g., aging of 

film, dust, chemical processing, copying, aliasing, and, in the case of the earlier film 

cameras, variations in shutter time. Neither equalizing the intensity histograms nor 

equalizing the mean frame values of consecutive frames, as suggested in [Fer96], 

[Mu196], [Ric95], are general solutions to the problem. These methods do not take 

changes in scene contents into account, and they do not appreciate the fact that 

intensity flicker can be a spatially localized effect. This chapter describes a method 

for equalizing local intensity means and variances in a temporal sense to reduce the 

undesirable temporal fluctuations in image intensities [Roo99b]. 

Section 3.2 models the effects of intensity flicker, and derives a solution to this 

problem for stationary sequences that is robust to the wide range of causes of this 

artifact. The derived solution is optimal in a linear mean square error sense. The 

sensitivity to errors in estimated model parameters and the reliability of those 

parameters are analyzed. Section 3.3 extends the applicability of the method to 

include nonstationary sequences by incorporating motion. In the presence of 

intensity flicker, it is difficult to compensate for motion of local objects in order to 

satisfy the requirement of temporal stationarity. A strategy of compensating for 

global motion (camera pan) in combination with a method for detecting the 

27 
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remaining local object motion is applied. The model parameters are interpolated 

where local motion is detected. Section 3.4 shows the overall system of intensity- 

flicker correction and discusses some practical aspects. Section 3.5 describes 

experiments and results. Conclusions relevant to this chapter are given in Section 

3.6. 

3.2 Estimating and correcting intensity flicker in 
stationary sequences 

3.2.1 A model for intensity flicker 

It is not practical to find explicit physical models for each of the mechanisms 

mentioned that cause intensity flicker. Instead, the approach taken here models the 

effects of this phenomenon on the basis of the observation that intensity flicker 

causes temporal fluctuations in local intensity mean and variance. Since noise is 

unavoidable in the various phases of digital image formation, a noise term is 

included in the model: 

z(i) = a(i) y(i) + fl(i) + Tl(i ) (3.1) 

The multiplicative and additive intensity-flicker parameters are denoted by a(i) and 

fl(i). In the ideal case, when no intensity flicker is present, a(i) = 1 and fl(i) = 0 for all 

i. It is assumed that a(i) and fl(i) are spatially smooth functions. Note that y(i) does 

not necessarily need to represent the original scene intensities; it may represent a 

signal that, prior to the introduction of intensity flicker, may already have been 

distorted. The distortion could be due to signal-dependent additive granular noise 

that is characteristic of film [Bi175], [Ozk93], for example. 

The intensity-flicker-independent noise, denoted by r/(i), models the noise that 

has been added to the signal after the introduction of intensity flicker. It is assumed 

that this noise term is uncorrelated with the original image intensities. It is also 

assumed that 7/(i) is a zero-mean signal with known variance. Examples are 

quantization noise and thermal noise originating from electronic studio equipment 

(VCR, amplifiers, etc.). 

Correcting intensity flicker means estimating the original intensity for each 

pixel from the observed intensities. Based on the degradation model in (3.1), the 

following choice for a linear estimator for estimating y(i) is obvious: 

~(i) = a(i) z(i)+ b(i) (3.2) 
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If the error between the original image intensity and the estimated original image 

intensity is defined as: 

e(i) = y ( i ) -  ~(i) (3.3) 

then it can easily be determined that, given a(i) and fl(i), the optimal values for a(i) 

and b(i) in a linear minimum mean square error (LMMSE) sense are given by: 

a(i) = var[z(i)]-  var[r/(i)] 1 (3.4) 
var[z(i)] a(i)  

b(i)= _ fl(i) + var[r/(i)_______~] E[z(i)____~] (3.5) 
a(i)  var[z(i)] a(i)  

where E[.] stands for the expectation operator and var[.] indicates the variance. It is 

interesting that it follows from (3.4) and (3.5) that a(i) = 1 /a( i )  and b(i) = -fl(i)/a(i) in 

the absence of noise. In such a case, it follows from (3.1) and (3.2) that ~(i)= y(i). 

That is to say, the estimated intensities are exactly equal to the original intensities. In 

the extreme case that the observed signal variance equals the noise variance, we find 

that a(i) = 0 and ~(i)= b(i)= E[y(i)]; the estimated intensities equal the expected 

values of the original intensities. 

In practical situations, the true values for a(i) and fl(i) are not known and 

estimates &(i) and/~(i)  are made  from the observed data (this is the topic of Section 

3.2.2). Because these estimates will never be perfect, the effects of errors in 6(i) and 

/3(i) on ~(i) is investigated. To simplify the analysis, the influence of noise is 

discarded. For ease of notation, the following analysis leaves out the spatial and 

temporal  indices. Let 6 = a + Aa and/3  = fl + Aft. The reconstruction error Ay is then 

given by: 

Aa a~ 
Ay y . . . .  y + ~  (3.6) 

a + Aa a + Aa 

Figure 3.1 plots the reconstruction error as a function of Aa and Aft with a = 1, fl = 0 

and y=100. Now, if I Aal <<a, then it can be seen that the sensitivity of Ay to errors 

in &(i) is linear in y ,  and that the sensitivity of Ay to errors in/~(i) is constant: 

day day 
- - =  y and = 1 (3.7) 
dAa daft 
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Equation (3.7) shows that Ay is much more sensitive to errors in c~(i) than to errors 

in /7(i). It also shows that the sensitivity due to errors Aa can be minimized in 

absolute terms by centering the range of image intensities around 0. For example, 

consider a noiseless case in which 6 = a + 0.1 and ]7 = ft. If y ranges between 0 and 

255 with a = 1 and fl = 0, then it can be seen from (3.6) that Ay is maximally 23.2. 

After the range of image intensities is centered around 0, y ranges between -127 and 

128. The maximal absolute error is halved and, unlike the previous case, the 

sensitivity to errors in 6 (i) for the mid-gray values is relatively small. 

Figure 3.1: Error Ay in a reconstructed image as a function of errors Aa and Aft computed 
fory=lO0 

3.2.2 Estimating intensity-flicker parameters in stationary scenes 

In the previous section, a LMMSE solution to intensity flicker is derived on the 

assumption that the intensity-flicker parameters a(i) and fl(i) are known. This is not 

the case in most practical situations, and these parameters will have to be estimated 

from the observed data. This section determines how the intensity-flicker parameters 

can be estimated from temporally stationary image sequences, i.e., image sequences 

that do not contain motion. It was already assumed that a(i) and fl(i) are spatially 

smooth functions. For practical purposes it is now also assumed that the intensity- 

flicker parameters are constant locally: 

(~( i, j , t ) =  a m,n (t) Vi,  f2 
J E 

(i, j, t) = fl m,n (t) 
m,n (3.8) 
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where f2m,n indicates a small image region. The image regions ~'~m,n can, in principle, 

have any shape, but they are rectangular blocks in practice, and m, n indicate their 

horizontal and vertical spatial locations. The a m,n(t ) and ~m,n(t) correspondig to 

f2m, n are considered frame-dependent matrix entries at m, n. The size M x N  of the 

matrix depends on the total number of blocks in the horizontal and vertical 

directions. 

Keep in mind the assumption that the zero-mean noise 7/(i) is signal 

independent. The expected value and variance of z(i) taken from (3.1) in a spatial 

sense for i, j ~ ~'~m,n is given by: 

E[z(i)] = am,,(t) E[y(i)]+ flm,,(t) (3.9) 

var[z(i)] = a 2, n (t) var[y(i)] + var[~/(i)] (3.10) 

Rewriting (3.9) and (3.10) gives exact analytical expressions for a~, ,( t )  and [Jm,n(t) 
for i, j ~ f2m, n " 

flm,n(t) = E[z(i)l-a~,.(t) E[y(i)] (3.11) 

I v a r [ z ( i ) ] -  var[r/(i)] 
am'n(t)=~ -~ar-[y~] (3.12) 

Equations (3.11) and (3.12) must  now be solved in a practical situation. The means 

and variances of z(i) can be estimated directly from the observed data of regions 

f2m, n . The noise variance is assumed to be known or estimated. What remains to be 

estimated are the expected values and variances of y(i) in the various regions f2m, . . 

Two methods for estimating the mean and variance of y(i) for i, j ~ f2~, n are 

discussed here. The first method estimates y(i) by averaging the observed data in a 

temporal sense. In this case the underlying assumption is that the effects of flicker 

will be averaged out: 

E[y(i, j,t)] 1 t ~  p = ~  E[z( i , j , t+l)]  (3.13) 
p + q + l  

q 

var[y(i, j,t)] = 1 ~ var[z(i, j , t  + l)] (3.14) 
p+q+ll=_p 
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The second method takes the frame corrected previously as a reference: 

E[y(i, j,t)] = E[~/(i, j , t -  1)] (3.15) 

var[y(i, j,t)] = var[~( i , j , t -  1)] (3.16) 

The latter approach is adopted here because it has the significant advantage that the 

requirement of temporal stationarity is more likely to be fulfilled when a single 

reference frame, rather than multiple reference frames, is used. This approach is also 

more attractive in terms of computational load and memory requirements. Hence, 

for i, j ~ f2m, n , the estimated intensity-flicker parameters are given by: 

flm,n (t) = E[z(i, j , t ) ] - 6 m ,  (t ) E[~(i, j , t -1 ) ]  (3.17) 

I var[z(i,j,t)]-.v_ar_[~l(i, j, t)] 
a m'n(t)= ~ var[~(i, j , t -  1)] (3.18) 

3.2.3 Measure of reliability for the estimated model parameters 

Note that, by using (3.15) and (3.16), recursion is introduced into the method for 

flicker correction. As a result, there is a risk of error propagation leading to 

considerable distortions in a corrected sequence. A source of errors lies in the 

estimated model parameters 6 m,n (t) and ]3m,n(t ) , which may not be exact. Therefore, 

it is useful to have a measure of reliability for 6 m,, (t) and ~m,(t)  that can be used to 

control the correction process by means of weighting and smoothing the estimated 

model parameters as is done in Section 3.3.3. 

The 6 m,n (t) and flm,n(t) are  not very reliable in a number of cases. The first case 

is that of uniform image intensities. For any original image intensity in a uniform 

region, there are infinite combinations of a(i) and fl(i) that lead to the same observed 

intensity. The second case in which 6 m,n(t) a n d  flm,n(t) are potentially unreliable is 

caused by the fact that (3.15) and (3.16) discard the noise in ~(i) originating from 

7/(i). This leads to values for 6 m,n (t) that are too small. Considerable errors result in 

regions f2m, n in which the signal variance is smaller than the noise variance. 

The signal-to-noise ratio, defined as var(y)/var01),  determines the variance of 

the errors in the estimated model parameters. Figure 3.2 illustrates this by plotting 
2 and 2 the reciprocal values of the error variances ry As ryA~ as a function of signal-to- 

noise ratio. These values were obtained experimentally by synthesizing 100.000 
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textured areas of 30x30 pixels with a 2D autoregressive model to which gaussian 

noise and flicker were added. The flicker parameters were then determined with 

(3.11) and (3.12). Figure 3.2 shows that the variance in the estmated model 

parameters is inversely proportional to the signal-to-noise ratio. 

2 1/0"2 as 1/aa~ 
x 10 s 40 

J 0 ~ ~o 2~o ~o & ~o ~oo o 
SNR 

j -  

J 

(a) (b) 

s~o 6oo 
SNR 

Figure 3.2: (a) Plot of 1 /a  2 as vs. signal-to-noise ratio, (b) plot 1/a2 a~ vs. signal-to-noise ratio. 

Note that the relationships are linear. 

In Section 3.3.3, the model parameters that are estimated over an image are 

smoothed and weighted using a 2D polynomial fit. The weighted least-squares 

estimate of the polynomial coefficients is optimal if the weights are proportional to 

1 / a  as and 1/cra~ [Str88], i.e., if the weights are proportional to the squared root of 

the signal-to-noise ratio. Hence, the following measure of reliability Wm,n(t), for 

i, j e f2 . . . .  is defined: 

01, Wm,,(t) = v a r [ z ( i ) ] - T  n 

V var[z(i)] < T, 

otherwise 
(3.19) 

where 7', is a threshold depending on the variance of r/(i). Large values for Win, . (t) 

indicate reliable estimates; small values indicate unreliable estimates. 
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3.3 Incorporating motion 

The previous sections model the effects of intensity flicker and derive a solution for 

temporally stationary sequences. The necessity of temporal stationarity is reflected 

by (3.15) and (3.16), which assume that the mean and variance of ~(i,j,t) and 

~(i, j, t -  1) are identical. Real sequences, of course, are seldom temporally stationary. 

Measures will have to be taken to avoid estimates of a(i) and ~(i) that are incorrect 

due to motion. Compensating motion between z(i, j,t) and ~(i, j , t -  1) helps satisfy 

the assumption of temporal stationarity. This requires motion estimation. 

Robust methods for estimating global motion (camera pan) that are relatively 

insensitive to fluctuations in image intensities exist. Unfortunately, the presence of 

intensity flicker hampers the estimation of local motion (motion in small image 
regions) because local motion estimators usually have a constant luminance 

constraint. This includes pel-recursive methods and all motion estimators that make 

use of block matching in one stage or another [Tek95]. Even if motion can be well 

compensated, a strategy is required for correcting flicker in previously occluded 

regions that have become uncovered. 

For these reasons, the strategy presented here for estimating the intensity- 

flicker parameters in temporally nonstationary scenes is based on local motion 

detection. First, a pair of frames are registered to compensate for global motion 

(Section 3.3.1). Then the intensity-flicker parameters are estimated as outlined in 
Section 3.2.2. With these parameters, the remaining local motions is detected 
(Section 3.3.2). Finally, the missing model parameters in the temporally 

nonstationary regions are spatially interpolated from surrounding regions without 

local motion (Section 3.3.3). 

3.3.1 Estimating global motion with phase correlation 

In sequences with camera pan, applying global motion compensation helps satisfy 

the requirement of stationarity. Let the global displacement vector be (qi ,  qj)T" 
Global motion compensation can be applied to the model parameter estimation by 

replacing (3.17) and (3.18) with: 

f lm,n(t) = E[z(i,j,t)]-am,n(t) E[y( i -qi , j -q j , t -1)]  (3.20) 

[ var[z( i, j, !)]_7 v__ar[p( i, j, t ) ] 
6m'n(t) = ~ var[~(i_qi , j_qj , t_l)  ] (3.21) 
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Global motion compensation is only useful if the global motion vectors (one vector 

to each frame) are accurate: i.e., if the global motion estimator is robust against 

intensity flicker. A global motion estimator that meets this requirement is one that is 

based on the phase correlation method applied to high-pass-filtered versions of the 

images [Pea77], [Tek95]. 

The phase correlation method estimates motion by measuring phase shifts in 

the Fourier domain. This method is relatively insensitive to fluctuations in image 

intensity because it uses Fourier coefficients that are normalized by their magnitude. 

The direction of changes in intensity over edges and textured regions is preserved in 

the presence of intensity flicker because the amount of intensity flicker was assumed 

to vary smoothly in a spatial sense. This means that the phases of the higher- 

frequency components will not be affected by intensity flicker. However, the local 

mean intensities can vary considerably from frame to frame, and this gives rise to 

random variations in the phase of the low-frequency components. These random 

variations are disturbing factors in the motion estimation process that can be 

avoided by removing the low-pass frequency components from the input images. 

The phase correlation technique estimates phase shifts in the Fourier domain as 

follows: 

Zt(Wl~W2) Z;_l(Wl,W2) 
Ct,t-l(WltW2)=llZt(Wl,W2)Z~_l(Wl,W2)[I (3.22) 

where Zt(Wl,W2)stands for the 2D Fourier transform of z(i, j, t), and * denotes the 

complex conjugate. If z(i, j, t) and z(i, j, t - 1) are spatially shifted, but otherwise 

identical images, the inverse transform of (3.22) produces a delta pulse in the 2D 

correlation function. Its location yields the global displacement vector (qi, qj ) T. 

3.3.2 Detecting the remaining local motion 

It is important to detect the remaining local motion after compensating for global 

motion. Local motion causes changes in local image statistics that are not due to 

intensity flicker. This leads to incorrect estimates of a(i) and ~(i); to visible artifacts 

in the corrected image sequence. First, two obvious approaches to motion detection 

are discussed. It is concluded that these are not appropriate. Next, a robust 

alternative strategy is described. 

Two methods for detecting local motion are (1) detecting large local frame 

differences between the corrected current and previous frames and (2) comparing 

the estimated intensity-flicker parameters 6m,n(t ) and flm,n(t) to threshold values 
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and detect motion when these thresholds are exceeded. These methods have 

disadvantages that limit their usefulness. The first method is very sensitive to film 

unsteadiness; slight movements of textured areas and edges lead to large frame 

differences and thus to "false" detections of motion. The second method requires 

threshold values that detect motion accurately without generating too many false 

alarms. Good thresholds are difficult to find because they depend on the amount of 

intensity flicker and the amount of local motion in the sequence. 

Figure 3.3: Example of part of a frame subdivided in blocks f2m, n that overlap each other by 

one pixel. 

To overcome problems resulting from small motion and hard thresholds, a 

robust motion-detection algorithm that relies on the current frame only is developed 

here. The underlying assumption of the method is that motion should only be 

detected if visible artifacts would otherwise be introduced. First, the observed image 

is subdivided into blocks f2m, n that overlap their neighbors both horizontally and 

vertically (Figure 3.3). The overlapping boundary regions form sets of reference 

intensities. The intensity-flicker parameters are estimated for each block by (3.20) 

and (3.21). These parameters are used with (3.2), (3.4), and (3.5) for correcting the 

intensities in the boundary regions. Then, for each pair of overlapping blocks, the 

common pixels that are assigned significantly different values are counted: 

nq,r = Z boolean[ lyq(i)-- yr(i ) I> Ta] (3.23) 
ie Sq,r 
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Here q and r indicate two adjacent image blocks, Sq, r indicates the set of boundary 

pixels, T a is a threshold above which pixels are considered to be significantly 

different and boolean[.] is a boolean function that is one if its argument is true and is 

zero otherwise. Motion is flagged in both regions q and r if too many pixels are 

significantly different, that is, if: 

rlq, r > Dma x (3.24) 

where Dm~ x is a constant. 

3.3.3 Interpolating missing parameters 

Due to noise and motion, the estimated intensity-flicker parameters are unreliable in 

some cases. These parameters are referred to as missing. The other parameters are 

referred to as known. The goal is to find estimates of the missing parameters by 

means of interpolation. It is also necessary to smooth the known parameters to avoid 

sudden changes in local intensity in the corrected sequence. The interpolation and 

smoothing functions should meet the following requirements. First, the system of 

intensity-flicker correction should switch itself off when the correctness of the 

interpolated values is less certain. This means that the interpolator should 

incorporate biases for c~ m,,(t) and ~m,,(t) towards unity and zero, respectively, that 

grow as the smallest distance to a region with known parameters becomes larger. 

Second, the reliability of the known parameters should be taken into account. 

Three methods that meet these requirements are investigated. Each of these 

methods uses the Wm,n(t ) determined by the measure of reliability as defined in 

(3.19). The interpolation and smoothing algorithms are described for the case of the 

multiplicative parameters 6 ~,n (t). The procedures for the /~m,n(t) are similar and are 

not described here. 

Interpolation by dilation. With each iteration of this iterative dilation approach, 

regions of known parameters grow at the boundaries of regions with missing 

parameters. Consider the matrix containing the known 6 ,,, (t) corresponding to the 

regions f2m, . for a frame t. Figure 3.4a graphically depicts such a matrix that can be 

divided into two areas: the black region indicates the matrix entries for which the 

multiplicative parameters are known, and the white region indicates the missing 

entries. Each missing 6 , , ,(t) and its corresponding weight Wm,n(t ) at  the boundary 

of the two regions is interpolated by: 
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~Wq,r(t) aq,r(t) 
6 m,,(t)= {q,r}~S .... 

~ K , r ( t )  
{q,r}eS .... 

pk+l - -p  (3.25) 

ZWq,r(t) 
Wm,,(t) = {q'r}~Sm, n 

ISm,,I 
(3.26) 

where S i n ,  n indicates the set of known parameters adjacent to the missing parameter 
being interpolated, p (with 0 _< p _< 1) determines the trade-off between the 
interpolated value and the bias value as a function of iteration number k. After the 

first iteration, Figure 3.4b results. Repeating this process assigns estimates for 

6 m,n (t) to all missing parameters (Figure 3.4c, d). 

Figure 3.4: Interpolation process using dilation: (a) initial situation, (b), (c), (d) results after 
1, 2 and 3 iterations. 

. 

Next, a postprocessing step smooths all the matrix entries with a 5x5 gaussian 

kernel. Figure 3.5(a,b) shows respectively, an original set of known and missing 

parameters and the interpolated, smoothed parameters. 

Interpolation by successive overrelaxation (SOR). SOR is a well-known iterative 

method based on repeated low-pass filtering [Pre92]. Unlike the dilation technique, 

this method interpolates the missing parameters and smooths the known parameters 

simultaneously. SOR starts out with an initial approximation 60 m,n(t). At each 
iteration k, the new solution 6k+1( t)m,n is computed for all (m, n) by computing a 

_ k + l  residual term G,. and subtracting this from the current solution: 
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r k m * l  = W m n ( t ) ( a  k ( t ) - a  ~ (t))+ ,n,t , m,n m,n 

X (4a kin,, (t) k k k --0r m_l,n (t) -- Ot m+l,n (t) -- Ot ~,n_l ( t) -- Ot m,n+l ( t)) 
(3.27) 

_ k + l  

k+l km,n(t) - -  Y m , n , ,  a,,n (t) = a - w (3.28) 
W m , n ( t ) +  4,~ 

m 

Here Win, ~ (t) are the weights, A, determines the smoothness of the solution, and w is 

the so-called overrelaxation parameter that determines the rate of convergence. The 

& 0 (t) are initialized to the known multiplicative intensity-flicker parameters at (m, 
re ,F /  

n), and to the bias value for the missing parameters. 

The first term in (3.27) weighs the difference between the current solution and 

the original estimate, and the second term measures the smoothness. The solution is 

updated in (3.28) so that where the weights Win, n (t) are great, the original estimates 

aOm,n(t ) are emphasized. In contrast, when the measurements are deemed less 

reliable, i.e., when A,>> Win, ~ (t), emphasis is laid on achieving a smooth solution. This 

allows the generation of complete parameter fields where the known parameters, 

depending on their accuracy, are weighted and smoothed. Figure 3.5c shows results 

of this method. 

Interpolation by 2D polynomial fitting. By fitting a 2D polynomial P(m,  n, t) to the 

known parameters, the missing parameters can be interpolated and the known 

parameters are smoothed simultaneously. The 2D polynomial is given by [Hay67]" 

De Dr 

P ( m , n , t )  = ~ ~ Ck,,,tmkn I (3.29) 
k = 0  I = 0  

where D r and D c determine the degree of the polynomial surface and the 

coefficients c k,l, t shape the function. Polynomial fitting entails finding the 

coefficients ck,~, t so that the weighted mean squared difference of P(m,  n, t) and 

& m,n (t) is minimized for a given t: 

m i n ( ~ ~ W m n ( t ) ( P ( m , n , t )  - & (t)) 2 ) 
Ck,l,t ~m~,n , m,n 

(3.30) 

The complexity of solving (3.30) is typical of a weighted least squares problem that 

requires computation of a pseudo inverse of a square matrix [Str88]. The number of 

columns (and rows) depends on the order of the polynomial and is determined by 

the number of coefficients c k,t, t at an instant t. 
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Figure 3.5: (a) Set of original measurements with variable accuracy; the missing measure- 
ments have been set to 1, (b) parameters interpolated and smoothed by repeated dilation, (c) 
parameters interpolated and smoothed by SOR (250 iterations), (d) parameters interpolated 
and smoothed by polynomial fitting ( D r = D c = 2). Note the differences in scale. 

Biases are applied by setting the missing parameters to their bias value; the 

weights corresponding to these parameters are set to a fraction (e.g., one tenth) of 

the largest weight found for the known parameters. This will have little effect on the 

shape of the polynomial surface if only a few parameters are missing locally. Where 

many parameters are missing, the combined influence of the biased parameters will 

shape the polynomial locally towards the bias value. 

The range of the results obtained by the dilation and SOR interpolation 

methods is limited to the range of the data. This is not the case for 2D polynomial 

fitting. The higher-order terms cause spurious oscillations if the order of the 

polynomial is taken too high, which leads to incorrect values for the interpolated 
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and smoothed parameters. In practice, taking D r = D c = 2 gives the best results. 
Figure 3.5d shows a result of this interpolation and smoothing method. 

IN z(i, j, t) 

LPF Compute 
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Figure 3.6: Global structure of the intensity-flicker correction system. 

3.4 Practical issues 

Figure 3.6 shows the overall structure of the system of intensity-flicker correction. 
Some operations have been added in this figure that have not yet been mentioned. 
These operations improve the system's behavior. First, the current input and the 
previous system output (with global motion compensation) are low-pass filtered 
with a 5x5 gaussian kernel. Prefiltering suppresses the influence of high-frequency 
noise and the effects of small motion. Then, local means /a and variances (3 -2 a r e  

computed to be used for estimating the intensity-flicker parameters. The estimated 

model parameters and the current input are used to detect local motions. Next, the 

missing parameters are interpolated and the known parameters are smoothed. Bilin- 
ear interpolation is used for upsampling the estimated parameters to full spatial 
resolution. The latter avoids the introduction of blocking artifacts in the correction 

stage that follows. 
As mentioned in Section 3.2.3, the fact that a recursive structure is used for the 

overall system of intensity-flicker correction introduces the possibility of error 
propagation. Errors certainly do occur, for example, as a result of the need to 
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approximate the expectation operator and from model mismatches. Therefore, it is 

useful to bias corrected intensities towards the contents of the current frame to avoid 

possible drift due to error accumulation. For this purpose, (3.2) is replaced by: 

~(i)= a: (a(i)z(i)+ b(i))+ ( l -K)z( i )  (3.31) 

where ~c is the forgetting factor. If ~c =1, the system relies completely on the frame 

corrected previously, and it tries to achieve the maximal reduction in intensity 

flicker. If Jc =0, we find that the system is switched off. A practical value for ~c is 

0.85. 

3.5 Experiments and results 

This section applies the system of intensity-flicker correction both to sequences 

containing artificially added intensity flicker and to sequences with real (non- 

synthetic) intensity flicker. This first set of experiments takes place in a controlled 

environment and evaluates the performance of the correction system under extreme 

conditions. The second set of experiments verifies the practical effectiveness of the 

system and forms a verification of the underlying assumptions of the approach 

presented in this chapter. The same settings for the system of intensity-flicker 

correction were used for all experiments to demonstrate the robustness of the 

approach (see Table 3.1). 

Image Blocks 

Size: 30x20 
Overlap: I pixel 

Motion 
Detection 

G = 5  

Dma x = 5 

2D Polynomial 

D r -- D e =  2 

Successive Miscellaneous 
OverRelaxation 

w = 1 ~c = 0.85 
Z = 5  var[q(x,y,t)]=5 

T n = 25 

Table 3.1" Parameter settings of intensity-flicker correction system for the experiments. 

Some thought should be given to what criteria are to be used to determine the 

effectiveness of the proposed algorithm. If the algorithm functions well and the 

image contents does not change significantly, then the equalized frame means and 

variances should be similar from frame to frame. Indeed, the converse need not be 

true, but visual inspection helps to verify the results. Therefore, the temporal 

smoothness of frame means and frame variances measures the effectiveness of 

intensity-flicker correction system. 
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A sliding window approach is adopted here: the variance in frame mean and 

frame variance is computed locally over 24 frames (which corresponds to 1 second 

of film) and the estimated local variances are averaged over the whole sequence. 

There is a reason for using this sliding window. If the variation in frame means and 

variances are computed over long sequences, there are two components that 

determine the result: (1) variations due to flicker, and (2) variations due to changes 

in scene content. We are only interested in the first component which can be isolated 

by computing the variations over short segments. 

3.5.1 Experiments on artificial intensity flicker 

For the first set of experiments the Mobile sequence (40 frames), containing moving 

objects and camera panning (0.8 pixels/frame), is used. Artificial intensity flicker 

was added to this sequence according to (3.1). The intensity-flicker parameters were 

artificially created from 2D polynomials, defined by (3.29), with degree D r = D c = 2. 

The coefficients Ck,t, t are drawn from the normal distribution N(O, 0.1), and from N(1, 

0.1) for c0,0, t, to generate the a(i) and from N(O, 10) to generate the fl(i). Visually 

speaking, this leads to a severe amount of intensity flicker (Figure 3.7). 

Degraded 
Dilation 

SOR 
2D Polynomial 

MobCal 
Mean Var. 

19.8 501 

Soldier 
Mean Var. 

2.7 44 

Mine 
Mean Var. 

2.3 61 

Charlie 
Mean Var. 

8.5 435 
5.5 110 0.8 29 1.0 37 5.6 319 
5.2 86 0.8 31 1.0 40 4.9 235 
5.8 105 1.2 41 0.9 27 6.3 333 

Table 3.2: Standard deviation of averaged frame mean and frame variance of degraded and 
sequences corrected by various interpolators in the intensity flicker correction system. 

The degraded sequence is corrected three times, and each time a different 

interpolation and smoothing algorithm is used, as described in Section3.3.3. 

Figure 3.7 shows some corrected frames. Figure3.9 plots the frame means and the 

frame variances of original, degraded and corrected sequences. It can be seen from 

these graphs that the variations in frame mean and variance have been strongly 

reduced. Visual inspection confirms that the amount of intensity flicker has been 

reduced significantly. However, residues of local intensity flicker are clearly visible 

when the dilation interpolation method is used. The SOR interpolation method gives 

the best visual results. 
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Figure 3.7: Top row: original frames 16, 17, and 18 of the MobCal sequence. Central row: 
degraded frames. Bottom row: frames corrected by the intensity-flicker correction system 
with successive overrelaxation. 

Table 3.2 lists the standard deviation of the frame means and frame variances 

computed over short segments by the sliding window approach and averaged as 

mentioned before. This table shows that the artificial intensity flicker severely 

degraded the sequence. It also shows that the intensity-flicker correction system 

strongly reduces fluctuations in frame mean and frame variance. The SOR 

interpolation method gives the best numerical results. 

3.5.2 Experiments on naturally degraded film sequences 

Three sequences from film archives were used for the second set of experiments. 

Table 3.2 lists the results. The first sequence, called Soldier, is 226 frames long. It 
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shows a soldier entering the scene through a tunnel. There is some camera 

unsteadiness during the first 120 frames, then the camera pans to the right and up. 

There is film-grain noise and a considerable amount of intensity flicker in this 

sequence. The total noise variance was estimated to be 8.9 by the method described 

in [Mar95]. Figure 3.8 shows three frames from this sequence, original and corrected. 

Figure 3.10 indicates that the fluctuation in frame means and variances have signifi- 

cantly been reduced by the intensity-flicker correction system. Visual inspection 

shows that all three methods significantly reduce the intensity flicker without 

introducing visible new artifacts. The best visual results are obtained with the SOR 

interpolation method. 

Figure 3.8: Top: frames 13, 14, and 15 of the naturally degraded Soldier sequence. Bottom: 
frames corrected by the intensity-flicker correction system using the 2D polynomial 
interpolation method. 

The second naturally degraded sequence, called Mine, consists of 404 frames. 

This sequence depicts people in a mine. It contains camera pan, some zoom, and it is 

quite noisy (estimated noise variance 30.7). The intensity flicker is not as severe as in 

the Soldier sequence. Figure 3.11 shows the frame means and variances of the 
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degraded and the corrected sequences. Visually, the results obtained from the 

dilation interpolation method show some flickering patterns. The 2D polynomial 

interpolation leaves some flicker near the edges of the picture. The SOR method 

shows good results. 

The third sequence is a clip of 48 frames from a Charlie Chaplin film, called 

Charlie. Some frames have so much intensity flicker that it looks as if the film has 

been overexposed and the texture is lost completely in some regions. Besides 

intensity flicker, this sequence is characterized by typical artifacts occurring in old 

films, such as blotches, scratches, and noise (estimated variance 5.0). Figure 3.12 

shows that the fluctuations in frame means and variances have diminished. Again, 

from a subjective point of view, the SOR interpolation technique gives the best 

result, but a slight loss of contrast is noted in the corrected sequence. 

Table 3.2 indicates that the intensity-flicker correction system significantly 

reduces the fluctuations in frame mean and frame variance of all the test sequences. 

The SOR interpolation method gives the best numerical results: in all cases it gives 

the largest reduction in variation of the mean image intensity and it gives a 

reduction in variation of image variance that is similar or better than that obtained 

by the other interpolation methods. 

3.6 Conclusions 

This chapter introduced a novel method for removing intensity flicker from image 

sequences that significantly reduces the temporal fluctuations in local image mean 

and variance. The system is based on simple block-based operations and motion 

detection. Therefore the complexity of the system is limited. This is advantageous for 

real-time implementation in hardware. 

Improvements to the system are certainly conceivable. For instance, effort 

could be put into reducing the sizes of the image regions for which estimated flicker 

parameters are discarded due to local motion. In the current scheme, data in whole 

image blocks are discarded even though large parts of those blocks may not have 

been affected by motion. Alternatively, instead of detecting motion, an approach 

that incorporates robust motion estimation into the flicker correction system could 

be developed. This would result in a system for simultaneous motion and parameter 

estimation and intensity-flicker correction. 
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Figure 3.10: Frame means (a) and variances (b) of the naturally degraded Soldier sequence 
and sequences corrected by the system for intensity-flicker correction with various 
interpolation and smoothing methods. 
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Chapter 4 

Blotch detection and 
correction 

4.1 System for blotch detection and correction 

Blotches are artifacts typically related to film. The loss of gelatin and dirt particles 

covering the film cause blotches. The original intensities corrupted by blotches are 

lost and will be referred to as missing data. Correcting blotches entails detecting the 

blotches and interpolating the missing data from data that surround the corrupted 

image region. The use of temporal information often improves the quality of the 

results produced by the interpolation process. This means that reference data from 

which the missing data are interpolated, need to be extracted from frames 

preceeding and/or  following the frame currently being restored. Motion estimation 
and compensation is required to obtain optimal interpolation results. 

The methods for blotch detection presented in this chapter assume the 
degradation model from (2.2), either implicitly or explicitly [Kok98]: 

z(i) = (1-d(i)) y(i)+ d(i) c(i) (4.1) 

where z(i) and y(i) are the observed and the original (unimpaired) data, respectively. 

The binary blotch detection mask d(i) indicates whether each pixel has been 

corrupted: d(i)~ {0, 1}. The values at the corrupted sites are given by c(i), with c(i) 
y(i). One property of blotches is the smooth variation in intensity values at the 

corrupted sites; the variance c(i) within a blotch is small. Blotches seldom appear at 

the same location in a pair of consecutive frames. Therefore the binary mask d(i) will 

51 
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seldom be set to one at two spatially co-sited locations for a pair of consecutive 

frames. However, there is spatial coherence within a blotch; if a pixel is blotched, it is 

likely that some of its neighbors are corrupted as well, i.e., if d(i) = 1 it is likely that 

some other d(i +l,j +1, t) = 1 also. 

The following sections use various models for the original, uncorrupted image 

data. The common element is that these models do not allow large temporal 

discontinuities in image intensity along the motion trajectories. This constraint 

results from the fact that c(i) ~ y(i) in the degradation models, which implies that 

blotches introduce temporal discontinuities in image intensity. Temporal 

discontinuities in image intensity are also caused by moving objects that cover and 

uncover the background. There is a difference between the effects of blotches and 

the effects of motions. Motion tends to cause temporal discontinuities in either the 

forward or the backward temporal direction, but not in both directions at the same 

time. Blotches cause discontinuities simultaneously in both temporal directions. 

The estimated motion vectors are unreliable at image locations corrupted by 

blotches because they are determined with incorrect, corrupted data. Models for 

motion vector repair and for blotch correction assume a relationship between the 

original image data at the corrupted sites and the data surrounding those sites 

(temporally and/or  spatially). For example, for motion vector repair, this 

relationship can be smoothness of the motion vector field. For blotch correction, this 

relationship can be defined by autoregressive (AR) image models. 
Figure 4.1 illustrates two possible approaches for detecting and correcting 

blotches. The first approach computes the locations of the blotches, the motion 

vectors, and the corrected intensities simultaneously within a single bayesian 

framework. Maximum a posteriori (MAP) estimates for the true image intensities, 

~(z), the motion vectors v(i), the blotch detection mask d(i) and the intensities of the 

blotches c(i) are computed from the observed images z(i): 

arg 
~(i),v(i),d(i),c(i) 

max P[~(i), v(i),d(i),c(i)! z(i)] (4.2) 

This is an elegant framework because it defines an optimal solution that takes 

dependencies between the various parameters into account. It was applied 

successfully in [Kok98]. A disadvantage of this method, besides its great 

computational complexity, is the difficulty of determining what influence the 

individual assumptions for the likelihood functions and priors have on the final 

outcome of the overall system. Hence, it is difficult to determine whether the 

assumed priors and likelihood functions give optimal results. 
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Figure 4.1: (a) Simultaneous approach for blotch detection and correction vs. (b) modular 
approach. 

The second approach towards resolving blotches is a modular approach, as shown 
in Figure 4.1b. The motion estimate module estimates motion between consecutive 
frames in the forward and backward directions (from t to t + 1 and from t to t -  1 
respectively). On the basis of motion estimates and the incoming degraded data, the 

blotch detection module detects blotches. The motion vector repair module corrects 

faulty motion vectors. Finally, the blotch correction module corrects blotches using the 

corrected motion vectors, the binary blotch detection mask, and the degraded image 

sequence. 

This chapter concentrates on the modular approach for blotch detection and 

correction. This approach has the advantage that the modules can be designed and 

evaluated independently of each other. Furthermore, the modular approach has the 

advantage of being computationally much less demanding than the simultaneous 

bayesian approach. 

This chapter is structured as follows. Section 4.2 reviews existing techniques for 

blotch detection, motion vector repair and blotch correction. Section 4.3 introduces a 
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new technique for improving the detection results by postprocessing blotch 

detection masks. The postprocessing operations significantly reduce the number of 

false alarms that are inherent to any detection problem. Section 4.4 shows that 

increasing the temporal aperture of a detector gives significant gains in some cases. 

Section 4.5 presents a new, fast model-based method for excellent quality of missing 

data interpolation. Section 4.6 evaluates the performance of the complete blotch 

removal system and concludes this chapter. 

4.2 Overview of existing techniques 

4.2.1 Blotch detection techniques 

The parameter estimation problem for the degradation model consists of 

determining the binary blotch detection mask d(i) for each frame. If required, c(i) can 

easily be found once d(i) is known. The blotch detectors presented in this section all 

apply the same principle: they check whether the observed data z(i) fit an image 

model for y(i). If this is not the case, the image is assumed to be corrupted and a 

blotch is flagged. 

SDIa detector. The spike detection index-a (SDIa) is a simple heuristic method for 

detecting temporal discontinuities in image intensity [Kok98], [Kok95a]. It compares 

each pixel intensity of the current frame z(i) to the corresponding intensities in the 

forward and backward temporal directions by computing the minimum squared 

difference SDIa(i): 

SDIa(i) = min[(z(i)- Zmc(i,t + 1))2,  ( z ( i )  - Zmc(i,t- 1)) 2 ] (4.3) 

Large values for SDIa(i) indicate discontinuities in image intensity in both the 

forward and backward temporal directions. A blotch is detected if SDIa(i) exceeds a 

threshold 7"1: 

[1 if SDIa(i) > T~ with 7"1>0 (4.4) dsDia (i) = \o otherwise 

where T 1 is a threshold selected by the user. If a small value is chosen for this 

threshold, the detector is very sensitive and will detect a large percentage of the 

blotches corrupting an image. However, due to the great sensitivity, many false 

alarms will result as well. Increasing the value of 7"1 reduces the sensitivity; it 

reduces both the number of false alarms and the number of correct detections. 
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Figure 4.2: (a) Selection of reference pixels P k from motion compensated previous and next 

frames, (b) computation of ROD(i,l) based on pixels Pk ordered by rank: r m . 

A variation on the SDIa detector is the SDIp detector. SDIp has an additional 

constraint that requires the signs of z ( i ) -Zmc( i , t+ l  ) and z(i)--Zmc(i,t--1 ) to be 

identical before a blotch can be detected. This constraint reduces the number  of false 

alarms resulting from erroneous motion estimates. In the case of correct motion 

estimation, the reference pixels in the previous and next frames are assumed to be 

identical, and therefore the intensity differences with the corrupted data in the 

current frame should have the same polarity. Note that this is not necessarily true in 

the case of occlusion and noisy data. 

ROD detector. The rank-ordered differences (ROD) detector is a heuristic detector 

based on order statistics (OS) [Nad97]. Let pkwith k=l, 2, ..., 6 be a set of reference 

pixels relative to a pixel from z(i). These reference pixels are taken from the motion 

compensated previous and next frames at locations spatially co-sited with pixel z(i) 

and its two closest vertical neighbors (see Figure 4.2a). Let r m be the reference pixels 

Pk ordered by rank with r 1 </'2 </'3 G/'4 G r 5 _</'6. The rank order mean  rme~n and rank- 

order differences ROD(i,I) with l = 1, 2, 3 are defined by (see Figure 4.2b): 

/'3 +/'4 
/ ' m e a n  = ~ (4.5) 

2 

I r t - z(i) if z(i) < rmean with l = 1, 2, 3. (4.6) 
ROD(i,1) = \ z ( i ) -  r7_ 1 if z(i) > rmean 
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A blotch is detected if at least one of the rank-order differences exceeds a specific 

threshold T~. The T~ are set by the user and determine the detector's sensitivity: 

/1  if  R O D ( i , I ) > T  I w i t h 0 < T  I < T  2<T 3 and l=1 ,2 ,3 .  drop(i) (4.7) \0 else - - - 

MRF detector. In [Kok95a] an a posteriori probability for a binary occlusion map, 

given the current frame and a motion-compensated reference frame, is defined. The 

occlusion map indicates whether objects in the current frame are also visible in a 

reference frame. The probability mass funct ion (pmf) for the a posteriori probability of 
the occlusion map is given by: 

P[dk(i ) Iz(i),Zmc(i,t + k)]oc P[z(i) Idk(i),zmc(i,t + k)l P[dk(i)] (4.8) 

where the symbol oc means is proportional to, and k indicates which reference frame is 
used. Maximizing (4.8) gives the MAP estimate for an occlusion mask. 

Blotches are detected where occlusions are detected both in forward and 

backward temporal directions; k = 1 and k = -1: 

dm~(i) =/10 i f ( d l ( i ' l ) = l ) A ( d - l ( i ) = l )  otherwise (4.9) 

The likelihood function in (4.8) is defined by: 

P[z(i) l d k (i), Zinc (i, t + k)] oc exp(-~--" [(1- d k (i)) ( z ( i ) -  Zinc (i, t + k))21/ 
". ieS 

(4.10) 

where S indicates the set of all spatial locations within a frame. This likelihood 

function indicates that, in the absence of occlusion, d k (i)= 0, the squared difference 

between the current pixel i and the corresponding pixel from the motion- 

compensated reference frame is likely to be small. The prior in (4.8) is given by: 

P[d k (i)] oc exp(-  z []31 f ( d  k (i))+ [J2 dk  (•)]/ with ]31,]32>0 
". ieS 

(4.11) 

where the function f(dk(i))  counts the number of neighbors of dk(i) that are 

different from dk(i ) . The  term f l l f (dk( i ) )  in (4.11) constrains the occlusion map to be 

consistent locally. If an occlusion mask is locally inconsistent, f l l f (dk( i ) )  is large and 
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the probability of P[dk(i)] is made smaller. The term ~2dk(r) in (4.11) is a penalty 

term that suggests that it is unlikely that many pixels are occluded. The user controls 

the strength of the self-organization and the sensitivity of the detector by selecting 

values for/J1 and ]32- 

Combining (4.8), (4.10), and (4.11) gives: 

P[d k (i)[z(i),Zmc (i,t+ k)] oc exp(-  z [(1- d k (i))(z(i)-zm~ (i,t+ k))2+ ]3 lf(dk (i))+ ~2dk (i)]) 
\ i~S 

(4.12) 

Equation (4.12) can be maximized with simulated annealing (SA) [Gem84]. It is 

maximized once for k = 1 and once for k = -1. The resulting occlusion masks are 

combined by (4.9) to give the binary blotch detection mask dMRF(i ) . 

AR detector. The assumptions that underlie the AR detector are that uncorrupted 

images follow AR models and that the images can be predicted well from the motion 

compensated preceeding and/or  following frames [Kok95a]. If the motion- 

compensated frame at t + k is used as a reference, the observed current frame z(i) is 
given by: 

z(i) = ~ alZmc(i + ql,t + k)+ e(i,t + k)= ~(i)+ e(i,t + k) 
I=1 

(4.13) 

where the a I are the n AR model coefficients estimated from the observed data (see, 

for example, [The92]), qk give the relative positions of the reference pixels with 
respect to the current pixel and e(i,t + k) denotes the prediction error. 

In the absence of blotches and occlusion, the prediction errors e(i , t+k) are 

small. A blotch is detected if the squared prediction error exceeds a user defined 
threshold 7"1 in both the forward (k = 1) and backward (k = -1) directions: 

/1 /f (e 2(i,t+ 1) > T1)^ (e 2(i , t -  1) >/'1) with T 1 > 0 dAR (i) (4.14) \0 otherwise 

Evaluation. To compare the effectiveness of the detectors described in this section, 

Figure 4.3 plots their receiver operator characteristics (ROCs) for four test sequences. 

An ROC plots the false alarm rate (PL) versus the correct detection rate (P D) of a 

detector. Ideally, the ratio of correct detections to false alarms is large. For the SDIa, 

ROD, and AR detectors, the curves were obtained by letting T 1 vary so that 

I < T  1<35 (for the ROD detector, T 2=39 and T 3=55 were used). For the AR 
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detec tor ,  the  i m a g e  wa s  s u b d i v i d e d  into b locks  of 28x28 pixels,  and  a set  of AR 

coefficients was  c o m p u t e d  for each block. The s u p p o r t  cons is ted  of five pixels  as in 

[Kok95a] (see F igure  4.4). For the  MRF detec tor ,  3 </}~ < 8 and  9 _< [12 < 1369 w e r e  

used .  
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F igure  4.3: Receiver operator characteristics for various blotch detectors for (a) Western 
sequence, (b) MobCal sequence, (c) Manege sequence, (d) Tunnel sequence. 

The de tec to r s  w e r e  app l i ed  to four  test  sequences ,  n a m e l y  Western, w h i c h  w a s  

also u sed  in [Kok95a], Mobcal, Manege, and  Tunnel. To avo id  p r o b l e m s  caused  by  the  

c o m b i n a t i o n  of in ter lac ing  and  fast mo t ion ,  on ly  the  o d d  fields f rom the  last two  

sequences  w e r e  u s e d  1. 

~This is reasonable because blotches are artifacts that are typically related to film with no interlacing. 
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All sequences were degraded by adding artificial blotches. Each artificial blotch 

had a fixed gray value that was drawn uniformly between 16 and 240, which is here 

the allowed range for pixel intensities. The Western sequence originates from film 

and therefore contains granular noise. The MobCal, Manege, and Tunnel sequences, 

which were recorded by modern cameras, have little noise. To let them resemble real 

film data more closely, white gaussian noise with variance 10 was added after the 

blotches were added. Therefore, for these sequences, unlike for the Western 
sequence, the blotches are no longer completely smooth. Motion was estimated by 

an hierarchical motion estimator (Appendix A). 

Figure 4.3 shows that the performance of the detectors strongly depends on the 

sensitivity to which they are set and on the sequences themselves. The best detection 

results are obtained for the Western sequence, which has relatively low local 

contrasts. The poorest results are obtained for the Manege, sequence which contains 

fast motion and sharp local contrasts. 

O 
O O 0  

O 

Figure 4.4 Support (circles)from reference frame at t+k used for AR detector. The center of 
the support is aligned with pixel being processed in the current frame t 

The experiments show that no detector consistently outperforms any other. In 

some instances, the AR detector shows the best performance; in other instances, it 

shows the poorest performance. It can been seen from the ROCs that greater 

complexity does not necessarily lead to better results. The SDIa detector requires 

only a fraction of the number of computations required by the MRF detector, and 

both give a similar performance for all sequences. The ROD detector performs well 

for most sequences. However, it breaks down in the Tunnel sequence. This is because 

many false alarms are generated in this sequence as a result of the fixed settings 

chosen forT 2 and T 3 . 
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4.2.2 Techniques for motion vector repair 

Estimated motion vectors are less reliable when an image is blotched. Hence, the 

reference data extracted from the motion-compensated reference frames and used 

for interpolating the missing data may be erroneous. Motion vector repair can 

improve the likelihood of obtaining correct reference data. This repair has been 

investigated in the context of error concealment in (compressed) digital video 

transmission where each 8x8 or 16x16 image block gets one motion vector assigned. 

Figure 4.5: Three frames from the Manege sequence with a single blotch (black) in the cen- 
tral frame and a bounding box. The regions within the dashed boxes in the outermost frames 
indicate the search region for the block matcher. 

Two basic approaches to motion vector repair are found in literature. The first 

approach re-estimates the unreliable motion vectors by interpolating them from the 

surrounding reliable motion vectors. In [Has92], [Nar93], median filtering and 

averaging are proposed for this purpose. The second approach re-estimates the 

motion vector on basis of the image intensities. The methods in [Che97], [Lam93] 

exploit the correlation between pixels along the boundaries between adjacent image 

blocks. An erroneous motion vector is replaced by a new vector so that the mean 

squared difference in image intensity over the boundaries with the neighboring 

blocks is minimized. The approach in [Kok98], which was developed in the context 

of blotch correction, re-estimates the motion of corrupted image blocks. The motion 

estimation process discards the corrupted pixels and constrains the smoothness of 

the motion vectors. 

This section gives an indication of how well either approach can be expected to 

perform. Two algorithms are evaluated for this purpose. The first algorithm 

interpolates the unreliable motion estimates by applying the dilation interpolation 

technique described in Chapter 3 to the horizontal and vertical components of the 

motion vector fields independently. All weights Win, n are set to one, and no biases 
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are applied. 
The second algorith m re-estimates motion vectors on the basis of the observed 

image intensities, as illustrated by Figure 4.5. First, a bounding box is computed 

around each blotch with an additional (small) horizontal and vertical margin. 

Motion is estimated between the region contained by the box and the previous/next 

frames by block matching. To avoid biases resulting from blotched data, the block 

matcher discards the corrupted pixels in the current frame and in the reference 

frames. To limit the computational effort, the search range is limited to +20 pixels for 

both horizontal and vertical directions. 

Additionally, a third algorithm is evaluated. This algorithm simply replaces the 

motion vectors at blotched sites with vectors that indicate zero motion. Large parts of 

images tend to be temporally stationary and, therefore, assuming no motion is 

correct in a large number of cases. 

The effectiveness of the three methods is evaluated by applying the scheme in 

Figure 4.6 to the same four test sequences used in the previous section. In this 

scheme, the motion vectors are estimated between pairs of consecutive frames that 

are corrupted by artificial blotches. Next, the motion vectors are repaired at locations 

indicated by the blotch detection masks. The blotch masks are made available to the 

motion vector repair block in Figure 4.6, though this is not shown explicitly in the 

figure. Then, one of the original, uncorrupted input frames is compensated for 

motion, and the MSE with the other original, uncorrupted input frame is computed. 

The MSE is computed only over the locations indicated by the blotch mask. If the 

motion vectors are accurate, the MSE will be small. 

Frame 1 

Add 
Blotches 

Add 
Blotches 

Frame 2 

Estimate 
Motion 

Motion Vector 
Repair 

Motion 
Vectors 

Compensate 
Motion 

MSE I 

Figure 4.6: Scheme for measuring the effectiveness of motion vector repair. 

Out 
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Two sets of experiments are carried out. The first set uses the true locations of the 

pixels corrupted by blotches. The second set uses detection masks resulting from the 

SDIa detector set to a detection rate of approximately 70%. The first set of 

experiments shows the improvements that are obtained under ideal circumstances. 

The second set of experiments shows the improvements obtained under realistic 

circumstances where false alarms influence the results. In this second set of 

experiments, 30% of the blotched pixels are not detected. These are the so-called 

misses. Motion vector repair does not influence the motion vectors assigned to misses 

because the motion vectors are only re-estimated at locations when blotches are 

detected. 

Blotch Mask Vector Repair Western Mobcal Manege Tunnel 
(MSE) (MSE) (MSE) (MSE) 

Exact None 94 338 1027 396 
Exact 
Exact 

Block Matching 
Dilation 

32 
62 

58 
218 

215 
656 

82 
122 

Exact Zero Motion 63 190 748 97 
Estimated None 157 721 2136 1044 

103 
140 

Estimated Block Matching 
Dilation 

538 
594 
496 Zero Motion 

Estimated 
2138 
2658 
2841 Estimated 126 

693 
908 
847 

Table 4.1: Evaluation of quality of motion vectors before and after motion vector repair. The 
MSE is computed only at sites indicated by the blotch mask. Both the true blotch mask and 
an estimated blotch mask, estimated with the SDIa detector set to a detection rate of 
approximately 70%, are used. 

Blotch Mask Western Mobcal Manege Tunnel 
(MSE) (MSE) (MSE) (MSE) 

Exact 21 35 113 18 
Estimated 72 343 1925 689 

Table 4.2: MSE computed with the motion vectors estimated from the original, unimpaired 
image sequences. The MSE is computed only at sites indicated by the blotch mask. 

Table 4.1 gives the experimental results. This table indicates that applying vector 

repair significantly increases the accuracy of the corrupted motion vectors if the 

locations of the corrupted sites are known exactly. When the estimated blotch mask 

is used, the MSE increases and the gains are smaller. This is not surprising. Because 

of false alarms, motion vectors are re-estimated at locations that are not corrupted. 
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The new motion estimates for the false alarms are suboptimal because correct image 

data are discarded in the motion estimation process. 

The lowest MSEs are obtained with motion vectors repaired by the block 

matching technique, and, therefore, this method is to be preferred to the other 

methods for vector repair. The zero motion technique shows good results for those 

test sequences that contain large areas without motion, i.e., all test sequences except 

the Manege sequence. The dilation method has a relatively poor performance, yet it is 

to be preferred to no vector repair at all. 

Table 4.2 shows the MSEs obtained from motion vectors computed from the 

original, unimpaired test sequences. These form the lower bound for the MSEs that 

can ideally be achieved. The conclusion is that the block-matching vector-repair 

technique bridges the gap between the MSE obtained from the corrupted vectors 

and the "true" vectors to a large extent. 

4.2.3 Blotch correction techniques 

MMF interpolator. A mult is tage median f i l ter  (MMF) is a concatenation of median 

filtering operations. The ML3Dex MMF is a heuristic method for interpolating 

missing data [Kok95b]. ML3Dex first applies five subfilters centered around the 

pixel being processed. Figure 4.7 shows the subfilter masks. In this figure, the top 

plane of each subfilter refers to data in the motion-compensated next frame, the 

center plane refers to data in the current frame, and the bottom plane refers to data 

in the motion-compensated previous frame. Next, the output of all the subfilters are 

combined and give the interpolated value according to: 

m t = median[W I ] with 1< l < 5 (4.15) 

M L 3 D e x  = median[m1, m2, m3, m4, m s ] (4.16) 

Note that ML3Dex does not necessarily fulfill any of the image models used by the 

detectors described in Section 4.2.1. In other words, if a detector is applied again to a 

corrected image, the corrected data may well be flagged as being blotched. In such 

instances, there is no objective reason to prefer the corrected data to the observed 

data and, from an engineering point of view, it may actually be better to stick to the 

observed data. This reduces the risk of introducing corruption at locations at which 

blotches were mistakenly detected. 

MRF interpolator. A MRF formulation towards interpolating missing data is given 

in [Kok95b]. This approach tries to find the MAP estimate of the missing data, ~(i), 
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given the locations of the corrupted sites and the observed (motion-compensated) 

previous, current and next frames by maximizing: 

P[~(i) Id(i),Zmc(i,t-1),z(i),Zmc(i,t + 1)1 oc 

( - - Z  (Z(~(i)__~(S))2q - ZX[(~(i)_Zmc(S,t_l))a+(~(i)_Zmc(S,t+l))2]) I (4.17) 
exp\ ~:~(~)=~,,s, Ss(O s~s~(o 

where S s and S T indicate the spatial and temporal neighborhoods, and ~ is the 

relative weight for the temporal neighborhood. Equation (4.17) is optimized only 

over blotched image locations. The term (~(i)-y(s)) 2 on the right hand side of (4.17) 

indicates the assumption that the interpolated values are likely to be smooth 

spatially. The other quadratic terms indicate the assumption that it is unlikely that 

the interpolated values introduce temporal discontinuities in image intensity along 

the motion trajectories. Equation (4.17) can be maximized with SA [Gem84]. 

Figure 4.7: Subfilter masks for ML3Dex. Gray elements indicate the included data, white 
elements indicate excluded data. 

AR interpolator. A method for interpolating missing data based on a 3D AR model 

is described in [Kok95b]. For each region of an image with missing data a set of AR 

parameters is determined. It is assumed that the data in this region are stationary. 

The AR parameters are computed from data of the (motion-compensated) previous, 

current, and next frames. Note that the blotched data in the current frame t are 

discarded so that they do not bias the estimates of the AR parameters. Next, the 

missing data are interpolated so that the linear-mean-squared-prediction-error, com- 

puted with the estimated AR parameters, is minimized. 

Consider the data to be ordered in a lexicographic fashion [Pra75]. Let e 

indicate a vector of prediction errors, let z+ indicate a vector containing the observed 
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data from the current frame plus that from the motion-compensated previous and 

next frames, and let A be a matrix with the AR coefficients placed at suitable 

locations. The prediction errors are denoted compactly by: 

e = A z +  (4.18) 

The prediction errors consist of two parts. One part depends on the product of the 

known data Zk, (data that are not to be interpolated) in z, with a number of 

columns from A, these columns will be denoted by A k . T h e  other part consists of the 

product of unknown data z,+ (data that are to be interpolated) in z, and the 

remaining columns of A, which will be denoted by A,: 

e = Akzk+ + A , z , +  (4.19) 

The unknown data are interpolated so that the mean-squared-prediction-error e T e is 

minimized. Taking the derivative of e Te with respect to z,+, setting it to zero and 

solving for z,+ gives the required result: 

T Z,+ -[A.A.] -1 T = A,,AkZk+ (4.20) 

Variations on this 3D AR method are described in [Goh96], [Ka197]. In [Goh96] it is 

pointed out that the assumption of stationarity is not met for occluded regions that 

have become uncovered (and vice versa). The authors suggest estimating the AR 

model parameters and interpolating the missing data with two frames only. One 

frame is the current frame that contains the missing data. The other frame is either 

the preceeding or the following frame. This depends on which (motion- 

compensated) frame gives the smallest mean squared difference with the current 

frame in the region of the missing data. This method is referred to as the B3DAR 

method. In [Ka197] this approach is refined by subdividing regions with missing 

data into multiple regions and interpolating the missing data for each region. This is 

done because a single set of AR coefficients may not be able to model a block of 

pixels adequately when the missing data cover a large region. 

Drawbacks. There are a number of drawbacks to the methods for interpolating 

missing data described in this section. The multistage median filter has no model for 

the corrected image. Therefore the interpolation results are not necessarily 

consistent, either with the data surrounding the corrupted region or within the 

corrected region itself. The MRF interpolator gives an overly smooth result because 

it interpolates the data so that the differences between an interpolated pixel and its 



66 CHAPTER 4 

spatio-temporal neighbors are minimized. The MRF interpolator takes no measures 

for resolving the effects resulting from occlusion. 

The AR interpolators can also smooth the data, and therefore the fidelity of the 

interpolated data in textured regions and in noisy film sequences is not that of their 

surroundings. As mentioned before, the problem of occlusion can, in principle, be 

solved with the method in [Goh96]. However, unlike the method described in 

[Goh96], the direction of interpolation should be determined pixelwise instead of 

blockwise. Because occlusion can vary on a pixel-by-pixel basis, the optimal 

direction of interpolation should be allowed to vary on a pixel-by-pixel basis. Fur- 

thermore, by subdividing missing data into a number of regions, as suggested in 

[Ka197], mismatches may well occur within the interpolated results near the region 

boundaries. 

Finally, all the approaches described in this section assume that the reference 

regions in the motion-compensated previous/next frames do not contain missing 

data in the regions of interest. This assumption is not always correct and can lead to 

incorrect interpolated data, as will be shown in Section 4.5. 

4.2.4 Conclusions 

Existing techniques for blotch detection show good performance, though even better 

performance is desirable in an automated environment for image restoration. For 

example, consider the ROC curves in Figure 4.3. These indicate that the false alarm 

rate varies between 0.5 and 15% for a correct detection rate of 85%. With other 

words, not only are many blotches removed, which is good, but also two thousand 

to sixty thousand pixels are also interpolated unnecessarily for each frame of a PAL 

image, which has a resolution of 720x576 pixels. Because the interpolators are 

fallible, false alarms can lead to artifacts in the corrected sequence that are visually 

more disturbing than the blotches themselves. 

The development of improved methods for blotch detection and correction is 

the topic of the remaining sections of this chapter. Sections 4.3 and 4.4 investigate 

how to improve the detectors. Section 4.5 develops an interpolator for correcting 

blotches that is robust to errors in the reference data obtained from motion- 

compensated frames. 

4.3 Improved blotch detection by postprocessing 

The goal of this section is to improve the ratio of correct detections to false alarms of 

existing blotch detectors. The approach taken here is not one of designing yet 
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another detector. Instead, a strategy of postprocessing that removes possible false 

alarms and that finds parts of blotches missed by the detector is developed. 
Figure 4.8a shows how postprocessing fits in the scheme of Figure 4.1b. Figure 4.8b 

shows the proposed set of postprocessing techniques. 

What is the idea behind the postprocessing operations? Blotches are not just 

random sets of individual pixels, but that they are spatially coherent regions and can 
be manipulated as such. How these regions can be extracted from the blotch 
detection masks is discussed in Section 4.3.2. Because it is not certain at this point 
that the extracted regions are true blotches, rather than something that resulted from 

false alarms made by the detector, the term candidate blotches is used to refer to the 

extracted regions. 
Section 4.3.3 cfllows a probabilistic approach towards  identifying and 

eliminating candidate blotches as a result of false alarms due to noise. The other 

candidate blotches, resulting from correct detections, have been detected only 
partially. Applying techniques called hysteresis thresholding and constrained dilation 
can make the detections more complete. These techniques are explained in 
Section 4.3.4 and Section 4.3.5. Section 4.3.6 concludes with experimental evaluations 
that demonstrate the effectiveness of the postprocessing approach applied to a 
simplified version of the ROD detector, which is described next. 

Impaired 
Sequence ..1 Blotch 

Detection 

Motion 
Estimate 

Blotch ~ Corrected 
Postprocessing I Mask ] Blotch [Sequence 

] v] Correction I 

Motion X 
Motion Vector Vectors 

Repair 

(a) 

Data 
In ~l 

"l 
Objects Noise Hysteresis Dilation 

Mask 
Out 

(b) 

Figure 4.8: (a) Place of postprocessing in a system of blotch detection and correction, (b) 
chain of postprocessing operations for increasing the ratio between correct detections and 
false alarms. 
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4.3.1 Simplified ROD detector 

By letting T 2 + oo and T 3 -+ oo, the output of the ROD detector is completely 

determined by T 1 . In this case, T 2 and T 3 can removed from the equations and a 

simplified ROD (SROD) detector results. The SROD detector is computationally much 

more efficient than the ROD detector because it no longer requires the reference 

pixels to be ordered by rank: 

/min(p  k ) -  z(i) 

SROD(i)=l~(i) max(pk) 

if min(p k)- z(i) > 0 
if z(i)- max(p k) > 0 

otherwise 
with k =1, ..., 6 (4.21) 

A blotch is detected if: 

=/1 if SROD(i)> T 1 with T 1 > 0 dsRoD(i) (4.22) \0 otherwise 

The SROD detector looks at a range of pixel intensities obtained from motion- 

compensated frames and compares this range to the pixel intensity under 

investigation. Blotches are detected if the current pixel intensity lies far enough 

outside the range. What is considered "far enough" is determined by T 1 . 

4.3.2 Extracting candidate blotches 

The SROD detector is a pixel based detector. If the spatial coherence within blotches 

is to be exploited, regions consisting of pixels with similar properties will have to be 

extracted from the available data. Adjacent pixels within a blotch tend to have 

similar intensities. A pair of pixels are considered to be similar if their difference is 

smaller than twice the standard deviation of the noise. This means at least 96% of the 

pixels will be labeled as belonging to the same candidate blotch if additive white 

gaussian noise is assumed to be corrupting the image. 

Therefore, adjacent pixels with similar intensities that have been flagged by the 

blotch detector are considered to be part of the same candidate blotch. To 

differentiate between the various candidate blotches, a unique label is assigned to 

each of them. 
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Figure 4.9: (a) Frame from Western test sequence, (b) same frame with artificially added 

blotches, (c) true blotch mask, (d) blotch mask estimated with the SROD detector with 7"1 = 0 

and a zoom in on a candidate blotch, (e) estimated blotch mask after possible false alarms due 

to noise are removed. 

4.3.3 Removing false alarms due to noise 

After the labelling procedure, a candidate blotch is an object with spatial support  S 

and it consists of K pixels, each of which has a specific detector output SROD(i). By 

selecting a small value for T 1 , the detector is set to a great degree of sensitivity. In 

this case, it is not only sensitive to blotches, but also to noise. An example of this is 

given in Figure 4.9, which shows a frame from the original Western test sequence, the 

same frame degraded with artificial blotches, and the blotch mask used for adding 

the artificial blotches. The estimated blotch mask, estimated with the SROD detector 

with 7"1 = 0, shows many false alarms. 

Figure4.9d also zooms in on a candidate blotch. The question for this 

candidate blotch is whether it is likely that it was detected purely as a result of false 

alarms due to noise. If so, the complete candidate blotch should be removed from 
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the blotch detection mask. Figure 4.9e shows a result of this approach, for which the 

details follow, applied to Figure 4.9d. Many false alarms have been removed. 

The probability of a candidate blotch being detected purely due to false alarms 

is equal to the probability of the detector giving specific set of values SROD(i), all of 

which are larger than T 1 . This probability can be computed in two steps. The first 

step determines the probability of a specific detector response for an individual pixel 

under  the influence of noise. The second step determines the probability that a 

collection of such pixels belong to a single object. The details of these two steps are 

given now. 

For the first step, it is assumed that the reference pixels Pk and the current pixel 

z(i) are identical except for the additive noise in the absence of blotches, i.e., 

z(i) = y + 71 ~ and Pk = Y + r/k, where r/~ and r/k indicate a specific noise realization. It 

is also assumed that the noise is i.i.d., has zero mean, and is symmetrically 

distributed around the mean. The probability that the SROD detector generates a 

false alarm due to noise is: 

P(SROD(i) > 1"11= P[z( i ) -max(pk)>O,z ( i ) -max(pk)> 7"11+ 

P[min(p k ) -  z(i) > 0, min(p k ) -  z(i) > 1"1] 

= P[z(i)-  max(pk) > 01 z ( i ) -  max(p k) > 7"1] P[z(i)-  max(pk) > T1]+ 

P[min(p k)-  z(i) > 0l min(p k)-  z(i) > 1"1] P[min(p k)-  z(i) > T~] 

= P[z( i ) -max(pk)> T1]+ P[min(pk)-z( i )> T 1] 

= 2 P[z(i)-  max(p k) > T~] 

= 2 P[~li- max(r/k) > T1] 

(4.23) 

where the last but one line follows from symmetry.  Using the fact that 

r/i - max(r/k) > T 1 requires that r/i - r/k > T 1 for all k gives: 

P(SROD(i) > T~]= 2 P[T/~- r/~ > T~, 7/~- 7/2 > 1"1 ..... r/~- 7/61 ~ T1] 
oo 

= 2 IP[rli- vii > T l , r l i -  172 > T~,... ,rl,- 716 > Tllr]i] P[rli]dr]i 
- o o  

oo 

_.~ k 

= 2 IP6[r] i -  Ilk > T~i~l,] P[rlildrl i 
- o o  

oo l,.o(i)_T ~ )6 

= 2 I[ I P[71]drl P[~i]dlli 
- o o \  - o o  

(4.24) 
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The step from the second to the third line in (4.24) is obtained by applying the 

theorem on total probability [Leo94]. The fourth and the fifth lines in (4.24) are 

obtained by considering that the r/k are independent of each other. This is indicated 

by dropping index k from r/k. Equation (4.24) gives the probability that the SROD 

detector generates a false alarm for an individual pixel due to noise and can be 

evaluated numerically once the parameters of the noise have been determined. 

In the case that the pixels of an image sequence are represented by integer 

values, the output  of SROD also consists of integer values. The probability 

Pmass[SROD(i) = x] that the SROD detector gives a specific response x, with x > 0, for 

an individual pixel is given by: 

Pmass[SROD(i) = x] = P[SROD(i) > x -  0.5]- P[SROD(i) > x + 0.5] (4.25) 

Table 4.3 lists the computed probabilities of specific detector responses in the case of 

white gaussian noise with a variance of 9.6. (The method described in [Mar95] was 

used to estimate a noise variance of 9.6 for the Western sequence). 

[ Probability ] 
0.091921 

I Probability 
0.002224 

2 0.060748 8 0.000892 
3 0.036622 9 0.000304 
4 0.020492 10 0.000108 
5 0.010353 11 0.000028 
6 0.005168 12 0.000007 

Table 4.3: Probability of a specific detector response SROD(i) computed for a constant signal 
corrupted by additive white gaussian noise with variance 9.6. 

For the second step, it is assumed that the individual pixels within a blotch are 

flagged independently of their neighbors. Strictly speaking this assumption is 

incorrect because, depending on the motion vectors, sets of reference pixels Pk can 

overlap. The effects of correlation are ignored here. Let H 0 denote the hypothesis 

that an object is purely the result of false alarms and that each of the sets of reference 

pixels were identical to the true image intensity y(i) except for the noise. P[H0] is 

then the probability that a collection of K individual pixels are flagged by the SROD 

detector, each of which with a specific response x(i): 

P[Ho] = I-[ P,n~[SROD(i) = x(i)] (4.26) 
i~S 
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where S is the spatial support of the candidate blotch. Those objects for which the 

probability that they are solely the result of noise exceeds a risk R are removed from 

the detection mask: 

P[H 0 ] > R (4.27) 

The result of this approach, as mentioned before, is indicated in Figure 4.9e. 

4.3.4 Completing partially detected blotches 

The technique for removing possible false alarms due to noise can be applied to any 

value of T 1 . When a blotch detector is set to a low detection rate, not much gain is to 

be expected from this technique because the detector is insensitive to noise. A 

second method for improving the ratio of correct detections to false alarms is 

described here. 

Many blotches are not detected at all and others are detected only partially at 

lower detection rates. The strategy is now to make the partial detections more 

complete. This is achieved by noting from Figure 4.3 that the probability of false 

alarms decreases rapidly as the correct detection rate is lowered. Therefore, 

detections resulting from a blotch detector set to a low detection rate are more likely 

to be correct and can thus be used to validate the detections by the same detector set 

to a high detection rate. 

Figure 4.10: Example of hysteresis thresholding. Detection masks from (a) detector set to low 

sensitivity ( T 1 = 30) with removal of possible false alarms due to noise, (b) detector set to high 

sensitivity (T l= O) with removal of possible false alarms due to noise, (c) hysteresis 
thresholding. 
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The validation can be implemented by applying hysteresis thresholding [Can86]; see 

Figure 4.10. The first stage computes and labels the set of candidate blotches with a 

user-defined setting for T 1 . Possible false alarms due to noise are removed as 

already described. The second stage sets the detector to a very high detection rate, 

i.e., 7"1 = 0, and again a set of candidate blotches is computed and labeled. Candidate 

objects from the second set can now be validated; they are preserved if 

corresponding candidate objects in the first set exist. The other candidate blotches in 

the second set, which are more likely to have resulted from false alarms, are dis- 

carded. Effectively blotches detected with the operator settings are preserved and 

are made more complete. 

4.3.5 Constrained dilation for missing details 

There is always a probability that a detector fails to detect elements of a blotch, even 

when it is set to its most sensitive setting. For example, the large blotch on the right 

hand side in Figure 4.9c is not completely detected in Figure 4.9d. In this final 

postprocessing step, the detected blotches are refined by removing small holes in the 

candidate blotches and by adding parts of the blotches that may have been missed 

near the edges. 

Figure 4.11: Example of constrained dilation: (a) image with blotches, (b) initial detection 
mask, (c) detection mask after one iteration, (d) detection mask after two iterations, (e) result 
of constrained dilation applied to Figure 4.10(c). 

For this purpose, a constrained dilation operation is suggested here. Dilation is a 

well known technique in morphological image processing [Mar98]. The constrained 

dilation presented here applies the following rule: if a pixel's neighbor is flagged as 
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being blotched and its intensity difference with that neighbor is small (e.g., less than 

twice the standard deviation of the noise) then that pixel should also be flagged as 

being blotched. The constraint on the differences in intensity reduces the probability 

that uncorrupted pixels surrounding a corrupted region are mistakenly flagged as 

being blotched. It uses the fact that blotches tend to have gray values that are 

significantly different from their surroundings. Figure 4.11a-c illustrates the proce- 

dure, Figure 4.11e shows the result of this method when applied to the blotch mask 

in Figure 4.10c. 

It is important not to apply too many iterations of the constrained dilation 

operation because it is always possible that the contrast between a candidate blotch 

and its surrounding is small. The result would be that the candidate blotch grows 

completely out of its bounds and many false alarms occur. In practice, if the detector 

is set to a great sensitivity, applying two iterations favorably increases the ratio of 

the number of correct detections to false alarms. When the detector is set to less 

sensitivity, the constrained dilation is less successful and should not be applied. In 

the latter case, the blotches that are initially detected by the SROD detector must 

have sharp contrast with respect to the reference data. Because of the sharp contrast, 

the blotches are made fairly complete by the hysteresis thresholding. The dilation 

therefore adds little to the number of correct detections, yet it significantly increases 

the number of false alarms. 

4.3.6 Experimental evaluation 

Figure 4.12 summarizes the effects of the consecutive postprocessing operations. 

Visually speaking, the final result in this figure compares well to the true blotch 

mask in Figure 4.9c. Now the effectiveness of the postprocessing operations is 

evaluated objectively. 

Figure 4.13 plots the ROCs for ROD detector, SROD detector, and the SROD 

detector with postprocessing. The results from either the MRF or the AR detector, 

depending on which showed the best results in Figure 4.3, are also plotted for 

comparison. Figure 4.13 makes it clear that the SROD detector has a performance 

similar to that of the ROD detector for small values of T 1 (high detection rates). 

When set to a lesser sensitivity, the SROD detector shows performance either 

similarly to or better than the ROD detector. This is explained by the fact that 

detection mask of the SROD detector is a subset of the detection mask of the ROD 

detector; each detection made by the SROD detector is also made by the ROD 

detector. However, the SROD detector generates not only fewer correct detections, 

but also (significantly) fewer false alarms. 
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Figure 4.12: Summary of postprocessing: (a) initial detection, (b) result after removal of false 
alarms, (c) result after hysteresis thresholding, (d) final result after constrained dilation. 
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Figure 4.13: Receiver operator characteristics for (a) Western sequence, (b) MobCal 
sequence, (c) Manege sequence, (d) Tunnel sequence ( P+.- false alarm rate, PD - correct 
detection rate) 
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The postprocessing applied to the detection masks obtained from the SROD detector 

improves the performance considerably over the whole range of operation of the 

detector. Note that the constrained dilation operation was not applied for T 1 > 12. 

This explains the sometimes large change in trend between the fourth and fifth 

measuring point of the SROD ROCs. The postprocessed results are significantly 

better than any results from the detectors without postprocessing. For instance, 

before postprocessing, a correct detection rate of 85% corresponds with a false alarm 

rate between 0.5 and 15%. After postprocessing a correct detection rate of 85% 

corresponds with a false alarm rate between 0.05 and 3%. 

4.4 Blotch detection with increased temporal aperture 

Objects for which the motion cannot be tracked accurately from frame to frame pose 

severe problems to blotch detectors. Incorrect motion vectors lead to incorrect sets of 

reference pixels and hence to false alarms. An obvious solution to this problem 

would be to use a "robust" motion estimator. Though techniques that are more 

robust to complex motion than the hierarchical block matcher used here do exist, 

e.g., motion estimators that use affine motion models [Odo95], [Wan], it is 

questionable whether the increase in performance justifies the increase in 

complexity. Motion in natural image sequences often involves objects of which 

shape, texture, illumination, and size vary in time. No motion estimation algorithm 

is truly capable of dealing with this type of motion. 

An alternative way to reduce the number of false alarms is to incorporate more 

temporal information. False alarms result from the fact that object motion cannot be 

tracked to any of the reference frames. Increasing the number of reference frames 

increases the probability that good correspondence to at least one of the reference 

frames is found. Once good correspondence is found for an object, it is assumed that 

this object is not a blotch. Therefore, increasing the temporal aperture of a blotch 

detector reduces the number of false alarms. However, increasing the temporal 

aperture also increases the probability that blotches are mistakenly matched to other 

blotches or to some part of the image contents. This decreases the correct detection 

rate. Obviously there is a trade-off. 

The SROD detector can easily be extended to use four reference frames by 

taking into account three extra reference pixels from each of the frames at t - 2 and at 

t + 2. The extended SROD detector is denoted by SRODex. The postprocessing 

operations can be applied as before, all that is necessary is to recompute the 

probability of false alarms due to noise (taking into account that there are now 

twelve reference pixels instead of six). 
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Figure 4.14: Top row: three consecutive frames from VJ Day sequence. Second row: corrected 
frames using SROD with postprocessing and ML3Dex. Note the distortion of the propellers 
in the boxed regions. Third row: corrected frames after combining the SROD detection 
results with SRODex results. (Original photos courtesy by the BBC). 

Consider two sets of candidate blotches detected by the SROD detector and the 

SRODex detector, respectively. The SRODex detections form a subset of the SROD 

detections; the SROD detector finds blotches everywhere the SRODex detector does, 

and more. The blotches detected by the SROD detector are more complete than those 
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detected by the SRODex detector, but the SRODex detections are less prone to false 

alarms. As in Section 4.3.5, hysteresis thresholding can be applied. The reliable, 

possibly incomplete SRODex detected blotches can be used to validate less reliable, 

but more complete SROD detections. In case of true blotches, the shapes and sizes of 

the regions flagged by both detectors should be similar. If this is not the case, it is 

likely that the detections are a result of false alarms due to complex motion. Hence, 

preserving SROD-detected candidate blotches that are similar to corresponding 

SRODex-detected blotches reduces the probability of false alarms. The other SROD- 

detected candidate blotches are discarded. Two candidate blotches and are 

considered to be similar if the ratio of their sizes is smaller than some constant ~" 

Size of blotch in A 

Size of blotch in B 
<~ (4.28) 

I I ......................... "'""~"~ . " .......................................... " ......................................... 
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Figure 4.15: Receiver operator characteristics for the SROD detector and for the SROD 
detector combined with the SRODex detector (all with postprocessing) computed for the 
MobCal sequence ( P~. -false alarm rate, P~ - correct detection rate). 

Figure 4.14a-c show flames 27-29 from the VJ Day sequence. Besides blotches, this 

sequence contains a lot of action in the form running men and rotating propellers. 

Some of the propellers are not visible at all in some of the frames. Figure 4.14d-f 

shows data restored from the SROD detector (T 1 = 10) with postprocessing and 

ML3Dex for interpolation. The blotches have been removed very efficiently, but, as 

an unwanted side effect, parts of the propellers have been removed as well. 

Figure 4.14g-i shows restored data, but now the proposed combination of SROD and 
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SRODex has been used with T 1 = 10 and ~ = 2. Most of the blotches have been 

removed and, very importantly, the propellers have been preserved. 

The proposed algorithm was very successful for the VJ Day sequence because it 

is capable of dealing with the periodic presence of the propellers. However, 

increasing the temporal aperture does not necessarily always increase the 

performance, as can be observed from the ROC curves for the Manege sequence in 

Figure 4.15. In this case, the SRODex detector misses too many correctly SROD- 

detected are discarded. Whether increasing the temporal aperture is beneficial to the 

restoration process depends on the particular image sequence. In practice, it is up to 

an operator to decide which detector is most appropriate. 

4.5 Fast, good quality interpolation of missing data 

Section 4.2.1 showed that model-based interpolation of missing data can be done 

with 3D AR processes. This method gives good-quality interpolation results and its 

performance in resynthesizing textures of missing data is superior to that of other 

interpolators. Equation (4.20) gives a closed form solution to the 3D AR interpolation 

method. Unfortunately, there are a number of drawbacks to this method. First, it is 

very expensive in computational terms. For example, resynthesizing the texture for a 

region with a blotch of 20x20 pixels requires inverting a matrix with 400x400 

elements. Second, the method as described in Section 4.2.3 assumes that the data in 

the reference frames are always correct. This assumption is not always true. 

Incorrect reference data can result from erroneous motion estimates, occlusions, and 

corruptions due to blotches. Third, AR interpolations can be overly smooth if the 

interpolated regions are large. 

It is important to realize that full 3D AR restoration is not necessary in most 

cases. The most common differences between the frames of an image sequence can 

be characterized by a rearrangement of the object location. Therefore, it is likely that 

missing data in one frame can be restored by pasting (copying) pixels from 

corresponding regions in a reference frame. Reliable motion estimates must be 

available for pasting. In fact, pasting can be viewed as a one-tap AR interpolator 

with a coefficient of 1.0. 

This section investigates the concept of interpolating missing data by pasting. 

Each pixel of the missing data in a blotched frame is replaced by a pixel from the 

corresponding location in either the motion-compensated previous frame or the 

motion-compensated next frame. A strategy for determining the direction of 

interpolation (i.e., pasting from the previous frame or pasting from the next flame) is 

required. The strategy used here constrains the interpolated data to fit in well with 
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the region surrounding the missing data. Hence, the data surrounding the missing 

data define a set of boundary conditions to the solution of the interpolation problem. 

This constraint is enforced by requiring corrected image regions to follow 2D AR 

processes as well as possible. 

Figure 4.16: (a) Region-based pasting: a region from either the previous or next frame 
(motion-compensated) is pasted into the current frame, (b) pixel-based pasting: pixels are 
pasted from either of the reference frames. In both cases (a) and (b), the pasting is done so that 
the corrected region, indicated by the dashed box, can fit a 2D AR model as well as possible. 

The question is now how to decide which reference frame should supply the pixels 

for pasting. One approach is to paste complete regions from either the previous or 

the next frame, depending on which result fits in better according to the 2D AR 

process (Figure 4.16a). To get good visual results with this approach, the motion- 

compensated reference data must represent the missing data at all locations. This 

requirement is less likely to be fulfilled as the size of the region to be pasted 

increases. The probability of some of the missing data being unavailable is 

proportional to the size of the region due possible to occlusions, blotches, and 

erroneous motion estimates. 
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A better approach is to determine the direction of interpolation for each 

individual pixel, as illustrated by Figure 4.16b. The pixel intensity from the motion- 

compensated reference frame with the smallest prediction error is pasted into the 

current frame. The advantage of pasting single pixels from either the previous or 

next reference frame is evident: if the reference data in one reference frame are 

inconsistent with the 2D AR model for the corrected frame, large prediction errors 

will result. In which case, data can be pasted from the other reference frame. This 

mechanism requires no explicit knowledge about errors in the reference data. Hence, 

corruptions in one of the reference frames do not influence the interpolated result 

negatively if the data in the other reference frame are correct. 

At this point, the direction of interpolation in the pasting method described can 

vary erratically from pixel to pixel. Everything depends on which reference frame 

provides the pixel closest to the value predicted by the AR model. This can lead to 

two possible side effects. First, AR predictors tend to give overly smooth prediction 

results. Because the reference pixels closest to the AR predictions are selected, the 

pasted result can be overly smooth. Second, if the textures in reference frames are 

different (e.g., due to uncovering/occlusion), the pasted result might be a mixture of 

textures. In this case, the result is different from the true texture that underlies the 

missing data. These effects can be avoided by constraining the direction of 

interpolation to be consistent locally. For this purpose, a markov random field is 

applied. 

4.5.1 Interpolating missing data with controlled pasting 

This section formulates the ideas mentioned in mathematical terms. Because the aim 

is to paste pixels from either the previous or the next motion-compensated frame, a 

binary direction mask o(i) is introduced. This mask indicates for each spatial location 

which of the motion-compensated reference flames is most appropriate to serve as a 

reference for pasting, e.g., "0" for zmc(i,t- 1) and "1" for zmc(i,t + 1). 

At this point it is assumed that the binary blotch detection mask d(i) has 

already been determined. This could be done by any of the methods in the previous 

sections. The corrected frame ~(i), which is an estimate of the true data y(i), is given 

by: 

Zmc(i,t--1) 
Y(i)=~Zmc(i,t+l) 

\z(i)  

if d(i)= l,o(i)= O 

if d(i)= 1, o(i)= 0 

otherwise 
(4.29) 
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Now, the aim is to find o(i). The reconstructed image ~(i) follows through this 

variable. The image data model underlying the corrected image ~(i) is assumed to 

be a 2D AR model of order n with coefficients a/, with l =1, ..., n. The prediction 

error e(i) is a gaussian random variable with zero mean and variance cr 2" 
e 

~(i) = ~ a t ~(i + q/)+ e(i) (4.30) 
/=1 

The binary field o(i) must be found so that, on one hand, the corrected image ~(i) 

fits the image model in (4.30) as well as possible, i.e., so that the prediction error 

2 is as low as possible. On the other hand, as already explained, the variance r7 e 

direction of interpolation must be a consistent one locally. Note that not only must 

o(i) be found, but also the parameters that define the AR process, namely the AR 

coefficients a/ and the prediction error variance O "2 
e ~ 

To come to a tractable solution, the number of computations must be kept as 

low as possible. Therefore o(i) is not computed for the complete frame. Instead, o(i) 
is computed only for regions that contain missing data. The image regions are 

selected so that, at most, 20% of the area consists of missing data. Each region is 

modeled by a single set of AR model parameters and a single prediction error 
variance c7~. 

Proceeding in a probabilistic fashion, these requirements translate to finding 

the maximum of P[o(i),al .... ,G,cr~iz~(i, t-1),z(i) ,Z~c(i, t+l),d(i) ,O]. Here O 

indicates the direction of interpolation for the pixels in the local region surrounding 

o(i). With Bayes' rule, this can be seen to be proportional to: 

P[o(i),a, cre21z+ (i),d(i),O]oc P[z+ (i) Io(i),a,rY 2e, d(i)] P[o(i) IOl P[a] P[rT~ ] (4.31) 

where the terms al,a2,. . . ,a . have been grouped together into a and Zmc(i,t-1 ), 
z(i) and Zmc(i,t + 1) have been grouped together in z+ (i) for convenience. 

The first term on the right hand side of (4.31), P[z+ (i)Io(i),a, cr2e, d(i)] , indicates 

the likelihood of observing the data z+ (i), given the direction of interpolation, the 

AR model parameters, and the blotch mask. Let AR(~,a,i)  be the prediction of the 

corrected image ~ at location i. AR(~,a,i)  is determined completely by z+(i), o(i), 

2 and d(i). The likelihood can then be defined by (4.32). a t  O" e 

The second line in (4.32) states that at locations at which no blotches have been 

detected (d(i) = 0), the likelihood of observing a specific pixel intensity in the current 

frame z(i) is proportional to the squared AR prediction error weighted by the 

prediction error variance. The third line in (4.32) states that, at locations where a 
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pixel from Zmr pasted, the likelihood of that pixel intensity being 

observed is proportional to the weighted squared AR prediction error of the restored 
frame. The fourth line of (4.32) makes a statement somewhat similar to that in the 

third line, but then for Zm~(i,t-- 1). 

P[z+ (i) Io(i),a,0- 2 d(i)] oc exp(-[(1-  d(i)) (z(i)- AR(~,a,i)) 2 
e, 20.2 + 

r 

d(i) o(i) (z~(i,t  + 1)- AR(~,a,i)) 2 + 
20. 2 

d(i) (1- o(i)) (Zm~(i,t-- 1)-AR(~,a,i)) 2 
20-~ 

(4.32) 

Equation (4.32) can be simplified to: 

P[z+ (i)Io(i),a, o-2e, d(i)] 

(1- d(i)) z(i)+ d(i) (o(i) Zinc (i, t + 1)+ (1-- o(i)) Zinc (i, t-- 1))- AR(~,a, i))2 ] 
oc exp - 

oc exp( (Y(i)-AR---(-Y'a'i))2 I 
20-~ 

1 ( e(i)2 ~ 
oc ~/2~r0- ~ exp - 20- 2 ) 

(4.33) 

This means that likelihood function of the observed data P[z+ (i)I... ] is proportional 
to probability of the prediction error e(i) of the restored frame as defined by (4.30). 

The other three terms in (4.31) describe a priori knowledge related to the model 
parameters. To achieve local consistency in the direction mask o(i), the following 
prior is assumed: 

P[o(i) IO]oc e x p ( - ~  fllo(i)- o(i + qk ) I) (4.34) 
k 

where fl is a constant that defines the strength of the self-organization. The eight- 

connected neighbors of o(i) are indicated by o(i + qk), with k =1, ..., 8. Equation (4.34) 

simply states that the direction of interpolation for a pixel is likely to be similar to 

that of the majority of its neighbors. 

Following [Kok98], a uniform prior is assigned to a, and a Jeffreys' prior 
[Rua96] is assigned to the prediction error variance 0-2.e 
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1 
P[cr 2] oc _-2-i- (4.35) 

O" e 

Equation (4.31) is completely defined now. The next section describes the practical 

implementation for correcting blotched image sequences on the basis of maximizing 

(4.31) jointly for all o(i) in a region with missing data. 

4.5.2 Practical implementation of controlled pasting 

The MAP estimate for (4.31) jointly for all o(i) can be found with SA [Gem84]. SA as 

described here involves two elements. The first element is a global control parameter 

T called temperature, which is used to shape the probability functions in (4.31). The 

second element is a mechanism for drawing random samples from conditionals, 

called a Gibbs sampler. SA can be summarized by four steps: 

1. Initialize temperature: T = Tbegi,, 
2. Sample the unknowns with the Gibbs sampler, 

3. Repeat step 2 until convergence is obtained, 

4. Lower T according to a cooling schedule and go to 2 if T > T~,al. 

In [Gem84] it is proved that if Tbe~, is sufficiently large and that if a logarithmic 

cooling schedule is applied, the algorithm converges to the MAP solution. The most 

involved part of the SA scheme is the Gibbs sampler. The Gibbs sampler operates 

iteratively by drawing random samples for the unknowns in turn, which are derived 

in Appendix B: 

a ,-, P[alcr~,o(i),z+,d] 

O.e,.. . 2  p[cr21a, , d] 
2 o(i) ~ P[o(i) la, cye ,z+ ( i) ,d(i) ,O] 

(4.36) 

One might argue that using such heavy machinery as SA just to determine the 

direction of interpolation for a set of pixels is slightly overdoing things. The goal of 

this section is to simplify this machinery somewhat and to come to an efficient 

implementation. 
The number of computations has to be kept small for an efficient 

implementation. As mentioned in the previous section, the controlled pasting 

scheme is not applied to the complete image, but only to image regions containing 



BLOTCH DETECTION AND CORRECTION 85 

missing data. The image regions are selected so that, at most, 20% of the area 
consists of missing data. A single set of three AR model parameters a I is computed 
for each region. A quarter plane prediction model is used (see Figure 4.17). 

�9 �9 

�9 X 

Figure 4.17: Support (dots) used for AR  prediction (cross). 

Strictly speaking, all unknowns should be sampled in the SA scheme, and this 

includes the sampling the AR coefficients a and the error variance cr 2e from the 

probability functions derived in Appendix B. Drawing samples from these 

distributions is costly in terms of computational complexity, and it is noted here that 

good results are obtained by just using the least squares estimate for the AR 

coefficients instead of sampling them. (In fact, this is equivalent to sampling from 

(B.10) with zero variance). Similarly, it is not necessary to sample for rr 2~ to get good 

results. Hence: 

a = R:~ (4.37) . r ~  

Here R~ and r~; are the autocorrelation matrix and autocorrelation vector that are 

required for solving the normal equations [Lag94], [The92]. What remains are the 

samples to be drawn for o(i) from (B.16): 

P[o(i) la, cr 2 e,z+(i),d(i),O] 

1 
oc exp(--~[(1-d(i))(z(i)- AR(~,a , i ) )  2 + 

d(i) (o(i) z~c(i,t + 1)+ (1- o(i)) Zmc(i,t + 1)-- A R ( ~ , a , i ) )  2 + 

~ f l l o ( i ) - o ( i  + qk) I]) 
k 

(4.38) 

where AR(~,a , i )  indicates the spatial AR prediction of ~(i) from its surroundings. 

The reconstructed image ~, required for the AR predictions is obtained via (4.29). 

Drawing samples from (4.38) with the Gibbs sampler is very easy. It involves 
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evaluating (4.38) at a specific site i for o(i) = 0 and for o(i) = 1, while keeping the 

other values for the direction mask and the ~(i) fixed. The results are assigned to 

c 1 and c 2 , respectively. Next a value for o(i) (and thereby the corresponding ~(i)) is 

chosen at random, with a probability cl /(c~ + c2) that o(i) = 0 and with a probability 

c a /(c~ + c 2) that o(i) = 1. A single update of an image region consists of applying the 

Gibbs sampler to each site in that region in turn, using, for instance, a checkerboard 

scanning pattern. 

Data in 

Initialize temperature T and 

direction of interpolation o 

Generate corrected frame ~(i) 

according to eq. (4.29) 

Estimate AR coefficients 

a according to eq. (4.37) 

Sample for o(i) for 

i from eq. (4.38) 

Reduce T 

Data out 

I" 

Figure 4.18: Overview of a practical implementation of the CP scheme. 

Figure 4.18 summarizes the practical controlled pasting (CP) scheme that results. The 

data put into the system consist of the current frame and the motion-compensated 

previous and next frames. The blotch detection mask, which indicates for each pixel 

whether it is considered to be part of a blotch, also belongs to the input data. 

Initially, the direction field o(i) is assigned binary values at random, and an initial 

temperature T is chosen. The main loop is as follows. First a corrected frame ~(i) is 
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generated. Next, a set of AR coefficients a is estimated for each missing region. This 

is used for predicting the corrected image intensities. Next, the direction of 

interpolation is updated by sampling from (4.38) as already described. The main 

loop is repeated at each temperature level T, until the solution has converged or 

until a fixed number of iterations have been done. The temperature is lowered with 

an exponential cooling schedule: 

T k = }, kTbr (4.39) 

where ~, controls the rate of decrease and k indicates the k-th temperature level. The 

main loop is iterated again until the final temperature has been reached. 

4.5.3 Experiments with controlled pasting 

The scheme in Figure 4.18 is ready to be applied now. The result it yields is the joint 

distribution of the o(i) within an image region S r , as is given by (4.40). The term 

defined by the summation in (4.40) is known as the potential funct ion.  Lower 

potential functions indicate better solutions. 

P[ola, cr 2 z+ (i),d(i)] e I 

oc exp(-l~-~ [(1-d(i))(z(i)-AR(~,a,i)) 2 + 
I 

i~ S r (4.40) 
d(i) (o(i) Zmc(i,t + 1)+ (1-- o(r)) Zm~(i,t + 1)- A R @ , a , i ) )  2 + 

~ f l lo ( i ) -  o(i + qk ) l]) 
k 

To get some idea about what sensible values are for Tbe~,, T~nal, and a:, two 

experiments are carried out on a blotched frame from the Western test sequence. For 

the first experiment Thegn = 100.0, T~na~= 1.0 and ~' = 0.9 is chosen. At each 

temperature level, 30 iterations are applied. For the second experiment, only one 

temperature level Tbe~i . = Z f i n a l  = 1 is assumed. Again, 30 iterations of the Gibbs 

sampler are applied. Figure 4.19 plots the potential functions for both experiments as 

a function of the number of iterations. 

Figure 4.19 shows that both experiments converge. The solution found in the 

full SA scheme converged to a lower potential (final potential 483) than the solution 

found with the Gibbs sampler only (final potential 1307). The difference is, however, 

that the first experiment required about 625 iterations to reach its optimum, whereas 

the second experiment required only 25 iterations. Visually, the corrected results are 
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not noticeably different. The conclusion is that it is not necessary to apply an 
elaborate cooling schedule and that sufficiently good results can be obtained in 

relatively few iterations. It must be emphasized that the result obtained by applying 

the Gibbs sampler only (without a cooling schedule) does not in general result in a 

MAP estimate. The reason why it is so successful here is probably because the 

distributions from which the samples are drawn are very compact; there is not a lot 

of ambiguity in drawing a sample. 
The top row in Figure 4.20 shows three frames from the Western test sequence: 

(motion-compensated) previous, current, and next. The second row shows three 

corrections of the current frame, made with the 3DAR and the ML3Dex methods, 
described in Section 4.2.3, and with the CP method described in the previous section. 
The results from the CP method were obtained by using just 30 iterations of the 

Gibbs sampler. 
All the corrected frames show a great improvement over the corrupted frame. 

However, the 3DAR and the ML3Dex methods fail where the motion-compensated 

frames are corrupted (see the highlighted boxes in the figures). These methods fail 

because they always incorporate data from both motion-compensated frames, 

regardless of the fact that some of those data may be corrupted. The B3DAR method, 

of which the results are not shown, also fails in this particular case because a block- 
based approach is used to determine the direction of interpolation, regardless on the 
validity of the data within the block. Figure 4.20g-i zooms in on the boxed regions. 
Clearly, the proposed CP method outperforms the other methods in terms of visual 

quality. 

Potential 

5000 

10000 

15000 t 

,ooool/i / Potential 

5000 ~- 

0 5 10 200 400 600 800 1000 1200 1400 15 20 25 30 

(a) Iteration (b) Iteration 

Figure 4.19: Potential function as function of iteration number: (a) for Tbe~i,= 100.0, 

Zfina I =1.0 and 7 = 0.9, (b) for Zbegin = Z f i n a l  - 1. 
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Figure 4.20: (a) Motion-compensated previous frame, (b) current frame t, (c) motion-com- 
pensated next frame, (d), (e), (f) restored frame t by the 3DAR, ML3Dex, and CP schemes, 
respectively. Note the differences within the boxed regions. (g), (h), (i) Zoom-in to the boxed 
regions of panels (d), (e), and (~, respectively. 
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Figure 4.21: RMSE of corrected sequences with original, unimpaired sequences: (a) Western, 
(b) MobCal, (c) Manege, and (d) Tunnel. 

Interpolator Western 
(RMSE) 

Mobcal 
(RMSE) 

Manege 
(RMSE) 

None 113.2 81.4 86.7 
ML3Dex 20.8 12.6 25.2 

3DAR 20.9 12.1 24.8 
CP 16.1 8.5 22.1 

Tunnel 
(RMSE) 

90.5 
16.7 
15.9 
12.4 

Table 4.4: RMSE computed between the corrected and original, unimpaired sequences. 
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4.6 Results and conclusions 

This section evaluates the complete chain of blotch detection, postprocessing, motion 

vector repair, and interpolation as depicted in Figure 4.8a. All experiments apply the 

SROD detector with postprocessing because this gives the highest ratio of correct 

detections to false alarms. The motion vector repair uses the block matching 

technique described in Section 4.2.2. Three interpolators are evaluated, namely, the 

ML3Dex, the 3DAR, and the CP method (using 30 iterations per frame). 

Figure 4.21 shows the root mean squared error (RMSE), which is defined as the 

squared root out of the MSE, for the test sequences as a function of frame number. 

For each sequence the SROD detector with postprocessing was set to an overall 

correct detection rate of about 85%. The RMSE was computed only at locations at 

which the true blotch mask or the estimated blotch mask indicate corruptions (i.e., at 

locations where the original image data was altered by blotches or by interpolating 

false alarms). Figure 4.21 indicates that the CP interpolation method has the best 

performance. Whether the ML3Dex performs better than the 3DAR method is 

difficult to determine from this figure. Table 4.4 lists RMSE computed over all 

frames. It can be seen from this table that the interpolation considerably decreases 

the average errors. These data confirm that the CP method gives the best 

performance. Furthermore, it can be seen that the ML3Dex method, on average, 

performs slightly better than the AR method. 

In terms of computational load, the CP method is to be preferred to the 3D AR 

method. The 3D AR method requires a matrix to be inverted, see (4.20), the size of 

which increases with increasing blotch size. Therefore, the number of computations 

for this method grows exponentially (order 3) [Pre92], [Str88] with increasing blotch 

size. There is also a risk that the system in (4.20) is singular and that no unique 

solution exists. In such cases, singular value decomposition [Pre92], [Str88] is useful. 

The ML3Dex interpolator is, computationally speaking, the most efficient: it is a non- 

iterative method that has to be evaluated only at the locations containing missing 

data, and it can be implemented efficiently with fast sorting algorithms [Pre92]. 

The methods for blotch detection and correction introduced in this chapter give 

significantly better results than those obtained by existing methods. However, as can 

be seen from the ROCs in Figure 4.13, the ratio of false alarms to correct detection 

remains relatively high for some sequences. There is room for further improvements. 

Nonetheless, even though too many false alarms are generated in some cases, the 

methods described in this chapter are very useful and can be applied efficiently in 

practical situations. Visually disturbing artifacts introduced into a corrected 

sequence due to false alarms can be removed by manual intervention. Removing 
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regions of false alarms and undoing erroneous interpolations by single mouse clicks 

is much more efficient than having an operator mark and correct blotches in image 

sequences manually. 



Chapter 5 

Noise reduction by coring 

5.1 Introduction 

As computers with memories sufficiently large to store images and even short image 

sequences became widespread some 25 years ago, many researchers began to 

investigate digital algorithms for noise reduction. The well-known theories 

developed by Wiener and Kalman for optimal linear filtering were applied in the 

digital domain on a large scale. New types of nonlinear filters, such as order 

statistics filters and switching filters, were developed. Nowadays many very 

different approaches towards noise reduction are found in the literature [Abr96], 

[Arc91], [Bra95], [Don95], [Don94b], [Hir89], [Kle94], [Ozk92], [Ozk 93], [Roo96]. One 
such approach that has gained great popularity in recent years and that has proven 

to be very successful for denoising 2D images is coring. This chapter investigates this 

method for noise reduction and extends its application to image sequences. 

Coring is a technique in which each frequency component of an observed 

signal is adjusted according to a certain characteristic, the so-called coring function. 

Originally coring was developed as a heuristic technique. It was first applied in 1951 

for removing spurious oscillations in the luminance signal that were caused by a 

system designed to make television pictures more crisp [Go151]. In 1968 it was 

recognized that this technique could also be used for removing imperfections such as 

noise from signals [McM68]. In the 1970s and the early 1980s coring was applied in 

the digital domain for noise reduction [Ade84], [Pow82], [Ros78]. The technique of 

thresholding or coring received a lot of attention after Donoho and Johnstone applied 

93 
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it successfully in the wavelet transform domain [Don95], [Don94b] in 1994. 

Section 5.2 describes techniques for optimal filtering in a minimum-mean- 
squared-error (MMSE) sense. An example of such an optimal filter, the Wiener filter, 

is derived. The Wiener filter is a linear filter. If the constraint of linearity is dropped, 

more general nonlinear filters result. The filter characteristics of these nonlinear 

filters are represented by coring functions. 

The domain in which coring is applied determines the effectiveness of coring 

for noise reduction. Section 5.3 describes two spatial signal transforms. One is a bi- 

orthogonal wavelet transform, and the other is a directionally sensitive subband 

decomposition. It is shown how to extend these 2D transforms to include the 

temporal dimension. The spatio-temporal decomposition provides a good basis for 

coring image sequences. 

Noise-reduced signals are often stored or broadcast in a digital format. Section 

5.4 investigates how noise can be reduced and compressed simultaneously within an 

MPEG2 encoder by coring the DCT coefficients. Section 5.5 contains some 

conclusions which are relevant to this chapter. 

5.2 Noise reduction techniques 

5.2.1 Optimal linear filtering in the MMSE sense 

Any recorded signal is affected by noise, no matter how accurate the recording 

equipment. In this chapter noise is modeled by a additive white gaussian source. Let 

y(i) be an original, unimpaired frame and let the noise be r/(i). The observed frame 

z(i) is given by: 

z(i) = y(i) + ~l(i) (5.1) 

A class of linear filters are the finite impulse response (FIR) filters, which are defined 

by: 

~(i) = ~ hkZ(i + qk ) (5.2) 
k=l 

Here h e, with k = 1, ..., n, are the n filter coefficients and the qk define the support of 

the filter. The optimal filtering coefficients in MMSE sense can be found by: 

arg minE[(y( i ) -  ~(i))2] (5.3) 
. . . .  
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The filter that results is known as the Wiener filter. The Wiener filter can be 

implemented efficiently via the Fourier domain [Lag94], [The92]. Let Fourier 

transform of (5.1) be given by: 

Z(w) = Y(w)+ N(w) (5.4) 

The estimates ~'(w) are given by: 

9(w) = S.(w) Z(w) (5.5) 
s .  (w) + s.. (w) 

Here S~(w) and S,,(w) indicate the power spectral density (PSD) functions of the 

unimpaired signal and the noise. From (5.5) it can be seen that each frequency 

component of the observed data is weighted depending on the spectral power 

densities of the original, unimpaired signal and noise. 

5.2.2 Optimal noise reduction by nonlinear filtering: coring 

The Wiener filter imposes a FIR structure onto the solution of the MMSE problem. 

The optimal solution to the MMSE problem that is obtained when no constraints are 
placed on the filter structure is often a nonlinear function. Let ~'(w) be a general 

function of the observed data Z(w). The optimal estimate Y(w), given a single 

observation Z(w), is found with the conditional expectation [Leo94]: 

E[(Y(w)- 9(w))~l = E[E[(Y(w)- 9(w))~l Z(w)]l 
o0 

= ~E[(Y(w)- Y(wll21Z(w)l P[Z(w)] dZ(w) 
---oo 

(5.6) 

The integrand in (5.6) is positive for all Z(w) ; therefore, the integral is minimized by 
minimizing E[(Y(w)-~'(w))2[Z(w)] for each w. This minimum is given by: 

~'(w) = E[Y(w) [Z(w)] (5.7) 

The general solution given by (5.7) yields the smallest possible mean square error for 

estimating Y(w), given a single observation Z(w). In general, the Wiener solution 

will have larger mean square errors. Further development of (5.7) gives: 
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oo 

9(w) = ElY(w)IZ(w)] = ~W(w) Py~,z~[W(w) IZ(w)l dW(w) 
--.oo 

(5.8) 

Here PA.B[AIB] indicates the pdf of A, given B. If the distributions of Y(w) and N(w) 
are known, then Py(~)~zcw)[Y(w)IZ(w)] can be determined via Bayes' rule: 

Pyc~),zc~)[Y(w) IZ(w)] = Pzc~)'YC~)[Z(w) IY(w)] Pyc~)[Y(w)] 
Pzcw~[Z(w)] 

PNIw)[Z(w)- Y(wl] Pyc~)[Y(w)l 
oo 

yPNc~)[Z(w)- Y(wl] Py(~)[Y(w)] dY(w) 
- o o  

(5.9) 

In (5.7), (5.8), and (5.9), the interpretation given to w is that of frequency. Note that 

this frequency need not necessarily be obtained by applying a Fourier transform to a 

signal. Other transforms, such as the DCT, wavelet transforms, and subband 

transforms, may well be used. 

Figure 5.1a shows a typical characteristic that results from (5.8). This 

characteristic is called a coring function. Sometimes this characteristic is also referred 

to as Bayesian optimal coring because of the relationship in (5.9) [Sim96]. In general, 

coring functions leave transform coefficients with high amplitudes unaltered, and 

the coefficients with low amplitudes are shrunk towards zero. Intuitively speaking, 

this is appealing. Coefficients with high amplitudes are reliable because they are 

influenced relatively little by noise. These coefficients should not be altered. 

Coefficients with low amplitudes carry relatively little information and are easily 

influenced by noise. Therefore, these coefficients are unreliable, and their 

contribution to the observed data should be reduced. 

L . ' 7  
, Z ( w )  

9(w) 

j $  
$S 

S 
J 

P 
S 

s s s s s 
ssssss~ 

Z(w) 

9(w) 

~ j p p J P '  

sssss~ 
Z(w) 

9(w) 

J 
p j i  

"/ s s 

, , s  s 

Z(w) 

(a) (b) (c) (d) 

Figure 5.1: Coring functions: (a) Bayesian optimal coring, (b) soft thresholding, (c) hard 
thresholding, (d) piecewise linear coring. 
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5.2.3 Heuristic coring functions 

Originally, coring was developed as a heuristic technique for removing noise. Three 
well-known heuristic coring functions are described here. 
Soft thresholding. Soft thresholding is defined by [Don95], [Pow82]" 

f'(w) = <g gn((Z(w)) ( IZ(w) l-T)) otherwiseif lZ(w) l> T (5.10) 

where the sgn(Z(w)) gives the sign (or phase) of Z(w). Figure 5.1b plots this coring 
function. 

Natural signals tend to have weak high-frequency components. Therefore, soft 
thresholding nullifies the high-frequency transform coefficients obtained from a 
signal. The result is that, besides the noise being removed, the slopes of edges are 
reduced and their rise time increases. For images this is perceived as blurring of 
edges in images. Soft thresholding has another effect, namely, it reduces contrast 
because it shrinks the magnitudes of all AC transform coefficients indiscriminately. 
Hard thresholding. Hard thresholding is defined by [Don95], [Pow82]: 

Y(w)=(Z(w) otherwiseif lZ(w) l> T (5.11) 

Figure 5.1c plots this coring function. A disadvantage of hard thresholding is that it 
introduces spurious oscillations or so-called ringing patterns. These occur because 
hard thresholding not only removes noise energy at selected frequencies, but also 
signal energy. The removal of signal energy can be viewed as adding impulses to the 
original, unimpaired signal. The amplitudes of these impulses are equal to those of 
the original signal contents, but the signs are opposite. In the synthesis stage, where 
the signal is transformed back from the frequency domain to the spatial domain, the 
impulse responses of the synthesis filters are superimposed on the result. These 
superimposed filter responses are perceived as ringing. 
Piecewise linear coring. A compromise between soft thresholding and hard 
thresholding is piecewise linear coring: 

/Z(w) 
Y(w) = { LZ(w-) I-T~ 

N0 vl - T~ 7", sgn(Z(w)) 

iflZ(w) I> T1 

if T o ___1Z(w)I___ T 1 (5.12) 

otherwise 
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Figure 5.1d plots this function. Piecewise linear coring is intended to reduce the 

ringing artifacts resulting from hard thresholding on one hand and to preserve low- 

contrast picture detail, which is lost by soft thresholding, on the other hand [Pow82]. 

5.3 Coring image sequences in wavelet and subband 
domains 

The frequency domain implementation of the Wiener filter as described in Section 

5.2.1 can be viewed as an implementation of coring: each observed frequency 

component is adjusted according to a characteristic that is determined by the PSDs of 

signal and noise. However, the use of the Fourier transform as a decorrelating 

transform has the disadvantage of forfeiting knowledge of the spatial locations of 

dominant signal components. This implies that the cored signal is not adapted to 

local statistics, but depends on global statistics only. Clearly, this is suboptimal 

because local statistics can be very different from the global statistics. 

The objective of transforming data prior to coring is to separate the signal from 

the noise as well as possible. To get optimal separation of the signal and the noise, it 

is advantageous to use transforms that compact the signal energy as much as 

possible [Don94b], [Nat95]. Unlike the Fourier transform, scale-space representations 

[Bur83], [Ma189], [Wan95] allow local signal characteristics at different scales to be 

taken into account. In the case of noise-reducing image sequences, adaptation to 

local statistics is advantageous due to the nonstationary, scale-dependent nature of 

natural images. 

This section describes two 2D scale-space decompositions. The first is a 

nondecimated wavelet transform known as the algorithm ?z trous [Ho189], [Vet95]. The 

second is a subband decomposition based on directionally sensitive filters that is 

known as the Simoncelli pyramid [Sim92]. Next, it is shown how these 

decompositions can be extended to three dimensions by adding a temporal 

decomposition step. The 3D decompositions provide good separation of the signal 

and the noise. Which of the two scale-space-time decompositions is most suited for 

noise reduction by coring is investigated. 

5.3.1 Nondecimated wavelet transform 

The discrete wavelet transform (DWT) is a popular tool for obtaining scale space 

representations of data. A popular implementation of the DWT is the decimated 

DWT in which the transformed data have the same number of coefficients as the 
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input data. A problem with this transform, however, is that shifting of the input 
image spatially, may lead to entirely different distributions of the signal energy over 

the transform coefficients [Sim92], [Vet95]. This is caused by the critical subsampling 

applied in decimated wavelet transforms. Therefore, shifting the input image can 

lead to significantly different filtered results. This is undesirable because it can lead 

to temporal artifacts when in the processing of image sequences. 

Shift invariance is obtained by nondecimated DWTs. An algorithm that 

generates nondecimated DWTs is the algorithm ~ trous ("algorithm with holes") 

[Ho189]. Because no subsampling is applied in this scheme, the decomposition is 

significantly overcomplete. For example, a three-level decomposition of an image 

with N pixels gives 10N transform coefficients. 

In 
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Figure 5.2: Overview of the algorithm ?z trous: a 2D wavelet analysis~synthesis scheme. The 
total decomposition is obtained by inserting the complete filter bank into the white spot near 
the bottom of the figure recursively. At each recursion level, index is incremented. 

Figure 5.2 gives a schematic overview of the algorithm a trous. First the input image 

is filtered twice in horizontal direction; once with the high-pass analysis filter and 

once with the low-pass analysis filter. Next, the filtered data are filtered again with 

the same high-pass and low-pass analysis filters, but now in a vertical direction. The 

data that result from low-pass analysis in both the horizontal and vertical directions 

are decomposed again with the same analysis filter banks. However, this time the 

analysis filters are dilated by inserting 2 k-1 zeros between each of the filter 



1 O0 CHAPTER 5 

coefficients at recursion level k, with k = 1, 2 . . . .  for the recursion levels. Initially, the 

algorithm starts out with k = 0, and no zeros are inserted between the filter 

coefficients. For the synthesis part of the filter bank, again 2k-lzeros are inserted 

between each of the coefficients of the high-pass and low-pass synthesis filters at 

each recursion level k. 

The algorithm h trous uses bi-orthogonal wavelet pairs. This means that 

synthesis filters used in the reconstruction phase are not identical to the analysis 

filters. Table 5.1 gives the filter coefficients for the analysis and synthesis filters. 

These are symmetric FIR filters, therefore they are linear phase filters. This is a useful 

property in image processing because nonlinear phase filters degrade edges [Ant94]. 

Figure 5.3 gives the transform coefficients of the 2D algorithm-a-trous image 

decomposition of a test image. One half of this image consists of a frequency sweep, 

the other half shows half a disc that is partially contaminated by additive white 

gaussian noise. Figure 5.3 shows a number of things. First of all, the signal energy is 

concentrated in different "frequency" bands, depending on the orientation and the 

frequency of the local signal components. Furthermore, the spatial location of signal 

components is preserved; the spatial location of various signal components are 

clearly visible in Figure 5.3. This is in contrast to the Fourier transform, which 

indicates the presence of specific frequencies within a signal, but their localization is 

not known. Finally, the noise energy is spread out over all frequency bands and 

orientations. 

The filter banks used by the algorithm h trous are quite short and they are 

therefore not ideal in terms of cut-off frequency and signal suppression in the stop 

bands. The result is spectral leakage. Figure 5.3 shows that energy from high- 

frequency signal components are visible in low-pass subbands and vice versa. 

5.3.2 Simoncelli pyramid 

The Simoncelli pyramid is a subband decomposition scheme based on directionally 

sensitive filters [Sim92]. This means that the distribution of signal energy over 

frequency bands depends on the orientation of structures within the image. Shift 

invariance is accomplished by avoiding aliasing effects by ensuring that no 

components with frequencies larger than ~r/2 are present before 2:1 subsampling. 

The Simoncelli decomposition is significantly overcomplete; the number of 

transform coefficients is much larger than the number of pixels in the original image. 

For example, a four-level pyramid decomposition with four orientations (four times 

four sets of high-pass coefficients and one set of low-pass coefficients) of an image 

with N pixels gives about 9.3N coefficients. 
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Figure 5.3: Top three rows: transform coefficients from decomposed image at levels O, 1, and 
2. Bottom right: low-pass residual. Bottom left: original input image. To improve visibility, 
the contrast has been stretched for all images. 
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Low-Pass 

Analysis 

Low-Pass 

Synthesis 

High-Pass 

Analysis 

High-Pass 

Synthesis 

-1/8 2/8 6/8 2 / 8 - 1 / 8  

1/4 1/2 1/4 

1/8 -2/8 1/8 

1/4 2 / 4 - 6 / 4  2/4 1/4 

Table 5.1: Coefficients for the bi-orthogonal wavelet pairs used by the algorithm ?z trous. 

Figure 5.4 shows the 2D Simoncelli pyramid (de)composition scheme. The filters 

L k (w), H k (w) and F~ (w) are the 2D low-pass, high-pass, and directional (fan) filters, 

respectively. The filters L 0(w), H 0(w), L a(w) and H l(w) are self-inverting, linear- 
phase filters. Self inverting-filters have the pleasant property that the analysis and 

the corresponding synthesis filters are identical. 

The following constraints apply to Lo(w ), H0(w ), La(w ) and Hi(w): the 
aliasing in the low-frequency (subsampled) bands is minimized (5.13), all radial 

bands have a bandwidth of one octave (5.14), and the overall system has unity 

response, requiring that low and high-pass filters are power complementary (5.15): 

L l(w) --~ 0 for w > -  (5.13) 
2 

L0(w) = Ll(2W ) (5.14) 

Ini(w ) 12-blHi(w) ] 2= 1 (5.15) 

The 2D filters can be obtained from 1D linear phase FIR filters by means of the 

McCLellan transform [McC73]. Equation (5.14) can be used to obtain the 2D filter 

Lo(w ) from L l(w). A conjugate gradient algorithm was used to find the filters Ho(w) 
and H a(w) under the constraints set by (5.15) [Pre92]. 

For practical purposes, the high-pass filters Ho(w ) and Ha(w ) are directly 

combined with the fan filters Fa(w ), F2(w ), Fg(w) and F 4 (w). Taking the 2D Fourier 

transforms of H 0 and H 1, multiplying the transform coefficients with flO-Om) in 

(5.16), and taking the inverse Fourier transforms gives the required combination. In 

(5.16), 0m is the center of the orientation of the filter. 
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Figure 5.4: The Simoncelli analysis~synthesis filter bank. The total decomposition is obtained 
by recursively inserting the contents of the dashed box into the white spot near the bottom of 
the figure. 

1 

f(O-O~)= cos(410-0~ 

o 

Vl0-0 I< - -  
m 16 

I) V ! <10-0ml< 3~r (5.16) 
16 16 

otherwise 

The first filtering stage with filters Lo(w ) and Ho(w ) is omitted for the experiments 
in this chapter to reduce the number of computations. This also reduces the number 
of transform coefficients by 4N, where N is the number of pixels in a frame. 
Figure 5.5 shows an example of a decomposition using a pyramid with three levels 
and the same test image as in the previous section. The 2D filter used banks 

consisting of 21x21 taps. 
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Figure 5.5:Top: pyramid decom- 
position of the input image showing 
the output of the directionally 
sensitive fan filters and the residual 
low-pass image. The contrast has been 
stretched to improve visibility. Note 
that the local signal energy is 
concentrated in one or two ori- 
entations, whereas the noise energy is 
spread out over all orientations. 
Bottom: test image that was also used 
in Figure 5.3. 
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The 2D pyramid decomposition with four orientations has a number of advantages 

over a 2D nondecimated DWT. First, the local separation between signal and noise is 

better for the pyramid decomposition than for the DWT. At each level of the 

pyramid decomposition, the noise energy is distributed over four frequency bands, 

and the energy of the image structures, such as straight lines, is distributed over one 

or two frequency bands. In contrast, at each decomposition level of the DWT, the 

energy of the image structures is distributed over two or three frequency bands, and 

the noisy energy is also distributed over three frequency bands. Exceptions are 

horizontal and vertical image structures; their energy is concentrated in one 

frequency band only. Improved separation between signal and noise means 

removing more noise and distorting the signal less. 

The second advantage of the 2D pyramid decomposition is that the three-level 

pyramid decomposition gives 5.3N coefficients; this is less overcomplete than a shift 

invariant nondecimated DWT that gives 10N coefficients for the same number of 
levels. 

Finally, for the particular implementation of the Simoncelli pyramid in this 

chapter, there is much less leakage than for the algorithm ~ trous. This is a result of 

the constraint set by (5.13) in combination with the relatively large filter banks. 

5.3.3 An extension to three dimensions  using wavelets 

The 2D decorrelating transforms described in the previous sections spatially separate 

signals from noise. It will be made apparent that this separation can be improved by 

including motion-compensated temporal information. If the signals are stationary in 

a temporal direction, the motion-compensated frames from t -n  . . . . .  t+m should all be 

identical to frame t, except for the noise terms. The (linear) pyramid decompositions 

of these images should also be identical, again except for the noise terms. This means 

that a set of transform coefficients at scale-space locations corresponding in a 

temporal sense should consist of a 1D DC signal plus noise. This signal can be 

separated into low-pass and a high-pass terms, e.g., by the DWT. 

Note that, ideally speaking, one would use long analysis filters to obtain good 

separation of the signal and noise components in the temporal decomposition step. 

However, inaccuracies of the motion estimator and the fact that areas become 

occluded or uncovered form a limiting factor to the length of temporal filter used. 

The steps to a 3D spatial-temporal decomposition/reconstruction scheme are 

summarized by Figure 5.6. Large reductions in computational effort can be obtained 

for steps 4a and 5a by realizing that, for the purposes of this chapter, it is only 
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necessary to reconstruct the current frame t. Reconstructions of decomposed motion- 

estimated frames are not of interest here, and therefore they need not be computed. 

Analysis: 
la. 

2a. 

3a. 

Synthesis: 
4a. 

5a. 

Calculate the motion compensated frames from frames at 

t-n, ..., t+m 

Calculate a 2D decomposition for each (motion compensated) 

frame. 

Apply the DWT in the temporal direction to each set of 

coefficients at tcorresponding scale-space locations. 

Apply the inverse DWT in the temporal direction to each set 

of wavelet coefficients to reconstruct the coefficients of the 

spatially decomposed frame at t. 

Apply the synthesis stage of the 2D filter bank. 

Video In 

Frame Out 

Motion 
�9 -, Compensate 
"[ (Step la) 

I 

. . . . . . .  -I~ 2D 
.i Decomposition 
I121 

. . . . . . . .  "~t (Step 2a) 

2D 
Reconstruction 

(Step 5a) 

3D Spatio-Temporal 
Decomposition 

(Step 3a) 

l 
3D Spatio-Temporal 

Reconstruction 
(Step 4a) 

Figure 5.6: Summary of 3D signal decomposition scheme. 

5.3.4 Noise reduction by coring 

The structure of the proposed decomposition/reconstruction algorithm offers 

several possibilities for coring transform coefficients by inserting the steps 

summarized in Figure 5.7. Thi~ figure represents a framework for 3D scale-space 

noise reduction by coring. 
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The generally nonlinear nature of coring makes it difficult to determine the 

combination of coring characteristics for steps 2b, 3b, and 4b required for optimal 
noise reduction. Another question is whether optimal coring requires coring in all 

steps 2b, 3b, and 4b. To exploit the temporal decomposition, coring is certainly 

necessary in step 3b. However, this alone cannot be optimal as is explained in a 
moment. The conclusion is that spatial noise reduction is required as well. 

Coring the spatio-temporal transform coefficients only (step 3b) is suboptimal 

because this coring operation can be viewed as a switching filter [Kle94] that turns 

itself on and off automatically, depending on the accuracy of the data. Suppose 

coring is applied to the spatio-temporally decomposed signal, and suppose there is 

an error in the motion estimation process that results in large frame differences. In 

such a case, all the coefficients resulting from the spatio-temporal decomposition 

have high amplitudes. The spatio-temporal coring function tends to keep high 
amplitudes intact and will not remove a lot of noise in such circumstances; the filter 

is effectively switched off locally. 

Coring: 

2b. 

3b. 

4b. 

Core the spatial transform coefficients (except those in the 

DC band) for all frames. 
Core the high-pass spatio-temporal transform coefficients. 

Core the spatial transform coefficients (except those in the 

DC band) of the current frame. 

Video I 
In .~[ Motion 

Compensate 

"1 (Step la) 

Noise Reduced Frame Out 

2D 
Decomposition 

(Step 2a) 

2D 
Reconstruction 

(Step 5a) 

Core 
Spatial 
Coeffs. 

(Step 2b) 

Core 
Spatial 
Coeffs. 

(Step 4b) 

3D Spatio-Temporal 
Decomposition 

(Step 3a) 

+ 
Core 

Spatio-Temporal 
Coefficients 

(Step 3b) 

3D Spatio-Temporal 
Reconstruction 

(Step 4a) 

Figure 5.7: Representation of the 3D scale-space system for noise reduction. 
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Step 2b applies optimal coring functions that are computed by (5.8) for each subband 

of a 2D decomposition. This requires estimating or assuming distributions for the 

signal and noise coefficients in each subband. In step 3b, hard thresholding is used 

for coring the spatio-temporal coefficients because it fits in nicely with the switching 

filter idea. If a spatio-temporally decomposed coefficient is small, it is likely to be 

noise and it should be removed completely. If the coefficient is large, it is likely that 

the data were not stationary in a temporal sense and the coefficient should not be 

altered. 
The optimal coring functions in step 4b are much harder to determine because 

they depend on the spatial coring applied in step 2b and on the spatio-temporal 

coring applied in step 3b. The effect of the latter is particularly difficult to model due 

to its dependency on the quality of motion-compensated images. Therefore, rather 

arbitrarily, soft thresholding is applied in step 4b. Note that soft thresholding is 

preferred over hard thresholding because the latter tends to give disturbing ringing 

patterns as discussed earlier. 
Threshold selection. A good value for the hard thresholding in the spatio-temporal 

2 is the estimated variance of the noise in the high- threshold is Tst = 3ry hp, where rYhp 
pass coefficients. The motivation for this is the following. If the noise corrupting the 

image sequence is assumed to be additive, white, and gaussian, and if the motion 

compensation is perfect, then the high-pass coefficients contain noise energy only. In 

fact, the high-pass coefficients follow a zero-mean gaussian distribution. Setting all 
observed coefficients that lie within +3ry hp to zero effectively means that noise is 
removed from 99.7% of the high-pass coefficients. It is assumed that the variance of 
the high-pass coefficients is much greater than that of the noise, if the motion 
compensation is not perfect. Therefore, if the temporal intensity differences are large 

due to imperfect motion compensation, the signal will hardly be affected by the 

temporal coring. 
The threshold Ts for soft thresholding the spatial decomposition coefficients in 

step 4b is chosen so that the PSNR of the corrected sequence is maximal. In practical 

situations, T~ cannot be chosen to give the maximum PSNR due to the absence of an 

unimpaired original to serve as a reference. In this case, the value for T~ that gives 

the best visual quality of the noise reduced sequence is selected. 

Note that no threshold selection is required for the coring of spatial 

decomposition coefficients in step 2b because the coring functions are completely 

determined by the signal and noise distributions in each subband. 
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5.3.5 Perfect reconstruction? 

One of the characteristics of wavelets is that they allow for perfect reconstruction. 

Hence, the algorithm ~ trous gives perfect reconstruction. Unfortunately, this is not 

the case for the Simoncelli pyramid. The Simoncelli pyramid is a linear phase 

function, self-inverting and power complementary in the ideal case. In practice, self- 

inverting linear-phase FIR filters with more than two taps cannot possess both the 

power-complementary property and the perfect reconstruction (PR) property [Vai92]. 

If the power-complementary property is retained, the absence of PR is reflected by 

ringing near sharp edges in reconstructed images. The errors introduced due to the 

lack of PR is represented by the difference between the original and reconstructed 

images. 

The following investigates how the effects of lack of PR can be minimized. Let 

Z and ~" denote a decomposed noisy image before and after coring, respectively. If 

the (linear) reconstruction operator is denoted by R[.], the noise reduced image ~ is 

given by: 

= R[g] = R[Z + 9 -  Z] = R[Z-  ~(Z)]  = R[Z]-  R[~(Z)] (5.17) 

where /Q(Z)= Z - Y  can be regarded as an estimate of the noise realization that 

corrupts the original data. Ideally speaking, R[Z] equals z, therefore: 

= z -  R[/~/(Z)] (5.18) 

This result shows that reconstructing an image of the noise realization and 
subtracting it from the noisy input image reduces the effects of lack of PR. This is 

done instead of directly reconstructing the noise-reduced image from the cored 
transform coefficients. Hence, the problem of lack of PR for the original image is 

shifted to lack of PR for the noise realization. This approach, however, introduces no 

artifacts, such as ringing, that are associated with image structures if the noise is 

independent of the image contents. Furthermore, because the noise has a lower 

variance than that of the image contents, the effects of lack of PR for the recon- 

structed noise signal are much less (or not) visible. 

5.3.6 Experiments and results 

This section evaluates the noise-reduction capabilities of the wavelet and pyramid 

noise-reduction schemes described in Section 5.3.4. In both cases, the 2D 
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decompositions are extended to three dimensions by the same bi-orthogonal wavelet 

used by the algorithm h trous (Table 5.1). To get some indication of the gains 

achieved by 3D filtering over 2D filtering, the test sequences are processed twice by 

each filter: once with coring of the spatio-temporal decomposed coefficients (step 3b) 

and once without. To reduce the computational complexity, no coring is applied to 

the spatially decomposed motion-compensated frames, i.e., step 2b is omitted. 

Sequence Noisy 

Sequence 

(dB) 

h trous 

Spatial 

/t trous 

Temporal+Spatial 

Pyramid 

Spatial 

Coring 

(dB) 

3.6 

Coring 

(dB) 

4.1 

Coring 

(dB) 

3.8 Plane 25 33.0 

Plane 100 27.0 4.8 6.1 5.7 6.7 

Plane 225 23.5 6.0 8.3 7.0 8.5 

MobCa125 33.0 1.8 2.6 1.6 2.9 

MobCal 100 27.0 3.4 4.7 3.5 4.9 

MobCa1225 4.9 4.6 23.5 5.9 

Pyramid 

Temporal+Spatial 

Coring 

(dB) 

4.8 

6.1 

Table 5.2: PSNR of test sequences and increase in PSNR of noise reduced sequences using 
the Pyramid and Wavelet decomposition schemes with and without coring of spatio-temporal 
subband coefficients. 

Two test sequences are evaluated in this section. The first sequence is called Plane 
and shows a plane flying over a landscape. It contains fine detail, sharp edges, 

uniform regions, and a lot of motion. The sequence was originally recorded with a 

high-definition camera, and the images are very crisp. There are strong interlacing 

effects due to motion. The second test sequence is the well-known MobCal sequence, 

which does not display noticeable interlacing effects. Ideally, to avoid the effects of 

interlacing, one would apply motion-compensated de-interlacing [De194]. The noise- 

reduction filters would be applied to the de-interlaced frames. However, motion- 

compensated de-interlacing adds a lot of complexity to the noise-reduction system. 

Therefore, the Plane sequence is processed on a field-by-field basis instead of on a 

frame-by-frame basis. 

White gaussian noise, with variances 25, 100, and 225, has been added to the 

test sequences. Figure 5.8 shows an example of a noisy field from the Plane sequence 

and the filtered result obtained by 3D pyramid with both spatio-temporal and 

spatial coring. Table 5.2 lists the PSNRs of the test sequences and the increase in 
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PSNR for the filtered results. 

Considerable amounts of noise reduction are achieved by the filters. The best 

results are obtained by coring both the spatio-temporal coefficients and the spatial 

coefficients (step 3b and step 4b in Section 5.3.4), which gives an improvement 

ranging from 0.5 to 2.3 decibels over spatial filtering only. The magnitude of the 

improvements depend on the sequence, the amount of noise, and the spatio- 

temporal decomposition used. The performance of the pyramid filter is similar or 

better than that of the shift invariant wavelet filter in terms of PSNR in all cases. 

Visually speaking, the results given by the pyramid filter are better than those of the 

wavelet filter; the results are a bit sharper, and artifacts that result from filtering in 

the form of "low-frequency spatial patterns" are less visible. 

Figure 5.8: Top: noisy field from Plane sequence with noise variance 225 (PSNR = 23.5 dB). 
Bottom: filtered result from the 3D pyramid filter. (Sequence available by courtesy of the 
BBC). 



112 CHAPTER 5 

5.4 MPEG2 for noise reduction 

Consider a broadcasting environment in which noisy film and video sequences are 

digitally broadcast with an MPEG2 encoding system, as illustrated by Figure 5.9. It is 

assumed that no channel errors are introduced. MPEG2 encoding systems try to 

minimize the coding errors between input z(i) and output ~:(i). However, in the case 

of noisy image sequences, what they should be doing is minimizing the errors 

between the original, noise-free image y(i) and the output ~(i). When doing so, the 

MPEG2 encoding systems can be considered devices for simultaneous noise 

reduction and image compression. 

Noise 

y( i )~~  z(i)[  MPEG2 I ChannelJ MPEG2 

"kay '] Encode ] '7 Decode 

~(i) 

Figure 5.9: (left) MPEG2 encoding of noisy image sequences. 
Figure 5.10: (right) Example of quantization of AC DCT 
coefficients with a deadzone around zero. 

Quantized 
DCT 

rl 
r- 

r- 

] 
F IJ- 

DCT 

Let E(i) denote the error between y(i) and ~:(i). The aim of this section is to adjust an 
MPEG2 encoding system to minimize the error variance. The error variance can be 

expressed in terms of DCT coefficients: 

64 

E[e2 (i)]:  E[(y(i)- ~(i))21: ~ E[(y k (i ')- 7,(i' ))2] (5.19) 
k=l 

Here Yk(i') and Zk(i'), with k = 1, ..., 64, represent the 64 DCT coefficients of each 

8x8 data block within a frame. The column, row, and frame number of a data block is 

indicated by i'. 
Two basic approaches can be followed to minimize (5.19). In theory, these 

approaches give the same results. The first approach directly minimizes 

E[(y(i)-s As is shown in Appendix C, this approach is equivalent to 

determining optimal quantizers for the DCT coefficients of a noisy signal. The 

second approach is based on the fact that the problem of minimizing the overall 

error variance can be split into two parts for a communication system in which a 
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signal is distorted prior to (lossy) channel encoding [Wo170]. The first part consists of 
computing the conditional expectation for the true signal given the observed noisy 
data. The second part consists of designing an encoder that is optimal for the 

original, noise-free signal. 
In the particular case of Figure 5.9, the advantage of the second app roach is 

that, in principle, the encoder is already optimized for encoding noise-free signals. 

Therefore, it is not necessary to design new quantization tables as is required for the 

first approach. All that needs to be done for the second approach is to core the DCT 

coefficients following (5.8) prior to quantization, i.e., by replacing the observed DCT 

coefficients with the conditional expectation for the true DCT coefficients. This 

second approach is investigated further in this section. 
In fact, MPEG2 encoders implicitly core noisy DCT coefficients to some extent 

by incorporating a so-called dead zone in the quantizers for the coefficients of the non- 

intra-coded frames (Figure5.10) [Mit96]. As a result of the dead zone, DCT 
coefficients with small magnitudes are mapped to zero. However, note that the use 

of dead zones is suboptimal for noise reduction because they are not applied to all 
frames and because they do not address the noise on DCT coefficients with larger 

amplitudes. 

I Frame ,,..1 DCT ,..] Lookup Tables with I 
"1 Coring Functions I 

Encode 
�9 - as usual 

Figure 5.11: Coring of the DCT coefficients of I frames in an MPEG2 encoder. 

5.4.1 Coring I, P, and B frames 

I-frames. The MPEG2 system defines three frame types; namely, I frames and 

predicted P and B frames. The I frames are encoded by dividing the frames in 8x8 

blocks, applying the DCT to the blocks and quantizing the DCT coefficients (Chapter 

2). Two basic approaches can be followed towards coring the DCT coefficients of I 

frames. The first is to estimate the pdf for each DCT coefficient from the observed 

data for each frame, compute the conditional expectation for each coefficient 

according to (5.8), and replace the observed coefficients by these values. Computing 

optimal coring functions for each I frame of an image sequence is expensive in terms 

of computational complexity, and therefore it is expensive to implement in real-time 

hardware. 
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The second approach does not optimize the coring functions for each frame. 

Instead, fixed sets of coring functions are computed off-line and stored in the 

encoder as lookup tables (Figure 5.11). The coring functions are computed from a 

large set of images, so that on average the encoder gives the best results that can 

possibly be achieved under the condition of static lookup tables. This approach can 

be implemented in an MPEG2 encoder easily. Section 5.4.2 gives the details of this 

second approach. 

B and P frames. The B and P frames are predicted from frames coded previously. 

The frame differences between the predicted and current frames are encoded like I 

frames, i.e., by using DCTs and quantization. Finding the ideal coring coefficients is 

more difficult now because the signal and noise distributions of the frame 

differences are not known. These depend on the nonlinear coring and quantization 

of the frames coded earlier and on the quality of the motion estimation and 

compensation. 

Instead of coring the DCTs of the frame differences, as illustrated in 

Figure 5.12a, an alternative strategy is preferred in which the DCT and coring 

operation are performed prior to subtracting the current and predicted frames from 

each other. Figure 5.12b illustrates this alternative strategy. Note that the coring 

functions in Figure 5.12a,b are different from each other and that also the results 

given by the two approaches generally speaking are not identical. 

 ramein  [DCT I  'CookupWab,eswithl Encode 
i ..1 Coring Functions I - osusua, 

Predicted 
Frame 

(a) 

~ramein .J DeW I .J Lookup Tables with I . ~  Encode 
"~ I "1 C~176 " ~  ~asusual 

Predicted 
Frame 

(b) 

Figure 5.12: (a) Coring function applied to DCT of frame differences, (b) illustration of how, 
by sliding the DCT and the coring function in front of the subtraction, B and P frames can be 
cored as the I frames are. Note that the predicted frame is extracted from a coded frame that 
has already been noise reduced and need not be cored again. 
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Two points about the scheme in Figure 5.12b are noteworthy. First, the predicted 

frames have already been coded and hence they have already been noise reduced 

earlier on. Therefore it is not necessary to core the predicted frames again. Second, 

the optimal coring characteristics are identical to those computed before for the I 

frames. This means that only one set of lookup tables is required for the I, P and B 

frames. 

5.4.2 Determining the DCT coring functions 

This sections deals with computing the coring functions for the I, P, and B frames. As 

indicated in the previous section, the coring functions are computed from a large set 

of images, so that the encoder gives the best results that can be achieved on average 

with static lookup tables. Computing the coring functions consists of two steps. First, 

the distributions of the signal and the noise have to be determined. Next, the coring 

functions can be computed from (5.8) and (5.9). 

The noise corrupting the image sequences is assumed to be additive, white, and 

gaussian with known variance. The distributions of each of the 63 AC DCT 

coefficients are sometimes modeled by laplacian distributions [Jos95], [Rei83]. In 

practice, the generalized gaussian is more accurate [Bar98], [Sha95]. The DC 

coefficients are not cored because their conditional expectation depends too much on 

the specific sequence. The generalized gaussian distribution is given by: 

P(x)  = a e x p ( - b  lxl c ) (5.20) 

with: 

b c I dF(3 / c) 
a = ~  and b = - -  (5.21) 

2 F(1/c) c r V F ( 1 / c )  

where F(.) is the gamma function and cr is the standard deviation of the distribution. 

It can be seen from (5.20) and (5.21) that the generalized gaussian is completely 

determined by the shape parameter c and the noise variance ry 2 . The well-known 

gaussian distribution is obtained by letting c = 2; the laplacian distribution is 

obtained by letting c = 1. 

An efficient method for estimating the shape parameter c from a set of data 

based on second-order statistics is given in [Sha95]. Let Yk denote DCT coefficients 

2 of a set with coefficient number k = 1, ..., 64. The mean and the variance/a k and ry k 

of observed DCT coefficients with coefficient number k can be estimated directly 
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from the observed data. Let P k be: 

2 
O" k 

Pk = E2[ iYk _/akl] (5.22) 

The shape parameter c k for the distribution of DCT coefficient k is found by solving: 

F(1/Ck)F(3/G)  
['2(2/Ck) = Pk (5.23) 

Equation (5.23) can be solved efficiently with a lookup table that is generated by 

letting c k vary over the range of values that could possibly be expected for this 

parameter in small steps. Let c k vary from 0.1 to 2.5 with a step size of, say, 0.01 for 

these steps. Then the generalized gaussian approximations to the distributions of the 

2 with (5.21) observed DCT coefficients are readily obtained from the c k and the cr k 

and (5.20). 

Figure 5.13: (a) Shape parameters and (b) standard deviations estimated for the DCT coeffi- 
cient. 

Figure 5.13 shows the c k and the cr k that are estimated from the DCT coefficients 

obtained from a set of 18 different images. The scanning order in a 2D block of DCTs 

is taken from left to right (increasing horizontal frequency) and from top to bottom 
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(increasing vertical frequency); see Figure 5.14. Except for the first DCT coefficient, 

the DC component, it can be seen that c k is a bit smaller than 0.5. The standard 

deviation of the coefficients decreases with increasing frequency, which is consistent 

with the well-known fact that natural images contain less energy in high frequencies 

than in low frequencies. 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 
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_150 i ~  .............. , . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . .  
-150 - t  O0 -50 0 50 1 O0 150 

Observed DCT value 

Figure 5.14: (left) Numbering of DCT coefficients in an 8x8 block. 
Figure 5.15: (right) Coring function for DCT coefficient 8, computed for noise with variance 
1 O0 corrupting the image. 

Figure 5.16: Plot of part of the coring functions for all 64 DCT coefficients, computed for 
noise with variance 100 corrupting the image. 
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Figure 5.15 shows the coring function computed for DCT coefficient number 8 for 

noise with variance 100 corrupting the image. In this figure, small values are cored 

towards zero; larger values are altered less. This confirms the intuitive assumption 

that data with small amplitudes are noisy and unreliable, and they should therefore 

be discarded. Figure 5.16 plots the coring functions for all 64 DCT coefficients, again 

with noise with variance 100 corrupting the image. As already mentioned, the DC 

terms are not cored; hence the 45 degree line for this DCT coefficient. It can be seen 

that coefficients representing higher spatial frequencies are cored towards zero more 

strongly than coefficients representing lower spatial frequencies. This, again, 

matches well with the fact that natural images contain less energy in high frequen- 

cies than in low frequencies. 

The coring functions depend on the noise variance. A number of lookup tables 

are computed for different noise variances in a practical situation. The MPEG2 

encoder selects the lookup table that corresponds best with the actual noise variance 

in an image sequence. 

5.4.3 Experiments and results 

For the experiments, the standard test model 5 (TM5) MPEG2 encoder [IEC93] was 

adjusted so that the DCT coefficients are cored using lookup tables, as described in 

the previous sections. This section describes two sets of experiments. The same test 

sequences are used in Section 5.3.6. 

The first set of experiments evaluates the performance of the adjusted TM5 

encoder in terms of the PSNR when applied to test sequences with varying amount 

of noise. Figure 5.17a shows the scheme used for measuring the PSNR of the 

corrected sequences. Figure 5.17b,c plots the PSNRs for bitrates ranging from 2 

Mbit/s  to 15 Mbit/s. The results show that the PSNRs of the filtered and coded 

sequences are considerably higher at the higher bitrates than those of the noisy input 

sequences. 

The PSNRs of the corrected sequences increase more rapidly with increasing 

bitrate at low bitrates than at high bitrates. Specifically, the curves for test sequence 

with noise variance 100 and 225 are quite flat over the range from 4 Mbit/s  to 15 

Mbit/s. This contrasts to the PSNRs for noise free sequences, which increase steadily 

with increasing bitrate. This implies that there is an "early" saturation point for the 

bitrate in noisy image sequences. Encoding with bitrates above the saturation point 

gives only marginal improvements in image quality. 

By comparing the results in Figure 5.17, at for instance 8 Mbit/s, to those in 

Table 5.2, it can be seen that the 3D pyramid and wavelet filters outperform the 
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adjusted MPEG2 encoder in terms of PSNR. However, the adjusted MPEG2 encoder 

is basically a 2D filter. It can be seen that its performance is similar to that of the 2D 

pyramid and 2D wavelet filters. 

The second set of experiments investigates whether the adjusted TM5 encoder 

performs better than the standard encoder in combination with prefiltering, e.g., 

with the 3D pyramid noise-reduction system. It could be imagined that even though 

the 3D pyramid filter and the 3D wavelet filter on their own outperform the adjusted 

MPEG2 encoder, their superior quality may be lost due to quantization errors 

introduced by the standard encoder. Another question is how the performance of the 

adjusted MPEG2 encoder compares to the standard TM5 MPEG2 encoder with a 

dead zone when it is applied to a noisy sequence. 

Noise Bitrate 
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a ~ a Original 
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o o MobCal lO0 
o o MobCa1225 

PSNR (dB) 
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Figure 5.17: (a) Scheme for measuring PSNRs of coded noisy test sequences. Results for (b) 
Plane and (c) MobCal sequences with the adjusted MPEG2 encoder and coring. The noise 
variance in the noisy sequences were 25, 100, and 225, which correspond to PSNRs of 33.0, 
27.0, and 23.5 dB, respectively. 
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These questions are investigated, using the Plane and MobCal sequences to which a 

moderate amount of noise (variance 100) was added. Figure 5.18 plots the PSNRs as 

a function of the bitrate of the noisy test sequences after encoding by the standard 

TM5 with and without prefiltering by the 3D pyramid filter. The PSNRs that result 

from applying the adjusted TM5 coder to the noisy sequences are also shown. 

Finally, the PSNRs of the coded original, noise-free sequences are plotted as a 

reference of what can maximally be obtained. 
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Figure 5.18: (a) PSNR vs. bitrate for the original Plane sequence, noisy Plane sequence 
(noise variance 100), and noise-reduced Plane sequence (filtered by the 3D pyramid filter) 
encoded by the standard TM5 MPEG2 encoder. Also shown is the PSNR of the noisy Plane 
sequence that was encoded and noise reduced simultaneously by the adjusted MPEG2 
encoder with coring. (b) As before, but now for the MobCal sequence. 

Figure 5.18 indicates that prefiltering sequences with a moderate amount of noise 

prior to encoding with the standard TM5 encoder gives a PSNR that is maximally 

one decibel higher than when simultaneous filtering and encoding is done by the 

adjusted TM5 MPEG2 encoder. It can also be seen from Figure 5.18 that the standard 

TM5 encoder (without prefiltering) also functions as a noise reducer at low bitrates. 

At 3 Mbit/s, the PSNR of the coded noisy Plane sequence is about 3.5 dB higher than 

that of the noisy original. This number is 1.5 dB for the MobCal sequence. The 

PSNRs decrease for these sequences at higher bitrates. This behavior is not 

surprising. The encoder applies a coarse quantization at low bitrates and much noise 

energy is removed by the dead zone. The encoder is capable of encoding the signal 
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and the noise more accurately at higher bitrates, so that the noise part of the signal is 

preserved better. In the limiting case, at very high bitrates, the noisy sequence is 

encoded without errors, and the PSNR equals 23.5 dB. 

5.5 Conclusions  

This chapter shows that coring is a powerful technique for noise reduction. A 2D 

shift invariant wavelet filter and the 2D Simoncelli pyramid were introduced. These 

filters were extended in the temporal dimension so that temporal information, as 

well as spatial information, in image sequences could taken into account in the noise 

reduction process. The spatio-temporal decomposition allows temporal filtering of 

the DC bands of the 2D Simoncelli pyramid and the 2D DWT transforms without 

introducing severe blur or other artifacts. Two-dimensional scale-space noise 

reduction filters have no way of filtering the DC bands by means of coring. 

The noise reduction capabilities of the Simoncelli pyramid outperforms those 

of the shift invariant DWT due to the minimal aliasing and its enhanced directional 

sensitivity. However, the difference in performance in terms of increase in PSNR can 

be considered marginal if one takes into account the increase in complexity for the 

pyramid filter compared to the wavelet filter. 

Even though the 3D pyramid filter as presented in this chapter is a complex 

and expensive filter to implement, it is nevertheless a useful one. Visually speaking, 

the results obtained by the pyramid filter are better than those obtained from the 

shift invariant wavelet filter. It can be applied when good quality noise reduction is 

absolutely necessary, i.e., when processing time is less important than image quality. 

It can also be used as a benchmark for the results obtained by other filters. 

This chapter also shows that the MPEG2 scheme can easily be adapted to 

perform simultaneous noise reduction and compression. The extra costs of the 

adapted scheme, compared to a standard MPEG2 encoder, consist of implementing 

lookup tables and an extra DCT operation for the B and P frames. This is a cheaper 

solution than the pyramid filter or the wavelet filter and it gives reasonable 

performance. In fact, the experiments indicate that, if a noisy image sequence is to be 

encoded, the difference between encoding the prefiltered sequence and encoding the 

noisy sequence with the adapted encoder is less than one decibel over a large range 

of bitrates. In this case, whether or not prefiltering is a cost-effective solution 

depends on the required quality of service. 
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Chapter 6 

Evaluation of restored 
image sequences 

6.1 Introduction 

Chapter 1.1 explains the motivation for restoration of archived film and video. It is 

stated there that image restoration improves the perceived (subjective) quality of 

film and video sequences and that restoration also leads to more efficient 

compression. This chapter experimentally verifies the validity of these two 

assertions. Section 6.2 describes the methodology that is used in two sets of 

experiments for validating the assumptions mentioned. The first set of experiments 

is aimed at verifying that image restoration indeed improves the perceived quality 

of impaired image sequences. These experiments are done with test panels. The 
second set of experiments is aimed at verifying that image restoration indeed 

improves the coding efficiency. This can be done with test panels, or, as is done in 

this chapter, by numerical evaluation. Section 6.3 describes and discusses the 

experimental results. 

6.2 Assesment of restored image sequences 

6.2.1 Influence of image restoration on the perceived image quality 

An important reason for image restoration is that it improves the image quality as 

perceived by humans. Whether the underlying assumption is indeed true can only 

be determined by having human observers compare restored sequences to the 
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corresponding impaired sequences. So far, automatic validation (without human 

beings) is not possible: there are no mathematical models that can adequately model 

human perception of images in all their aspects. 

The International Telecommunication Union (ITU) has standardized a number of 

methods for evaluating image sequences by test panels. For instance, the double- 

stimulus continuous quality-scale (DSCQS) method is well-known [ITU95]. This 

method measures the relative difference in quality of an impaired sequence given 

the original, unimpaired image as a reference. The DSCQS method is useful for 

comparing the performance of various restoration systems. 

At this point, the aim is not to compare the performance of different restoration 

systems. Here, the central question is whether the image restoration algorithms 

presented in previous chapters improve the perceived image quality. A method 

simpler than the DSCQS method can be used for finding an answer to this question. 

The method used here is the two alternatives forced choice (2AFC) method [Al183]. The 

2AFC method is often used in television broadcasting environments to determine at 

what point a transmission system introduces visible distortions in the transmitted 

images or image sequences. In the context of image restoration, this method is not 

used to determine whether there are visible differences between two sequences, but 

to determine which of the two sequences have the highest perceived quality. 

A B A B 

Sequence 

Grey 

Decide 

Time 

Figure 6.1" Overview of 2AFC testing. 

In the 2AFC method, the members of a test panel are shown pairs of image 

sequences A and B twice, as illustrated by Figure 6.1. One of the sequences is the 

impaired sequence, the other is the restored sequence. Which is which is random. 

The duration of each sequence is approximately 10 seconds. Between showing 

sequences A and B, the screen is blanked to a mid-gray value for 2 seconds. After a 

pair of image sequences has been viewed for the first time, the screen is blanked to a 
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mid-gray value for 5 seconds. Then, sequences A and B are shown again. If was the 

impaired sequence in the first viewing, then it is also the impaired sequence in the 

second viewing. The same is true for B. After viewing the sequences the second time, 

the assessors must indicate which sequence has the better visual quality. 

For all experiments in this chapter, differences between the impaired and the 

corrected sequences are clearly visible. The outcome of 2AFC testing is determined 

by one of two cases. In the first case, a majority of the votes is given to either A or B. 

This indicates a general consensus on whether the perceived quality of the corrected 

sequence is better than that of the impaired sequence. In the second case, about 50% 

of the votes is given to each of the sequences, and there is no general consensus on 

which sequence (impaired or restored) is better. The second case can occur, for 

example, in the case of noise reduction. It is well known that some people prefer a 

noisy image over a slightly blurred noise-free image. The noise gives an illusion of 

increased sharpness. Other people prefer a noise-reduced image, even if it is slightly 

blurred. 

6.2.2 Influence of image restoration on the coding efficiency 

This section describes experiments that can be carried out to verify that image 

restoration indeed does lead to more efficient image compression. Before it can be 

determined how much more efficient one image sequence is compressed with 

respect to another, a definition for the increase in coding efficiency is required. 

Let AQ denote the increase in coding efficiency between a corrected image 

sequence and an impaired image sequence. AQ can be defined in two ways. The 

first definition relates AQ to the distortion introduced by a codec set to a fixed 

bitrate. The second definition relates AQ to the bandwidth required by a codec to 

compress a sequence given the allowable distortion. 

AQ in terms of coding accuracy. Figure 6.2 proposes an experimental setup that can 

be used for measuring the increase in coding efficiency in terms of how accurately 

the corrected and the impaired image sequence are coded with respect to each other. 

Let ~0(i) and ~c(i) be restored image sequences before and after coding, 

respectively. Similarly, let Zo(i ) and z~(i) be impaired image sequences before and 

after coding, respectively. In Figure 6.2, the restored image sequence is encoded at a 

constant bitrate. The PSNR computed between the codec input and output is given 

by PSNR[~ o, Yc ]- The impaired image sequence is encoded at the same bitrate. In this 

case, the PSNR computed between codec input and decoded output is given by 

PSNR[z o, z c ]. AQ is now defined by: 
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AQ = PSNR[~o, ~ ]-  PSNR[z o, z c ] = 

2242 2242 
=10log 1 -10log 1 

~ - ~  (Yo (1)- Yc (i))2 N ~ (z~ Zc(i))2 
i i 

(9o(i)- !)~(i)) 2 

(6.1) 

From (6.1) it can be seen that AQ is a function of the ratio between the energy of the 
coding errors in the impaired image sequence to the energy of the coding errors in 
the corrected image sequence. If AQ > 0, the corrected sequence is coded with fewer 

errors than the impaired sequence. If AQ < 0, the corrected sequence is more difficult 

to code than the impaired sequence and the compression errors are larger. 
It is emphasized here that the coding errors in ~c(i) and zc(i ) are computed 

between the input and output of the codec. The errors are not computed with 
respect to a ground truth, i.e., an unimpaired original. In practice, no unimpaired 
references exist for archived film and video material. 
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Figure 6.2: Method for measuring the difference in coding efficiency on the basis of PSNR. 

AQ in terms of bandwidth. The definition of AQ in terms of bandwidth is given by 

the difference in bitrate for the coded corrected image sequence and for the coded 

impaired image sequence: 
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AQ = Bitrate[impaired]- Bitrate[corrected] (6.2) 

Here, if AQ> 0, the corrected sequence requires fewer bits for coding than the 

impaired sequence. If AQ < 0, the corrected sequence is more difficult to code than 

the impaired sequence and it requires more bits. Obviously, AQ can only be given a 

meaningful interpretation if it is measured on condition that the bitrates selected for 

coding the impaired and corrected sequences are related in a meaningful way. The 

constraint set here for measuring (6.2) requires that the codec introduces the same 

amount of distortion to the impaired as to the corrected sequence. 

I 1 
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Sequence 
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selected by assessor 
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1 
@ 

Corrected 
Sequence 

Figure 6.3: Setup for measuring the increase in coding efficiency using human assessors. 

This raises the question of how the distortion introduced by a codec should be 

measured. Ideally, the measured distortion is related to the perceived image quality. 

This requires involving human observers to determine (6.2) with, for instance, the 

setup proposed in Figure 6.3. In this setup, the impaired image sequence is coded by 

an MPEG2 codec set to a fixed bitrate. The impaired sequence is restored and coded 

by an MPEG2 codec of which the bitrate is controlled by an assessor. The codecs are 

synchronized to compensate for the delay introduced by the restoration system. 

Their outputs are displayed on two calibrated monitors. During the experiment, the 

task of the assessor is to set the bitrate of the codec he/she controls to a level such 

that the perceived quality of the coded corrected sequence is equal to that of the 
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coded impaired sequence. The difference in bitrate of the two codecs gives the 

increase (or decrease) in coding efficiency given by the image restoration process. 

Note that the type of artifacts in the coded impaired and corrected sequences 

can be different at the bitrates at which the assessor rates the perceived image 

quality the same. For instance, consider a noisy image sequence coded at a bitrate at 

which the codec does not introduce visible distortions. The corrected, noise free 

sequence can be coded at a lower bitrate. At a certain point this bitrate is so low that 

blocking artifacts start to appear. It is around this point that the assessor will begin 

to prefer the coded noisy sequence over the coded corrected sequence. 

The method for measuring the improvement in coding efficiency with human 

assessors requires a fair amount of calibrated and synchronized equipment. An 

alternative method is to measure the distortion with mathematical measures based 

on the MSE. Obviously, the results will be different from those obtained by human 

assessors. In this case, a scheme similar to that in Figure 6.2 is used for measuring 

AQ. First, the corrected sequence is coded at a fixed bitrate. Next, the bitrate for 

coding the impaired sequence is searched so that PSNR[~o,yc] equals PSNR[zo,Z<], 
i.e., so the same amount of compression errors have been introduced into the 

corrected and impaired sequence. Again, as in (6.2), AQ is given by the difference in 

bitrates. 

As a final remark, it should be mentioned that AQ, measured either in dB or in 

Mbit/s, can only be meaningful if the restored image sequence consists of sensible 

data that represent the true image data in a reasonable manner. For example, it is 

assumed that the restored sequence is not a collection of black frames if the original 

data is clearly not a collection black frames, but, for instance, a recording of a zoo. 

6.3 Experiments and results 

This section experimentally verifies that the algorithms proposed in this book indeed 

improve the perceived image quality by presenting the impaired and restored image 

sequences to a test panel. The influence of image restoration on the perceived image 

quality is assessed in two circumstances. In the first circumstance, pairs of impaired 

and corrected sequences are used. In the second circumstance, pairs of MPEG2 

encoded impaired and corrected sequences are used. The latter circumstance verifies 

the assumption that image restoration improves the perceived image quality also 

holds in a digital broadcasting environment. 

This section also verifies that the algorithms developed in this book improve 

the coding efficiency. The increase in coding efficiency, AQ, is determined by 

numerical evaluation, both in terms of PSNR and in terms Mbit/s. 
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Sequence 

Plane 

(100 Frames) 

Chaplin 

(112 Frames) 

Charlie 

(48 Frames) 

Mine 

(404 Frames) 

VJ Day 

(49 Frames) 

Soldier 

(227 Frames) 

Amount of 

Flicker 

High 

Medium 

High 

Medium 

None 

Number of 

Blotches 

High 

High 

High 

Very Low 

Low/Medium 

Medium Very Low 

Visibility of 

Noise 

High 

Medium 

Low 

High 

Low 

Low 

Table 6.1" List of impaired sequences used for subjective and objective evaluations with an 
indication of the severity of the various degradations. Note that the Plane sequence contains 
artificial degradations. 

Sequence Flicker 

Correction 

Blotch 

Correction 

Noise 

Reduction 

Plane X X X 
. . . . .  

Chaplin X X X 

Charlie X X 

Mine X X 

VJ Day X 

Soldier X 

Table 6.2: Corrections applied to the test sequences. 

6.3.1 Test sequences  

To get an impression of the effects of removing different combinations of artifacts on 

the perceived image quality and on the increase in coding efficiency, test sequences 

were selected with various combinations of impairments. The test sequences consist 

of one artificially degraded sequence and five naturally degraded sequences. 
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Table 6.1 lists the sequences and gives an indication of the severity of the 

degradations that impair them. The test sequences are also used in Chapters 3 to 5 

and have already been described. An exception is the Chaplin sequence, which has 

not been used before for any experiment. Three frames from this sequence are 

shown in Chapter 1, Figure 1.1. Table 6.2 lists the artifacts that were corrected in 

each of the test sequences by the restoration system depicted in Figure 1.2 with the 

restoration methods developed in this book. The various control parameters of the 

restoration algorithms were set to values that give good visual results. 

6.3.2 Experiments on image restoration and perceived quality 

The subjective experiments were done in a dimly lit room. The viewing distance was 

six times the height of the display used. The test panel consisted of 25 people, all of 

whom had good vision with a visus of 0.8 or better. Before the actual experiments, 

the assessors were trained for their task by being shown some examples of 

sequences with and without flicker, blotches, and noise. Each assessor assessed all 

the test sequences once. They were asked the following question: "Which sequence 

do you find more pleasing to view, A or B?". 

As already mentioned, each test sequence should be approximately 10 seconds 

in duration. Because most of the test sequences are shorter than 10 seconds, they 

were repeated (looped) a number times so that the duration of the looped sequence 

was approximately 10 seconds. Only the first 10 seconds of the 16-second Mine 

sequence were shown. 
Table 6.3 gives the results for the first set of experiments in which the assessors 

indicated which sequence they prefer: the impaired image sequence or the restored 

image sequence. This table shows that, for all test sequences, the majority of the 

votes is given to restored image sequences. This proves that the image restoration 

algorithms presented in this book increase the perceived image quality of impaired 

image sequences. 

The restored Mine sequence received relatively fewer votes than the other 

restored sequences. When questioned about this, some of the test panel members 

indicated they considered the corrected Mine sequence to be overly smooth, and, 

therefore, they preferred the flickering, noisy original. The smoothing was caused by 

the noise reduction algorithm that was set to achieve a great amount of noise 

reduction. It is a well-known fact that there is a trade-off between noise reduction 

and introducing blur. Had the noise reducer been set for less noise reduction, less 

smoothing would have been introduced, and the assessors in question might well 

have preferred the corrected sequence. 
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Table 6.4 gives the results for the second set of experiments in which the 

assessors indicate which sequence they prefer: the MPEG2 encoded impaired image 

sequence or the MPEG2 encoded restored image sequence. The standard TM5 

MPEG2 encoder was used for all experiments [IEC93]. The coder was set to the main 

profile and the GOP size was 12. This table shows that for all test sequences, the 

majority of the votes is given to MPEG2 encoded restored image sequences. This 

proves that the increase in perceived quality, obtained from the image restoration 

algorithms presented in this book, are not lost due to coding artifacts introduced by 

an MPEG2 encoder at 4 Mbit/s. Therefore, image restoration is beneficial in digital 

broadcasting environments in which films are broadcast in compressed format. 

Sequence Votes for 

Corrected 

Sequence (in 

Percentages) 

Votes for 

Impaired 

Sequence (in 

percentages) 

Plane 84 16 

Chaplin 92 8 

Charlie 84 16 

Mine 72 28 

VJ Day 88 12 

Soldier 92 8 

Table 6.3: Results of subjective evaluations for the first set of experiments in which impaired 
and restored sequences are compared. 

Sequence Votes for 

Corrected 

Sequence (in 

Percentages) 

Votes for 

Impaired 

Sequence (in 

percentages) 

Plane 88 12 

Chaplin 100 0 

Charlie 88 12 

Mine 68 32 

VJ Day 80 20 

Soldier 96 4 

Table 6.4: Results of subjective evaluations for the second set of experiments in which 
impaired and restored sequences are compared after MPEG compression at 4 Mbit/s 
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Figure 6.4: AQ measured in dB versus bitrate. 

Sequence PSNR of ~(i) 

at 4Mbit/s 

(in dB) 

Bitrate for z(i) 

with same PSNR 

(in Mbit/s) 

aQ 

(in Mbit/s) 
Savings in bandwith 

by restoration 

(in %) 

Plane 36.4 15.5 11.5 74.2 

Chaplin 39.1 19.9 15.9 79.9 

Charlie 40.1 9.0 5.0 55.6 

Mine 44.3 38 34.0 89.5 

VJ Day 34.0 4.2 0.2 4.8 

Soldier 36.8 4.8 0.8 16.7 

Table 6.5: Results of numerical evaluations of AQ measured in Mbit/s. 

6.3.3 Experiments on image restoration and coding efficiency 

This section presents the results of two sets of numerical evaluations. The first set 

applies the scheme shown in Figure 6.2 to measure the increase coding efficiency in 

dB. AQ was evaluated for bitrates ranging from 2 Mbit/s to 8 Mbit/s. For all 

experiments the standard TM5 MPEG2 encoder was used. The coder was set to the 

main profile and the GOP size was 12. 
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Figure 6.4 plots the results for this first set of experiments. The curves indicate 

that image restoration leads to more efficient compression over the range of 

investigated bitrates; at identical bitrates, the restored image sequences can be 

compressed with fewer errors than the impaired sequences. This proves that image 

restoration gives more efficient compression for the artifacts considered. 

The gains are smallest for the VJ Day sequence. Only the blotches were 

restored in this sequence. Because the blotches cover only a small percentage of the 

total image area in this sequence, removing them has little influence on the overall 

coding efficiency. The gains for the Soldier sequence, which was corrected for 

intensity flicker, are somewhat larger. The intensity flicker is a global effect and has 

a larger influence on the coding efficiency. The Charlie sequence contained much 

flicker and many blotches. Restoring this sequence gives large gains. The restored 

Plane, Chaplin, and Mine sequences give the largest increases in coding efficiency. 

Unlike the other test sequences, these sequences were noise reduced. Noise is 

difficult to code and removing it simplifies the coder's task (unless, of course, the 

adjusted coder described in Chapter 5 is used). AQ is largest for the Mine sequence. 

As mentioned in the previous section, the corrected Mine sequence is quite smooth. 

Hence it can be coded with many fewer errors than the impaired original. 

The second set of experiments in this section measures AQ in terms of 

bandwidth, i.e., in Mbit/s. At the time the experiments were carried out, the 

equipment for measuring AQ with human assessors, as described in Section 6.2.2, 

was not available. The numerical method, also described in Section 6.2.2, was used. 

The experiment was set up as follows. First, the PSNR ratios were computed 

over the encoded/decoded restored image sequences coded at 4 Mbit /s  (broadcast 

quality). Next, the impaired sequences were coded at bitrates so that the PSNRs over 

the coded/decoded impaired sequences were identical to those of the corrected 

sequences. The differences in bitrate gives the increase in coding efficiency. The 

standard TM5 MPEG2 encoder was used for all experiments. The coder was set to 

the main profile or, for bitrates greater than 15 Mbit/s, to the high profile, and the 

GOP size was 12. 

Table 6.5 lists the results from the second set of experiments. Again, it is 

concluded that image restoration leads to more efficient compression. Considerable 

savings in bandwidth can be achieved by restoring impaired image sequences. 

Again, the largest gains were obtained for the test sequences to which noise 

reduction was applied. The last column in this table was computed by: 

Bitrate[z(i)]-4 
percen t age = x 100% (6.3) 

Bitrate[z(i)] 
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6.3.4 Discussion of experimental results 

The experimental results verify that the image restoration algorithms developed in 

this book improve the perceived image quality of impaired image sequences. The 

experiments also verify that image restoration improves the coding efficiency. 

Therefore, the benefits of restoration of archived film and video is confirmed, and 

the assumptions underlying the work presented in previous chapters are validated. 

A question is how well the numerical experiments for determining the increase 
in coding efficiency correspond to human perception. AQ, as defined in this chapter, 

reflects an increase in image quality terms of PSNR or in terms of how many bits of 

irrelevancy have been removed. It is well known that numerical measures do not 

necessarily correlate well with subjective perception. For instance, AQ is a global 

measure, whereas human observers are very sensitive to local variations in image 

quality. An example that illustrates this is given by the experimental results for the 

VJ Day sequence. This sequence was corrected for local artifacts, namely blotches. 

The results from the test panel evaluation shows that a majority of 88% prefers the 

corrected sequence over the impaired sequence. The large number of votes implies a 
clearly visible improvement in the perceived image quality. In contrast, AQ the 

computed for this sequence in terms of PSNR and in terms of bandwidth are small; 

0.1 dB and 0.2 Mbit/s, respectively. Therefore, they suggest a marginal improvement 

only. 
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Hierarchical motion 
estimation 

Full-search block matching is a well-known method for estimating motion from a 

source frame to a reference frame. In this method, the source frame is subdivided 

into image blocks of or pixels. An exhaustive search is performed for each image 

block to find the optimal match within the reference frame. The summed squared 
difference (SSD) and the summed absolute difference (SAD) are often used as matching 

criteria. The displacement that gives the optimal match yields the motion estimate 

[Han92], [Tek95]. 

Full search block matching is very intensive from a computational point of 

view. Furthermore, the motion vectors obtained from this technique do not 

necessarily represent (a projection onto two dimensions) of the true motion. They 

merely represent displacements that give optimal matches. 

A method that suffers less from these drawbacks is hierarchical block matching 

[Bie88], [Haa92], [Tek95]. Figure A.1 shows the principle of this method. First, initial, 

coarse motion vectors are estimated by applying (full-search) block matching to 

subsampled images. Next, the initial motion estimates are propagated to the next 

level with higher resolution and refined. Instead of full-search block matching, the 

refinements consist of doing a limited search in the region centered around the 

initial, coarse motion estimate. Again, the refined motion vectors are then 

propagated to the next level with higher resolution. The refinement process is 

repeated until the motion vectors have been computed for the source image at full 
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resolution. 

As a result of the subsampling and the limited search strategies, hierarchical 

block matching requires fewer computations than full search block matching. 

Therefore it is faster. Furthermore, the final hierarchical motion estimates are closer 

to the true motion and the motion vectors are more consistent locally than the full 

search block matching motion estimates. 

Figure A.I: General principle of hierarchical block matching. The gray areas indicate the 
search region for the block matching process. 

The reason for this is that the initial motion estimates are done on coarse images. An 

8x8 image region in an image subsampled horizontally and vertically by a factor 4 

corresponds to an image region of 32x32 in the high-resolution image. Therefore, the 

initial motion estimates computed by the hierarchical block matcher take more 

context into account than a full-search block matcher that uses 8x8 image blocks. 

Because motion estimates are propagated from coarse resolution levels to finer 

resolution levels, the refined estimates for adjacent blocks in the higher resolution 

images are made on the basis of the same initial vectors. Therefore, the final motion 

estimates are consistent locally. 

As is explained in Chapter 2, hierarchical motion estimators are relatively 

robust to common artifacts in video and film sequences. 



Appendix B 

Derivation of conditionals 

B.1 Introduction 

Section 4.5.2 stated that draws have to be taken from the conditionals: 

aN P[ aicr2e, o(i),z+ , d], 

2 P[cr2la, o(i),z+ d], 
~ ' e  ~" e ! 

o(i) ,-, P[o(i) la, ry 2e, z§ (i),d(i),O] 

(B.1) 

This section shows that in the case of drawing samples from a conditional, it is not 

necessary that the conditional be known exactly. It suffices that the distribution of 

the samples follows a function that is proportional to the conditional. The following 

sections derive such functions for the conditionals in (B.1). 

Bayes' rule states: 

P[BIA] P[A] 
P[AIB] = (B.2) 

P[B] 

The goal is to draw samples for A, given B, from P[AIB]. Because B is given, P[B] can 

be regarded as a normalizing constant. It is therefore only necessary that the draw 

for A be proportional to: 

P[AIB] oc P[BIA] P[A] (B.3) 
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This means that, when deriving expressions for conditionals from which samples are 

to be drawn, it is not necessary to compute the normalizing constants. Let B indicate 

a collection of random variables, b,, b2, . . . ,  bn, and suppose that b 1 is independent 

of A. Then: 

P[AIB] oc P[b~,b2,...,bnlA ] P[A] 

= P[b~lb2,...,bn] P[b2,...,bnlA ] P[A] 

oc P[b2,...,b, lA ] P[A] 

(B.4) 

It can be seen from (B.4) that it is only necessary to consider terms involving A for 

drawing random samples for A, given B. 

Before deriving the conditionals in (B.1), first a quick word about notation. In 

this section, bold faced characters describe matrices (capital letters) or vectors (small 

letters). For instance, z represents a vector into which an observed frame z(i) has 

been scanned in a lexicographic fashion. Analogous to Chapter 4, z+ indicates a 

vector containing the motion-compensated previous, current, and next frame. 

B.2 Condi t iona l  for AR coef f i c ients  

Each image region with missing data is modeled by a 2D AR process that uses a 

single set of coefficients a. The conditional for a is given by: 

2 2 P[a, cr e,olz+,d] 

a 

(B.5) 

At first glance this might seem to be a very complex distribution. Fortunately, as is 

shown in [Kok98], it turns out that (B.5) is proportional to a multivariate gaussian 

distribution. The derivation of [Kok98] is repeated here. 

First, it is noted that the denominator in (B.5) is independent of a and hence it 

can be considered as a normalizing constant that can safely be ignored. Therefore: 

2 2 0 I Z +  ,d ]oc  P[z+ la,cr e,o,d] P[a] P[alcr~ ,o,z+ ,d] oc P[a,Cr e , 

1 ( - e r e )  
oc (2ZO.~)N/2 exp 2cr~ P[a] 

(B.6) 

where the identity in (4.33) has been used. Note that (4.33) applies to single pixels 

whereas (B.6) applies to image blocks with N pixels. Hence the factor N in the last 
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line of (B.6). In this equation, e is a vector with prediction errors and T indicates the 

transpose operator. This prediction error vector is given by reformulating (4.30) in 

vector-matrix notation: 

= A 9 + e = ~'a + e (B.7) 

The top line in (B.7) gives the usual vector-matrix representation of an AR image 

model in which a sparse matrix A that contains the prediction coefficients is 

multiplied with an image vector. Here, for convenience, the definition in the bottom 

line in (B.7) is used where the AR coefficients are placed in a, and ~(i) is scanned 

into matrix Y such that ~'a = A!~. 

The term eTe in (B.6) is examined more closely now: 

e Te = (~ - "Ya) T ( ~ -  ~'a) = ~V~ _ 2 ~ V ~ a  + aV.~T~a = 

= (a-(9~f)-~f~9)(9~9)(a- (9~9)-~ f~9) + 9~9- #~f r 
(B.8) 

Substituting those terms in (B.8) that involve a into (B.6), and also keeping in mind 

that P(a) has a uniform distribution assigned to it, i.e., that it is a constant, gives: 

1 I (a-(YTy)-IyTg)(YTY)(a-(YTy)-IyTg)I (B.9) 
P[ai00~,o,z+,d I oc (2r exp - 200~ 

This can be recognized as proportional to a multivariate gaussian and can be 

denoted compactly as: 

P[a]~,00 2 ,d]oc 2 e,O,Z+ N ( a , ~  (9~f)  -~ ) (B.10) 

where fi = (YTy)-IyT 9 is the least squares estimate for the AR coefficients. ~,T~ and 

~'T!~ can be recognized as estimates for the autocorrelation matrix R~; and the 

autocorrelation vector r~;. These are necessary for solving the normal equations 

[Lag94], [The92]. The pdf for a is thus shown to be proportional to a well-known 

distribution. 

B.3 C o n d i t i o n a l  for  t h e  p r e d i c t i o n  error v a r i a n c e  

2 is associated with each image region with A single error variance parameter 00e 

missing data. The conditional for O~ is given by: 
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P[a,0. 2e , olz+ , d] 
P[0.~la, o,z+,d]= ~P[a,0.~, 

2 olz+, d]d0. 
2 

O" e 

(B.11) 

Again, the denominator can be viewed as a normalizing constant that can safely be 

ignored: 

2 0 I Z +  d]oc P[~Ia,0.~IP[0. 2] P[0.2la, o,z+ d] oc P[a,0. e r I l I e 

_1 I-e el 
-(2~cr~)N/2 exp 2cr~ P [ ~ ]  

(B.12) 

In [Kok98] an equation is derived that is very similar to that in (B.12) and it is noted 

there that the result is proportional to an inverted gamma distribution IG(xlr 
with parameters ~, and w: 

IG(xl~/,w)= w~' ( wl  (B.13) F (~)x ~§ exp - 

If x = 0 .2 I~ r = N / 2 and w = e Te / 2 then (B.12) is proportional to (B.13), which 
el I I 

means that: 

I N eTe I 
P [ o ' 2 1 a t O t Z + e  t dl oc IG 0.~1--~,---2- (B.14) 

B.4 Conditional for the direction of interpolation 

Unlike the AR model parameters, the direction of interpolation is computed on a 

pixel-by-pixel basis instead of on a block-by-block basis. The conditional for o(i) is 

derived here. At each particular site i the conditional is given by: 

P[a,0. 2 o(i)Iz+,d,O] e! 
P[o(i) Ja, o.2e  ̀G+ , d , O ] :  ~P[a,0.2~z~i-d,O~ 

o 

(B.15) 

Here O indicates the direction of interpolation for the pixels in the local region 

surrounding o(i). Collecting those terms that are proportional to the variables of 

interest gives: 
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P[o(i) la, cy 2 Z+ d,O]oc P[z+ (i) la, o(i),cy 2 d] P[o(i) IO] e I I r 

~ c e x p -  2 ~  exp--~-'~lo(i)--o(i+qk)lk 

~c e x p ( - ~  [(1- d(i)) (z(i)- AR(~, i,a)) 2 + 
ieS 

a(i) (o(i) Zm~(i,t + 1)+ (1--o(r))Zm~(i,t-1)-AR(ft, i ,a)) 2 + 

~ l o ( i ) -  o(i + q~ ) ll) 
k 

(B.16) 

As in Chapter 4, AR(~,a,i) denotes the prediction of the corrected image ~ at 

location i. AR(~,a,i) is determined completely by z+ (i), o(i), a, 0 "2~ and d. The eight- 

connected neighbors of o(i) are indicated by o(i + qk), with k = 1, ..., 8. 

Drawing samples from (B.16) with the Gibbs sampler is very easy. It involves 

evaluating (B.16) at a specific site i for o(i) = 0 and for o(i) = 1, while keeping the 

other values for the direction mask and the ~(i) fixed. The results are assigned to c~ 

and c 2, respectively. Next, a value for o(i) (and thereby the corresponding ~(i)) is 

chosen at random, with a probability c~ /(c~ + c2) that o(i) = 0 and with a probability 

c 2 /(c~ + c2) that o(i) = 1. A single update of an image region consists of applying the 

Gibbs sampler to each site in that region in turn, following, for instance, a 

checkerboard scanning pattern. 
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Appendix C 

Optimal Quantizers for 
Encoding Noisy Image 
Sequences 
This appendix shows that minimizing the error variance E[e2(i)] between input y(i)  

and output ~:(i) for a communication system as depicted in Figure 5.9 is equivalent 

to designing optimal quantizers for the MPEG2 encoder. It is assumed that the 

channel is error free. Work related to this topic is given in [Eph88], [Fin65]. The 

equation for the optimal quantizers is derived. For ease of notation, spatial indices i 
are omitted in this appendix. 

In the absence of channel errors, the scheme in Figure 5.9 can be simplified to 

that in Figure C.1 in which the noisy signal is transformed by the DCT, quantized, 

inverse quantized and inverse transformed. Figure C.2 gives an example of a 
quantizer with L k representation levels. The error variance is related to the 
quantization error in the coded DCT coefficients: 

64 64 

E[ e2 ] = ~ E[(Yk - 7k)2] = ~ E[(y  k _ Q[Zk ])2] 
k= l  k = l  

64 oo o o  

= Z ~ ~(Yk --Qk[Zk])2Pyk,zk[Yk,Zk]dzkdyk 
k = l  -oo-oo 

(C.1) 

Here Yk, 7"k and Z k, with k = 1 . . . .  ,64, indicate DCT coefficients with coefficient 

number k obtained from 8x8 image blocks. The quantizer for DCT coefficient k is 

indicated by Q[.]. The joint probability distribution PY,,zk [Yk, Zk ] is given by: 
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e~,,7, [Y~,Z,] = e~, [z~lY~] e,~ [Y~] = G[Y~ - z , ]  e~ [Y~] (C.2) 

where PN[-] is the distribution of the additive noise. 

Because the MPEG2 coding standard defines the representation levels of the 

inverse quantizer in the decoder, the only free parameters in the chain from input to 

output  are the decision levels of the quantizers in the encoder. Minimizing (C.1) is 

therefore equivalent to selecting optimal decision levels dk, m in the quantizer, given 

the representation levels rk, 1 , with I = 1 . . . .  , L k and m = 1, ..., L k +1. 

Noise  

y(i) ~ ~  z(i) ] 

.-~t,, .] 
DCT Quantize Inverse 

Quantize 
IDCT ~.(i) 

Figure C.1: Simplification MPEG2 encoding~decoding over a noise free channel. 

dl d 2 d 3 d4 d5 d 6 

Figure C.2: Example of quantizer with representation levels r r to r 5 and decisions levels d r to 
d 6. Note that d r and d 6 lie at plus and minus infinity. 

Without loss of generality, let dk, 1 =-oo and dk,L+ 1 = o 0 .  Equation (C.1) can then be 

broken down into L partial integrals over the L decision intervals: 
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64 ~~ dl+l 
E[821= Z ~(Yk--Qk[Zkl)2pN[Yk--ZklPY,[Ykldzkdyk 

k = l  -oo 1=1 dl 

64 Lk oo dr+ 1 

= Z E  (.(r,-r,.,)~z'~,Ir, l J'P~Ir,-z, la,.,4, 
k = l  I = 1 - o o  d t 

(C.3) 

Equation (C.3) is always positive. Hence, it is minimized by minimizing each of its 

64 terms, i.e., by selecting the optimal decision levels given the representation levels 

for all the individual quantizers Q .  The optimal decision levels are obtained by 

setting the derivatives with respect to rk. ~ to zero. This yields the following decision 

levels dk,m , with 2 <_ m <_ Lk : 

oo 

~(((r~,~_l - Y~))~ -(r~,m - Y~)~) P~ [Y~] P~[Y~ - a~,m] aY~ = 0 
-oo 

(C.4) 

The optimal quantizers are now defined. Some concluding remarks can now be 

made. First, note that in an MPEG2 encoder, the input signal y(i) in Figure C.1 can 

be either a true image or an image representing prediction errors, depending on 

whether an I, P, or B frame is coded. The statistics for these images vary, and 

therefore different quantizers need to be computed for each situation. Second, 

depending on the amount of bits that are available, an MPEG2 encoder selects a 

quantizer with a certain number of quantization levels. To get minimum error vari- 

ance, multiple optimal quantizers have to be computed to accommodate this 

freedom of the encoder. 
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Chapter 7 

Introduction to Watermarking 

7.1 The need for watermarking 

In the past few years there has been an explosion in the use and distribution of 

digital multimedia data. Personal computers with internet connections have taken 

the homes by storm, and have made the distribution of multimedia data and 

applications much easier and faster. Electronic commerce applications and on-line 

services are rapidly being developed. Even the analog audio and video equipment in 

the home are in the process of being replaced by their digital successors. As a result, 

we can see the digital mass recording devices for multimedia data enter the 

consumer market of today. 

Although digital data have many advantages over analog data, service 
providers are reluctant to offer services in digital form because they fear unrestricted 

duplication and dissemination of copyrighted material. Because of possible 

copyright issues, the intellectual property of digitally recorded material must be 

protected [Sam91]. The lack of such adequate protection systems for copyrighted 

content was the reason for the delayed introduction of the Digital Versatile Disk 

(DVD) [Tay97]. Several media companies initially refused to provide DVD material 

until the copy protection problem had been addressed [Rup96] and [Ren96]. 

Representatives of the consumer electronics industry and the motion picture 

industry have agreed to seek legislation concerning digital video recording devices. 

Recommendations describing ways that would protect both intellectual property 

and consumers' rights have been submitted to the US Congress [Ren96] and resulted 
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in the Digital Millennium Copyright Act [DCM98], which was signed by President 

Clinton October 28, 1998. 

To provide copy protection and copyright protection for digital audio and 

video data, two complementary techniques are being developed: encryption and 

watermarking [Cox97]. Encryption techniques can be used to protect digital data 

during the transmission from the sender to the receiver [Lan99a]. However, after the 

receiver has received and decrypted the data, the data is in the clear and no longer 

protected. Watermarking techniques can complement encryption by embedding a 

secret imperceptible signal, a watermark, directly into the clear data in such a way 

that it always remains present. Such a watermark can for instance be used for the 

following purposes: 

Copyright protection: For the protection of intellectual property, the data owner 

can embed a watermark representing copyright information in his data. This 

watermark can prove his ownership in court when someone has infringed on his 

copyrights. 

Fingerprinting: To trace the source of illegal copies, the owner can use a 

fingerprinting technique. In this case, the owner can embed different watermarks 

in the copies of the data that are supplied to different customers. Fingerprinting 

can be compared to embedding a serial number that is related to the customer's 

identity in the data. It enables the intellectual property owner to identify 

customers who have broken their license agreement by supplying the data to 

third parties. In Section 7.4 a fingerprinting application is explained in more 

detail. 

Copy protection: The information stored in a watermark can directly control 

digital recording devices for copy protection purposes [Lan98a]. In this case, the 

watermark represents a copy-prohibit bit and watermark detectors in the 

recorder determine whether the data offered to the recorder may be stored or 

not. A complete copy protection system is discussed in Section 7.4. 

Broadcast monitoring: By embedding watermarks in commercial advertisements 

an automated monitoring system can verify whether advertisements are 

broadcasted as contracted [And98]. Not only commercials but also valuable TV 

products can be protected by broadcast monitoring [Ka199]. News items can have 

a value of over 100.000 USD per hour, which make them very vulnerable to 
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intellectual property rights violation. A broadcast surveillance system can check 

all broadcast channels and charge the TV stations according to their findings. 

Data authentication: Fragile watermarks [Wo199a] can be used to check the 

authenticity of the data. A fragile watermark indicates whether the data has been 

altered and supplies localization information as to where the data was altered. 

Watermarking techniques are not only used for protection purposes. Other 

applications include: 

Indexing: Indexing of video mail, where comments can be embedded in the 

video content; indexing of movies and news items, where markers and 

comments can be inserted that can be used by search engines. 

Medical safety: Embedding the date and the patient's name in medical images 

could be a useful safety measure land98]. 

Data hiding: Watermarking techniques can be used for the transmission of secret 

private messages. Since various governments restrict the use of encryption 

services, people may hide their messages in other data. 

7.2 Watermarking requirements 

Each watermarking application has its own specific requirements. Therefore, there is 

no set of requirements to be met by all watermarking techniques. Nevertheless, 

some general directions can be given for most of the applications mentioned above: 

Perceptual transparency: In most applications the watermarking algorithm must 

embed the watermark such that this does not affect the quality of the underlying 

host data. A watermark-embedding procedure is truly imperceptible if humans 

cannot distinguish the original data from the data with the inserted watermark 

[Swa98]. However, even the smallest modification in the host data may become 

apparent when the original data is compared directly with the watermarked 

data. Since users of watermarked data normally do not have access to the 

original data, they cannot perform this comparison. Therefore, it may be 

sufficient that the modifications in the watermarked data go unnoticed as long as 

the data are not compared with the original data [Voy98]. 
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Payload of the watermark: The amount of information that can be stored in a 

watermark depends on the application. For copy protection purposes, a payload 

of one bit is usually sufficient. 

According to a recent proposal for audio watermarking technology from the 

International Federation for the Phonographic Industry, (IFPI), the minimum 

payload for an audio watermark should be 20 bits per second, independently of 

t he  signal level and music type [Int97]. However, according to [Pet98a] this 

minimum is very ambitious and should be lowered to only a few bits per second. 

For the protection of intellectual property rights, it seems reasonable to assume 

that one wants to embed an amount of information similar to that used for ISBN, 

International Standard Book Numbering, (roughly 10 digits) or better ISRC, 

International Standard Recording Code, (roughly 12 alphanumeric letters). On 

top of this, one should also add the year of copyright, the permissions granted on 

the work and rating for it [Kut99]. This means that about 60 bits [Fri99a] or 70 

bits [Kut99] of information should be embedded in the host data, the image, 

video-frame or audio fragment. 

Robustness: A fragile watermark that has to prove the authenticity of the host 

data does not have to be robust against processing techniques or intentional 

alterations of the host data, since failure to detect the watermark proves that the 

host data has been modified and is no longer authentic. However, if a watermark 

is used for another application, it is desirable that the watermark always remains 

in the host data, even if the quality of the host data is degraded, intentionally or 

unintentionally. Examples of unintentional degradations are applications 

involving storage or transmission of data, where lossy compression techniques 

are applied to the data to reduce bit rates and increase efficiency. Other 

unintentional quality-degrading processing techniques include filtering, re- 

sampling, digital-analog (D/A) and analog-digital (A/D) conversion. On the 

other hand, a watermark can also be subjected to processing solely intended to 

remove the watermark [Cox97]. In addition, when many copies of the same 

content exist with different watermarks, as would be the case for fingerprinting, 

watermark removal is possible because of collusion between several owners of 

copies. In general, there should be no way in which the watermark can be 

removed or altered without sufficient degradation of the perceptual quality of 

the host data so as to render it unusable. 

Security: The security of watermarking techniques can be interpreted in the same 

way as the security of encryption techniques. According to Kerckhoffs [And98], 
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one should assume that the method used to encrypt the data is known to an 

unauthorized party, and that the security must lie in the choice of a key. Hence a 

watermarking technique is truly secure if knowing the exact algorithms for 

embedding and extracting the watermark does not help an unauthorized party to 

detect the presence of the watermark [Swa98]. 

Oblivious vs. non-obl ivious watermarking: In some applications, like copyright 

protection and data monitoring, watermark extraction algorithms can use the 

original unwatermarked data to find the watermark. This is called non-oblivious 

watermarking [Kut99]. In most other applications, e.g. copy protection and 

indexing, the watermark-extraction algorithms do not have access to the original 

unwatermarked data. This renders the watermark extraction more difficult. 

Watermarking algorithms of this kind are referred to as public, blind or oblivious 

watermarking algorithms. 

The requirements listed above are all related to each other. For instance, a very 

robust watermark can be obtained by making many large modifications to the host 

data for each bit of the watermark. However,  large modifications in de host data will 

be noticeable and many modifications per watermark bit will limit the maximum 

amount of watermark bits that can be stored in a data object. Hence, a trade-off 

should be found between the different requirements so that an optimal watermark 

for each application can be developed. The mutual dependencies between the basic 

requirements are shown in Figure 7.1. 

The relation between the basic requirements for a well-designed secure 

watermark is represented in Figure 7.2. The security of a watermark influences the 

robustness enormously. If a watermark is not secure, it cannot be very robust. 

Figure 7.1: Mutual dependencies between the basic requirements. 
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Figure 7.2: Relation between the basic requirements for a secure watermark. 

7.3 Brief history of watermarking 

Watermarking techniques are not new. Watermarking forms a particular group in 

the steganography field. Steganography stems from the Greek words ~ T ~ v o q  for 

"covered" and Tpc~q)m for "to write", and means covered or secret writing. While 

classical cryptography is about rendering messages unintelligible to unauthorized 

persons, steganography is about concealing the existence of the messages. Kahn has 

traced the roots of steganography to Egypt 4000 years back, where hieroglyphic 

symbol substitutions were used to inscribe information in the tomb of a nobleman, 

Khnumhoteb II [Kah67] and [Swa98]. 

Herodotus wrote about how the Greeks received a warning of Xerxes' hostile 

intentions through a message underneath the wax of a writing tablet [Her72]. 

Another secret writing method he described was to shave the head of a messenger 

and tattoo a message or image on the messenger's head. After the hair had grown 

back, the message would be undetectable until the head was shaved again [Joh98] 

and [Kob97]. 

A method suggested by Aenas the Tactician was to mark successive letters in a 

cover text with secret ink, barely visible pin pricks or small dots and dashes [Kah67]. 

The marked letters formed the secret message. 

Johannes Trithemius (1462-1526), a German monk, was the first who used the 

term steganography. He encoded letters as religious words in such a way as to turn 

covert messages into apparently meaningful prayers. As a reward for this artifice the 
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first printing of his manuscript Steganographia in 1606 was placed on the Vatican's 

prohibited Index and was characterized as "full of peril and superstition" [Kah67] 

and [Lea96]. 

Figure 7.3: Title page of Porta's book: De occultis notis. 

In 1593, Giovanni Baptista Porta published a book about cryptography under the 

title: De occultis literarum notis seu artis animemi occulte alijs significadi, aut ab alijs 

significata expiscandi enodandique. Libri III (Figure 7.3). In his book, he describes 

amongst others a method for concealing a secret text message in a cover message by 

means of a mask. In the following example the secret message can be extracted by 

ignoring the masked (gray) text [Por93]: 

In the 174 century it was not unusual to publish manuscripts anonymously, 

especially if it concerned the writing of histories. The risk of offending powerful 

political parties, which could have severe consequences to the author, was far too 

great. Therefore, Bishop Francis Godwin coded his name as the initial capital letters 
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of each chapter of his manuscript [Lea96]. This is an early example of copyright 

protection. 

An example of embedding copyright or authorship information in musical 

scores was practiced by Bach, who embedded his name in many of his pieces. For 

instance, in his organ chorale "Vor deinem Thron", he used null cipher coding by 

spelling out B-A-C-H in notes, where B-flat represents B, and B represents H or by 

counting the number of occurrences of a note, one occurrence for A, two for B, three 

for C and eight for H [Swa98]. 

In World War II steganogaphic techniques were widely used [Kah67] and 

[Joh98]. In the USA the post  banned a large class of objects that could conceal 

messages, like chess games, crosswords and newspaper clippings. Other objects 

were changed before these were delivered, lovers' Xs were deleted, watch hands 

were shifted, loose stamps and blank paper were replaced. Censors even rephrased 

telegrams to prevent that people hid secret messages in normal text messages. In one 

case, a censor changed "father is dead" to "father is deceased", which resulted in the 

reply "is father dead or deceased?". Thousands of people were involved in reading 

mail, looking for language which appeared to be forced. For example, the following 

message was actually sent by a German spy [Kah67]: 

Apparently neutral's protest is thoroughly discounted and ignored. Isman hard hit. 
Blockade issue affects pretext for embargo on by-products, ejecting suets and 
vegetable oils. 

Extracting the second letter in each word reveals the following message: 

Pershing sails from NY June 1. 

During the 1980s steganographic techniques were used for fingerprinting. Prime 

Minister Margaret Thatcher became so irritated at press leaks of cabinet documents 

that she had the word processors reprogrammed to encode the user's identity in the 

word spacing, so that disloyal ministers could be traced [And98]. 

From this brief history overview we can conclude that most applications 

mentioned in Section 7.1 are nothing else than variations on the historical ones. 

7.4 Scope of Part II 

There are many types of watermarking techniques. This book concentrates on 

techniques for real-time embedding of watermarks in and the extraction of watermarks from 
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compressed image and video data. These watermarking techniques can for instance be 

used in fingerprinting and copy protection systems for home-recording devices. 

Fingerprinting: A consumer can receive digital services, like pay TV or video on 

demand, by cable or satellite dish using a set-top box and a smart card, which he 

has to buy and can therefore be related to his identity. To prevent other non- 

paying consumers to make use of the same services, the service provider 

encrypts the data, for which he uses one or more keys. This protects the services 

during transmission. The set-top box in the home of the consumer decrypts the 

data if a valid smart card is used, and adds a watermark, representing the 

identity of the user, to the compressed clear data. The fingerprinted data can now 

be fed to the internal video decoder to view the data or the data can be stored in 

compressed form. 

Figure 7.4: Set-top box with fingerprinting capabilities. 

The service provider can now identify consumers who supply data to third 

parties breaking their license agreement. The complete scheme of a set-top box 

with fingerprinting facilities is depicted in Figure 7.4. 

Copy protection: Service providers are reluctant to accept digital recording 

devices, because of they fear unrestricted copying of services like Pay TV, Pay- 

Per-View and Video-On-Demand. However, digital video recorders enable 

consumers to use services on another time than the time the services are actually 

broadcasted (time-shifting), or to insert longer breaks in a movie. A compromise 

between the conflicting desires of the service providers and the consumers would 

be the embedding of an SCMS-like [IEC958] copy protection system in each 

digital recorder [Han96]. 



166 CHAPTER 7 

Using the Serial Copy Management System, consumers can make copies of any 

digital source, but they cannot make copies of copies. An example of an SCMS- 

like copy protection scheme using watermarking techniques is shown in Figure 

7.5. 

Figure 7.5: A copy protection scheme for digital recorders. 

This copy protection system checks all incoming video streams for a predefined 

copy-prohibit watermark. If such a watermark is found, the incoming video must 

already have been copied before and is therefore refused by the recorder. If the 

copy-prohibit watermark is not found, the watermark is embedded and the 

watermarked video is stored. This means that video data stored on this recorder 

always contains a watermark and cannot be duplicated if a recorder is used 

equipped with such a copy protection system. 

Besides the basic requirements mentioned in Section 7.2, a watermarking technique 

should meet the following extra requirements to qualify as a real-time technique for 

compressed image and video data applicable to recording devices: 

Oblivious: It should be possible to extract watermark information without using 

the original unwatermarked data, since a recorder and a set-top box do not have 

the original data at their disposal. 

Low complexity: There are two reasons why the watermarking techniques 

cannot be too complex: they are to be processed in real time, and as they are to be 

used in consumer products, they must be inexpensive. This means that fully 

decompressing the data, adding a watermark and finally compressing the data is 

not an option for embedding a watermark. 
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Preserve host data size: The watermark should not increase the size of the 

compressed host data. For instance, if the size of a compressed MPEG-video 

stream increases, transmission over a fixed bit rate channel can cause problems, 

the buffers in hardware decoders can run out of space, or the synchronization of 

audio and video can be disturbed. 

Protection systems that make use of watermarking techniques consist in general of a 

chain of cryptographic techniques. The watermark information can be encrypted 

first. Subsequently, the processed watermark information is added to the host data 

by means of embedding techniques. The encryption and embedding techniques use 

keys; these keys may vary in time. Cryptography protocols have to take care of the 

key-management problem. In Figure 7.6 the involved fields of cryptography are 

represented graphically. The subjects of encryption and protocol development are 

outside the scope of this book. The focus is on developing, analyzing and testing the 

embedding techniques for watermarks. 

Figure 7.6: Fields of cryptography involved in watermarking applications. 

7.5 O v e r v i e w  of Part II 

Part II of this book is structured as follows. In Chapter 8 the state of the art in 

watermarking techniques for digital image and video data is presented. Since the 

most commonly used watermarking techniques use additive noise for watermark 

embedding and correlation techniques for watermark detection, the correlation- 

based techniques are discussed in full detail here. Various correlation-based 

techniques are explained for embedding video content dependent or independent 

watermarks representing one bit, multiple bits or logos in the spatial, Fourier, 
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Discrete Cosine or Discrete Wavelet Transform domain which do or do not use 

Human Visual System models to maximize the watermark energy. In addition extra 

measures are discussed that make these watermarks resistant to lossy compression 

techniques and geometrical transformations. Other non-correlation-based 

techniques, like least significant bit modification, DCT coefficient ordering, salient 

point modification and fractal-based techniques are briefly explained at the end of 

this chapter. 

In Chapter 9 the state of the art in real-time watermarking algorithms for 

compressed video data is discussed. Furthermore, two new algorithms are proposed 

and evaluated that are computationally highly efficient and very suitable for 

consumer applications requiring moderate robustness. These real-time 

watermarking algorithms are based on the basic Least Significant Bit (LSB) 

modification principle, which is here directly applied to MPEG compressed video 

streams. Since the watermarking methods discussed in this chapter rely heavily on 

the MPEG video compression standard, this chapter starts with a brief description of 

the relevant parts of the MPEG standard. 

In Chapter 10 the slightly more complex Differential Energy Watermarking 

(DEW) concept is proposed which is applicable for real-time consumer applications 

requiring more robustness. The DEW concept is suitable for directly embedding 

watermarks in and extracting watermarks from MPEG/JPEG or embedded zero tree 

wavelet encoded video and image data. The DEW algorithm embeds the label bits of 

the watermark by selectively discarding high frequency coefficients in certain video 

frame regions. The label bits of the watermark are encoded in the pattern of energy 

differences between DCT blocks or hierarchical wavelet trees. 

Chapter 11 describes how a statistical model is derived and experimentally 

validated to find optimal parameter settings for the DEW algorithm. The 

performance of the DEW algorithm has been defined as its robustness against re- 

encoding attacks, its label size, and its visual impact. We show analytically how the 

performance is controlled by three embedding parameters. The derived statistical 

model gives us an expression for the label bit error probability as a function of these 

three parameters. Using this expression, we show how we can optimize a watermark 

for robustness, label size or visibility and how we can add adequate error correcting 

codes to the label bits. 

In Chapter 12 the DEW algorithm is evaluated. For this purpose, benchmarking 

approaches for watermarking algorithms and watermark removal attacks described 

in literature are discussed. Next, the performance of the DEW algorithm for MPEG 

compressed video data is compared to a real-time spread spectrum technique for 

MPEG compressed video data. Finally, the DEW algorithm for JPEG compressed 
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and uncompressed still images is compared to a basic spread spectrum method, 

which is not specially designed for real-time operation on compressed data. The 

real-time aspect is neglected in this comparison and for the evaluation the guidelines 

of the benchmarking methods from literature are followed and the removal attacks 

are taken into account. 
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Chapter 8 

State-of-the-Art in Image 
and Video Watermarking 

8.1 Introduction 

In order to embed watermark information in host data, watermark embedding 

techniques apply minor modifications to the host data in a perceptually invisible 

manner, where the modifications are related to the watermark information. The 

watermark information can be retrieved afterwards from the watermarked data by 

detecting the presence of these modifications. 

A wide range of modifications in any domain can be used for watermarking 

techniques. Prior to embedding or extracting a watermark, the host data can be 

converted to, for instance, the spatial, the Fourier, the Wavelet, the Discrete Cosine 

Transform or even the Fractal domain, where the properties of the specific transform 

domains can be exploited. In these domains modifications can be made like: Least 

Significant Bit modification, noise addition, coefficient re-ordering, coefficient 

removal, warping or morphing data parts and block similarities enforcing. Further, 

the impact of the modifications can be minimized with the aid of Human Visual 

Models, whereas modifications can be adapted to the anticipated post-processing 

techniques or to the compression format of the host data. 

Since the most commonly used techniques use additive noise for watermark 

embedding and correlation techniques for watermark detection, we discuss the 

oblivious correlation-based techniques extensively in this chapter, together with all 

its possible variations. Other oblivious techniques are briefly explained at the end of 

this chapter. The cryptographic security of the methods described here lies in the key 
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that is used to generate a pseudorandom watermark pattern or to pseudorandomly 

select image regions or coefficients to embed the watermark. In general, the 

robustness of the watermark against processing techniques depends on the 

embedding depth and the amount of information bits of the watermark. 

Figure 8.2.1: Watermark embedding procedure. 

8.2 Correlation-based watermark techniques 

8.2.1 Basic technique in the spatial domain 

The most straightforward way to add a watermark to an image in the spatial domain 

is to add a pseudorandom noise pattern to the luminance values of its pixels. Many 

methods are based on this principle [Sch94], [Ben95], [Pit95], [Car95], [Har96], 

[Lan96a], [Pit96a], [Smi96], [Wo196], [Lan97a], [Wo197], [Zen97], [Fri99b], [Wo198], 

[Wo199a] and [Ka199]. In general, the pseudorandom noise pattern consists of the 

integers {-1,0,1}, however also floating-point numbers can be used. The pattern is 

generated based on a key using, for instance, seeds, linear shift registers or randomly 

shuffled binary images. The only constraints are that the energy in the pattern is 

more or less uniformly distributed and that the pattern is not correlated with the 
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host image content. To create the watermarked image Iw(x,y ) the pseudorandom 

pattern W(x,y) is multiplied by a small gain factor k and added to the host image 

I(x,y), as illustrated in Figure 8.2.1. 

Iw(x,y)= I(x,y)+ k. W(x,y) (8.2.1) 

To detect a watermark in a possibly watermarked image I'w(x,y ) we calculate the 

correlation between the image I'w(x,y ) and the pseudorandom noise pattern W(x,y). 

In general, W(x,y) is normalized to a zero mean before correlation. If the correlation 

Rxy exceeds a certain threshold T the watermark detector determines that image 

I'w(x,y ) contains watermark W(x,y): 

Ri,w(x,y)w(x,y ) > T --> W(x,y) detected (8.2.2) 

< T --~ No W(x,y) detected 

If W(x,y) only consists of the integers {-1,1} and if the number o f - l s  equals the 

number of ls, we can estimate the correlation as: 

1 z/2 1 z/2 , 
Rl'w(x'y)W(x'Y) = Z i=1 = = 

(8.2.3) 

Where Z is the number of pixels in the image I" w , and § indicates the set of pixels 

where the corresponding noise pattern is positive or negative, and la[I',,§ 
represents the average value of set pixels in I'w§ From Equation 8.2.3 it follows 

that the watermark detection problem corresponds to testing the hypothesis whether 

two randomly selected sets of pixels in a watermarked image have the same mean. 

Figure 8.2.2 shows that the watermark detector can make two types of errors. 

In the first place, it can detect the existence of a watermark, although there is none. 

This is called a false positive. In the second place, the detector can reject the existence 

of the watermark, even though there is one. This is called a false negative. In 

[Ka198a] the probabilities of these two types of errors are derived based on a first- 

order autoregressive image model: 

PIp = 2 erfc( T~fZ 1 (rr2 _ T ) ~  
crwcr,~f~) and P~ =-~erfc( awa,~[- ~ ) (8.2.4) 
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l ~ /2dt where erfc(x) = ~ e -'2 
x 

Here, ryw 2 represents the variance of the watermark pixels and G 2 denotes the 

variance of the image pixels. If the watermark pattern W(x,y) only consists of the 

integers {-1,1} and the number o f - l s  equals the number of ls, the variance of the 
watermark ryw 2 equals k 2. The errors P~ and P~ can be minimized by increasing the 

gain factor k. However, using larger values for the gain factor decreases the visual 

quality of the watermarked image. 

Figure 8.2.2: Watermark detection procedure. 

Since the image content can interfere with the watermark, especially in the low 
frequency components, the reliability of the detector can be improved by applying 
matched filtering before correlation [Dep98], [Sch94], [Lan96a]. This decreases the 
contribution of the original image to the correlation. For instance, a simple edge- 

enhance FIR filter Feag e can be used, where Feag ~ is given by the following convolution 

kernel: 

Fedg e -- 10 / 2 (8.2.5) 

-1 

The experimental results presented in the next section show that applying this filter 

before correlation reduces the error probability significantly, even when the visual 

quality of the watermarked image was affected seriously before correlation [Lan96a], 

[Lan97a]. 
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8.2.2 Extensions to embed multiple bits or logos in one image 

From the watermark detector's point of view, an image I can be regarded as 

Gaussian noise, which distorts the watermark information W. Further, the 

watermarked image I w can be seen as the output of a communication channel subject 

to Gaussian noise over which the watermark information is transmitted. In this case, 

reliable transmission of the watermark is theoretically possible if its information rate 

does not exceed the channel capacity, which is given by [Sha49]: 

(2 / 
0-w bit/pixel C c h = W b l O g  2 1 + --2~- 
0" 1 

(8.2.6) 

Here, Cch is given in units of watermark information bits per image pixel and the 

available bandwidth W b is equal to 1 cycle per pixel. However, for practical systems 

a tighter empirically lower bound can be determined [Smi96]: 

( 2  / 
Cch = W b log 2 1+ aa.~2 bit/pixel (8.2.7) 

Here, a is a small headroom factor, which is larger than 1 and typically around 3. 

Since the signal-to-noise ratio 0-w2/0-~ 2 is significantly smaller than 1, Equation 8.2.7 

can be approximated by: 

/ 2/ 
1 0-w bit/pixel (8.2.8) 

According to this equation, it should be possible to store much more information in 

an image than just 1 bit using the basic technique described in the previous section. 

For instance, a watermark consisting of the integers {-k, k} added to the 512x512 

"Lena image" (Figure 8.2.1) can carry approximately 50, 200 or 500 bits of 

information for k=l, 2 or 3 respectively and for a=3. 

There are several ways to increase the payload of the basic watermarking 

technique. The simplest way to embed a string of l watermark bits b o b 1 . . .  b1_ ~ in an 

image is to divide the image I into l sub-images Io l  1 . . .  I~_~ and to add a watermark to 

each sub-image, where each watermark represents one bit of the string [Smi96], 

[Lan96a] and [Lan97a]. This procedure is depicted in Figure 8.2.3. 

Using Equation 8.2.8 we can calculate the number of pixels P required per sub- 

image for reliable detection of a single bit in a sub-image: 
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p ,  ary 2 ln2 
2 pixels (8.2.9) 

O" W 

The watermark bits can be represented in several ways. A pseudorandom pattern 

can be added if the watermark bit equals one, and the sub-image can be left 

unaffected if the watermark bit equals zero. In this case, the detector calculates the 

correlation between the sub-image and the pseudorandom pattern and assigns the 

value 1 to the watermark bit if the correlation exceeds a certain threshold T; 

otherwise the watermark bit is assumed to be 0. 

Figure 8.2.3: Watermark  bit s t r ing  embedding  procedure. 

The use of a threshold can be circumvented by adding two different pseudorandom 

patterns R P  o and R P  1 for watermark bit 0 and 1. The detector now calculates the 

correlation between the sub-image and the two patterns. The bit value 

corresponding with the pattern that gives the highest correlation is assigned to the 

watermark bit. In [Smi96] the two patterns are chosen in such a way that they only 

differ in sign, R P  o = -RPI. In this case, the detector only has to calculate the 

correlation between the sub-image and one of the patterns; the sign of the correlation 

determines the watermark bit value. 
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Figure 8.2.4 Watermark detection with and without pre-filtering. 

To investigate the effect on the robustness of the watermark of the pre-filter in the 

detector, the gain factor k, and the number of pixels P per watermark bit, we perform 

the following experiments. We first add a watermark to an image with the method 

of [Smi96]. Next, we compress the watermarked image with the JPEG algorithm 

[Pen93], where the quality factor QJm of the compression algorithm is made variable. 

Finally, the watermark is extracted from the decompressed image and compared bit 

by bit with the originally embedded watermark bits. From this experiment, we find 

the percentages of watermark bit errors due to JPEG compression as a function of 

the JPEG quality factor. 
The first experiment shows the effect of applying the pre-filter given by 

Equation 8.2.5 before detection of a watermark embedded with a gain factor k=2, 

and P=32x32 pixels per watermark bit. In Figure 8.2.4 the percentages bit errors 

caused by JPEG compression are plotted for a detector that uses this pre-filter and 

for a plain detector. It can clearly be seen that pre-filtering significantly increases the 

robustness of the watermark. 

The second experiment shows the effect of increasing the gain factor k for a 

watermark embedded with P=32x32 pixels per watermark bit and detected using a 

pre-filter. From Figure 8.2.5 it follows that the robustness of a watermark can be 

improved significantly by increasing the gain factor. 

The third experiment shows the influence of the number of pixels P per 

watermark bit on the robustness of a watermark embedded with a gain factor k=2 
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and detected using a pre-filter. From Figure 8.2.6 it follows that decreasing the 

payload of the watermark by increasing P improves the robustness significantly. 

60 " ' ' ' ' r ~  
o 
,.,'-' P=32x32, pre-filter fedge applied before detection 

50 

40 

30 

20 

10 

0 
0 10 20 30 40 50 60 70 80 90 100 

Qjpeg 
Figure 8.2.5: Influence of the gain factor k on the robustness of a watermark. 
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Figure 8.2.6. Influence of the number of pixels per watermark bit P on the robustness of a 
watermark. 

Another way to increase the payload of the basic watermarking technique is the use 

of Direct Sequence Code Division Multiple Access (DS-CDMA) spread spectrum 

communications [Rua98a] and [Rua98b]. Here, for each bit b i out of the watermark 
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bit string b o bl... b~_l a different stochastically independent pseudorandom pattern RPj 
is generated that has the same size as the image. This pattern is dependent on the bit 

value bj. Here we use the pattern +RPj if bj represents a 0 and-RPj if b i represents a 1. 

The summation of all l random patterns +_RPj forms the watermark. Prior to adding 

the watermark to an image, we can scale the watermark by a gain factor or limit it to 

a certain small range. An example of the 1-dimensional watermark generation is 

presented in Figure 8.2.7. This example uses 7 different pseudorandom patterns to 

embed the 7 watermark bits 0011010. 

R~:-I 1 i-I-i i-I-I 1 i-i 

R~: 1 i-i-i i-i-i 1 I-i 1 

R~: i-I-I i-i-i 1 i-I i-i 

R~:-I-I i-i-I 1 I-i I-i-i 

RP4:-I i-i-i 1 i-i I-I-i 1 

R~: i-i-i 1 i-i I-i-i 1 1 

R~:-I-I 1 I-i i-I-I 1 1 1 

bo: 0 
b1:0 

b2:l 

b3:l 

b4:0 

bs:l 

b6:0 

+R~:-I 1 i-I-i I-i-i 1 i-i 

+R~: 1 i-i-i i-i-i 1 i-i 1 

-R~:-I 1 i-i 1 i-i-i i-I 1 

-R~: 1 i-i 1 I-i-i i-i 1 1 

+R~:-I I-i-i 1 i-i i-i-i 1 

-R~:-I 1 i-i-i i-i 1 i-i-i 

+RP6:-I-I 1 i-i i-I-i 1 1 1 + 
W :-3 5 i-3 1 3-7 1 3-i 3 

Figure 8.2.7: Example of a CDMA watermark generation for 7 bits bob~...b 7. 

Each bit bj out of the watermark bit string bobs...b~_~ can be extracted by calculating the 

correlation between the normalized image I' w and the corresponding pseudorandom 

pattern RPj. If the correlation is positive, the value 0 is assigned to the watermark bit, 

otherwise the watermark bit is assumed to be 1. Figure 8.2.8 shows as an example 

the extraction of the embedded watermark bits in Figure 8.2.7. 

W 
I 
I w 

: -3 5 1 -3 1 3 -7 1 3 -i 3 
: 98 98 97 98 97 96 97 96 95 94 94 + 
: 95 103 98 95 98 99 90 97 98 93 97 

E[ (RP o-E[RP o] ).(Iw-E[I w] ) ] = +15.6 --> bo=O 
E[ ( RP I-E [ RP 1] ) . ( Iw-E [ I w] ) ] = +16.4 --> b1=O 
E[ (RP2-E[RP2] ).(Iw-E[Iw] ) ] = -26.4 -4 1o2=1 
E[ (RP 3-E[RP 3] ).(Iw-E[fw] ) ] = - 3.1 --> b3=l 
E[ (RP4-E[RP4] ).(Iw-E[Iw] ) ] = +21.6 -~ b4=O 
E[ (RP s-E[RP 5] ).(Iw-E[I w] ) ] = -23.6 -4 bs=l 
E[ (RP6-E[RP6]).(Iw-E[Iw]) ] = + 0.4 -4 b6=O 

Figure 8.2.8: Example of CDMA watermark extraction, compare to Figure 8.2.7. 

Both ways of extending the watermark payload have their advantages and 

disadvantages. If each watermark bit has its own image tile, there is no interference 
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between the bits and only a small number of multiplications are required to calculate 

the correlations. However, if the image is cropped, the watermark bits located at the 

border are lost. If CDMA techniques are used, the probability that all bits can be 

recovered after cropping the image is high. However, the watermark bits may 

interfere with each other and many multiplications are required to calculate the 

correlations, since each bit is completely spread over the image. 

The watermark bits embedded using the methods mentioned above can 

represent anything: copyright messages, serial numbers, plain text, control signals 

etc. The content represented by these bits can be compressed, encrypted and 

protected by error correcting codes. In some cases it may be more useful to embed a 

small logo instead of a bit string as a watermark. If the watermarked image is 

distorted, the watermark logo will also be affected. But now the sophisticated 

pattern-recognition capabilities of the human visual system can be exploited to 

detect the logo [Bra97], [Hsu96] and [Voy96]. For instance, we can embed a binary 

watermark logo with 128x32 pixels in an image with 512x512 pixels using the 

techniques described in this section. Each logo pixel is embedded in an image tile of 

8x8 pixels by adding the pseudorandom pattern +RP or -RP  to the image tile for a 

black or white logo pixel respectively. As an example in Figure 8.2.9 the results are 

shown of the logos extracted after the watermarked image has been degraded with 

the lossy JPEG [Pen93] compression algorithm using several quality factors. From 

Figure 8.2.9 it can be seen that, although it is heavily corrupted, the logo can still be 
recognized. 

Figure 8.2.9: Extracted watermark logos from a JPEG distorted image. 
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8.2.3 Techniques for other than spatial domains 

The techniques described in the previous section can also be applied in other 

non-spatial domains. Each transform domain has it own advantages and 

disadvantages. In [Rua96c] the phase of the Discrete Fourier Transform (DFT) is 

used to embed a watermark, because the phase is more important than the 

amplitude of the DFT values for the intelligibility of an image. Putting a watermark 

in the most important components of an image improves the robustness of the 

watermark, since tampering with these important image components to remove the 

watermark will severely degrade the quality of the image. The second reason to use 

the phase of the DFT values is that it is well known from communications theory 

that often phase modulation possesses superior noise immunity in comparison with 

amplitude modulation [Rua96c]. 

Many watermarking techniques use DFT amplitude modulation because of its 

translation or shift invariant property [Her98a], [Her98b], [Per99], [Rua96a], [Rua97], 

[Rua98a] and [Rua98b]. Because cyclic translations of the image in the spatial 

domain do not affect the DFT amplitude, the watermark embedded in this domain 

will be translation invariant and, in case a CDMA watermark is used, it is even 

slightly resistant to cropping. Furthermore, the watermark can directly be embedded 

in the most important middle band frequencies, since modulation of the lowest 

frequency coefficients results in visible artifacts while the highest frequency 

coefficients are very vulnerable to noise, filtering and lossy compression algorithms. 

Finally the watermark can easily be made image content dependent by modulating 
the DFT amplitude coefficients II(u,v) l in the following way [Cox95]" 

[Iw(u,v)[ = [I(u,v)[. (1 + k. W(u,v)) (8.2.10) 

Here, W(u,v) represents a CDMA watermark, a 2-dimensional pseudorandom 

pattern, and k denotes the gain factor. Now, the modification of a DFT coefficient is 
not fixed but proportional to the amplitude of the DFT coefficient. Small DFT 

coefficients are hardly affected, whereas larger DFT coefficients are affected more 

severely. This complies with Weber's law [Jai81]. The human visual system does not 

perceive equal changes in images equally, but visual sensitivity is nearly constant 

with respect to relative changes in an image. If AI is a just noticeable difference, then 

A I / I -  constant. Rewriting Equation 8.2.10 gives: 

(...')1- - ~ = k- W(u,v) ~ constant (8.2.11) 
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Figure 8.2.10: Fourier Amplitude Watermark. 

Since the watermark is here mainly embedded in the larger DFT coefficients, the 

perceptually most significant components of the image, the robustness of the 

watermark improves. 

Note that the symmetry of the Fourier coefficients must be preserved to ensure 

that the image data is still real valued after the inverse transform to the spatial 

domain. If the coefficient I I(u,v)l in an image with NxM pixels is modified 

according to Equation 8.2.10, its counterpart II(N-u,M-v) lmust  be modified in the 

same way. In Figure 8.2.10b an example is given of an image in which a watermark 
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is embedded using all DFT amplitude coefficients according to Equation 8.2.10 and 
using a relatively small gain factor k. Figure 8.2.10c presents the strongly amplified 
difference between the original image and the watermarked image. Figure 8.2.10d 
shows an image watermarked using a large value for the gain factor k. 

Figure 8.2.11:8x8 DCT middle band image content independent watermark. 

Another commonly used domain for embedding a watermark is the Discrete Cosine 
Transform (DCT) domain [Bo195], [Cox95], [Cox96a], [Cox96b], [Hsu96], [Piv97], 
[Pod97], [Tao97], [Rua96b] and [Wo199c]. Using the DCT an image can easily be split 
up in pseudo frequency bands, so that the watermark can conveniently be 
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embedded in the most important middle band frequencies. Furthermore, the 

sensitivity of the human visual system (HVS) to the DCT basis images has been 

extensively studied, which resulted in a default JPEG quantization table [Pen93]. 

These results can be used for predicting and minimizing the visual impact of the 

distortions caused by the watermark. Finally, the block-based DCT is widely used 

for image and video compression. By embedding a watermark in the same domain 

we can anticipate lossy compression and exploit the DCT decomposition to make 

real-time watermark applications. 

In Figure 8.2.11a an example is given of an image in which a 2-dimensional 

CDMA watermark W is embedded in the 8x8 block DCT middle band frequencies. 

The 8x8 DCT coefficients F(u,v) are modulated according to the following Equation: 

Ix,y(u,v)+k.Wx,y(u,v u ,v~  F M 

G~,, (u, v) = \Ix,~ (u, v) u, v ~ F~ x,y=0,8,16... (8.2.12) 

Here F M denotes the middle band frequencies, k the gain factor, (x,y) the spatial 
location of an 8x8 pixel block in image I and (u,v) the DCT coefficient in the 
corresponding 8x8 DCT block (Figure 8.2.12). 

In Figure 8.2.11c the strongly amplified difference between the original image 

and the watermarked image is presented. Figure 8.2.11d shows the Fourier Spectrum 
of the watermark. Here, it can clearly be seen that watermark only affects the middle 
band frequencies. 

Figure 8.2.12. Definition of the middle band frequencies in a DCT block. 

The watermark can be made image dependent by changing the modulation function 

to: 

~ (u,v)= /Ix,y(u,v).(l+ u ,v~ F M 
Iw 

�9 " I x , ~ ( u , v )  u , v ~  I:~ 
x,y=0,8,16,... (8.2.13) 
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If this modulation function is applied, the results from Figure 8.2.11 change into the 

results shown in Figure 8.2.13. From Figure 8.2.13b and c it appears that most 

distortions introduced by the watermark are located around the edges and in the 

textured areas. 

Figure 8.2.13:8x8 block DCT middle band image content dependent watermark. 

If watermarking techniques can exploit the characteristics of the Human Visual 

System (HVS), it is possible to hide watermarks with more energy in an image, 

which makes watermarks more robust. From this point of view the Digital Wavelet 
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Transform (DWT) is a very attractive tool, because it can be used as a 

computationally efficient version of the frequency models for the HVS [Bar99]. For 

instance, it appears that the human eye is less sensitive to noise in high resolution 

DWT bands and in the DWT bands having an orientation of 45 ~ (i.e. HH bands). 

Furthermore, DWT image and video coding, such as embedded zero-tree wavelet 

(EZW) coding, will be included in the up-coming image and video compression 

standards, such as JPEG2000 [Xia97]. By embedding a watermark in the same 

domain we can anticipate lossy EZW compression and exploit the DWT 

decomposition to make real-time watermark applications. Many approaches apply 

the basic techniques described at the beginning of this section to the high resolution 

DWT bands, LH~, HH 1 and HL~ (Figure 8.2.14) [Bar99], [Bo195], [Kun97], [Rua96b], 
[Xia97]. 

Figure 8.2.14: DWT 2-1evel decomposition of an image. 

In Figure 8.2.15a an example is given of an image in which a 2-dimensional CDMA 

watermark W is embedded in the LH 1, HHI and HL~ DWT bands using a large gain 

factor k. The DWT coefficients in each of the three DWT bands are modulated as 

follows: 

Iw(u,v)= I(u,v)+ k. W(u,v) (8.2.14) 

Figure 8.2.15b shows the strongly amplified difference between the original image 

and the watermarked image. 



S TA TE- 0 F- THE-A R T IN IMA G E AND VIDE 0 WA TE R MAR KING 18 7 

Figure 8.2.15: D W T  image content independent watermark. 

The DWT watermark can be made image dependent by modulating the DWT 

coefficients in each of the three DWT bands as follows: 

1,, (u, v) = I(u, v). (1 + k. W(u, v)) (8.2.15) 

In Figure 8.2.16a an example is given of an image in which the same CDMA 

watermark W is embedded in the LH 1, H H  1 and HL 1 DWT bands using Equation 

8.2.15 with a large gain factor k. Figure 8.2.16b shows the strongly amplified 

difference between the original image and the watermarked image. 

8.2.4 Watermark energy adaptation based on HVS 

The robustness of a watermark can be improved by increasing the energy of the 

watermark. However, increasing the energy degrades the image quality. By 

exploiting the properties of the Human Visual System (HVS), the energy can be 

increased locally in places where the human eye will not notice it. As a result, by 

exploiting the HVS, one can embed perceptually invisible watermarks that have 

higher energy than if this energy were to be distributed evenly over the image. 

If a visual signal is to be perceived, it must have a minimum amount of 

contrast, which depends on its mean luminance and frequency. Furthermore, a 

signal of a given frequency can mask a disturbing signal of a similar frequency 



188 CHAPTER 8 

[Wan95] and [Bar98]. This masking effect is already used in the image-dependent 
DCT watermarking method described in the previous section, where the DCT 

coefficients are modulated by means of Equation 8.2.13. Here, to each sinusoid 

present in the image (masking signal), another sinusoid (watermark) is added, 

having an amplitude proportional to the masking signal. If the gain factor k is 

properly set, frequency masking occurs. 

The HVS is less sensitive to changes in regions of high luminance. This fact can 

be exploited by making the watermark gain factor luminance dependent [Kut97]. 

Furthermore, since the human eye is least sensitive to the blue channel, a 

perceptually invisible watermark embedded in the blue channel can contain more 

energy than a perceptually invisible watermark embedded in the luminance channel 

of a color image [Kut97]. 

Figure 8.2.16: DWT image content dependent watermark. 

Around edges and in textured areas of an image, the HVS is less sensitive to 

distortions than in smooth areas. This effect is called spatial masking and can also be 

exploited for watermarking by increasing the watermark energy locally in these 

masked image areas [Mac95]. The basic spatial watermarking techniques described 

in Sections 8.2.1 and 8.2.2 can be extended with spatial masking compensation by, 

for instance, using the following modulation function. 

Iw(x, y) = I(x, y) + Msk(x, y). k. W(x, y) (8.2.16) 
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Here W(x,y) represents the 2-dimensional pseudorandom pattern of the watermark, 

k denotes the fixed gain factor and Msk(x,y) represents a masking image. The values 

of the masking image range from 0 to k'ma ~ and give a measure of insensitivity to 

distortions for each corresponding point in the original image I(x,y). In [Ka199] the 

masking image Msk is generated by filtering the original image with a Laplacian 

high-pass filter and by taking the absolute values of the resulting filtered image. 

Figure 8.2.17: Watermarking using masking image based on Prewitt operator. 

In Figure 8.2.17a a mask is shown for the "Lena image" (Figure 8.2.10a) which is 

generated by a simple Prewitt edge detector. Figure 8.2.17b shows the strongly 
amplified watermark modulated with this mask. 

Experiments have shown that a perceptually invisible watermark modulated 

with a gain factor locally adapted to such a mask can contain twice as much energy 

as a perceptually invisible watermark modulated with a fixed gain factor. 

To investigate the effect of this energy doubling on the robustness of the 

watermark we perform the following experiment. We add a watermark Wfixed(x,y ) to 

the "Lena image" with the method of [Smi96] using a fixed gain factor k=2. 

Increasing this fixed gain factor causes visible artefacts in the resulting watermarked 

image. Next, we add a watermark Wvar(X,y ) to another "Lena image" with the same 

method, but now we use a variable gain factor locally adapted to the masking image 

presented in Figure 8.2.17a. Although the watermark Wvar(x,y ) contains about twice 

as much energy as Wfixed(x,y ) the watermark is not noticeable in the resulting 

watermarked image. Then we compress both watermarked images with the JPEG 
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algorithm [Pen93], where the quality factor QJm of the compression algorithm is 

made variable. Finally, the watermarks are extracted from the decompressed image 
and compared bit by bit with the originally embedded watermark bits. From this 

experiment, we find the percentages of watermark bit errors due to JPEG 

compression as a function of the JPEG quality factor. In Figure 8.2.18 the error curves 

are plotted for both watermarks Wfixed(X,y ) and W ar(X,y ). It can be seen that the 

robustness can be slightly improved by applying a variable gain factor adapted to 

the HVS. 
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Figure 8.2.18: Influence of a variable gain factor adapted to the HVS on the robustness of a 
watermark. 

In [Ng99] the squared sum of the 8x8 DCT AC-coefficients is used to generate a 

masking image. Figure 8.2.19a shows a mask generated using this DCT-AC energy 

for the "Lena image". Figure 8.2.19b presents the strongly amplified watermark 

modulated with this mask. 

Spatial masking can also be applied if the watermark is embedded in another 

domain e.g. DFT, DCT or DWT. In this case, the non-spatial watermark is first 

embedded in an image/ ,  resulting in the temporary image Iwt. The watermarked 

image I w is now constructed by mixing the original image I and this temporary 

image Iw~ by means of a masking image Msk as described above [Bar98] and [Piv97]: 

Iw (x, y ) = (1- Msk(x, y))I(x, y) + Msk(x, y). Iw, (x, y ) (8.2.17) 
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Here the masking image must be scaled to values in the range from 0 to 1. 

Watermarking methods based on more sophisticated models for the HVS can be 

found in [Bar98], [Bar99], [Fle97], [Gof97], [Kun97], [Piv97], [Pod97], [Swa96a], 

[Swa96b], [Wo199b] and [Wo199c]. 

Figure 8.2.19: Watermarking where a masking image is used based on DCT-AC energy. 

8.3 Extended correlation-based watermark techniques 

8.3.1 Anticipating lossy compression and filtering 

Watermarks that have been embedded in an image by means of the spatial 
watermarking techniques described in Sections 8.2.1 and 8.2.2 cannot be detected 
reliably after the watermarked image has been highly compressed with the lossy 
JPEG compression algorithm. This is due to the fact that such watermarks consist 
essentially of low-power, high frequency noise. Since JPEG allocates fewer bits to the 

higher frequency components, such watermarks can easily be distorted. 

Furthermore, these watermarks can also be affected severely by low-pass operations 

like linear or median filters. 

The robustness to JPEG compression can be improved in several ways. In 

[Smi96] the pseudorandom pattern W is first compressed and then decompressed 

using the JPEG algorithm. The energy of the resulting pattern W is increased to 

compensate for the energy lost through the compression. Finally, this pattern is 
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added to the image to generate the watermarked image. The idea here is to use the 

compression algorithm to filter out in advance all the energy that would otherwise 

be lost later in the course of the compression. It is assumed that a watermark formed 

in this way is invariant to further JPEG compression that uses the same quality 

factor, except for small numerical artifacts. Analogous pre-distortion of the 

watermark pattern, such as filtering, can be applied to prevent other anticipated 

degradations of the watermarked image. 

Figure 8.3.1: DCT bands F, in which the watermark energy ~ is minimized. 

In [Nik96] the energy of the watermark pattern is shifted to the lower frequencies by 

calculating an individual gain factor kx,y for each pixel of the watermark pattern 

instead of using the same gain factor k for all pixels. First a pseudorandom pattern 

W(x,y) is generated consisting of the integers 0 and k. Next, the pattern is divided 

into 8x8 blocks and the DCT transform W(u,v) is calculated for each 8x8 block. The 

non-zero elements in the 8• blocks are now regarded as gain factors k y and are 

adapted in such a way that the energy q~ in the vulnerable high frequency DCT 

bands F, is minimized (Figure 8.3.1): 

q~ : y"  ~- 'W(u,v) 2 F,={u,v I 5 < u <_ 8, 5 < v <_ 8} (8.3.1) 
u,v~ F H 

The energy q~ is minimized under the following constraints: 

8 8 8 8 

Z Z m ( x , y ) . k - - Z Z m ( x , y ) . k x , y  kmin~kx,y~kma x (8.3.2) 
x=l y=l x=l y=l 

The effect of this high-energy minimization on the watermark pattern is illustrated 

in Figure 8.3.2. Figure 8.3.2a shows the watermark pattern within an 8x8 block, 

where a constant gain factor of k=3 is used. After the high-energy minimization with 

kmi,=0 and k,~x=6 the watermark pattern fades smoothly to zero (Figure 8.3.2.b) 

although the sum of the non-zero pixels still equals to the sum of the non-zero pixels 

in the original pattern. 
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Figure 8.3.2: (a) Original watermark block (b) Low frequency watermark block. 

In [Lan96a] and [Lan97a] JPEG compression immunity is obtained by deriving a 

different gain factor k for each 32x32 pixel block based on a lower quality JPEG 

compressed image. A 32x32 pseudorandom pattern representing a watermark bit is 

added to an 32x32 image tile. A copy of this watermarked image tile is degraded 

according to the JPEG standard for which end a relatively low quality factor is used. 

If the watermark bit cannot be extracted correctly from this degraded copy, the 

watermark pattern is added to the image by means of a higher gain factor and a new 

degraded copy is formed to check the bit. This procedure is repeated iteratively for 

each bit until all bits can be extracted reliably from the degraded copies. A 
watermark formed in this way is resistant to JPEG compression using a quality 

factor equal to or greater than the quality factor used to degrade the copies. In Figure 

8.3.3 an example of such a watermark is shown, amplified for visibility purposes. 

Figure 8.3.3: Watermark where the local gain factor per block is based on a lower quality 
image. 
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8.3.2 Anticipating geometrical transforms 

A watermark should not only be robust to lossy compression techniques, but also to 

geometrical transformations such as shifting, scaling, cropping, rotation etc. 

Geometrical transforms hardly affect the image quality, but they do make most of 

the watermarks that have been embedded by means of the techniques described in 

the previous sections undetectable for the watermark detectors. Since geometrical 

transforms affect the synchronization between the pseudorandom pattern of the 

watermark and the watermarked image, the synchronization must be retrieved 

before the detector performs the correlation calculations. 

The most obvious way to achieve shift invariance is using the DFT amplitude 

modulation technique described in Section 8.2.3. However if for some reason 

another watermarking embedding domain is preferred and shift invariance is 

required, a marker can be added in the spatial domain to determine the translation. 

This marker can be a pseudorandom pattern like the watermark itself. The detector 

first determines the spatial position of this marker by shifting the marker over all 

possible locations in the image and calculating the correlation between the marker 

and the corresponding image part. The translation with the highest correlation 

defines the spatial position of the marker. Finally, the image is shifted back to its 

original position and the normal watermarking detection procedure is applied. 

An exhaustive search for a marker is computationally quite demanding. Therefore, 

in [Ka199] a different approach is proposed: adding a pseudorandom pattern twice, 

but at different locations in the image. The content of the watermark, i.e. the 

watermark bits, is here embedded in the relative positions of the two watermark 

patterns. To detect the watermark, the detector computes the phase correlation 

between the image and the watermark pattern using the fast Fourier transform and 

it detects the two correlation peaks of the two patterns. The content of the 

watermark is derived from relative position of the peaks. If the whole image is 

shifted before detection, the absolute positions of the correlation peaks will change, 

but the relative positions will remain unchanged, leaving the watermark bits 

readable for the detector. 

In [Fle97] a method is proposed to add a grid to an image that can be used to 

scale, rotate and shift an image back to its original size and orientation. The grid is 

represented by a sum of sinusoidal signals, which appear as peaks in the FFT 

frequency domain. These peaks are used to determine the geometrical distortions. 

In [Kut98] a method is proposed which embeds a pseudorandom pattern 

multiple times at different locations in the spatial domain of an image. The detector 
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estimates the watermark W' by applying a high-pass filter FHp to the watermarked 

image: 

W ' =  I,: | F, , .  , r - . .  = 

~0 0 0 -1 0 0 0 ~ 

0 0 0 -1 0 0 0 

0 0 0 -1 0 0 0 

-1 -1 -1 12 -1 -1 -1 

0 0 0 -1 0 0 0 

0 0 0 -1 0 0 0 

0 0 0 -1 0 0 0 

/ 12 (8.3.3) 

Next, the autocorrelation function of the estimated watermark W' is calculated. This 

function will have peak values at the center and the positions of the multiple 

embedded watermarks. If the image has undergone a geometrical transformation, 

the peaks in the autocorrelation function will reflect the same transformation, and 

hence provide a grid that can be used to transform the image back to its original size 

and orientation. 

In [Her98a], [Her98b], [Rua97], [Per99], [Rua98a] and [Rua98b] a method is 

proposed that embeds the watermark in a rotation, scale and translation invariant 

domain using a combination of Fourier Transforms (DFT) and a Log Polar Map 

(LPM). Figure 8.3.4 presents a scheme of this watermarking method. 

Figure 8.3.4: Rotation, scale and translation invariant watermarking scheme. 
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First the amplitude of the DFT is calculated to get a translation invariant domain. 

Next, for every point (u,v) of the DFT amplitude a corresponding point in the Log 

Polar Map ~,0) is determined: 

u = e" cos(O) v = e ~' sin(O) (8.3.4) 

This coordinate system of the Log Polar Map converts rotation and scaling into 

translations along the horizontal and vertical axis. By taking the amplitude of the 

DFT of this Log Polar map, we obtain a rotation, scale and translation invariant 

domain. In this domain a CDMA watermark can be added, for instance by 

modulating the coefficients using Equation 8.2.10. 

Figure 8.3.5: Example of the properties of the Log Polar Map. 

Figure 8.3.5 demonstrates an example of the properties of the Log Polar Map. Figure 

(b) shows the Log Polar Map of the "Lena image" (a). Figure (c) depicts a rotated 

and scaled version of the "Lena image" and Figure (d) shows its corresponding Log 

Polar Map. It can clearly be seen that the rotation and scaling are converted into 

translations. 

In practice it has proven to be difficult to implement a watermarking scheme as 

illustrated in Figure 8.3.4. The authors therefore propose a different approach, where 

a CDMA watermark is embedded in the translation invariant amplitude DFT 

domain as described in Section 8.2.3. To make the watermark scale and rotation 

invariant, they embed a second watermark, a template, in this domain. To extract the 

watermark, they first determine the scale and orientation of the watermarked image 

by using the template in the following way: 

�9 The DFT of the watermarked image is calculated. 

�9 The Log Polar Map of the DFT amplitudes and the template pattern is calculated. 
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The horizontal and vertical offsets between the two log polar maps are calculated 

using exhaustive search and cross-correlation techniques, resulting in a scale and 

rotation factor. 

Next, the image is transformed back to its original size and orientation, and the 

information-carrying watermark is extracted. 

8.3.3 Correlation-based techniques in the compressed domain 

Not only robustness, but also computational demands play an important role in real- 

time watermarking applications. In general image data is transmitted in compressed 

form. To embed a watermark in real time the compressed format must be taken into 

account, because first decompressing the data, adding a watermark and then re- 

compressing the data is computationally too demanding. In [Har96], [Har97a], 

[Har97b], [Har97c] and [Wu97] a method is proposed that adds a DCT transformed 

pseudorandom pattern directly to selected DCT coefficients of an MPEG compressed 

video signal. To extract the watermark they decompress the video data and apply 

the correlation techniques described in Section 8.2. Since the scope here is real-time 

watermarking algorithms, the above-mentioned method and novel alternatives are 

described in full in Chapters 9 and 10. 

Figure 8.4.1: Bit planes for the "Lena image". 
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8.4 Non-correlation-based watermarking techniques 

8.4.1 Least significant bit modification 

The simplest example of a spatial domain watermarking technique that is not based 

on correlation is the least significant bit modification method. If each pixel in a gray 

level image is represented by an 8-bit value, the image can be sliced up in eight bit 

planes. In Figure 8.4.1 these eight bit planes are represented for the "Lena image", 

where the upper left image represents the most significant bit plane and the lower 

right image represents the least significant bit plane. 

Since the least significant bit plane does not contain visually significant 

information, it can easily be replaced by an enormous amount of watermark bits. 

More sophisticated watermarking algorithms that make use of LSB modifications 

can be found in [Sch94], [Aur95], [Aur96], [Hir96] and [Fri99c]. These watermarking 

techniques are not very secure and not very robust to processing techniques because 

the least significant bit plane can easily be replaced by random bits, effectively 

removing the watermark bits. 

8.4.2 DCT coefficient ordering 

In [Koc95], [Zha95], [Koc94] and [Bur98] a watermarking method is proposed that 

adds a watermark bit string in the 8x8 block DCT domain. To watermark an image, 

the image is divided into 8x8 blocks. From these 8x8 blocks the DCT transform is 

calculated and two or three DCT coefficients are selected in each block in the middle 

band frequencies F M (Figure 8.4.2). The selected coefficients are quantized using the 

default JPEG quantization table [Pen93] and a relatively low JPEG quality factor. The 

selected coefficients are then adapted in such a way that their magnitudes form a 

certain relationship. The relationships among the selected coefficients compose 8 

patterns (combinations), which are divided into 3 groups. Two groups are used to 

represent the watermark bits '1' or '0', and the third group represents invalid 

patterns. If the modifications which are needed to hold a desired pattern become too 

large, the block is marked as invalid. For example, if a watermark bit with value '1' 

must be embedded in a block, the third coefficient should have a lower value than 

the two other coefficients. The embedding process and the list of patterns are 

represented in Figure 8.4.2. 

In Figure 8.4.3 the heavily amplified difference between the original "Lena 

image" and the watermarked version is shown. In [Bor96a] and [Bor96b] a similar 
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watermarking method is proposed, but here the DCT coefficients are modified in 

such a way that they fulfill a linear or circular constraint imposed by the watermark 

code. 

Figure 8.4.2: Watermarking based on adapting relationship between 3 coefficients. 

Figure 8.4.3: Watermark W(x,y)=I(x,y)-Iw(x,y) created by adapting relationships between 
DCT coefficients. 

In the methods described here, the relationships between a few middle band 

coefficients within an 8x8 DCT block define the watermark bits. In [Lan97a], 

[Lan97b], [Lan98a] and [Lan99b] a method is proposed that uses the relationship 
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between a large amount of high frequency band DCT coefficients in different DCT 

blocks to define the watermark bits. This new algorithm, its performance and its 

statistical modeling are described in full in Chapters 10 and 11. 

8.4.3 Salient-point modification 

In [Ron99] a watermarking method is proposed that is based on modification of 

salient points in an image. Salient points are defined as isolated points in an image 

for which a given saliency function is maximal. These points could be corners in an 

image or locations of high energy for example. 

Figure 8.4.4: Examples of watermark patterns for salient-point modification. 

To embed a watermark we extract the set of pixels with highest saliency S from the 

image. Next, a binary pseudorandom pattern W(x,y) with the same dimensions as 

the image is generated. This can be a line or block pattern as represented in Figure 

8.4.4. If this pattern is sufficiently random and covers 50% of all the image pixels, 

50% of all salient points in set S will be located on the pattern and 50% off the 

pattern W(x,y). Finally, the salient points in set S are adapted in such a way that a 

statistically significant high percentage of them lies on the watermark pattern (i.e. 

the black pixels in the pattern). There are two ways to adapt the salient points: 

�9 The location of the salient points can be changed by warping the points towards 

the watermark pattern. In this case small, local geometrical changes are 

introduced in the image. 

�9 The saliency of the points can be decreased or increased by adding well-chosen 

pixel patterns to the neighborhood of a salient point. 
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To detect the watermark we extract the set of pixels with highest saliency S from the 

image and compare the percentages of the salient points on the watermark pattern 

and off the pattern. If both percentages are about 50%, no watermark is detected. If 

there is a statistically significant high percentage of salient points on the pattern, the 

watermark is detected. The payload of this watermark is I bit. 

8.4.4 Fractal-based watermarking 

Some watermark embedding algorithms are proposed that are based on Fractal 

compression techniques [Dav96], [Pua96], [Bas98] and [Bas99]. They mainly use 

block-based local iterated function system coding [Jac92]. We first briefly describe 

the basic principles of this fractal compression algorithm here. An image is 

partitioned at two different resolution levels. On the first level, the image is 

partitioned in range blocks of size nxn. On the second level the image is partitioned 

in domain blocks of size 2nx2n. For each range block, a transformed domain block is 

searched for which the mean square error between the two blocks is minimal. Before 

the range blocks are matched on the domain blocks, the following transformations 

are performed on the domain blocks. First, the domain blocks are sub-sampled by a 

factor two to get the same dimensions as the range blocks. Subsequently, the eight 

isometries of the domain blocks are determined (the original block and its mirrored 

version rotated over 0, 90, 180 and 270 degrees). Finally, the scale factor and the 

offset for the luminance values is adapted. The image is now completely described 

by a set of relations for each range block, by the index number of the best fitting 

domain block, its orientation, the luminance scaling and the luminance offset. Using 

this set of relations, an image decoder can reconstruct the image by taking any initial 

random image and calculating the content of each range block from its associated 

domain block using the appropriate geometric and luminance transformations. 

Taking the resulting image as initial image one repeats this process iteratively until 

the original image content is approximated closely enough. 

In [Pua96] a watermarking technique is proposed which embeds a watermark 

of 32 bits bobl...b31 in an image. The embedding procedure consists of the full fractal 

encoding and decoding process as described above, where the watermark 

embedding takes place in the fractal encoding process. First, the image I(x,y) is split 

in two regions A(x,y) and B(x,y). For each watermark bit b i U range blocks are 

pseudorandomly chosen from I(x,y). If bj equals one, the domain blocks to code the U 

range blocks are searched in region A(x,y). If bj equals zero, the domain blocks to 

code the U range blocks are searched in region B(x,y). For range blocks which are not 
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involved in the embedding process, domain blocks are searched in regions A(x,y) 

and B(x,y). To extract the watermark information, we must select and re-encode the 

U range blocks for each bit bj. If most of the best fitting domain blocks are found in 

region A(x,y), the value I is assigned to bit bj, otherwise the bit is assumed to be zero. 

In [Bas98] and [Bas99] a watermark is embedded by forcing range blocks to 

map exactly on specific domain blocks. The watermark pattern here consists of this 

specific mapping. This mapping is enforced by adding artificial local similarities to 

the image. The size of the range blocks may be chosen equal to the size of the 

domain blocks. In Figure 8.4.5 an example is given of this process. 

Figure 8.4.5: Modifying the mapping between range and domain blocks. 

The left image illustrates how a fractal encoder would map the range block Rb18 on 

domain block Db o in an unwatermarked image. To embed the watermark, this 

mapping Dbo--~Rb18 must for instance be changed to Dbo---~Rb21. To force the mapping 

to this form, a block Rb'2~ is generated from block Db o by changing its luminance 

values. By adding block Rb" to the image, we change the optimal fractal mapping to 

its desired form Dbo--~Rb21 , because the quadratic error between Db o, corrected for 

luminance scale and offset and Rb21 is now smaller than the error between Db o and 

Rb18. 

To detect the watermark we calculate the optimal fractal mapping between the 

range blocks and the domain blocks. If a statistically significant high percentage of 

the mappings between range blocks and domain blocks match the predefined 

mappings of the watermark pattern, the watermark is detected. 
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8.5 Conclus ions  

Not all existing watermarking techniques are discussed in this chapter, because 

some techniques are specifically designed for e.g. printing purposes, and others are 

not so extensively represented in literature as the methods described in this chapter. 

We will therefore only enumerate the most important principles of some of these 

other methods here: 

For printed images dithering patterns can be adapted to hide watermark 

information [Tan90] and [Che99]. 

Instead of the pixel values, the histogram of an image can be modified to embed 

a watermark [Co199]. 

Quantization can be exploited to hide a watermark. In [Rua96c] a method is 

proposed in which the pixel values of an image are first coarsely quantized, 

before some small adaptations are made to the image. To detect these 

adaptations the watermarked image is subtracted from its coarsely quantized 

version. In [Kun98] selected wavelet coefficients are quantized using different 

quantizers for watermark bits 0 and 1. 

In this chapter we discussed the two most important classes of watermarking 

techniques. The first class comprises the correlation-based methods. Here a 

watermark is embedded by adding pseudorandom noise to image components and 

detected by correlating the pseudorandom noise with these image components. The 

second class comprises the non-correlation-based techniques. This class of 

watermarking methods can roughly be divided into two groups: the group based on 

least significant bit (LSB) modification and group based on geometrical relations. 
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Chapter 9 

Low Complexity Watermarks 
for MPEG Compressed Video 

9.1 Introduct ion 

The scope of Chapters 9, 10 and 11 is real-time watermarking algorithms for MPEG 

compressed video. In this chapter the state of the art in real-time watermarking 

algorithms is discussed and two new computationally highly efficient algorithms are 

proposed which are very suitable for consumer applications requiring moderate 

robustness. In Chapter 10 the slightly more complex DEW watermarking algorithm 

is proposed, which is applicable for applications requiring more robustness. In 

Chapter 11 a statistical model is derived to find optimal parameter settings for the 

DEW method. 

Figure 9.1.1: Watermark embedding / extraction in raw vs. compressed video. 

205 
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A real-time watermarking algorithm should meet several requirements. In the first 

place it should be an oblivious low complexity algorithm. This means that fully 

decompressing the video data, adding a watermark to the raw video data and finally 

compressing the data again is not an option for real-time watermark embedding. 

The watermark should be embedded and detected directly in the compressed stream 

to avoid computationally demanding operations as shown in Figure 9.1.1. 

Furthermore, the watermark embedding operation should not increase the size 

of the compressed video stream. If the size of the stream increases, transmission over 

a fixed bit rate channel can cause problems: the buffers in hardware decoders can 

run out of space, or the synchronization of audio and video can be disturbed. 

Since the watermarking methods discussed in the following chapters heavily 

rely on the MPEG video compression standard [ISO96] the relevant parts of the 

MPEG-standard and the different domains in which a low complexity watermark 

can be added are described in Section 9.2. In Section 9.3 an overview is given of two 

real-time correlation-based watermarking algorithms from literature. In Sections 9.4 

and 9.5 two new computationally highly efficient algorithms are proposed which are 

very suitable for consumer applications requiring moderate robustness [Lan96b], 

[Lan97b] and [Lan98a]. 

Figure 9.2.1: The layered MPEG syntax. 
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9.2 Watermarking MPEG video bit streams 

Before discussing the low complexity watermarking techniques, we first briefly 

describe the MPEG video compression standard [ISO96] itself. The MPEG video bit 

stream has a layered syntax. Each layer contains one or more subordinate layers, as 

illustrated in Figure 9.2.1. A video Sequence is divided into multiple Group of Pictures 

(GOPs), representing sets of video frames which are contiguous in display order. 

Next, the frames are split in slices and macro blocks. The lowest layer, the block 

layer, is formed by the luminance and chrominance blocks of a macro block. 

The MPEG video compression algorithm is based on the basic hybrid coding 

scheme [Gir87]. As can be seen in Figure 9.2.2 this scheme combines interframe 

coding (DPCM) and intraframe coding to compress the video data. 

Figure 9.2.2: Motion compensated hybrid coding scheme. 

Within a GOP the temporal redundancy among the video frames is reduced by the 

application of temporal DPCM. This means that the frames are temporally predicted 

by other motion compensated frames. Subsequently, the resulting prediction error, 

which is called the displaced frame difference, is encoded. Three types of frames are 

used in the MPEG standard: (I) Intraframes, which are coded without any reference 

to other frames, (P) Predicted frames, which are coded with reference to past I- or P- 

frames, and (B) Bi-directionally interpolated frames, which are coded with 

references to both past and future frames. An encoded GOP always starts with an I- 

frame, to provide access points for random access of the video stream. In Figure 9.2.3 

an example of a GOP with 3 frame types and their references is shown. 
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Figure 9.2.3: GOP with 3 frame types and the references between the frames. 

The spatial redundancy in the prediction error of the predicted frames and the I- 

frames, represented by the luminance component Y and the chrominance 

components U and V, is reduced using the following operations: First the 

chrominance components U and V are subsampled. Next, the DCT transform is 

performed on the 8x8 pixel blocks of the Y, U and V components, and the resulting 

DCT coefficients are quantized. Since the de-correlating DCT transform concentrates 

the energy in the lower frequencies and the human eye is less sensitive to the higher 

frequencies, the high frequency components can be quantized more coarsely. The 

DCT coefficient with index (0,0) is called the DC-coefficient, since it represents the 

average value of the 8x8 pixel block. The other DCT coefficients are called AC- 
coefficients. 

8x8 block Tuples (run,level) VLC codewords 

............. ~" J:"!~,(~ ................. 2~t"~ ...... ;;TL '0 ; .......... ~,0' ~ ~i~ ;'~ tO' ~ t~) 

o ",r ,o,',o, 

(0,5), (0,3), (0,2), (2,4), 
(1,7), (3,2), (3,1), (2,4), 
(4,1), (4,2) 

coefficient domain (cd) run-level domain 

Figure 9.2.4: DCT-block representation domains. 
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In the lowest MPEG layer, the block layer, the spatial 8x8 pixel blocks are 

represented by 64 quantized DCT coefficients. Figure 9.2.4 shows the three domains 

in which the block layer can be divided. The first domain is the coefficient domain (cd), 
where a block contains 8x8 integer entries that correspond with the quantized DCT 

coefficients. Many of the entries are usually zero, especially those entries that 

correspond with the spatial high frequencies. In the run-level domain, the non-zero 

AC coefficients are re-ordered in a zigzag scan fashion and are subsequently 

represented by a (run,level) tuple, where the run is equal to the number of zeros 

preceding a certain coefficient and the level is equal to the value of the coefficient. In 

lowest level domain, the bit domain (bd), the (run,level) tuples are entropy coded and 

represented by variable length coded (VLC) codewords. The codewords for a single 

DCT-block are terminated by an end of block (EOB) marker. 

A real-time watermarking algorithm for MPEG compressed video should 

closely follow the MPEG compression standard to avoid computationally 

demanding operations, like DCT and inverse DCT transforms or motion vector 

calculation. Therefore, the algorithm should work on the block layer, the lowest 

layer of the MPEG stream. A watermarking algorithm that operates on the coefficient 
domain level only needs to perform VLC coding, tuple coding and quantization 

steps. This process is illustrated in Figure 9.2.5. 

Figure 9.2.5: Coefficient domain watermarking concept. 

A watermarking algorithm that operates on the bit domain level only needs the VLC 

coding processing step. Here, a complete watermark embedding procedure can 

consist of VLC-decoding, VLC-modification and VLC-encoding. This process is 

illustrated in Figure 9.2.6. 

In Section 9.3 an overview is given of two real-time correlation-based 

watermarking algorithms from literature. The first method described in this section 

is applied in the coefficient domain. The second method is more advanced and 

operates on a slightly higher level than the coefficient domain, since it needs a full 
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MPEG decoding operation for drift compensation and watermark detection, and an 

additional DCT operation. The new watermarking methods proposed in Sections 9.4 

and 9.5 operate on the lowest level domain, the bit domain, and are therefore 

computationally the most efficient methods. The DEW algorithm proposed in 

Chapters 10 and 11 is applied completely in the coefficient domain. 

Figure 9.2.6: Bit domain watermarking concept. 

9.3 Correlation-based techniques 
in the coefficient domain 

9.3.1 DC-coefficient modification 

In [Wu97] a method is proposed that adds a DCT transformed pseudorandom 

pattern directly to the DC-DCT coefficients of an MPEG compressed video stream. 

The watermarking process only takes the luminance values of the I-frames into 

account. To embed a watermark the following procedure is performed: First a 

pseudorandom pattern consisting of the integers {-1,1} is generated based on a secret 

a key. This pattern has the same dimensions as the I-frames. Next, the pattern is 

modulated by a watermark bit string and multiplied by a gain factor, as described in 

Section 8.2.2. Finally, the 8x8 block DCT transform is applied to the modulated 

pattern and the resulting DC-coefficients are added to the corresponding DC-values 

of each I-frame. The watermark can be detected using correlating techniques in the 

DCT domain or in the spatial domain, as described in Section 8.2.2. 

The authors report that the algorithm decreases the visual quality of the video 

stream drastically. Therefore, the gain factor of the watermark has to be chosen very 

low (<1) and the number of pixels per watermark bit has to be chosen extremely 

high (>> 100,000) to maintain a reasonable visual quality for the resulting video 

stream. This is mainly due to the fact that the watermark pattern is embedded in just 

one of the 64 DCT coefficients, the DC-component. Furthermore, the pattern consists 
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only of low frequency components to which the human eye is quite sensitive. For 

comparison, the algorithm described in Section 8.2.2 uses a gain factor of 2 and 

about 1000 pixels per watermark bit. 

9.3.2 DC-  and A C - c o e f f i c i e n t  m o d i f i c a t i o n  w i t h  drift  c o m p e n s a t i o n  

9.3.2.1 Basic watermarking concept 

In [Har96], [Har97a], [Har97b], [Har97c] and [Har98] a more sophisticated 

watermarking algorithm is proposed that embeds a watermark not only in the DC- 

coefficients, but also in the AC-coefficients of each I-, P- and B-frame. Here the 

watermark is also a pseudorandom pattern consisting of the integers {-1,1} 

generated by means of a secret key. This pattern has the same dimensions as the 

video frames. The pattern is modulated by a watermark bit string and multiplied by 

a gain factor k as described in Section 8.2.2. 

To embed the watermark, the watermark pattern W(x,y) is divided into 8x8 

blocks. These blocks are transformed to the DCT domain and denoted by Wx,y(u,v ), 

where x,y=0,8,16.., and u,v=0...7. Next, the two-dimensional blocks Wx,~,(u,v) are re- 

ordered in a zigzag scan fashion and become arrays W y(i), where i=0...63. W~,y(0) 

represents the DC-coefficient and W~J63) denotes the highest frequency AC- 

coefficient of a 8x8 watermark block. Since the corresponding MPEG encoded 8x8 

video content blocks are encoded in the same way as/x,y(i), these arrays can be used 

directly to add the watermark. For each video block/~,y(i) out of an I-, P-, or B-frame 

the following steps are performed: 

1. The DC-coefficient is modulated as follows: 

&~,~ (o) = q,~ (o) + w~,~ (o) (9.3.1) 

Which means that the average value of the watermark block is added to the 

average value of the video block. 

2. To modulate the AC-coefficients, the bit stream of the encoded video block is 

searched VLC-by-VLC for the next VLC code word, representing the next non- 

zero DCT coefficient. The run and level of this code word are decoded to 

determine its position i along the zigzag scan and its amplitude/x,y(i). 
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A candidate DCT coefficient for the watermarked video block is generated, 

which is defined as: 

Iw~,. ~ (i)= I~,y(i)+ W,,,y(i) i,O (9.3.2) 

Now the constraint that the video bit rate may not increase comes into play. The 

size Szl of the VLC needed to encode Ix,~(i ) and the size Szl, ~ of the VLC needed to 

encode Iwx ~ (i) are determined using the VLC-Tables B.14 and B.15 of the MPEG- 

2 standard [ISO96]. If the size of VLC encoding the candidate DCT coefficient is 

equal to or smaller than the size of the existing VLC, the existing VLC is replaced. 

Otherwise the VLC is left unaffected. This means that the DCT coefficient/~,y(i) is 

modulated in the following way: 

If Sz, w < Sz I then Iwxy (i) = Ix,y (i) + Wx,y (i) (9.3.3) 

else Iw~,, (i) = Ix ,y( i  ) 

This procedure is repeated until all AC-coefficients of the encoded video block 

have been processed. 

To extract the watermark information, the MPEG encoded video stream is first fully 

decoded and the watermark bits are retrieved by correlating the decoded frames 

with the watermark pattern W(x,y) in the spatial domain using the standard 

techniques as described in Section 8.2.2. 

9.3.2.2 Drift compensation 

A major problem of directly modifying DCT coefficients in an MPEG encoded video 

stream is drift or error accumulation. In an MPEG encoded video stream predictions 

from previous frames are used to reconstruct the actual frame, which itself may 

serve as a reference for future predictions. The degradations caused by the 

watermarking process may propagate in time, and may even spread spatially. Since 

all video frames are watermarked, watermarks from previous frames and from the 

current frame may accumulate and result in visual artefacts. Therefore, a drift 

compensation signal Dr must be added. This signal must be equal to the difference 

of the (motion compensated) predictions from the unwatermarked bit stream and 

the watermarked bit stream. As a drift-compensated watermarking scheme, 

Equation 9.3.2 becomes: 
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Iv:,,. (i ) = I~,y(i) + W~,y(i) + Dr~,y(i) (9.3.4) 

A disadvantage of this drift signal is that the complexity of the watermark 

embedding algorithm increases substantially, since an additional DCT operation and 

a complete MPEG decoding step are required to calculate the drift compensation 

signal. The increase in complexity compared to the complexity of the coefficient 
domain methods is illustrated in Figure 9.3.1. 

Figure 9.3.1" Increase of complexity due to drift compensation. 

9.3.2.3 Evaluation of the correlation-based technique 

Due to the bit rate constraint, only around 10-20% of the DCT coefficients are altered 

by the watermark embedding process, depending on the video content and the 
coarseness of the MPEG quantizer. In some cases, especially for very low bit rate 
video, only the DC-coefficients are modified. This means that only a fraction of the 

watermark pattern W(x,y) can be embedded, typically around 0.5...3% [Har98]. 

Since only existing (non-zero) DCT coefficients of the video stream are watermarked, 

the embedded watermark is video content dependent. In areas with only low 

frequency content, the watermark automatically consists of only low frequency 

components. This complies with the Human Visual System. The watermark energy 

is mainly embedded in areas containing a lot of video content energy. 

The authors [Har98] report that the complexity of the watermark embedding 

process is much lower than the complexity of a decoding process followed by 

watermarking in the spatial domain and re-encoding. The complexity is somewhat 

higher than the complexity of a full MPEG decoding operation. Typical parameter 
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settings for the embedding are k=1...5 for the gain factor of the watermark and 

P=500,000...1,000,000 for the number of pixels per watermark bit, yielding 

watermark label bit rates of only a few bytes per second. The authors claim that the 

watermark is not visible, except in direct comparison to the unwatermarked video, 

and that the watermark can withstand linear and non-linear operations like filtering, 

noise addition and quantization in the spatial or frequency domain. 

9.4 Parity bit modification in the bit domain 

9.4.1 Bit domain watermarking concept 

In Section 8.4.1 we saw that watermarking algorithms based on LSB (least significant 

bit) modification have an enormous payload and are computationally not 

demanding. In this section, this LSB modification principle is directly applied in the 

bit domain of MPEG compressed video, resulting in a computationally highly 

efficient watermarking algorithm with an extremely high payload [Lan96b], 

[Lan97b] and [Lan98a]. 

We embed a watermark consisting of l label bits bj (j = O, 1, 2 ..... l-1) in the 

MPEG-stream by selecting suitable VLCs and forcing the least significant bit of their 

quantized level to the value of bj. To ensure that after decoding the change in the VLC 

is perceptually invisible and the MPEG-bit stream has kept its original size, we select 

only those VLCs for which another VLC exists with: 

�9 the same run length 

�9 a level difference of 1 

�9 the same code word length 

A VLC that meets this requirement is called a label bit carrying VLC (lc-VLC). 

According to Table B.14 and B.15 of the MPEG-2 standard [ISO96], an abundance of 

such lc-VLCs exists. Furthermore, all fixed length coded DCT coefficients following 

an Escape code meet the requirement. Some examples of lc-VLCs are listed in Table 

9.4.1, where the symbol s represents the sign bit. This sign bit represents the sign of 

the DCT coefficient level. 

The VLCs in the intracoded and intercoded macro blocks can be used in the 

watermarking process. The DC coefficients are not used, because they are predicted 

from other DC coefficients and coded with a different set of VLCs and Escape codes. 

Furthermore, replacing each DC coefficient in intracoded and intercoded frames can 



LOW COMPLEXITY WATERMARKS FOR MPEG COMPRESSED VIDEO 215 

result in visible artefacts due to drift. If only the AC coefficients are taken into 

account, the wa te rmark  is adapted  more to the video content and the drift is limited. 

Variable length code 

0010 0110 s 
0010 0001 s 
0000 0001 1101 s 
0000 0001 1000 s 

0000 0000 1101 0 s 
0000 0000 1100 1 s 
0000 0000 0111 11 s 
0000 0000 0111 10 s 

0000 0000 0011 101 s 
0000 0000 0011 100 s 

0000 0000 0001 0011 s 
0000 0000 0001 0010 s 

VLC 
size 
8 + 1  
8 + 1  
1 2 + 1  
1 2 + 1  

1 3 + 1  
1 3 + 1  
1 4 + 1  
1 4 + 1  

1 5 + 1  
1 5 + 1  

1 6 + 1  
1 6 + 1  

Run Level 

12 
13 

16 
17 

10 
11 

15 
16 

LSB of Level 

Table 9.4.1: Example of lc-VLCs in Table B.14 of the MPEG-2 Standard. 

Figure 9.4.1: Example of the LSB watermarking process. 

To add the label bit s tream L to an MPEG-video bit stream, we test the VLCs in each 

macro block. If an lc-VLC is found and the least significant bit of its level is unequal  

to the label bit bj (,1"=0,1,2 ..... I-1), this VLC is replaced by another, whose LSB-level 

represents the label bit. If the LSB of its level equals the label bit bj the VLC is not 
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changed. The procedure is repeated until all label bits are embedded. In Figure 9.4.1 

an example is given of the watermarking process, where 3 label bits are embedded 

in the MPEG video stream. 

To extract the label bit stream L we test the VLCs in each macro block. If an lc- 
VLC is found, the value represented by its LSB is assigned to the label bit bj. The 
procedure is repeated for j=O,1,2 ..... l-1 until lc-VLCs are no longer found. 

9.4.2 Evaluation of the bit domain watermarking algorithm 

9.4.2.1 Test sequence 

The maximum label bit rate is the maximum number of label bits that can be added 

to the video stream per second. This label bit rate is determined by the number of lc- 
VLCs in the video stream and is not known in advance. Therefore, we first 

experimentally evaluate the maximum label bit rate by applying the watermarking 

technique to an MPEG-2 video sequence. The sequence lasts 10 seconds, has a size of 

720 by 576 pixels, is coded with 25 frames per second, has a GOP-length of 12 and 

contains P-, B- and I-frames. The sequence contains smooth areas, textured areas and 

sharp edges. During the 10 seconds of the video there is a gradual frame-to-frame 

transition, but at the end the camera turns fast to another view. A few frames of the 

sequence are shown in Figure 9.4.2. This sequence is coded at different bit rates (1.4, 

2, 4, 6 and 8 Mbit/s) and used for all experiments in Part II of this book. It will be 

referred to as the "sheep sequence". 

Figure 9.4.2: A few frames of the "'sheep sequence". 
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9.4.2.2 Payload of the watermark 

In Table 9.4.2 the results of the watermark embedding procedure are listed. Only the 

lc-VLCs in the intracoded macro blocks, excluding the DC coefficients, are used to 

embed watermark label bits. In this table the "number of VLCs" equals the number 

of all coded DCT coefficients in the intracoded macro blocks, including the fixed 

length coded coefficients and the DC-values. It appears that it is possible to store up 

to 7 kbit of watermark information per second in the MPEG streams if only 

intracoded macro blocks are used. 

Video bit rate 

1.4 Mbit / s 
2.0 Mbit/s  
4.0 Mbit/s 
6.0 Mbit/s 
8.0 Mbit/s 

Number  of 
VLCs 

334,433 
670,381 

1,401,768 
1,932,917 
2,389,675 

Number  of Ic-VLCs 

1,152 (0.3%) 
11,809 (1.8%) 
34,650 (2.5%) 
52,337 (2.7%) 
69,925 (2.9%) 

Max. label bit rate 

0.1 kbit /s  
1.2 kbit/s  
3.5 kbit/s 
5.2 kbit/s 
7.0 kbit /s  

Table 9.4.2: Total number of VLCs and number of Ic-VLCs in the intracoded macro blocks 
of 10 seconds MPEG-2 video coded using different bit rates and the maximum label bit rate. 

If also the lc-VLCs in the intercoded blocks are used, the maximum label bit rate 

increases to 29 kbit/s. The results of this experiment are listed in Table 9.4.3. In this 

case the "number of VLCs" equals the number of all coded DCT coefficients in the 

intracoded and intercoded macro blocks, including the fixed length coded 

coefficients and the DC-values. 

Video bit rate 

1.4 Mbit / s 
2.0 Mbit/s 
4.0 Mbit/s 
6.0 Mbit/s  
8.0 Mbit/s  

Number  of 
VLCs 

350,656 
1,185,866 
4,057,786 
7,131,539 
10,471,557 

Number  of Ic-VLCs 

1,685 (0.5%) 
30,610 (2.6%) 
135,005 (3.3%) 
222,647 (3.1%) 
289,891 (2.8%) 

Max. label bit rate 

0.2 kbit /s  
3.1 kbit/s  
13.5 kbit/s  
22.3 kbit/s  
29.0 kbit/s  

Table 9.4.3: Total number of VLCs and number of lc-VLCs in the intracoded and intercoded 
macro blocks of 10 seconds MPEG-2 video, coded using different bit rates and the maximum 
label bit rate. 
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Figure 9.4.3: Watermarking by VLC parity bit modification. 

9.4.2.3 Visual impact of the watermark 

Informal subjective tests show that the watermarking process does not result in any 

visible artefacts in the streams coded at 4, 6 and 8 Mbit/s. It was not possible to 

reliably evaluate the quality degradation due to watermark embedding at less than 2 

Mbit/s, because the unwatermarked MPEG-streams are already of poor quality, as 

these contain many compression artefacts. Although the visual degradation of the 

video due to the watermarking is not noticeable, the degradations are numerically 

measurable. In particular the maximum local degradations and the drift due to 

accumulation are relevant. In Figure 9.4.3a an original I-frame of the "sheep 

sequence" is represented. The sequence is MPEG-2 encoded at 8 Mbit/s. Figure 
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9.4.3b shows the corresponding watermarked frame. In Figure 9.4.3c the strongly 

amplified difference between the original I-frame and the watermarked frame is 

presented. Figure 9.4.3d shows the difference between the original I-frame coded at 

4 Mbit /s  and the corresponding watermarked frame. Since more bits are stored in an 

I-frame of a video stream coded at 8 Mbit/s,  more degradations are introduced 

(Figure 9.4.3c) than in an I-frame of a video stream coded at 4 Mbi t /s  (Figure 9.4.3d). 

According to Figure 9.4.3 most differences are located around the edges and in 

the textured areas. The smooth areas are left unaffected. In order to explain this 

effect the location of the lc-VLCs is investigated. In Figure 9.4.4 a histogram is shown 

of the "sheep sequence" coded at 8 Mbit/s.  The number of all VLCs (including the 

fixed length codes) that code non-zero DCT coefficients and the number of Ic-VLCs 

are plotted along the logarithmic vertical axis, represented by respectively white and 

gray bars. The DCT coefficient index scanned in the zigzag order ranging from 0 to 

63 is shown on the horizontal axis. 

Figure 9.4.4: Number of VLCs and lc-VLCs in lOs MPEG-2 video coded at 8Mb/s. 

Figure 9.4.4 shows that the lc-VLCs are fairly uniformly distributed over the DCT- 

spectrum. Therefore, we can expect each non-zero DCT coefficient represented by a 

VLC to have an equal probability of being modified. If we take into account that 

according to Table 9.4.3 at most 3.3% of all VLCs are lc-VLCs, the probability of a 

VLC being modified can roughly be estimated as follows: 

P[VLC modified] = P[VLC = lc-VLC]. P[label bit ~ LSB level VLC] 

P[VLC modified] < 0.033 �9 �89 = 0.016 

(9.4.1) 
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Smooth blocks are coded with only one or a few DCT coefficients. Because only 1.6% 

of them is replaced, most of the smooth areas are left unaffected. The textured blocks 

and the blocks containing sharp edges are coded with far more VLCs. These blocks 

will therefore contain the greater part of the lc-VLCs. 

The maximum local degradation (the number of Ic-VLCs per block) must be as 

low as possible. The visual impact of the watermarking process will be much smaller 

if the degradations introduced by modifying an lc-VLC are distributed more or less 

uniformly over the frame, instead of concentrated and accumulated in a relatively 

small area of the frame, or even worse, accumulated in a single DCT-block. 

In Figure 9.4.5 a histogram is shown of 10 seconds of the watermarked "sheep 

sequence" coded at 8 Mbit/s.  On the vertical axis the number of lc-VLCs per 8x8 

block is shown. The number of 8x8 blocks that contain this amount of lc-VLCs is 

plotted along the logarithmic horizontal axis. 
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Figure 9.4.5" Log histogram of the number of lc-VLCs per 8x8 block. 

This figure shows that 87% of all coded 8x8 blocks do not contain any lc-VLC. The 

rest of the coded 8x8 blocks contain one or more lc-VLCs. Most blocks (186.662) 

contain only one lc-VLC, which is about 64% of all lc-VLCs in the sequence. These 

numbers can be explained by Table B.14 and B.15 of the MPEG-2 standard [ISO96]. 
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The most frequently occurring run-level pairs are coded with short VLCs. Almost all 

short VLCs do not qualify as an lc-VLC. This means that the chance of a large 

number of Ic-VLCs in one 8x8 block is relatively low. 

To limit the maximum number of lc-VLC replacements per DCT-block to Tin, we 

can use a threshold mechanism. If the number of lc-VLCs exceeds T ,  only the first T~ 

lc-VLCs are used for the watermark embedding; the other lc-VLCs are left 

unchanged. In Table 9.4.4 the label bit rates for the "sheep sequence" coded at 8 

Mbit /s  are listed for several values of T,. If at most two lc-VLC replacements per 

block are allowed (T~ = 2), the label bit rate is only decreased to 83% of the 

maximum label bit rate for which T m = unlimited. So by limiting the number of lc-VLC 

replacements per block we can avoid unexpected large local degradations without 

drastically affecting the maximum label bit rate. 

T =max. Ic-VLC replacements per block 
2 
4 
6 
8 
10 

Unlimited 

Max. label bit rate 
24.2 Kbit / s 
26.9 Kbit /s  
28.1 Kbit /s  
28.6 Kbit /s  
28.8 Kbit /s  
29.0 Kbit /s  

Table 9.4.4: Label bit rates using a threshold for at most T m lc-VLC replacements per 8x8 
DCT-block (Video bit rate 8 Mbit/s). 

9.4.2.4 Drift 

In an MPEG-video stream P-frames are predicted from the previous I- or P-frame. 

The B-frames are predicted from the two nearest I- or P-frames. Since intracoded and 

intercoded macro blocks are used for the watermark embedding, errors are 

introduced in all frames. However, error accumulation (drift) from the frames used 

for the prediction occurs in the predicted P- and B-frames. The drift can clearly be 

seen in Figure 9.4.6, where the difference AMSE = MSE~-MSE u is plotted. The M S E  is 

the Mean-Square-Error (MSE) per frame between the original uncoded "sheep 

sequence" and the "sheep sequence" coded at 8 Mbit/s.  The MSE~ is the MSE per 

frame between the uncompressed sequence and the watermarked sequence coded at 

8 Mbit/s.  

In Figure 9.4.6 it can be seen that the I-frames (numbered 1,13,25,37...) have the 

smallest AMSE; in the worst case the ANISE of a predicted B-frame is 2 to 3 times 
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larger than the error in the I-frames. The average Peak Signal-to-Noise Ratio (PSNR) 

between the MPEG-compressed original and the uncompressed original is 37dB. If 

the watermarked compressed video stream coded at 8 Mbit /s  is compared with the 

original compressed stream, the z~MSE causes an average APSNR of 0.1dB and a 

maximum APSNR of 0.2dB. From these APSNR values we conclude that the drift can 

be neglected and no drift compensation signal is required. 
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Figure 9.4.6: AMSE of the watermarked "sheep sequence" coded at 8 Mbit/s with a label bit 
rate of 29.0 kbit/s. 

9.4.3 R o b u s t n e s s  

A large label bit stream can be added and extracted in a very fast and simple way, 

but it can also be removed without significantly affecting the quality of the video. 

However, it still takes a lot of effort to completely remove a label from a large MPEG 

video stream. For example, decoding the watermarked MPEG-stream and encoding 

it again using another bit rate will destroy the label bit string. But re-encoding is an 

operation that is computationally demanding and requires a high capacity disk. 

The easiest way to remove the label is by watermarking the stream again using 

another label bit stream. In this case the quality is slightly affected. During the re- 

labeling phase the adapted lc-VLCs in the watermarked video stream can either 

return to their original values or change to VLCs that represent DCTs that differ two 

quantization levels from the original ones in the unwatermarked video stream. Non- 

adapted lc-VLCs in the watermarked video stream can change to a value that differs 

one quantization level from the one in the original video stream. This means that 

there is some extra distortion, although the quality is only slightly affected. Since re- 

labeling of a large MPEG video stream still requires special hardware or a very 

powerful computer, the bit domain watermarking method is more suitable for 

consumer applications requiring moderate robustness. 
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9.5 Re-labeling resistant bit domain 
watermarking method 

By reducing the payload of the watermark drastically we can easily change the bit 

domain watermarking algorithm described in Section 9.4.1 to a re-labeling resistant 

algorithm. The watermark label bits bj are now not stored directly in the least 

significant bits of the VLCs, but a 1-dimensional pseudorandom watermark pattern 

W(x) is generated consisting of the integers {-1,1}, based on a secret key, which is 

modulated with the label bits bj as described in Section 8.2.2. The procedure to add 

this modulated pattern to the video stream is similar to the procedure described in 

Section 9.4.1. 

However, we now select only those VLCs for which two other VLCs exist 

having the same run length and the same codeword length. One VLC must have a 

level difference of +6 and the other VLC must have a level difference of-3. Most lc- 

VLCs meet these requirements for a relatively small 6 (e.g. 6 = 1,2,3). For notational 

simplicity we call these VLCs pattern-carrying VLCs (pc-VLCs). 

Figure 9.5.1: Example of the re-labeling resistant watermarking method. 

To embed a watermark in a video stream, we simply add the modulated watermark 

pattern to the levels of the pc-VLCs. To extract the watermark, we collect the pc-VLCs 
in an array. The watermark label bits can now be retrieved by calculating the 

correlation between this array of pc-VLCs and the secret watermark pattern W(x). In 
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Figure 9.5.1 an example is given of the watermark embedding process. About 

1,000...10,000 pc-VLCs are now required to encode one watermark label bit bj, but 

several watermark label bit strings can be added without interfering with each other, 

if independent pseudorandom patterns are used to form the basic pattern W(x). 

9.6 Conclus ions  

The most efficient way to reduce the complexity of real-time watermarking 

algorithms is to avoid computationally demanding operations by exploiting the 

compression format of the host video data. An advantage of this approach is that the 

watermark automatically becomes video content dependent. Since lossy 

compression algorithms discard the video information to which the human visual 

system is less sensitive and only encode visual important information, the 

watermark is only embedded in visual important areas. A disadvantage of closely 

following a compression standard and applying the constraint that the compressed 

video stream may not increase in size is that the number of locations to embed 

watermark information is limited significantly. The distortions caused by a 

watermark that is applied on a compressed video stream differ also from the 

distortions caused by a watermark applied on an uncompressed video stream. Due 

to block-based transformations and motion compensated frame prediction, 

distortions may spread over blocks and accumulate over the consecutive frames. 

In this chapter we discussed four low complexity watermarking algorithms. 

The first correlation-based algorithm only uses the DC-coefficients. Although the 

algorithm can be performed completely in the coefficient domain, the low frequency 

watermark causes too many visible artefacts. The second correlation-based method 

does not only take into account the DC-coefficients, but also the AC-coefficients and 

applies drift compensation to prevent that the watermark becomes visible. Since it 

utilizes more locations to embed the watermark energy, the watermark is more 

robust. However, adding a drift compensation signal and extracting the watermark 

information cannot be performed in the coefficient domain, since a full MPEG 

decoding operation is required. The algorithm is therefore more complex than an 

algorithm that can be applied completely in the coefficient domain. The third LSB- 

modification method that we proposed fully operates in the bit domain, and is 

therefore the method that is computationally most efficient, but the least robust. 

Other advantages of this method are the enormous payload and the invisibility of 

the watermark. The fourth method extends the LSB-modification method and 

achieves a higher robustness by reducing the payload of the watermark. 
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There are two important differences between the correlation-based methods 

and the LSB-modification methods. A watermark embedded by a correlation-based 

method can still be extracted from the decoded raw video, since the watermarking 

procedure adds a spatial noise pattern to the pixel values. If the pixel values are 

available in raw format or in another compressed format the watermark can still be 

detected. Once a video stream watermarked by the LSB-modification methods is 

decoded, the watermark is lost, because the watermark embedding and extraction 

procedures are completely dependent on the MPEG structure of the video. This 

structure disappears or changes when the video is decoded or re-encoded at another 

bit rate. Since full MPEG decoding and encoding is a task that is computationally 

quite demanding, this is not really an issue for consumer applications requiring 

moderate robustness. Furthermore, correlation-based methods and LSB- 

modification methods differ considerably in complexity. LSB-modification methods 

are computationally far more efficient since they can operate on the lowest level in 

the bit domain. 

For real-time applications that require the same level of robustness as the 

correlation-based methods but do not have enough computational power to perform 

full MPEG decoding for drift compensation and watermark detection, we have 

developed a completely new watermarking concept, which is presented in Chapters 

10 and 11. 



This Page Intentionally Left Blank



Chapter 10 

Differential Energy 
Watermarks (DEW) 

10.1 Introduction 

In Chapter 9 we noticed that correlation-based watermarking techniques have the 

advantage that watermarks can be extracted from decoded or re-encoded video 

streams. However, in order to embed or detect an invisible correlation-based 

watermark, a full MPEG decoding operation is required. This might be 

computationally too demanding. On the other hand, we have seen that the Least 

Significant Bit (LSB) based algorithms are computationally highly efficient. But 

watermarks embedded by these algorithms cannot be extracted from decoded or re- 

encoded video streams. For real-time consumer applications that require the same 

level of robustness as the correlation-based methods and the same computational 

efficiency as the LSB-based methods, we therefore developed the Differential Energy 

Watermarking (DEW) concept [Lan97a], [Lan97b], [Lan98a] and [Lan99b]. As can be 

seen in Figure 10.1.1 the DEW concept can be applied directly on MPEG/JPEG 

compressed video as well as on raw video. 

In the case of MPEG/JPEG encoded video data, the DEW embedding and 

extracting procedures can be performed completely in the coefficient domain (see 

Section 9.2). The encoding parts of the coefficient-domain watermarking concept can 

even be omitted. This means that the complexity of the DEW algorithm is only 

slightly higher than the LSB-based methods discussed in Section 9.4, but its 

complexity is considerably lower than the correlation-based method with drift 

compensation discussed in Section 9.3. 
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The application of the DEW concept is not limited to MPEG/JPEG coded video only; 

it is also suitable for video data compressed using other coders, for instance 

embedded zero-tree wavelet coders [Sha93]. The DEW algorithm embeds label bits 

by selectively discarding high frequency coefficients in certain video frame regions. 

The label bits of the watermark are encoded in the pattern of energy differences 

between DCT blocks or hierarchical wavelet trees. 

Figure 10.1.1: DEW embedding / extracting in compressed and raw video. 

In Section 10.2 the general DEW concept for MPEG/JPEG coders is explained, 

followed by a more detailed description in Section 10.3. In Section 10.4 the DEW 

concept is evaluated for MPEG compressed video. Section 10.5 explains the general 

DEW concept for embedded zero-tree wavelet coded video. Finally the results are 

discussed in Section 10.6. 

Figure 10.2.1: Label bit positions and region definitions in a frame. 
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10.2 The DEW concept for MPEG/JPEG encoded video 

The Differential Energy Watermarking (DEW) method embeds a watermark 

consisting of l label bits b i (j = 0, 1, 2 .... , I-1) in a JPEG image or in the I-frames of an 

MPEG video stream. Each bit out of the label bit string has its own label-bit-carrying 

region, the lc-region, consisting of n 8x8 DCT luminance blocks. 

Figure 10.2.2: Energy definitions in an lc-region o~ n=16 8x8 DCT blocks. 

For instance the first label bit is located in the top-left-corner of the image or I-frame 

in an lc-region of n=16 8x8 DCT blocks, as illustrated in Figure 10.2.1. The size of this 

lc-region determines the label bit rate. The higher n, the lower the label bit rate. In 

case the video data is not DCT compressed, but in raw format, the DEW algorithm 

requires a block-based DCT transformation as preprocessing step. 

A label bit is embedded in an lc-region by introducing an "energy" difference 

D between the high frequency DCT coefficients of the top half of the lc-region 

(denoted by lc-subregion A) and the bottom half (denoted by B). The energy in an lc- 

subregion equals the squared sum of a particular subset of DCT co6fficients in this 
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lc-subregion. This subset is denoted by S(c), and is illustrated in Figure 10.2.2 by the 

white triangularly shaped areas in the DCT-blocks. 

We define the total energy in S(c), computed over the n/2 blocks in subregion A 

a s :  

n/2-1 
E,~(c'n'Oypeg) = E E ([O',a]Qjpeg)2 (10.2.1) 

d=O /E S(c) 

Here 0;, a denotes the non-weighted zigzag scanned DCT coefficient with index i in 

the d-th DCT block of the lc-subregion A under consideration. The notation 

[]o_ jpeg indicates that, prior to the calculation of E A, the DCT coefficients of JPEG 

compressed video are optionally re- or pre-quantized using the standard JPEG 

quantization procedure [Pen93] with quality factor Qjpeg-For embedding labels bits 

into MPEG compressed I-frames a similar approach can be followed, but here we 

restrict ourselves to the JPEG notation without loss of generality. The pre- 

quantization is done only in determining the energies, but is not applied to the actual 

video data upon embedding the label. The energy in lc-subregion B, denoted by E B, 

is defined similarly. 

S(c) is typically defined according to a cutoff index c in the zigzag scanned DCT 

coefficients. 

S(c) = {h ~ {1,63} I (h > c)} (10.2.2) 

The selection of suitable cutoff indices for lc-regions is very important for the 

robustness and the visibility of the label bits and will be discussed in the next 

section. First we focus on how the watermarking procedure works, assuming that 

we have available suitable cutoff indices c for each lc-region. The energy difference 

D between top and bottom half of an lc-region is defined as: 

D(c,n,Qjpeg) = EA(c,n,Qpeg)- EB(c,n,Qjpeg) (10.2.3) 

In Figure 10.2.2 the complete procedure to calculate the energy difference D of an lc- 

region (n=16) is illustrated. 

We now define the label bit value as the sign of the energy difference D. Label 

bit "0" is defined as D>O and label bit "1" as D<O. The watermark embedding 

procedure must therefore adapt E A and E B to manipulate the energy difference D. If 

label bit "0" must be embedded, all energy after the cutoff index in the DCT-blocks 

of lc-subregion B is eliminated by setting the corresponding DCT coefficients to zero, 

so that: 
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D =  E A - E B = E A-O = +E A (10.2.4) 

If label bit "1" must be embedded,  all energy after the cutoff index in the DCT-blocks 

of lc-subregion A must be eliminated, so that: 

D = E  A-E B = 0 - E  B= -E B (10.2.5) 

There are several reasons for computing this energy difference over the triangularly 

shaped areas. T h e  most important reason is that it is easy to calculate the difference in 

energy and to change E a and E B accordingly in the compressed stream. All DCT 

coefficients needed for the calculation of E A or E B are conveniently located at the end 

of the compressed 8x8 DCT-block after zigzag ordering. The coefficients can be 

forced to zero to adapt the energy without re-encoding the stream by shifting the 

end of block marker (EOB) towards the DC-coefficient. Figure 10.2.3 illustrates the 

procedure of calculating E in a single compressed DCT-block and changing E by 

removing DCT coefficients located at the end of the zigzag scan (i.e. high frequency 

DCT coefficients). 

Figure 10.2.3. Calculating and adapting energy in an 8x8 compressed DCT-block. 
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Adding a watermark by removing coefficients has two advantages. Since no 

coefficients are adapted or added to the stream, the encoding parts of the coefficient 

domain watermarking concept can be omitted, as illustrated in Figure 10.2.4. This 

means that the DEW algorithm has only half the complexity of other coefficient 

domain watermarking algorithms. 

Figure 10.2.4. Complexity difference between the DEW algorithm and other Coefficient 
domain watermarking algorithms. 

Furthermore, removing coefficients will always reduce the size of the watermarked 

compressed video stream compared to the unwatermarked video stream. If it is 

necessary that the watermarked compressed video stream keeps its original size, 

stuffing bits can be inserted before each macro block. 

10.3 Detailed DEW algorithm description 

The energies present in lc-subregions A and B defined by Equations 10.2.1 and 10.2.2 

play a central role in the watermark embedding and extraction process. The values 

of E A and E B are determined by 4 factors: 

�9 the spatial content of the lc-subregions A and B 

�9 the number of blocks n per lc-region 

�9 the pre- or re-quantization JPEG quality factor QJm 

�9 the size of subset S(c) (i.e. the triangularly shaped areas ) 
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If the spatial content of an lc-region is very smooth and only coded by de DC-DCT 

coefficients, the AC-energy will be zero. The energy will be larger for regions 

containing a lot of texture or edges. The more DCT-blocks are taken to form the lc- 

region, the higher the energy will be, since the energy is the sum of the energies in 

all individual DCT-blocks in the lc-region. 

The optional pre- or re-quantization JPEG quality factor Qjpeg controls the 

robustness of the watermark against re-encoding attacks. In a re-encoding attack the 

watermarked video data is partially or fully decoded and subsequently re-encoded 

at a lower bit rate. Our method anticipates the re-encoding at lower bit rates up to a 

certain minimal rate. The smaller QJm is chosen, the more robust the watermark is 

against re-encoding attacks. However, the smaller QJm is chosen, the smaller the 

energies E A and E B will be, since most high frequency coefficients are quantized to 

zero, and can no longer contribute to the energy. 

{a) Subset S(c) of DCT coefficients defined by zigzag scan and cutoff index 

(b) Energy dependent on subset size 

Figure 10.3.1: (a) Examples of subsets and (b) energies for several cutoff indices. 

The size of subset S(c) (Equation 10.2.2) is determined by the standard zigzag scan 

and a cutoff index c. If the zigzag scanned DCT coefficients are numbered from 0 to 

63, where the coefficient with index 0 represents the DC-component and the 
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coefficient with index 63 represents the highest frequency component. This subset 

consists of the DCT coefficients with indices c...63 (c>0). In Figure 10.3.1 some 

examples are shown of subsets defined by increasing cutoff indices. The 

corresponding experimentally determined energies are plotted below. This figure 

shows that increasing the cutoff index decreases the energy. 

To enforce an energy difference, the watermark embedding process has to 

discard all DCT coefficients in the subset S(c) in lc-subregion A or B. Since discarding 

coefficients introduces visual distortion, the number of discarded DCT coefficients 

has to be minimized. This means that the watermark embedding algorithm has to 

find a suitable cutoff index for each lc-region that defines the smallest subset S(c) for 

which the energy in both lc-subregions A and B exceeds the desired energy 

difference. To find the cutoff index that defines the desired subset, we first calculate 

the energies EA(c,n,Qjpeg ) and EB(c,n,Qjpeg ) for all possible cutoff indices c = 1...63. If D is 

the energy difference that is needed to represent a label bit in an lc-region, the cutoff 

index c is found as the largest index of the DCT coefficients for which (10.2.1) gives 

an energy larger than the required difference D in both subregions A and B. 

Figure 10.3.2: Embedding label bit bo=O in an lc-region of n=2 DCT blocks. 

In controlling the visual quality of the watermarked video data, we wish to avoid 

the situation that the important low frequency DCT coefficients are discarded. For 
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this reason, only cutoff indices larger than a certain minimum Cmi . may be selected. 

Mathematically, this gives the following expression for determining c: 

c(n,Qm, D,Cm,,)= max{c,,in, max{g~ {1,63} l (E~(g,n,Qm) > D)^ (EB(g,n,Qm) > D)}} (10.3.1) 

Figure 10.3.2 shows an example of the embedding of label bit b0=0 with an energy 

difference of D=500 in an lc-region consisting of n=2 DCT blocks. The maximum 

cutoff index for which the energy E A exceeds D=500 is 35, while for E B a cutoff index 

of 36 is sufficient. This means that the algorithm must select a cutoff index c of 35 so 

that both lc-subregions A and B have sufficient energy. Since the label bit to be 

embedded is zero, a positive energy difference has to be enforced by setting E B to 

zero (Equation 10.2.4). This is done by discarding all non-zero DCT coefficients with 

indices 35...63 in lc-subregion B. 

To extract a label bit from an lc-region we have to retrieve the cutoff index that 

was used for that lc-region during the embedding process. We therefore first 

calculate the energies EA(C,n,Qjp~g ) and EB(c,n,Qjm) for all possible cutoff indices c = 

1...63. Since either in lc-subregion A or lc-subregion B several DCT coefficients have 

been eliminated during the watermark embedding, we first find the largest index of 

the DCT coefficients, for which Equation 10.2.1 gives an energy larger than a 

threshold D'<D in either of the two lc-subregions. The actually used cutoff index is 

then found as the maximum of these two numbers: 

C•ex,r•t•,. ,-,, D ' )  tn,~ Jm' = max { max{g~ {1,63} I EA(g,n, Q" ) Jm > D'}, 
max{g~ {1,63} I EB(g,n,Q'jm ) > D'} } (10.3.2) 

In the above procedure, the parameters D' and Q'Jm can be chosen equal to the 

parameters D and Qm' which are used in the embedding phase. The detection 

threshold D' influences the determination of the cutoff index. This value must be 

smaller than the enforced energy difference D, but larger than 0. If D' = 0 the label 

can be extracted correctly, but only if the video stream is not affected by processing 

like adding noise, filtering or re-encoding. However, if a small amount of noise is 

introduced in the highest DCT coefficients, cutoff indices will be detected which are 

higher than the originally enforced ones. D' determines which amount  of energy will 

be seen as noise. The re-quantization step can also be omitted (Q'jm=100) without 

significantly influencing the reliability of the label bit extraction. Since Qjpeg and D are 

not fixed parameters but may vary per image, the label extraction procedure must be 

able to determine suitable values for Q'jp~g and D' itself. The most reliable way for 

doing this is to start the label bit string with several fixed label bits, so that during 
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the label extraction those values for Q' and D' can be chosen that result in the jpeg 
fewest errors in the known label bits. 

Figure 10.3.3: Extracting label bit bofrom an Ic-region of n=2 DCT blocks. 

In Figure 10.3.3 an example is given of the extraction of label bit b 0 from the lc-region 

consisting of n=2 DCT blocks watermarked in Figure 10.3.2. For the extraction 

D'=D=500 is used. The maximum cutoff index for which the energy E A exceeds 

D'=500 is 35; for E B this cutoff index is 33. This means that the watermark embedding 

algorithm has used a cutoff index of 35. The energy difference E~(35)-EB(35)=+725. 

Since the energy difference is positive, the value zero is assigned to label bit b 0. 

The algorithm applied in this form is heavily dependent on the video content. 

Figure 10.3.4 shows several examples of this content dependency. In Figure 10.3.4a 

an lc-region is depicted in which the lc-subregions A and B both contain edges, 

smooth and textured areas. These are typical examples of regions with average 

energy in the AC DCT coefficients. In this case, the watermark embedding 

procedure will select a subset S(c) with a cutoff index somewhere in the middle of 

the range 1...63. This means that some coefficients in the highest and middle 

frequency bands are discarded. If the amount of energy that is discarded in these 

frequency bands is limited, the label bit will not be noticeable. Since re-quantization 

by re-encoding at a lower bit rate will not seriously affect the energy difference in 

the middle frequency band, the label bit will survive a re-encoding attack. 
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Figure 10.3.4: Examples of subset sizes depending on video content. 

In Figure 10.3.4b two lc-regions are presented in which the lc-subregions are both 

very smooth or both very textured. If there is not much energy in a smooth lc-region, 

a very large subset S(c) has to be chosen. This means that low frequency DCT 

coefficients are discarded. The human eye is quite sensitive to these, so block 

artefacts and distorted edges are the result. If there is much energy in a textured lc- 

region, a very small subset S(c) is sufficient to find the required energy difference. 

Since here only the highest frequency components are discarded, the label bit will 

not be noticeable. However, since re-quantization by re-encoding at a lower bit rate 

will seriously affect the energy difference in the highest frequency bands, the label 

bit will not survive a re-encoding attack. 

The worst-case situation is depicted in Figure 10.3.4c, where one lc-subregion is 

completely smooth, while the other one is textured and contains sharp edges. If a 

positive energy difference D = E A - E B must be generated in this lc-region, all AC 

DCT coefficients in lc-subregion B must be eliminated by selecting an extremely 

large subset S(c) to make E A >E B. The presence of the label bit obviously becomes 

clearly visible in lc-subregion B. 
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From these situations we conclude that it is not desirable to select very small subsets 

S(c) defined by high cutoff indices, since energy differences embedded in the highest 

frequency bands do not survive re-encoding attacks. Furthermore, the selection of 

large subsets defined by low cutoff indices should be avoided, since energy 

differences enforced in the lowest frequency bands cause visible artefacts like 

blocking and distortion of sharp edges. 

Figure 10.3.5: Label bit positions and region definitions in a shuffled frame. 

In order to avoid the use of an extremely high or low cutoff index, we 

pseudorandomly shuffle all DCT-blocks in the image or I-frame using a secret key 

prior to embedding the label bits, as illustrated in Figure 10.3.5. 

This does not pose any problems when we use MPEG or JPEG streams in 

practice, because effectively we now select randomly DCT-blocks from the 

compressed stream to define an lc-region, instead of spatially neighboring blocks. As 

a result of the shuffling operation, smooth 8x8 DCT-blocks and textured 8x8 DCT- 

blocks will alternate in the lc-subregions. The energy is now distributed more 

equally over all lc-regions, significantly diminishing the chance of a completely 

smooth or a completely textured lc-subregion. Another major advantage of the 

shuffle operation is that each label bit is scattered over the image or frame, which 

makes it impossible for an attacker to localize the lc-subregions. The complete 

watermark embedding and extraction procedures are shown in Figure 10.3.6. 
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Watermark embedding procedure: 

�9 Shuffle all 8x8 DCT luminance blocks of an image or I-frame p s e u d o r a n d o m l y  
�9 FOR all label bits bj in label string L DO 

�9 Select lc-subregion A consisting of n/2 8x8 DCT-blocks, 
Select Ic-subregion B consisting of n/2 other blocks (Fig. 10.3.5) 

�9 Calculate cutoff index c: 

c(n,Qjpeg, D,Cmi.) = max{Cmi ., max{gs {1,63} I (EA(g,n, Qipeg ) > D)/x (E,(g,n,Qjpeg) > D)}} 

n/2-1 

where  EA.B(c.n.Qsp~g)= Z Z([Oi,d]Q~,~) 2 
d = 0  i~S(c) 

S(c) = {he {1,63} I (h >c)} 

�9 IF (bj = 0) THEN discard coefficients of area B in S(c) 
IF (b i = 1) THEN discard coefficients of area A in S(c) 

Shuffle all 8x8 DCT luminance blocks back to their original locations 

Watermark extraction procedure: 

Shuffle all 8x8 DCT luminance blocks of an image or I-frame p s e u d o r a n d o m l y  
FOR all label bits bj in label string L DO 
�9 Select lc-subregion A consisting of n/2 8x8 DCT-blocks, 

Select lc-subregion B consisting of n/2 other blocks (Fig. 10.3.5) 
�9 Calculate cutoff index c: 

c' ....... '(n,Q'j~g,D') = max { max{g~ {1,63} [ EA(g,n,Q~peg ) > D'}, 
max{g~ {1,63} I EB(g,n,Q'j~g ) > D'} } 

n/2-1 
where  EA.B(c.n.Qjp~g)= ~ y'([0,.~]~j~,)2 

d = 0  ieS(c) 

S(c) = {h~ {1,63} I (h_>c)} 

�9 Calculate energy difference: 

~(ex t rac t )  . D = EA(C ,n,~'jm ) - EB(ê (extract),?.ll~ . . . .  jpeg) 

IF (D > 0) THEN bi=0 
ELSE bj=l 

F i g u r e  10.3.6: Complete procedure for watermark embedding and extraction. 
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10.4 Evaluation of the DEW algorithm 
for MPEG video data 

10.4.1 P a y l o a d  of  the  w a t e r m a r k  

To evaluate the effect of the label bit rate on the visual quality of the video stream 

we applied the DEW algorithm to the "sheep sequence" coded at different bit rates. 

The label bit rate is fixed and determined by n, the number of 8x8 DCT-blocks per lc- 

region. In the experiments we omitted the optional re-quantization stage (Qjm=100). 

Over a wide range of sequences we have found a reasonable setting for the energy 

difference D = 20 and the detection threshold D' = 15. The cutoff indices c for each 

label bit are allowed to vary in the range from 6 to 63 (c,,i,=6). Informal subjective 

tests show that the watermark, embedded with n = 32, is not noticeable in video 

streams coded at 8 and 6 Mbit/s .  If MPEG streams coded at a lower bit rate are 

labeled with n = 32, blocking artefacts appear around edges of smooth objects. By 

increasing n further to 64 we make these artefacts disappear in the MPEG stream 

coded at 4 Mbit /s .  At a rate of 1.4 and 2 Mbi t / s  the compression artefacts always 

dominate the additional degradations due to watermarking. 

Video bit rate 
1.4 Mbi t / s  
2.0 Mbi t / s  
4.0 Mbit / s 
6.0 Mbi t / s  
8.0 Mbi t / s  

64 
64 
64 
32 
32 

Discarded bits 
1.6 kbi t / s  
4.6 kbi t / s  
3.8 kbi t / s  
7.2 kbi t / s  
6.6 kbi t / s  

% Bit errors 
24.6 

0.1 
0.0 
0.0 
0.0 

Label bit rate 
0.21 kbi t / s  
0.21 kbi t / s  
0.21 kbi t / s  
0.42 kbi t / s  
0.42 kbi t / s  

Table 10.4.1" Number of 8x8 DCT-blocks per bit, number of bits discarded by the 
watermarking process, percentage label bit errors and label bit rate for the "'sheep sequence" 
coded at different bit rates. 

In Table 10.4.1 the results of the experiments are listed. The third column shows the 

number of bits discarded by the watermark embedding process. The fourth column 

presents the percentage bit errors found by extracting the label L' from the 

watermarked stream and comparing L' with the originally embedded one, L. Bit 

errors occur when the-embedding algorithm selects cutoff indices below cmi .. In this 

case the energy difference cannot be enforced. It appears that not enough high 

frequency coefficients exist in the compressed stream coded at 1.4Mbit/s to create 

the energy differences D for the label bits, since only 75% of the extracted label bits 

are correct. 
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10.4.2 Visual impact of the watermark 

In Figure 10.4.1a the original I-frame of the MPEG-2 coded "sheep sequence" is 

represented. The sequence is MPEG-2 encoded at 8 Mbit/s. Figure 10.4.1b shows the 
corresponding watermarked I-frame. In Figure 10.4.1c the strongly amplified 

difference between the original I-frame and the watermarked frame is presented. 
Figure 10.4.1d shows the difference between the original I-frame coded at 4Mbit/s 

and the corresponding watermarked frame. 

Figure 10.4.1: DEW watermarking by discarding DCT coefficients. 
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It appears that all degradations are located in DCT-blocks with a relatively large 

number of high frequency DCT-components, textured blocks and blocks with edges. 

If we compare Figure 10.4.1 with Figure 9.4.3, we see that the DEW watermarking 

method causes fewer differences per frame than the LSB-based method described in 

Section 9.4, although the differences per block are larger. If the Bit Domain Labeling 

method is used, a DCT coefficient is only altered by one quantization level, while 

here the DCT coefficients are completely discarded. 

Figure 10.4.2: Number of VLCs coding non-zero DCT coefficients in 10 s MPEG-2 video 
coded at 8 Mbit/s vs. number of VLCs discarded by the watermark. 

In Figure 10.4.2 a histogram is shown of the "sheep sequence" coded at 8 Mbit/s. 

The number of all VLCs (including the fixed length codes) that code non-zero DCT 

coefficients, the number of all VLCs in the I-frames and the number of discarded 

VLCs are plotted along the logarithmic vertical axis. The DCT coefficient index 

scanned in the zigzag order ranging from 0 to 63 is shown on the horizontal axis. 

Figure 10.4.2 shows that only high frequency DCT coefficients with an index above 

33 are discarded for this particular parameter setting. 

The histograms of the cutoff indices in the "sheep sequence" coded at 1.4 and 8 

Mbit/s are plotted in Figure 10.4.3. The minimum cutoff index for the "sheep 

sequence" coded at 8 Mbit/s is 33; for a stream coded at 1.4 Mbit/s the minimum is 
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equal to the minimum cutoff index c mi,=6. The lower the bit rate is, the lower the 

cutoff indices have to be because of the lack of high energy components in the 

compressed video stream. 

The visual impact of the labeling will be much smaller if the degradations 

introduced by discarding DCT coefficients are distributed more or less uniformly 

over the frame. Removing all VLCs from a few textured blocks will cause visible 

artefacts. 

Figure 10.4.3: Histograms of the cutoff indices in an MPEG-2 sequence coded at 1.4 and 8 
Mbit/s, label bit rates are respectively 0.21 kbit/s and 0.42 kbit/s. 

In Figure 10.4.4 a histogram is shown of 10 seconds of the watermarked "sheep 

sequence" coded at 8 Mbit/s. On the vertical axis the number of discarded VLCs per 

8x8 DCT-block is shown. The number of 8x8 DCT-blocks that contain this amount of 

discarded VLCs is plotted along the logarithmic horizontal axis. 

It appears that 95% of all coded 8x8 blocks in the I-frames are not affected by 

the DEW algorithm. From an lc-region only the DCT coefficients above a certain 

cutoff index in the hal l  an lc-subregion, are eliminated. This means that only a few 

8x8 blocks from an lc-subregion (average 10%) have energy above the cutoff index. 
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Figure 10.4.4: Number of discarded VLCs per 8x8 DCT-block. 

Like in the Bit Domain watermarking  algorithm described in Section 9.4, per 8x8 

block a limit T m can be set on the number  of VLCs that are discarded during the 

watermarking  process. Whereas in the Bit Domain watermarking algorithm this 

limit decreases the label bit rate, the DEW algorithm has a fixed label bit rate. 

Instead, setting a limit T m affects the robustness of the label. If some DCT coefficients 

in one 8x8 block of an lc-subregion are not eliminated because the limit T m prohibits it, 

in the worst  case one label bit error can occur if the label extracted from this stream 

is compared with the originally embedded  one. However,  since each label bit is 

dependent  on n 8x8 blocks, the likelihood that this error occurs is relatively small. 

T m =Max .  n u m b e r  of  d i s c a r d e d  V L C s  per  

b l o c k  

2 
3 
4 
5 
6 

Unlimited 

Worst  case  % bi t  

errors 

17% 
9% 
5% 
3% 
2% 
0% 

Table 10.4.2. Worst case % label bit errors introduced by limit T m, the maximum number of 
discarded VLCs per 8x8 block (Video bit rate 8 Mbit/s, Label bit rate 0.42 kbit/s). 
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In Table 10.4.2 the worst case percentages of bit errors introduced in the label of the 

"sheep sequence" coded at 8 Mbit/s  are listed for several values of T m. By applying 

proper error correcting codes on the label stream, we can greatly reduce the number 

of VLCs to be removed. In this way we obtain a better visual quality without 

significantly affecting the label retrieval. 

10.4.3 Drift 

Since P- and B-frames are predicted from I- and P-frames, the degradations in the I- 

frames introduced by watermarking also appear in the predicted frames. Because 

the P- and B-frames are only partially predicted from other frames and partially 

intracoded, the degradations will fade out. No degradations are introduced in the 

intracoded parts of the predicted frames by the labeling. The error fade-out can 

clearly be seen in Figure 10.4.5, where the difference MSE~-MSE, is plotted. The MSE, 

is the Mean-Square-Error (MSE) per frame between the original uncoded "sheep 

sequence" and the "sheep sequence" coded at 8 Mbit/s. The MSE~ is the MSE per 

frame between the uncompressed sequence and the watermarked sequence coded at 

8 Mbit/s. 
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Figure 10.4.5: ~ S E  of the watermarked "sheep sequence" coded at 8 Mbit/s with a label 
bit rate of 0.42 kbit/s. 

The average PSNR between the MPEG-compressed original and the uncompressed 

original is 37dB. If the watermarked video stream coded at 8 Mbit/s  is compared 

with the original compressed stream, the ~ d S E  causes an average APSNR of 0.06dB 

and a maximum APSNR of 0.3dB. It appears that this method has less impact on the 

average APSNR and more impact on the maximum APSNR than the method 
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described in Section 9.4. From the APSNR values we conclude that no drift 

compensation signal is required. 

1 0 . 4 . 4  R o b u s t n e s s  

Unlike the watermark embedded by means of the LSB-based methods described in 

Section 9.4, the watermark embedded by the DEW algorithm cannot be removed by 

watermarking the video stream again using another watermark if another 

pseudorandom block shuffling is used. Other, more time-consuming methods, 

which are computationally more demanding and require a larger memory (disk) 

have to be applied to the watermarked compressed video stream in an attempt to 

remove the watermark. For simple filtering techniques the compressed stream must 

be decoded and completely re-encoded. A less complex method requiring lesser disk 

space, but which is still computationally highly demanding would be transcoding. 

To see if the watermark is resistant to transcoding or re-encoding at a lower bit rate, 

we performed the following experiment. The "sheep sequence" is MPEG-2 encoded 

at 8 Mbit/s  and this compressed stream is watermarked (n = 32). Hereafter, the 

watermarked video sequence is transcoded at different lower bit rates. 
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Figure 10.4.6: % Bit errors after transcoding a watermarked 8 Mbit/s MPEG-2 sequence at 
a lower bit rate. 

The label bit strings are extracted from the transcoded video streams and each label 

bit string is compared with the originally embedded label bit string. If 50% bit errors 

are made the label is completely removed. The bit errors introduced by decreasing 

the bit rate are represented in Figure 10.4.6. We see that if the video bit rate is 

decreased by 25%, only 7% label bit errors are introduced. Even if the video bit rate 
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is decreased by 38%, 79% of the label bit stream can be extracted correctly. Error 

correcting codes can further improve this result. 
To embed a label bit in an lc-region, the DEW algorithm removes some high 

frequency DCT coefficients in one of the lc-subregions. This can be seen as locally 

applying a low-pass filter to an lc-subregion. To detect the label bit, the amount of 

high frequency components in the two lc-subregions is compared. If small 

geometrical distortions are applied to the video data, e.g. shifting, there is a 

mismatch between the lc-regions chosen during the embedding phase and the lc- 

regions chosen during the detection phase. Parts of the lc-region chosen during the 

embedding phase are in the detection phase replaced by adjacent lc-regions. 

Although the adjacent lc-regions introduce high frequency components in the low- 

pass filtered lc-subregions, the difference in high frequency components is still 

measurable if the geometrical distortions are relatively small. The DEW algorithm 

should therefore exhibit some degree of resistance to geometrical distortions like line 

shifting. The experiments performed in the next chapter show that the DEW 

algorithm is resistant to line shifts up to 3 pixels. 

10.5 Extension of the DEW concept 
for EZW-coded images 

The DEW concept is not only suitable for MPEG/JPEG compressed video data, but 

can also be applied to video compressed using embedded zero-tree wavelets 

[Sha93]. For an explanation about wavelet-based compression the reader is referred 

to [Aka96], [Bar94] and [Vet95]. In MPEG/JPEG compressed video data the natural 

starting point for computing energies and creating energy differences is the DCT- 

block. In embedded zero-tree wavelet compressed video data the natural starting 

point is the hierarchical tree structure. Instead of embedding a label bit by enforcing 

an energy difference between two lc-subregions of DCT-blocks, we now enforce 

energy differences between two sets of hierarchical trees. Figure 10.5.1 shows a 

typical tree structure that is used in the wavelet compression of images or video 

frames. 

As can be seen in Figure 10.5.1, a tree in this 3-level wavelet decomposed image 

or video frame starts with a root Discrete Wavelet Transform (DWT) coefficient in 

the L L  3 band and counts 64 DCT coefficients. Unlike in the DCT situation, where the 

discarding of high frequency DCT coefficients is implicitly restricted by the zigzag 

scan order, in wavelet compressed video data different ways of pruning the 

hierarchical trees can be envisioned. 
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Figure 10.5.1: Hierarchical tree structure of a D W T  3-level decomposition. 

The simplest way of removing energy is to truncate the trees below the hierarchical 

levels. A scheme in which trees are pruned coefficient-by-coefficient allows for fine- 

tuning the energy difference and for minimization of the visual impact. Therefore 

we have numbered the DWT coefficients of the hierarchical tree and defined a 

pseudo zigzag scan order, as illustrated in Figure 10.5.2. 

This pseudo zigzag order is not the only possible way to order the DWT 

coefficients. More sophisticated orderings are possible, which take the human visual 

system into account. The advantage of using the straightforward numbering defined 

by Figure 10.5.2 is that we can use the same scheme as we used for the DCT 

situation. Only two minor changes are required. First, the quantization step in the 

energy definitions has to be adapted, as the DWT coefficients are now optionally re- 

or pre-quantized using a uniform quantizer instead of the standard JPEG 

quantization procedure. Second, not the 8x8 blocks are shuffled, but the roots of the 

hierarchical trees are pseudorandomly shuffled. 

The complete procedure to calculate the energy difference in an lc-region is 

illustrated in Figure 10.5.3. In Figure 10.5.4a an example is given of the DEW 

algorithm applied to the embedded zero-tree wavelet coded "Lena image" using a 3- 

level wavelet decomposition. Here a label bit string of 64 label bits is embedded, for 

which end lc-regions of 64 hierarchical trees are used. One can see clearly that the 

watermark in this variation of the DEW algorithm also adapts to the image content. 
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Figure 10.5.2: D WT coefficient numbering and pseudo zigzag scan order. 

Figure 10.5.3: Energy difference calculation in an lc-region. 
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Figure 10.5.4: Level 3 EZW coded image watermarked using the DEW concept. 

10.6 Conc lus ions  

In this chapter we introduced the Differential Energy Watermarking (DEW) concept. 

Unlike the correlation-based method with drift compensation described in Section 

9.3.2, the DEW embedding and extraction algorithm can completely be performed in 

the coefficient domain and does not require a drift compensation signal. The 

encoding parts of the coefficient domain watermarking concept can even be omitted. 

The complexity of the DEW watermarking algorithm is therefore only slightly 

higher than the LSB methods described in Section 9.4. Furthermore, the DEW label 

bit rate is about 25 times higher than the label bit rate of the correlation-based 

methods described in Section 9.3. Like these correlation-based methods, a 

watermark embedded with the DEW concept can also be embedded and extracted 

from raw video data and the label string is resistant to re-labeling. Besides the low 

complexity and the much higher label bit rate the advantages the DEW concept has 

over other methods are that it provides a parameter Qjpeg to anticipate to re-encoding 

attacks, that it exhibits some degree of resistance to geometrical distortions like line 

shifting and that it is directly applicable to video data compressed using other 

coders, for instance embedded zero-tree wavelet coders. Since many parameters are 

involved in the watermark embedding process of the DEW algorithm (n, Qjpeg, D and 

c,,;n, ) heuristically determining optimal parameter settings is a quite elaborate task. 

Therefore in the next chapter a statistical model is derived that can be used to find 

these optimal parameter settings for DCT based coders. 
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Finding Optimal Parameters 
for the DEW Algorithm 

11.1 Introduction 

The performance of the DEW algorithm proposed in the previous chapter greatly 

depends on the four parameters used in the watermark embedding phase. All 

parameters involved in the watermarking process are presented in Figure 11.1. 

Figure 11.1: Parameters involved in the DEW watermarking process. 

The first parameter is the number of 8x8 DCT blocks n used to embed a single 

information bit of the label bit string. The larger n is chosen, the more robust the 

watermark becomes against watermark-removal attacks, but the fewer information 

bits can be embedded into an image or a single frame of a video sequence. 

251 
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The second parameter controls the robustness of the watermark against re-encoding 

attacks. In a re-encoding attack the watermarked image or video is partially or fully 

decoded and subsequently re-encoded at a lower bit rate. Our method anticipates 

the re-encoding at lower bit rates up to a certain minimal rate. Without loss of 

generality we will elaborate on the re-encoding of JPEG compressed images, where 

we express the anticipated re-encoding bit rate by the JPEG quality factor setting 

QJm" The smaller QJm, the more robust the watermark is against re-encoding attacks. 

However, for decreasing QJm increasingly more (high to middle frequency) DCT 

coefficients have to be removed upon embedding of the watermark, which leads to 

an increasing probability that artifacts become visible due to the presence of the 

watermark. 

The third parameter is the energy difference D that is enforced to embed a label 

bit. This parameter determines the number of DCT coefficients that are discarded. 

Therefore, it directly influences the visibility and robustness of the label bits. 

Increasing D increases the probability that artifacts become visible and increases the 

robustness of the label. 

The fourth parameter is the so-called minimal cutoff index cmi .. This value 

represents the smallest i n d e x -  in zigzag scanned fashion-  of the DCT coefficient 

that is allowed to be removed from the image data upon embedding the watermark. 

The smaller cmi . is chosen, the more robust the watermark becomes but at the same 

time, image degradations due to removing high frequency DCT coefficients may 

become apparent. For a given c,, m there is a certain probability that a label bit cannot 

be embedded. Consequently, sometimes a random information bit will be recovered 

upon watermark detection, which is denoted as a label bit error in this chapter. 

Clearly, the objective is to make the probability that label bit errors occur as small as 

possible. 

In order to optimize the performance of the DEW watermark technique, the 

settings of the above-mentioned parameters have to be determined. In the previous 

chapter we have used experimentally determined settings for these parameters. For 

a given watermark and image or video frame this is, however, an elaborate process. 

In this chapter we will show that it is possible to derive an expression for the label 

bit error probability Pbe as a function of the parameters n, Qjp~g and c,,~,. The relations 

that we derive analytically describe the behavior of the watermarking algorithm, 

and they make it possible to select suitable values for the three parameters (n, Qm, 

Gi,), as well as suitable error correcting codes for dealing with label bit errors 

[Lan99b] and [Lan99c]. Although the expressions in this chapter are derived and 

validated for JPEG compressed images, they are also directly applicable to MPEG 

compressed I-frames. 
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In Section 11.2, we derive an analytical expression for the probability mass 

function (PMF) of the cutoff indices. In Section 11.3, this PMF is verified with real- 

world data. After deriving and validating the obtained PMF, we use the PMF to find 

the probability that a label string cannot be recovered correctly in Section 11.4 and 

the optimal parameter settings (n, Qjpeg, Cmin) in Section 11.5. Subsequently in Section 

11.6, we experimentally validate the results from Section 11.5. The chapter concludes 

with a discussion on the DEW watermarking technique and its optimization in 

Section 11.7. 

11.2 Modeling the DEW concept 
for JPEG compressed video 

When operating the DEW algorithm, different values for the cutoff index are 

obtained. Insight in the actually selected cutoff indices is important since the cutoff 

indices determine the quality and robustness of the DEW. Therefore, in this section 

we will derive the probability mass function (PMF) for the cutoff index based on a 

stochastic model for DCT coefficients. This PMF depends only on the parameters 

Qjpeg and n. 

11.2.1 PMF of the cutoff index 

The optimal cutoff index varies per label bit that we wish to embed. Therefore, it can 

be interpreted as a stochastic variable that depends on n, Qjpeg, D, and c,,i,, i.e. 

C(rt,Qjvex,D,Cmi,). Mathematically, this gives the following expression for determining 

C (see Sections 10.2 and 10.3): 

C(n,Qm,D,c,,i,)=maX{Cmi,,max{g~ {1,63}1 (EA(g,n,Qm) > D)^ (EB(g,n,Qm) > D)}} (11.2.1a) 

n/2-1 

where EA(c,n, Ojpeg)= ~ ~--~([O,,aloj,,,~) 2 (11.2.1b) 
d=O t~ S(c) 

S(c) = {h ~ {1,63} I (h > c)} (11.2.1c) 

In order to be able to compute the PMF of the cutoff index, we assume that the 

energy difference D in Equation 11.2.1a is chosen in the range [1,Dm~x(Qm)]. Here 

D m~x(Qm ) indicates the maximum of the range of energies defined by Equation 

11.2.1b that do not occur in quantized DCT blocks because of the JPEG or MPEG 

compression process. 
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Figure 11.2.1: Energy histogram Of EA,Bfor a wide range of parameters (c,n,Qm). 

Figure 11.2.1 illustrates this effect; it is a histogram of the energy E(c,n,Qm) for a 

wide range of values of c, n, and Qm" We notice a clear "gap" in the histogram for 

smaller energies, because DCT blocks with that small amount of energy can no 
longer exist after compression. 

In general the maximum D,~x(Qpeg ) depends on the extent to which the image 

has been compressed, i.e. it depends on Qm" The smaller Qjpex, the larger D .... (Qm). 

Mathematically this relation is given by: 

Dmax(Qjpeg)=(F(Qjpeg) min(Wi ))2 

50 / Q jpeg 
F(Qjpex)= \(lO0-Qjpex) / 50 

Qjpe~ < 50 

Qjpe~ > 50 

(11.2.2) 

where F(Qjm ) denotes the coarseness of the quantizer used, and W; is the i-th element 

(i~ [Cmin,63]) of the zigzag scanned standard JPEG luminance quantization table 

[Pen93]. 

Theorem h 

If the enforced energy difference D is chosen in the range [1,D .... (Qm)], where 

D,~I(Qm ) is defined by Equation 11.2.2, and if we do not constrain the cutoff index 

by c,,i,, the PMF of the cutoff index is given by: 
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P[C(n,Qjm)=c] = P[E(c,n,Qm)r 012- P[E(c+l,n,Qm)~: 012 (11.2.3) 

where E(c,n,Qjm) is defined in Equation 11.2.1b. Observe that in this theorem 

C(n,Qjm) - besides being not constrained by c,,i, - is no longer dependent on D due 

to the wide range of values in which D can be selected. 

Proof: 

We first rewrite the definition of the cutoff index in Equation 11.2.1a to avoid the 

maximum operators as follows: 

P[C(n,Qm,D)=c ] = P[ {(EA(c,n,Qm)>D ) ^ (EB(c,n,Qjpeg)>D)} /x 
{(EA(c+l,n,Qjp~g)<D ) v (EB(c+I,n,Qjm)<D)} ] (11.2.4) 

In the following, we will drop the dependencies on n and Qjpeg of the energies for 

notational simplicity. To calculate Equation 11.2.4, we need to have an expression for 

probabilities of the form P[EA(c)>D]. As illustrated by Figure 11.2.1, the histogram of 

EA(c ) is zero for small EA(c)s because the quantization process maps many small DCT 

coefficients to zero. As a consequence, the energy defined in Equation 11.2.1b is 

either equal to 0 (for instance for large values of c), or the energy has a value larger 

than the smallest non-zero squared quantized DCT coefficient in the lc-subregion 

under consideration. This value has been defined as D,~x(Qjp~g ) in Equation 11.2.2. 

Since we always choose the value of D smaller than D,~x(Qjp~g), Equation 11.2.4 can be 

simplified to: 

P[C(n,Qpeg)=c ] = P[ {(EA(c)r ) ^ (E~(c,0)} ^ {(EA(c+I)=0)v (E~(c+l)=0)} ] (11.2.5) 

Due to the random shuffling of the positions of the DCT blocks, we can now assume 

that EA(c ) and E~(c) are mutually independent. Following several standard 

probability manipulations, Equation 11.2.5 can then be rewritten as follows: 

P[C(n)=c] = P[(EA(C)•O )/x (EB(c)r /x (E~(c+l)=0)] 
+P[(EA(c)•O )/x (EB(c)~O) ^ (EB(c+I)=0)] + 
- P[(EA(c)~O )/x (EB(c)~O) ^ (EA(c+I)=0) A (EB(c+I)=0)] 

= P[(E~(c)*O) ^ (E~(c+I)=0)] P[G(c)*O) ] 
+P[(E~(c)*O) ^ (E~(c+I)=0)] P[EA(c)*O)] 
- P[(E~(c)*O) ^ (E~(c+I)=0)] P[(E~(c)*O) ^ (G(c+I)=0)] (11.2.6) 

We first expand the first term of Equation 11.2.6 using conditional probabilities: 
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P[(EA(C)~O) ^ (EA(C+I)=0)] 

= 1 - P[(EA(C+I)=O ) A (EA(C)=0)] - P[(EA(C+I)~O ) ^ (EA(C)~0)] 
- P[(EA(C+I)~O ) ^ (EA(C)=0)] 

= 1-P[EA(C+I)=O / EA(C)=0 ] P[EA(c)=O] 
- P[EA(C)~O /EA(C+I)r P[EA(C+I)r 
-P[EA(c)=O / EA(C+I)r P[EA(C+I)~O ] (11.2.7) 

From the definition in Equation 11.2.1b we know that EA(C ) is a strictly non- 

increasing function. Therefore, if there is no energy above cutoff index c, i.e., EA(C)=0, 

there is also no energy above c+1, i.e. EA(C+I)=0. This yields P[EA(C+I)=O / EA(C)=0 ] = 

1. On the other hand, if there is energy above cutoff index c+1, the same amount of 

energy or more must be present above cutoff index c, therefore P[EA(C)~O /EA(C+I)~O ] 

= 1 and P[EA(C)=O / EA(C+I)~0 ] = 0. Substitution of these conditional probabilities into 

Equation 11.2.7 gives the following result: 

P[(EA(c)r ) A (EA(c+I)=0)] = 1 - P[EA(c)=O ] - P[EA(C+I)~O ] 
= P[EA(C)~O ] - P[EA(C+I)~O ] (11.2.8) 

A similar approach can be followed to simplify the other terms in Equation 11.2.6. 

This results in the following expression: 

P[C(n)=c] = (P[EA(C)r ] - P[EA(C+I)sO]) P[EB(c)~O ] 
+ (P[E~(c)r P[EA(C)r ] 
+ (P[EA(C)r P[EA(C+I)r (P[EB(c)~O ] - P[E~(c+I)~O]) 

= P[EA(C)~O] P[G(c)~O] - P[EA(c+I)r P[EB(c+I)r (11.2.9) 

Since the lc-subregions are both built-up from block-shuffled image data, we can 

assume that the probabilities in Equation 11.2.9 do not depend on the actual lc- 

subregion for which they are calculated, i.e. P[EA(c)~O ] = P[EB(c)~O ] = P[E(c)~O]. 

Substitution of this equality results in Equation 11.2.3. 

11.2.2 Model  for the DCT-based energies 

Theorem Ih 

If the PDF of the DCT coefficients is modeled as a generalized Gaussian 

distribution with shape parameter ~/, then the probability that the energy 

EA(C,n,Qm ) is not equal to zero is given by: 
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n 

1 )/) P[E(c,n, Qjpe~) r 0] = 1 -  1 - e  -(v'iQ')' �9 (r 
\ i=c \ h=O h! 

(11.2.10) 

where  

~/-1= 1, 2, 3, ... (11.2.11a) 

wiF(Geg) [(3" ~-i "~-l_)i" 
r = 2rr, ~ ( ~ / - 1  _ 1)! 

(11.2.11b) 

Further,  F(Qjm ) denotes  the coarseness of the quantizer  as defined in Equat ion 

11.2.2, or; 2 represents  the variance of the i-th DCT coefficient (in zigzag scanned 

fashion), and w i represents the cor responding  element  of s tandard  JPEG 

luminance quant iza t ion table. 

Proof: 

The expression for P[EA(c ) ;~0] can be der ived using Equat ion 11.2.1b. First we need a 

probabil i ty mode l  for the DCT coefficients 0i. Fol lowing the usual  course of action 

taken in the l i terature at this point,  we  use the generalized Gaussian distr ibut ion 

[Mu193] and [Var89] wi th  shape parameter  ~,: 

P(O,) = {,e -Iv''~ I' (11.2.12a) 

where  

1 /(3-/,,-1 _l)V 
_ ~r;.y and ~r = - -  " for r (11.2.12b) 

r  2(7-'-1)! rr, ~ ~--i---iji "'" 

This PDF has zero mean  and v a r i a n c e  o'i 2. Typically, the shape pa ramete r  y takes on 

values be tween 0.10 and 0.50. In a more  complicated model ,  the shape parameter  

could be made  to depend  on the index of the DCT coefficient. We will, however ,  use 

a constant  shape parameter  for all DCT coefficients. Using Equat ion 11.2.12 we can 

now calculate the probabi l i ty  that a DCT coefficient is quant ized as zero: 

P[O, = 0] = ~,-e -'v''~ dO, = 1 - e  -(~''0')' �9 (t//,Q, r 
-' k, a=0 h! 

(11.2.13) 
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where Qi is the coarseness of the quantizer applied to the DCT coefficients. The 

probability that EA(c,n,Qjm) is equal to zero is now given by the probability that all 

quantized DCT coefficients with an index larger than c in all n/2  DCT blocks are 

equal to zero: 

/ 2 
P[E(c) = O] = P[6~ = O] (11.2.14) 

Equations 11.2.13 and 11.2.14 use the quantizer parameter Q;. In JPEG this parameter 

is determined by the parameter w~ and the function F(.), which depends on the user 

parameter Qjpeg via Equation 11.2.2. Taking into account that JPEG implements 

quantization through rounding operations yields: 

Qi = �89 wi F(Qjpeg ) (11.2.15) 

Combining Equations 11.2.12- 11.2.15 yields Equation 11.2.10. 

0.15 

PMF(c) 

n=16 
Qjpeg =50 

0.1 

0.05 

I I 

i 

ii 

i' 

10 20 

| | | 

Estimated PMF(C=c) 
Calculated PMF(C=c) 

. . . . . . . . . . . . .  

using Equation (5.2.3) 

I A  A 

30 40 50 

I 

60 C 

Figure 11.3.1: Probability mass function of the cutoff index PlC(n,Qjm)=c] as a function of 
c, calculated as a normalized histogram directly from watermarked images (solid line), and 
calculated using the derived Theorem I (dotted line). 

11.3 Model  validation with real-world data 

We validate Theorem I as follows. From a wide range of images we calculate the 

normalized histogram of P[E(c,n,Qjpe~) ~ 0] as a function of c. As an example we show 

the situation where Qjm=50 and n=16. Using this histogram we evaluate Equation 
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11.2.3 to get an estimate of the PMF P[C(n,Qjm)=c ]. The resulting PMF is shown in 

Figure 11.3.1 (dotted line). Using the same test data, we then directly calculate the 

histogram of P[C(n,Qjm)=c] as a function of c. The resulting (normalized) histogram 

is also shown in Figure 11.3.1 (solid line). The figure shows that both curves fit well, 

which validates the correctness of the assumptions made in the derivation of 

Theorem I. 

For the validation of Theorem II, we first need a reasonable estimate of the 

shape parameter / ,  and the v a r i a n c e  o'i 2 o f  the DCT coefficients. In fitting the PDF of 

the DCT coefficient we concentrated on obtaining a correct fit for the more important 

low frequency DCT coefficients, and obtained ?,=1/7. 

O"i 2 1,10 4 I I I I I I 
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Figure 11.3.2: Measured variances of the unquantized DCT coefficients as a function of the 
coefficient number along the zigzag scan. 

The variances of the DCT coefficients were measured over a large set of images, 

yielding Figure 11.3.2. For the time being, we will use these experimentally 

determined variances, but later on we will replace these with a fitted polynomial 

function. 

In Figure 11.3.3a normalized histograms of the energy E(c,n,Qjpeg)~O are plotted 

for n=16 and several values of Qjpeg as a function of c. In Figure 11.3.3b the 

probabilities P[E(c,n,Qpe~)~O ] are shown as calculated with Equation 11.2.10 from 

Theorem II using the measured variances of the DCT coefficients. Comparing the 

Figures 11.3.3a and 11.3.3b, we see that the estimated and calculated probabilities 

match quite well. There are some minor deviations for very small values of QJm 
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(Qjpeg<15), which is the result of the imperfect model for the DCT coefficients of real 

image data. We consider these deviations insignificant since they occur only at very 

high image-compression factors. We conclude that the models underlying Theorem 

II give results for P[E(c,n,Qjpeg)~O ] that are sufficiently close to the actually observed 
data. 
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(b) P[E(c,n,Qjpeg)r ] calculated using Theorem II 

Figure 11.3.3: The probabilities P[E(c,n,Qm)r as functions of c for n=16. 
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(b) PMF of C(n,Qim) for n=16 and Qjpeg=80 

Figure 11.3.4: Probability mass function of C(n,Qjm), calculated as the normalized 
histogram directly from watermarked image data (solid line), and calculated using Equations 
11.2.3 and 11.2.10. 

By combining Theorem I and II, we can derive PMFs of the cutoff index as a function 

of the parameters n and QJm based merely on the variances of the DCT coefficients. 

To validate the combined theorems we compared the PMFs calculated using 

Equations 11.2.3 and 11.2.10 with the normalized histograms directly calculated on a 

wide range of images. In Figure 11.3.4 two examples of the PMFs are plotted. In 

these examples, the solid lines represent the normalized histograms of C(n,Qjpeg) 
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calculated from watermarked image data, while the dotted lines represent the PMF 

P[C(n,Qp~)=c] calculated using Equations 11.2.3 and 11.2.10. The greatly varying 

behavior of these curves as a function of c is mainly due to the zigzag scanning order 

of the DCT coefficients. We observe that an acceptable fit between the two curves is 

obtained with some deviations for higher cutoff indices. Since the PMF 

P[C(n,Qjpeg)=c ] will be used for calculating the probability of a label bit error, i.e. the 

probability that the watermarking procedure selects a cutoff index smaller than the 

minimum allowed values C mi ,, slight deviations at higher values for the cutoff index 

are not relevant to the purpose of this chapter. 

The final step is to use the relation (11.2.3) and (11.2.10) to analytically estimate 

the PMF P[C(n,Qp~)=c] of the cutoff index for different values of the parameters Qjpeg 

and n. In this final step we rid ourselves of the erratic behavior of the curves in 

Figure 11.3.2 and 11.3.4 due to the zigzag scan order of the DCT coefficients by 

approximating the variances of the DCT coefficients in Figure 11.3.2 by a second- 

order polynomial function. The overall effect of using a polynomial function for the 

DCT coefficients is the smoothing of the PMF P[C(n,Qjpeg)=c ]. 
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Figure 11.3.5: Analytically calculated PMF P[C(n,Qpeg)=c] using Theorem I and II for 
various values of Qjp~ and n=16. 

In Figures 11.3.5 and 11.3.6 the analytically calculated PMFs are shown. These curves 

are computed using Theorems I and II with only the shape parameter y and the 

fitting parameters of the DCT variances as input. In Figure 11.3.5 P[C(n,Qpeg)=c ] is 

shown as a function of Qjpeg where n is kept constant, and in Figure 11.3.6 
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P[C(n,Q/m)=c ] is shown as a function of n where Q/m is kept constant. It can clearly be 

seen that decreasing n or Q~eg leads to an increased probability of lower cutoff 

indices. This complies with our earlier experiments in Section 10.4.1, which showed 

that watermarks embedded with small values for n yield visible artifacts due to the 

removal of high frequency DCT coefficients. 
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Figure 11.3.6: Analytically calculated PMF P[C(n,Qpeg)=c] using Theorem I and II for 
various values of n and Qjm=50. 

1 1 . 4  L a b e l  e r r o r  p r o b a b i l i t y  

In the analysis of the DEW algorithm, we have seen that depending on the 

parameter settings (n,Qm) certain cutoff indices are more likely to occur than others. 

In this analysis, however, the selection of the cutoff index by the watermarking 

algorithm has been carried out irrespective of the visual impact on the image data. 

To ensure an invisible watermark, the cutoff indices must be larger than a certain 

minimum c,,i,. Consequently, it may happen in certain lc-regions that a label bit 

cannot be embedded. This random event is typically the case in lc-(sub)regions that 

contain insufficient high frequency detail. 

Using Theorems I and II, we are able to derive the probability that this 

undesirable situation occurs, and obtain an expression for the label bit error probability 
Pbe that depends on QJm,' n and cmi .. If a label bit cannot be embedded because of the 

minimally required value of the cutoff index c,,i,, there is a probability of 0.5 that 

during the extraction phase a random bit is extracted which equals the original label 
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bit. We assume that due to the random shuffling of DCT blocks, the occurrence of a 

label bit error can be considered as a random event, independent of other label bit 

errors. The probability that a random error occurs in a label bit can therefore be 

computed as follows: 

Grain 

Pbe(Fl,QjpextCmin) = 0.5 P[ C(Fl,Qjpeg ) < Groin] = 0.5 Z r[C(n, Oypeg )= c] 
c=0 

(11.4.1) 

Using this relation, we can calculate the label bit error probability for each value of 

Cmi . as a function of QJm and n. As an example Figure 11.4.1 shows the analytically 

computed label bit error probability Pbe(n,Qjm,Cmi,) as a function of QJm and n for 

G;,=3. From this example it is immediately clear that for a given Cmi ~ certain (Qjpeg, n) 

combinations must  be avoided in practice because they lead to unacceptably high 

label bit error probabilities. 

Figure 11.4.1: The bit error probability Pbe as a function of Q m and n for Cmi,=3. 
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Using the label bit error probabili ty in Equation 11.4.1, we can now derive the label 

error probability P~, which is here defined as the probability that one or more label 

bit errors occur in the embedded  information bit string. Assuming image dimensions 

of NxM,  the number  of information bits I that the image can contain is given by 

I(N, M,n) = int( N" M )  
64-n 

(11.4.2a) 

with which the label error probabili ty can be calculated as: 

Pe (n, Qjpeg,Cmin,N,M) = 1 - ( 1 -  Pbe) '('v'M'') (11.4.2b) 

Let us consider one particular numerical  example. If, for instance in a broadcast 

scenario, one incorrect label is accepted per month  in a continuous 10 Mbi t / s  video 

stream, the label bit error rate should be smaller than 1 0  -7 . For selecting the optimal 

setting for QJm and n that comply with this label bit error rate, we use the curves of 

the combinations QJm and n for which P~ equals 10 .7 shown in Figure 11.4.2. Different 

curves refer to different values of c mi .. Further we have assumed the image 

dimensions Nx M = 1024 x 768. 
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Figure 11.4.2:Combinations of Qjpeg and n for which P =IO -7. 
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11.5 Optimal parameter settings 

Using results such as the ones shown in Figure 11.4.2, we can now select optimal 

settings for Qjp~g and n for specific situations. We consider three different cases, 

namely: 

�9 optimization of re-encoding robustness; 

�9 optimization of the number of information bits l; 

�9 optimization of the watermark invisibility. 

In all cases the parameter D must be chosen in the range [1, D,~x(Qjpeg)] to ensure the 

validity of the models in Theorem I and II and the validity of the analytical results 

obtained from these models. 

If we tune the DEW watermark such that it is optimized for maximum re- 

encoding robustness, typical choices are to anticipate re-encoding up to a JPEG 

quality factor of Qjp~g=25, and to allow a minimal cutoff index of c m;,=3. In this c a se -  

using Figure 11.4.2 - we need at least n=54 DCT blocks per label bit (which directly 

determines the number  of information bits that can be stored in an image) to achieve 

the required label error probability of 10 .7 . 

If we require a large label and robustness against re-encoding attacks is not an 

issue, we can store more than 3 times as many bits in a label with the same label 

error probability of 10 7. A typical parameter setting would be for instance, Qim=75, 

n=16 and G,i,=3, as can be seen from Figure 11.4.2. 

If visual quality is the most important factor, we must make sure that the 

minimal cutoff index is sufficiently large. For instance we choose Gi,=15. Clearly, to 

obtain the same label bit error probability more DCT blocks per label bit are required 

since the allowed minimal cutoff index is larger than the one in the previous 

example. Using Figure 11.4.2, we find the optimal settings Qjm=75 and n=48. 

The performance of any watermarking system can be improved by applying 

error-correcting codes (ECCs). Since we know that the label bit errors occur 

randomly and independently of other label bit errors, we can compute the 

probability for label error in case an ECC is used that can correct up to R label bit 

errors, namely 

pfCC ( R) ( n, Qjpeg , Cmin , N, M)  = l - s ( l ( N'  M ' n) ~p~ (1-  Pbe ) '( N'M'")-j (11.5.1) 
j:o\ j 

with the label bit error probability Pbe given by Equation 11.4.1. 
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In Figure 11.5.1 the label error probability p~CC(R) is shown as a function of the 

number  of DCT blocks used to embed a single label bit (n) for R=0, 1, 2, Qjpr and 

Cm~n=3. We had already found that for a watermark optimized for robustness without 

error correcting codes, the optimal value is n=54 for a required bit error probability 

of P~<10 7. From Figure 11.5.1 we see that the same label error probability can be 

obtained using smaller values for n if we apply error correcting codes. 
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Figure 11.5.1: Label error probability with (R=1,2) and without (R=O) error correcting codes 
for Qjpeg=25 and c,,in=3. 

For instance, by using an ECC that can correct one error, n can be decreased from 54 

to 33. Obviously the use of ECCs introduces some redundant  bits. However, this 

overhead is small compared to the increase in capacity due to the use of a smaller 

value of n. Table 11.5.1 gives some examples of the effective length of labels that can 

be embedded for N x M  = 1024 x 768. In this table standard BCH codes [Rhe89] are 

used that can correct one or two errors. 

ECC-Type R n Parity- 
check 

bits ECC 
no-ECC 

BCH (511,502) 
BCH (511,493) 

0 54 0 
1 33 9 
2 27 18 

Label size corrected 
for extra parity- 

check bits 
227 
363 
437 

Table 11.5.1: Effective number of bits per label that can be embedded into an image of size 
NxM= 1024 x 768, with required performance parameters Cmin=3, Qipeg=25 and p~CC(R) <10-~. 
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11.6 Experimental results 

In this section, we will compare the robustness of labels embedded using settings 

optimized for maximum label size, namely cmi,=3, n=16, Qpr and D=25 with 

labels embedded using settings optimized for robustness, namely cmi,=3, n=64", 

Qjp~=25, and D=400. 

Figure 11.6.1: DEW watermarking using optimal settings for maximum label size. 

Figure 11.6.2: DEW watermarking using optimal settings for robustness. 

Our software implementation choices require that n=16k 2, where k=1,2,3 .... We therefore 
selected n=64 instead of the optimal value n=54. 
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Figure 11.6.3: Percentage bit errors after re-encoding (a) using parameter settings optimized 
for label size; (b) using parameter settings optimized for robustness. 

The "Lena image" watermarked with the DEW algorithm using settings optimized 
for maximum label size and the corresponding strongly amplified watermark are 
presented in Figure 11.6.1. Figure 11.6.2 shows the same images resulting from the 

DEW algorithm using settings optimized for robustness. 

We will first check the robustness against re-encoding. Images are JPEG 
compressed with quality factor of 100. From these JPEG compressed images two 
watermarked versions are produced; one for each parameter setting. Next, the 

images are re-encoded using a lower JPEG quality factor. The quality factor of the re- 
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encoding process is variable. Finally, the watermark is extracted from the re-encoded 

images and compared bit by bit with the originally embedded watermark. For the 

labels embedded using settings optimized for maximum label size, we used the 

extraction parameters D'=40 and Q'jm=75. For the labels embedded using settings 

optimized for robustness, we used the extraction parameters D'=400 and Q'jm=80. 

With this experiment, we find the percentages of label bit errors due to re-encoding 

as a function of the re-encoding quality factor. In Figure 11.6.3 the resulting label bit 

error curves are shown for nine different images. 

60 
o 

�9 ,-, 50 
m 

40 

30 

20 

10 

(a) 0 

60 
o 

�9 ,.-, 50 

40 

30 

20 

(b) 0 

I I I -  i i 

�9 - -  . _  . 

0 1 2 3 4 5 
/, 

T "T I I 

[c% n--64, 

0 1 2 3 4 5 
Y 

Figure 11.6.4: Percentage bit errors after shifting over r pixels (a) using parameter settings 
optimized for label size; (b) using parameter settings optimized for robustness. 
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Although we expect that the percentages of label bit errors are very small for JPEG 

quality factors between 75 and 100, because the parameter QJm is set to 75, we see in 

Figure 11.6.3a a small increase in bit errors for images re-encoded using a JPEG 

quality factor of 90. This effect is caused by the two consecutive quantization steps 

using JPEG quality factors 90 and 75, which are performed before the energy 

differences are calculated. These quantization steps introduce minor differences in 

the DCT coefficients. If these minor differences are squared and accumulated over 16 

DCT blocks, the energy differences can significantly differ from the originally 

enforced small energy differences (D=25). This effect can be canceled by omitting the 

optional quantization step (Q' -100) during the watermark extraction phase, or by 
j p e g  - -  

increasing the enforced energy difference D. 

Comparing Figure 11.6.3a (parameter setting optimized for label length using 

%,=3, n=16, Qjm=75, and D=25) and Figure 11.6.3b (parameter setting optimized for 

label robustness using Cmi,=3, n=64, Qjpeg=25, and D=400), we see an enormous gain in 

robustness. In Figure 11.6.3b, we see a breakpoint around Qm=25. For higher re- 

encoding qualities, the percentage label bit errors is below 10%. 

In the previous chapter we noticed that the DEW watermarking technique is 

slightly resistant to line shifting. To investigate the effect of the parameter settings 

optimized for robustness on the resistance to line shifting, we carry out the following 

experiment. Images are JPEG compressed with a quality factor of 85. These JPEG 

images are watermarked using the parameter settings optimized for label size or for 

robustness. Next the images are decompressed, shifted to the right over r pixels and 

re-encoded using the same JPEG quality factor. Finally, a watermark is extracted 
from these re-encoded images and compared bit by bit with the originally 

embedded watermark. Consequently, we find the percentages of bit errors due to 

line shifting. In Figure 11.6.4 the bit error curves are shown for nine different images. 

As in the previous experiment, we see an improvement in robustness between 

Figure 11.6.4a and Figure 11.6.4b. Using the parameter settings optimized for 

robustness, the DEW watermark becomes resistant to line shifts of up to 3 pixels. 

11.7 Conclusions 

In this chapter we have derived, experimentally validated, and exploited a statistical 

model for our DCT-based DEW watermarking algorithm. The performance of the 

DEW algorithm has been defined as its robustness against re-encoding attacks, the 

label size, and the visual impact. We have analytically shown how the performance 

is controlled by three parameters, namely Qm, n and c m; .. The derived statistical 

model gives us an expression for the label bit error probability as a function of these 
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three parameters QJm, n and c,,~,. Using this expression, we can optimize a watermark 

for robustness, size or visibility and add adequate error correcting codes. 

The obtained expressions for the probability mass function of the cutoff indices 

can also be used for other purposes. For instance, with this PMF an estimate can be 

made of the variance of the watermarking "noise" that is added to an image by the 

DEW algorithm. This measure, possibly adapted to the human visual perception, 

can be used to carry out an overall optimization of the watermark embedding 

procedure using the (perceptually weighted) signal-to-noise ratio as optimization 

criterion. 



Chapter 12 

Benchmarking the DEW 
Watermarking Algorithm 

12.1 Introduction 

In literature many watermarking algorithms have been presented in recent years. 

Most authors claim that the watermark embedded by their algorithm is robust and 

invisible. However, they all use different robustness criteria and quality measures. 

Furthermore, the term "robustness" is hard to define and it is even questionable if it 

can be defined formally. A watermark that is fully resistant to lossy compression 

techniques may be very vulnerable to a dedicated attack, which may consist of some 

low complexity processing steps like concatenated filtering. Besides robustness and 

visibility, the payload and complexity of the embedding and extraction procedure 
may play an important role. Also the weighting of these performance factors varies 
significantly for different applications. This makes the comparison of the 

performance of the different algorithms a difficult task. In spite of this, we attempt in 

this chapter to derive a fair benchmark for the DEW algorithm by taking into 

account attacks known from the literature and by weighting the performance factors 

according to the requirements imposed by the application. 

In Section 12.2 two watermark benchmarking approaches from literature are 

discussed. In Section 12.3 two dedicated watermark attacks are presented, which can 

be part of a benchmarking process. The performance of the DEW algorithm is 

compared to the real-time spread spectrum method of Hartung and Girod [Har98] 

and the basic spread spectrum method of Smith and Comiskey [Smi96] in Section 

12.4. Section 12.5 concludes the chapter. 
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12.2 Benchmarking methods 

In literature two watermark benchmarking methods are proposed, namely [Fri99a] 

and [Kut99]. The authors of both methods notice that the robustness is dependent on 

the payload and the visibility of the watermark. Therefore, to allow a fair 

comparison between different watermarking schemes, watermarks are embedded in 

a pre-defined video data set with the highest strength, which does not introduce 

annoying effects according to a pre-defined visual quality metric. Subsequently 

processing techniques and attacks are applied to the watermarked data and the 

percentages bit errors are measured to estimate the performance of the 

watermarking schemes. 

The two benchmarking methods differ in the choice of the payload of the 

watermark, the visual quality metric and the processing techniques. In [Fri99] the 

payload of the watermark is fixed to I or 60 bits. To evaluate the visual quality of the 

watermarked video data, the spatial masking model of Girod [Gir89] is used. This 

model is based on the human visual system and accurately describes the visibility of 

artefacts around edges and flat areas in video data. The watermark strength is 

adjusted in such a way that Girod's model indicates less than one percent of pixels 

with visible changes. Subsequently, the watermarked data is subject to the 

processing operations listed in Table 12.2.1 and the bit error rate is measured as a 

function of the corresponding parameters. 

Operation 
JPEG compression 

Blurring 
Noise addition 

Gamma correction 
Permutation of pixels 

Mosaic filter 
Median filter 

Histogram equalization 

Parameter 
Quality factor 

Kernel size 
Noise amplitude (SNR) 

Gamma exponent 
Kernel size 
Kernel size 
Kernel size 

Table 12.2.1: List of processing operations to which the robustness of a watermarking 
method is tested. 

The authors [Fri99a] do not claim that this list is exhaustive; other common lossy 

compression techniques, such as wavelet compression should probably be included. 
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Using the benchmarking approach described in [Kut99] the payload of the 

watermark is fixed to 80 bits. To evaluate the visual quality of the watermarked 

video data, the distortion metric proposed by Van den Branden Lambrecht and 

Farrell [Bra96] is used. This perceptual quality metric exploits the contrast sensitivity 

and masking phenomena of the Human Visual System and is based on a multi- 

channel model of the human spatial vision. The unity for this metric is given in units 

above threshold, also referred to as Just Noticeable Difference (JND). In [Kut99] this 

quality metric is normalized using the ITU-R Rec. 500 quality rating [ITU95]. In 

Table 12.2.2 the ratings and the corresponding visual perception and quality are 

listed. 

Rating . Impairment 
Imperceptible 
Perceptible, not annoying 
Slightly annoying 
Annoying 
Very annoying 

Quality 
Excellent 
Good 
Fair 
Poor 
Bad 

Table 12.2.2: ITU-R Rec. 500 quality ratings on a scale from I to 5. 

The ITU-R quality rating Q~u is computed as follows: 

5 
GTv = (12.2.1) 

I+CN+ MD 

where MD is the measured distortion according to the model of Van den Branden 
Lambrecht and Farrell and CN is a normalization constant. CN is usually chosen 
such that a known reference distortion maps to the corresponding quality rating. 
The results generated by the model cannot be used to determine if for instance an 

image with quality rating Q~u=4.5 looks better than an image with quality rating 

Q,~u=4.6. The results should be interpreted in combination with a threshold: images 

with quality ratings above Qrm=4 may only contain perceptible, and not annoying 
artefacts. 

The watermark strength is adjusted in such a way that the quality rating is at 

least 4. Subsequently, the watermarked data is subject to a list of processing 

operations, including lossy JPEG compression, geometric transformations and filters. 

Most of these processing operations are implemented in one single program called 

StirMark, which is described in the next section. Instead of applying each processing 

operation listed in Table 12.2.1 to the watermarked data, only StirMark is applied to 
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the data, which has the same effect as performing the transformations separately 

with various parameters. Finally, the error rate for the retrieved bits is measured. 

12.3 Watermark attacks 

12.3.1 Introduction 

Watermarks are vulnerable to processing techniques. Therefore, every processing 

technique that does not significantly impair the perceptual quality of the 

watermarked data can be considered as an intentional or unintentional watermark 

attack. In [Har99] the watermark attacks are classified in four groups: 

A. "Simple attacks" are conceptually simple attacks that attempt to impair the 

embedded watermark by manipulations of the whole watermarked data, without 

attempting to identify and isolate the watermark. Examples include linear and 

general non-linear filtering, lossy compression techniques like JPEG and MPEG 

compression, noise addition, quantization, D /A conversion and gamma 

correction. 

B. "Detection-disabling attacks" are attacks that attempt to break the correlation and 

to make the recovery of the watermark impossible for the watermark detector, 
mostly by geometrical distortions like scaling, shifting in spatial or temporal 

direction, rotation, shearing, cropping and removal or insertion of pixel clusters. 

A typical property of this type of attacks is that the watermark remains in the 

attacked data and can still be recovered with increased intelligence of the 

watermark detector. 

C. "Ambiguity attacks" are attacks that attempt to confuse by producing fake 

original data or fake watermarked data. This attack is only useful for copyright 

purposes and therefore outside the scope of this book. An example of this attack 

is the inversion attack described in [Cra96], which attempts to discredit the 

authority of the watermark by embedding additional watermarks so that it is 

unclear which was the first watermark and who the legitimate copyright owner 

is. 

D. "Removal attacks" are attacks that attempt to analyze the watermarked data, 

estimate the watermark or the host data, and separate the watermark from the 

watermarked data to discard the watermark. 
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The authors [Har99] note that the distinction between the groups is sometimes 

vague, since some attacks belong to two or more groups. In Section 12.3.2 the 

StirMark attack is discussed, which belongs to groups A and B. A removal attack on 

spatial spread spectrum watermarking techniques belonging to group D is presented 

in Section 12.3.3. 

12.3.2 Geometrical  transforms 

StirMark is a watermark removal attack that is based on the idea that although many 

watermarking algorithms can survive simple video processing operations, they 

cannot survive combinations of them [Pet98b] and [Pet99]. In its simplest form 

StirMark emulates a resampling process. It applies minor geometrical distortions by 

slightly stretching, shearing, shifting and/or  rotating an image or video frame by an 

unnoticeable random amount and then resampling the video data using either bi- 

linear or Nyquist interpolation. In addition, a transfer function that introduces a 

small and smooth distributed error into all sample values is applied. This emulates 

the small non-linear analog/digital converter imperfection typically found in 

scanners and display devices. In Figure 12.3.1b an example is given of how StirMark 

resamples the data. The distortions are exaggerated for viewing purposes. As can 

be seen the distortion of each pixel is the greatest at the borders of the video data 

and almost zero at the center. 

Figure 12.3.1: Exaggerated example of distortions applied by StirMark. 
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In addition to this procedure StirMark can also apply global bending to the video 

data. This results in an additional slight deviation for each pixel, which is greatest at 

the center of the video data and almost zero at the borders. The bending process is 

depicted in Figure 12.3.1c. Finally the resulting data is compressed with the lossy 

JPEG algorithm using a quality factor for medium visual quality. 

In Figure 12.3.2b an example is shown of the "Lena image" after applying 

StirMark. Figure 12.3.2c shows the difference between the original image and the 

StirMarked image. It can be seen that although some pixels are shifted over more 

than 3 pixels, the image quality is not affected seriously. 

Figure 12.3.2: Example of an image after applying StirMark. 

The StirMark attack confuses most watermarking schemes available on the market 

[Pet98b]. Only watermarking schemes with a very low payload can survive this kind 

of attack. 

12.3.3 W a t e r m a r k  e s t i m a t i o n  

12.3.3.1 Introduction 

The spatial spread spectrum watermarking methods described in Chapter 8 

basically add a pseudorandom pattern to an image in the spatial domain to embed a 

watermark. This watermark can be detected by correlating with the same pattern or 

by applying other statistics to the watermarked image. In this section two attacks are 

discussed to estimate the pseudorandom spread spectrum watermark from the 

watermarked image only. If a nearly perfect estimation of the watermark can be 

found, this estimated watermark can be subtracted from the watermarked image. In 
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this way the watermark is removed without affecting the quality of the image 

[Lan98b] and [Lan98c]. 

For our initial experiments we use the basic spread spectrum implementation 

of Smith and Comiskey [Smi96]. If we apply this method to an image/,  a random 

pattern W consisting of the constants -k and +k is added to obtain the watermarked 

image Iw= I+W, where k is a positive integer value. The watermark energy resides in 

all frequency bands. Compression and other degradations may remove signal 

energy from certain parts of the spectrum, but since the energy is distributed all over 

the spectrum, some of the watermark remains. The random pattern W is 

uncorrelated with image/, but correlated with Iw: 

cov(W,I + W) = var(W) + cov(I,W) ~ var(W) + 0 

cov(W,I + W) ~ ~/ var(W) 
p(W,I  + W) 

~/var(W)~/var(l + W) .var(I  + W) 

k 
p(W,I  + W)~" 4 ('var-I + W) 

(12.3.1) 

Evaluation of Equation 12.3.1 for typical images yields the conclusion that p ranges 

from 0.02 to 0.05. However, if the watermarked images are compressed using the 

JPEG algorithm or distorted, the approximation in Equation 12.3.1 does not hold. 

Indeed, the correlation coefficients decrease by a factor 2, while the variance of (I+W) 

nearly equals the variance of the JPEG compressed version of (I+ W). 

If an arbitrary random pattern W~ is used, the correlation coefficient will be 

very small: 

coV(Wx, I + W) = cov(W~, W) + cov(W~, I) ~ 0 + 0 

cov(W~, I + W) ~ 0 
P = x/var(W~) x]var(I + W) 

(12.3.2) 

This holds only if W and W x are orthogonal and W is not correlated with I. Typical 

values for correlation coefficients between I w and arbitrary random watermark Wx 

are a factor 102 smaller than p(W, Iw). 

A simple estimation attack would be to search for all possible random patterns 

and take the one with the highest correlation value as the possible watermark 

pattern. This approach has several disadvantages. In the first place the search space 

is huge. Even if the watermark pattern consisting of the integers [-1,1] should meet 

the requirement that the number o f - l s  and the number of +ls need to be equal, 

more than 4x103~ possible patterns have to be checked for a 32x32 pixel watermark. 
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As a first step, we carried out experiments with a genetic algorithm to search the 

random pattern with the highest correlation coefficient with I w = I+W. In some cases 

the genetic algorithm found a pattern with a relatively high correlation (0.3) with I w 

and no correlation with W (10s). This means that the pattern is adapted to the image 

contents and not to the watermark. To avoid that the genetic algorithm finds random 

patterns that have higher correlation coefficients than the embedded watermark we 

must adapt our optimization criterion. From the properties of spread spectrum 

watermarks we know the following about W: 

�9 p ( W ,  Iw) ~ [0.01 .. 0.051 

�9 p ( W ,  iO ~ 0 

�9 W is pseudorandom and has a flat spectrum 

If the image is distorted by compression, p ( W ,  Iw) is unknown. Too many patterns 

meet the requirement p ( W ,  I) ~ O. The  additional information that W is random and 

has a flat spectrum is not enough either to create a suitable optimization criterion 

function. If we have several different images with the same watermark to our 

disposal, there are several possibilities (e.g. collusion attacks). A fitness function for 

the genetic algorithm dependent on all images can be used, and if there are enough 

images, the average of the images can be taken as estimation of the watermark. 

In [Ka198b] and [Lin98] the watermark is estimated by analyzing the 

watermark detector. However, if different watermarks are used for each image and 

the watermark detector is not available, we have to follow other approaches that 

estimate the watermark from only the watermarked data. In [Mae98] an approach is 

proposed to estimate spatial spread spectrum watermarks by histogram analysis. 

The results of this approach depend very much on the content of the images. 

Watermarks can be estimated quite accurately for images with peaky histograms, 

but the results for images with a smooth histogram are poor. In the next subsection 

we propose a watermark estimation approach which is based on non-linear filtering. 

12.3.3.2 Watermark estimation by non-linear filtering 

In general, a watermark can be regarded as an enforced distortion in the image that 

is perceptually invisible. In most cases, this distortion is not correlated to the image 

contents. If we could apply a nearly perfect image model to the watermarked image 

I W - I+W, we could predict the image content ] and estimate the watermark: W = I w- 

] .  Because perfect image models and perfect noise filters do not exist, ] will be 

different from I and W will be different from W. Our objective is to separate I w 
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= I + ~" in such a way that the watermark is totally removed from I and resides 

completely in W [Lan98b] and [Lan98c]. This means that image contents may 
remain in the predicted watermark. 

We tested the performance of the following separation operations to divide I w 

in I and W" an AR-model, linear smoothing filters (3x3 and 5x5), Kuwahara filters 

[Kuw76] (several sizes), non-linear region based filters and filters based on 

thresholding in the DCT-domain (coring). In some cases, the watermark can be 

retrieved from both I and W, while I has still a reasonable quality and W does not 

contain any image information. In other cases the watermark can only be retrieved 

from W, but the quality of I is significantly affected and the image contents, 

especially the edges, remain in W. 

We select some candidates from the separation operations that totally destroy 

the watermark in I ,  p(W, I ) ~ O. From these candidates we select the operation that 

has the highest correlation coefficient p(W, W) in a test set of 9 images. In Table 

12.3.1 the correlation coefficients for several separation operations are listed. 

Separation Operation 
Misc. Noise Reduction Filters 

Autoregressive Model 
Median 3x3 

p(~, w) 
0.08-0.12 
0.10-0.17 
0.13-0.22 

Table 12.3.1" Correlation coefficients p (W,  W) using different separation operations. 

The 3x3 median filter turns out to be the best separation operation and is used for 

the rough estimation of W = Iw-med3x3(Iw). However, correlation coefficients p( W, W) 

between 0.13 and 0.22 are still too low and W must be refined further by using 
information about the watermark properties. 

The estimate W does still contain edge information. To protect the edges in I w 

we limit the range of W from [-128..128] to [-2..2] before we subtract W from I w. In 

Figure 12.3.3 the modulus of the Fourier Transform of the truncated ~" is presented. 

The horizontal, vertical and diagonal patterns in Figure 12.3.3 clearly indicate 

that some dominating low frequency components are present in the spectrum. Since 

a spread spectrum watermark should not contain such dominating components, 

these come certainly from the image content. To remove these components a 3x3 

linear high-pass filter is applied to the non-truncated W. Truncating the filtered 

to the range [-2,2] results in the Fourier spectrum as presented in Figure 12.3.4. The 

correlation coefficients between the high-pass filtered W and W, p(W, W) now 
increase to values around 0.4. 
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Figure 12.3.3: Power density spectrum of W r-2..2t. 

Figure 12.3.4: Power density Spectrum of high-pass filtered (W)t.2.2j. 

If this watermark W is subtracted from the watermarked image I w the watermark is 

not completely removed. This is not surprising, since we are not able to predict the 

low frequency components of the watermark. These components are discarded 

during the high-pass filtering stage of W or are left in I by the median filter. The 

low frequency components, which cannot be estimated properly, give a positive 

contribution to correlation of the watermark detector, while subtracting the 
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estimated watermark ~' ,  which mainly consists of high frequency components, 

gives a negative correlation contribution. By amplifying the estimated watermark 

with a certain gain factor G before subtraction, the overall correlation of the 

watermark detector can be forced to zero. The complete scheme for removing a 

watermark is represented in Figure 12.3.5. 

Figure 12.3.5: The complete watermark removing scheme (WRS). 

The value of G is dependent on the image content and the amount of energy in the 

embedded watermark. If G is chosen too high, the watermark inverts and one can 

still retrieve it from I by inverting the image before retrieving the watermark. 

The value G is experimentally determined. A watermark is added to an image 

using the method of Smith and Comiskey [Smi96], 32x32 pixels are used to store one 

bit of watermark information and the watermark carrier consists of the integers {- 

2,2}. The watermark removing scheme is applied to the watermarked image with 

several values for G. The percentage watermark bit errors is plotted as a function of 

G in Figure 12.3.6. If 50% bit errors are made, the watermark is removed; if 100% bit 

errors are made, the watermark is totally inverted. According to Figure 12.3.6 the 

gain factor G should have a value between 2 and 3 to remove the watermark from 

this image. The values of the gain factor vary for different kinds of images but are 

typically in the range from 2 to 3. We therefore fixed the gain factor G to 2.5 for all 

images. 
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Figure 12.3.6: % bit errors as a function of gain factor G. 
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We tested the watermark removing scheme (WRS) represented in Figure 12.3.5 

on a set of 9 true color images. Informal subjective tests were performed to 

determine the quality of the images. Some images hardly contain any textured areas 

and sharp edges, some contain many sharp edges and much detail, others contain 

both smooth and textured areas. First, the WRS (G=2.5) is applied to the methods of 

Bender et al [Ben95] and Pitas and Kaskalis [Pit95]. The watermarks in the 9 test 

images are all removed while the quality of the images is not reduced significantly. 

Subsequently the WRS (G=2.5) is applied to the more robust watermarking 

method of Smith and Comiskey [Smi96]. The watermarks are added using P pixels 

per bit and a gain factor of k, where k= 1 or 2. If higher gain factors k are used, the 

watermark becomes visible. For the values P=8x8, 16x16, 32x32, 64x64 and k=1,2 the 

watermarks can be removed without affecting the visual quality significantly. An 

example is given in Figure 12.3.7. An image is watermarked using the parameters 

k=2, P=32x32. To remove the watermark completely (about 44% bit errors) using the 

JPEG compression algorithm, we have to use a quality factor Q=10. The result of this 

compression operation is presented in Figure 12.3.7a. If we apply the WRS to the 

watermarked image, the watermark is completely removed (>50% bit errors) and we 

obtain the image which is shown in Figure 12.3.7b. This image is hardly distorted. If 

the number of pixels per bit P is increased further to 128x128 or 256x256, the 

watermark is fully removed in smooth images, but only partially in textured images. 

Figure 12.3.7: Removing a watermark from a watermarked image. 
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Finally, the WRS (G=2.5) is applied to the method of Langelaar et al [Lan97a]. This 

watermarking method determines the gain factor k for each watermark bit 

automatically. Therefore only the number of pixels per bit P can be changed. All 

watermarks added with this method can be removed for P=8x8, 16x16, 32x32. For 

P=64x64, 128x128 . . . .  the watermarks are only partially removed. In this case the 

watermark information is only removed from the smooth regions of the images, but 

remains in the more textured regions, since here the watermark estimate is not 

accurate enough. 

Some methods (e.g. [Wo196]) first subtract the original image from the 

watermarked image and apply the watermark retrieval operation on this difference 

image. However, the WRS also removes the watermarks in this case. Other methods 

using a similar approach as [Smi96] are not tested, but we expect that such 

watermarks will be affected in the same way as those in [Smi96], since these 

methods use the same basic principle. 

12.4 Benchmarking the DEW algorithm 

12.4.1 Introduction 

In this section the DEW algorithm is compared to other watermarking methods 

known from literature. Section 12.4.2 discusses the performance factors on which the 

comparison is based. In Section 12.4.3 the real-time DEW algorithm for MPEG 

compressed video is compared to the basic spread spectrum technique of Smith and 

Comiskey [Smi96], which operates on raw video data, and to other real-time 

watermarking algorithms that operate directly on the compressed data. In this 

comparison the emphasis is on the real-time aspect. This holds for both the 

watermarking procedures and the watermark removal attacks. The attacks are 

therefore limited to transcoding operations. 

In Section 12.4.4 the DEW algorithm for JPEG compressed and uncompressed 

still images is compared to the basic spread spectrum method of Smith and 

Comiskey [Smi96]. Since the latter method is not specially designed for real-time 

operation on compressed data, the real-time aspect is neglected in this comparison. 

In our evaluation we follow the guidelines of the benchmarking methods from 

literature described in Section 12.2. 
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12.4.2 Performance factors 

To evaluate the performance of the DEW algorithm we have to compare it to other 

watermarking algorithms with respect to complexity, payload, impact on the visual 

quality, and robustness. Of these performance factors, the impact on the visual 

quality is most important. A watermark may not introduce annoying effects; in that 

case, watermarking algorithms will not be accepted as protection techniques by the 

users, who expect excellent quality of digital data. The weighting of the other 

performance factors depends heavily on the application of the watermarking 

method. 

As already mentioned in Section 7.4, Part II of this book focuses mainly on the 

class of watermarking algorithms which can, for instance, be used in fingerprinting 

and copy protection systems for home-recording devices for the consumer market. 

For this class of watermarking algorithms the complexity of the watermark 

embedding and extraction procedures is an important performance factor for two 

reasons. On one hand, because the algorithms have to operate in real-time and on 

the other hand, because the algorithms have to be inexpensive for the use in 

consumer products. 

Another performance factor is the payload of the watermark. For 

fingerprinting applications and protection of intellectual property rights a label bit 

rate of at least 60 bits per second is required to store one identification number per 

second that is similar to the one used for ISBN or ISRC [Kut99]. For copy protection 

purposes, a label bit rate of one bit per second is usually sufficient to control digital 

VCRs. 

The last performance factor is the robustness of the watermark. The robustness 

is closely related to the payload of a watermark. The robustness can be increased by 

decreasing the payload and visa versa. Sections 12.2 and 12.3 gave an overview of 

processing techniques to which watermarks are vulnerable. Most of these processing 

techniques require that the compressed video stream is decoded and completely re- 

encoded. This task is computationally demanding and requires a lot of storage 

space. The most obvious way to intentionally remove a watermark from a 

compressed video stream is to circumvent these MPEG decoding and re-encoding 

steps. This can be done, for instance, by transcoding the video stream. 

12.4.3 Evaluation of the DEW algorithm for MPEG compressed video 

To evaluate the DEW algorithm for MPEG compressed video we compare it with the 

real-time watermarking algorithms known from literature as described in Chapter 9. 
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Since the bit domain methods do not survive MPEG decoding and re-encoding, we 

restrict ourselves here to the correlation-based methods described in Section 9.3. 

Because the method described in [Wu97] decreases the visual quality of the video 

stream drastically, the method described in [Har98] is the only comparable real-time 

watermarking method that operates directly on compressed video and keeps the 

video bit rate constant. 

The authors [Har98] report that the complexity of their watermark embedding 

process is much lower than the complexity of a decoding process followed by 

watermarking in the spatial domain and re-encoding, but that it is somewhat higher 

than the complexity of a full MPEG decoding operation. Since the DEW algorithm 

adds a watermark only by removing DCT coefficients and no DCT, IDCT or full 

decoding steps are involved, the complexity of the DEW algorithm is less than half 

the complexity of a full MPEG decoding operation. 

Figure 12.4.1: Normalized execution times of software MPEG-2 re-encoding and decoding 
operations in comparison to two real-time watermarking techniques. 

In Figure 12.4.1 an indication is given of the execution times of the following 

operations on 60 frames of MPEG-2 encoded video. The first bar represents the 

execution time of a full software MPEG decoding step followed by an MPEG re- 

encoding step. These steps are necessary if we want to embed a watermark to the 

compressed video data, for instance using the method of [Smi96]. The second bar 
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represents the execution time of a full software MPEG decoding step. This step is 

required to extract a watermark from the compressed video data, for instance by 

means of the method of [Smi96]. The third and fourth bars represent the execution 

times of the fastest software implementation of the correlation-based watermarking 

algorithm described in Section 9.3 [Har98] and the DEW algorithm. The execution 

times are normalized such that the execution time of MPEG-2 decoding 60 frames 

equals 10. 

Concerning the payload of the watermark, the DEW algorithm clearly 

outperforms the real-time correlation-based method. The authors [Har98] report 

maximum watermark label bit rates of only a few bytes per second, while the DEW 

algorithm has a watermark label bit rate of up to 52 bytes per second (see Table 

10.4.1). 

Since no experimental results about robustness against transcoding are 

reported in literature for the real-time correlation-based method [Har98], we 

compare the DEW algorithm with the basic spread spectrum method of Smith and 

Comiskey [Smi96]. Although the real-time method of [Har98] uses the same basic 

principles as the method of [Smi96], the latter method can embed 100% of the 

watermark energy instead of 0.5-3% and has a much higher payload, since it is not 

limited by the constraint that the watermark embedding process must take place in 

the compressed domain. 

To evaluate the resistance to transcoding or re-encoding at a lower bit rate, we 

performed the following experiments. The "sheep sequence" described in Section 

9.4.2.1 is MPEG-2 encoded at 8 Mbit/s. This compressed stream is directly 

watermarked with the DEW algorithm using 3 different parameter settings: 

�9 n = 32, D = 20, cmi,=6, D' = 15, without pre-quantization (0.42kbit/s) 

�9 n = 64, D = 20, c,,;,=6, D' = 15, without pre-quantization (0.21kbit/s) 

�9 n = 64, D = 20, c,,i,=6, D' = 15, with pre-quantization in the embedding stage 

(0.21kbit/s) 

Pre-quantization means here that, prior to the calculation of the energies (Equation 

10.2.1), the DCT coefficients of MPEG compressed video are pre-quantized using the 

default MPEG intrablock quantizer matrix [ISO96]. The DCT coefficients are divided 

by this matrix, rounded and multiplied by the same matrix. 

Next, the "sheep sequence" encoded at 8Mbit/s is watermarked with the 

spatial spread spectrum method [Smi96] (Section 8.2.2) by subsequently decoding, 

watermarking the I-frames and re-encoding the video stream. For the watermarking 

procedures the following settings are used: 
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�9 k=l,  P=64x64, wi thou t  pre-filter in the detector  (0.21kbit/s) 

�9 k=l,  P=64x64, wi th  pre-filter in the detector (0.21kbit/s) 

�9 k=2, P=64x64, wi thou t  pre-filter in the detector (0.21kbit/s)  

�9 k=2, P=64x64, wi th  pre-filter in the detector (0.21kbit/s) 

As pre-filter a 3x3 edge-enhance  filter is appl ied to the pixels of the I-frames before 

the correlation is calculated. The convolut ion kernel  of the filter is g iven by Equat ion 

8.2.5. Hereafter ,  the w a t e r m a r k e d  video sequences  are t ranscoded at different lower 

bit rates. The label bit str ings are extracted f rom the t ranscoded video s t reams and 

each label bit str ing is compared  wi th  the originally e m b e d d e d  label bit string. If 

50% bit errors  are made ,  the label is complete ly  removed.  The percentages  label bit 

errors that  are in t roduced w h e n  the bit rate is decreased,  are represen ted  in Figure 

12.4.2. 
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Figure 12.4.2: % Bit errors after transcoding a watermarked 8 Mbit/s MPEG-2 sequence at 
a lower bit rate. 

From this f igure several  conclusions can be drawn.  First, wi th  respect  to the DEW 

algori thm, increasing the n u m b e r  of 8x8 DCT blocks per  label bit does not  
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significantly increase the robustness to transcoding. This shows that n only needs to 

be increased if the watermarking process results in visual artefacts; otherwise n 

should be chosen as low as possible and error correcting codes should be used to 

improve the robustness. 

Second, the robustness of the DEW algorithm increases drastically if pre- 

quantization is used during the embedding stage. We take a closer look at the results 

of the video stream transcoded to 5Mbit/s. Instead of using the averages over 21 

frames (Figure 12.4.2), we look at the percentages of label bit errors of each separate 

frame (Figure 12.4.3). It now becomes clear that in some frames still no errors occur 

after transcoding (frame numbers: 1,2,7,20). However, in some other frames the 

percentage of label bit errors is quite high (frame numbers: 12,13). This is due to the 

fact that for the experiments a fixed pre-quantization level is used for each frame. 

This is not an optimal solution, since in MPEG coded video streams the quantization 

levels vary not only temporally, but also spatially, depending on the video bit rate, 

the video content and the buffer space of the encoder. The robustness of the DEW 

algorithm can therefore be improved further by locally adapting the pre- 

quantization. 
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Figure 12.4.3: % Bit errors after transcoding an 8 Mbit/s MPEG-2 sequence water-marked 
using the DEW algorithm (n=64, with pre-quantization) at 5 Mbit/s. 

The third and last conclusion that can be drawn from Figure 12.4.2 is that the DEW 

algorithm outperforms the correlation-based method [Smi96] with respect to the 

transcoding attack for bit rates between 8 and 5 Mbit/s. 

Since due to the bit rate constraint, the real-time correlation-based version 

described in [Har98] is only capable of embedding 0.5...3% of the total watermark 
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energy, which is embedded using [Smi96], it can be expected that this method 

performs less than the method of [Smi96] and the DEW algorithm concerning the 

transcoding attack. 

12.4.4 Evaluation of the DEW algorithm for still images 

To evaluate the DEW algorithm for JPEG compressed and uncompressed still 

images we compare it to the basic spread spectrum method of Smith and Comiskey 

[Smi96]. For all experiments in this section we use the parameter settings optimized 

for robustness for the DEW algorithm, namely cmi =3, n=64, Qm=25 and D=400. For 

the watermark extraction the parameters n=64 and D'=400 are used. Since the 

detector results are significantly influenced by the pre-quantization stage in the 
t detector, a value for Q jpeg is chosen out of the set [25, 80, 99] such that the error rate 

of the detector is minimized. This process can be automated by, for instance, starting 

the label bit string with several fixed label bits, so that during the extraction the 
p 

value Q jp~g can be chosen that results in the fewest errors in the known label bits. 

For all experiments in this section with the method of [Smi96], P=64x64 pixels 

are used to store each label bit, while the watermark carrier consists of the integers 

{-2,2} (k=2). This means that the watermarks embedded with both methods have the 

same payload. Since we noticed in the previous section that pre-filtering 

significantly improves the performance of the correlation-based method [Smi96], we 

apply a 3x3 edge-enhance filter to the watermarked images before calculating the 

correlation. The convolution kernel of the filter is given by Equation 8.2.5. 

We watermarked a set of twelve images with the two watermarking methods 

using the parameter settings described above. First we calculate the ITU-R Rec. 500 

quality ratings of the watermarked images using the approach described in Section 

12.2 (Equation 12.2.1) and test the robustness of the watermarks against the attacks 

described in Section 12.3. In Table 12.4.1 the results of these experiments are listed 

for the DEW algorithm. For the StirMark attack version 1.0 is used, using the default 

parameter settings. In this version only the geometrical distortions are performed as 

described in Section 12.3.2, the final JPEG compression step is not implemented. 

For the images watermarked with the method of [Smi96] the ITU-R Rec. 500 

quality ratings are in the range of 4.7...4.8, the percentages of label bit errors after 

the StirMark attack exceed 40% for all images and the percentages of label bit errors 

after the watermark removal attack by non-linear filtering exceed 30% for all images. 

From Table 12.4.1 it can be concluded that the DEW algorithm affects the visual 

quality marginally more than the correlation-based method. However, the ITU-R 

quality ratings are far above the required minimum of 4. Further it can be concluded 
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that for both watermark removal attacks the DEW algorithm clearly outperforms the 

correlation-based method. 

Image name 

Bike 
Bridge 
Butterfly 
Flower 
Grand Canyon 
Lena 
Parrot 
Rafter 
Red Square 
Sea 
Temple 
Tree 

Size 

1720x512 
720x512 
720x512 
720x512 
720x512 
512x512 
720x512 
720x512 
720x512 
720x512 
720x512 
720x512 

ITU-R Rec. 
500 rating 

4.3 
4.5 
4.6 
4.5 
4.4 
4.6 
4.7 
4.3 
4.6 
4.4 
4.6 
4.3 

% Label bit errors 
StirMark 

Attack[Pet98b] 
34% 
16% 
11% 
15% 
24% 
17% 
28% 
24% 
15% 
15% 
17% 
9% 

WRS 
[Lan98b] 

7% 
17% 
7% 
5% 
13% 
6% 
8% 
7% 
7% 
4% 
5% 
13% 

Table 12.4.1" ITU-R Rec. 500 quality ratings and percentages label bit errors for the DEW 
algorithm after applying the StirMark attack based on geometrical distortions (Q'jpeg=99) and 
the Watermark Removing Scheme (WRS) based on watermark estimation (Q'jpe~=25). 

To evaluate the robustness of both algorithms against common simple processing 

techniques we further tested the robustness against re-encoding, linear and non- 

linear filtering, noise addition, simple geometrical transformations, gamma 

correction, dithering and histogram equalization. 

A set of twelve images is watermarked with both watermarking methods. The 

images are re-encoded using a lower JPEG quality factor. The quality factor of the re- 

encoding process is made variable. Finally, the watermarks are extracted from the 

re-encoded images and compared bit by bit with the original embedded watermarks. 

From this experiment, we find the percentages of label bit errors caused by re- 

encoding as a function of the re-encoding quality factor. In Figure 12.4.4 the 

resulting label bit error curves are shown for twelve different images. 

As can be seen in Figure 12.4.4 the DEW algorithm is slightly more robust to re- 

encoding attacks than the correlation-based method. To test the robustness against 

non-linear filtering we filtered the test set of twelve images watermarked with both 

watermarking methods using a median filter with a kernel size of 3x3. To test the 

robustness against linear filtering we first filtered the watermarked images with a 
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3x3 smoothing filter Fsmooth and subsequently with an edge-enhance filter Fe~g e, where 

Fsmooth and Fe~g e are given by the following convolution kernels: 

/i x i/ Fsmooth -- 5 / 13 

1 

and Fedg e = 10 / 2 

-1 

(12.4.1) 
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Figure 12.4.4: Percentages of bit errors after re-encoding (a) using the DEW algorithm; (b) 
using the correlation-based method of [Smi96]. 
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Image name 

Bike 
Bridge 
Butterfly 
Flower 
Grand Canyon 
Lena 
Parrot 
Rafter 
Red Square 
Sea 
Temple 
Tree 

% Label bit errors 
Median Filtering 3x3 

DEW 
16% 
9% 
15% 
9% 
18% 
5% 

22% 
15% 
14% 
10% 
13% 
21% 

Corr.-based 
3% 
8% 
3% 
0% 
4% 
2% 
3% 
2% 
10% 
7% 
8% 
15% 

Linear Filtering 
DEW 
10% 
0% 
0% 
0% 
2% 
0% 
1% 
1% 
0% 
0% 
0% 
0% 

Corr.-based 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 

Table 12.4.2: Percentages of label bit errors for the DEW algorithm (Q'jm=99) and for the 
correlation-based method of [Smi96] after non-linear and linear filters were applied to the 
watermarked images. 

Table 12.4.2 presents The percentages of label bit errors in the labels extracted from 

the non-linear and linear filtered images. Table 12.4.2 shows that both methods are 

more vulnerable to non-linear filtering than to linear filtering. The correlation-based 

method is slightly more robust to filtering than the DEW algorithm. The reason for 

this is that the energy of the DEW algorithm is located more or less in a middle 

frequency band, and the energy of the correlation-based method is distributed 

uniformly over the spectrum. If some frequency bands are affected by filtering 

operations, there is enough energy left in other frequency bands in the case of the 

correlation-based method. 

Correlation-based methods are quite resistant to uncorrelated additive noise. 

Experiments show that uniformly distributed noise in the range f rom-25  to 25 

added to images watermarked with the method of [Smi96] does not introduce label 

bit errors in the extracted labels (0%). To investigate the robustness of the DEW 

algorithm against additive noise, we add noise to the watermarked images, where 

the noise amplitude [-N,,Na] varies between 0 and 25. The results of this experiment 

are shown in Figure 12.4.5. This figure shows that the DEW algorithm is also quite 

insensitive to additive noise. 

Robustness against geometrical distortions is very important, since shifting, 

scaling and rotating are very simple processing operations that hardly introduce 
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visual quality loss. We already tested the robustness of the DEW algorithm against 
line shifting followed by lossy JPEG compression in Section 11.6 and the resistance 
to minor geometrical distortions applied by StirMark at the beginning of this section. 

Nevertheless here we perform some additional experiments to check the robustness 

against scaling and rotating. We enlarge the watermarked images 1% and crop them 

to their original size. Next, we rotate the watermarked images 0.5 degree and crop 

them to their original size. Finally, the watermark labels are extracted and compared 

bit by bit with the original embedded ones. The percentages of label bit errors in the 

labels extracted with the DEW algorithm from the scaled and rotated images are 

presented in Table 12.4.3. It appears that these geometrical transformations, line 

shifting, scaling and rotating, completely remove the watermarks embedded by the 
correlation-based method (percentages of bit errors > 40). From Table 12.4.3 and the 

experiments performed in Section 11.6 we can conclude that the DEW algorithm 

clearly outperforms the correlation-based method concerning geometrical 

transformations. 
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Figure 12.4.5: Percentages of label bit errors after labels have been extracted from images 
affected with additive noise using the DEW algorithm. 

Both the DEW algorithm and the correlation-based method are insensitive to gamma 

correction and histogram equalization. Even quantization of the color channels from 

256 levels to 32, 16 or 8 levels followed by dithering does not affect the watermarks 

embedded by the DEW algorithm (Q'jm=25) or by the correlation-based method. 
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Image name 

Bike 
Bridge 
Butterfly 
Flower 
Grand Canyon 
Lena 
Parrot 
Rafter 
Red Square 
Sea 
Temple 
Tree 

% Label bit errors 
Zoom 1% and crop 

14% 
3% 
0% 
7% 
17% 
0% 
11% 
10% 
10% 
10% 
7% 
3% 

Rotate 0.5 ~ and crop 
17% 
5% 
7% 
9% 
6% 
6% 
10% 
6% 
3% 
10% 
8% 
0% 

Table 12.4.3: Percentages of label bit errors for the DEW algorithm (Q'ipeg=99) after scaling 
or rotating and cropping the watermarked images. 

12.5 Conc lus ions  

Benchmarking watermarking algorithms is a difficult task. Performance factors like 
visibility, robustness, payload and complexity have to be taken into account, but the 
weighting of these factors is application dependent. Furthermore it is questionable if 

robustness can be defined formally. 

In this chapter we discussed two benchmarking approaches for watermarking 

methods and two dedicated watermark removal attacks. The benchmarking 

approaches discussed here only give some general guidelines on how watermarking 
methods can be evaluated. More research and standardization is necessary to derive 

more sophisticated benchmarking systems. Also the attacks discussed here are just 

examples to show that robustness against simple standard image processing 

techniques is not enough to call a watermarking method robust. Other simple 

processing techniques exist or may be developed that do not significantly affect the 

image quality, but can defeat most watermarking schemes. 

The attacks presented here can be counterattacked by increasing the 

complexity of the watermark detectors. But the attacks can also be improved by 

taking these changes of the detectors into account. For instance, the watermark 

removal technique presented in Section 12.3.3 can be counterattacked by applying a 

special low-pass pre-filter in the detector [Har99]. However, by replacing the 3x3 

high-pass filter in the removal scheme by a filter with a larger kernel and 
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appropriate coefficients, this counterattack can be rendered useless. Furthermore an 
attack can be improved by combining it with a different attack, for instance, 
combining a watermark estimation attack with a geometrical transformation attack 

will defeat any watermarking scheme. 

In spite of the problems mentioned above, we evaluated the DEW algorithm in 

this chapter taking into account the benchmarking approaches and attacks 

mentioned in the literature. We found that of all real-time watermarking algorithms 

for MPEG compressed video known from literature, the correlation-based method 

described in [Har98] is the only algorithm that can directly be compared with the 

DEW algorithm. In this comparison it turned out that the DEW algorithm has only 

less than half the complexity of this correlation-based method. Furthermore, the 
payload of the DEW algorithm is up to 25 times higher and the DEW algorithm is 
more robust against transcoding attacks than the correlation-based methods in the 
spatial domain. The robustness of the DEW algorithm can even be improved further 

by making the pre-quantization step variable. 

For still images we compared the DEW algorithm to the basic spread spectrum 

method of [Smi96], which is not designed for real-time watermarking in the 

compressed domain. 

In this comparison it turned out that the DEW algorithm and the correlation- 

based method perform equally well concerning the robustness against linear 
filtering, histogram equalization, gamma correction, dithering and additive noise. 
The DEW algorithm clearly outperforms the correlation-based method where it 

concerns the dedicated watermark removal attacks, geometrical transformations and 
re-encoding attacks using lossy JPEG compression. 
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Chapter 13 

Information Retrieval: 
An Introduction 

13.1 Information retrieval systems- 
From needs to technical solutions 

There is hardly a better way to describe the development stage of our civilization at 

the end of the second millennium than as the information era, and this has a quite 

obvious reason: never before was the impact of information on the human lifestyle 

and way of thinking as enormous as it is in the second half of the 20th century. 

People are not only exposed to information all the time, this experience also becomes 

more intensive, which greatly contributes to broadening their views; they acquire 

knowledge and awareness about the environment and the world in general. This 

process globalizes society, and as such, creates new living and educational 

standards. 

We can explain such an impact mainly as a consequence of an overwhelming 

digital revolution, which started some decades ago and has continuously gained in 

strength. On the one hand, the digital way of representing information opened 

completely new perspectives for further developments in information technology. It 

became possible to compress information, which resulted in a strong reduction of 

the time and channel capacity required for its transmission and of the space required 

for its storage. Information can be transmitted or manipulated without quality loss 

and it is possible to combine and transmit or process different types of information 

together, like audio, visual or textual: multimedia was born. On the other hand, 

digital hardware technology has rapidly developed and grown in the last decades, 
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so that the performance-versus-price ratio of various digital systems, storage and 

transmission media steadily increased. All this has led to continuous advances in the 

quality of transmitted and received audiovisual information [Hua99a], in digital 

telecommunication networks providing high-speed information transfer 

("information superhighway"), in fast digital signal processors and in compact high- 

capacity storage media like Digital Versatile Disc (DVD), which is seen by many as 

"the epitome of the digital age" [TNO97]. In view of such technological growth, it is 

not difficult to understand that an average information consumer easily raises his 

expectations regarding the amount, variety and technical quality of the received 

information, as well as of the systems for information receiving, processing, storage 

and re- or display. It will soon become quite usual that each household is equipped 
with receivers for Digital Video and Audio Broadcasting (DVB [ETS94] and DAB 

[ETS97]) providing together hundreds of high-quality audiovisual channels, 

accompanied by a broadband Internet connection, which gives access to countless 
on-line information archives all over the world. 

However, it is beyond human capabilities to digest all the received information 

in an on-line manner. Large volumes of digital information obtained from digital 

TV/radio channels, Internet etc. will need to be stored temporarily, or if they are of 

long-term value, permanently. In this sense, we witness a strong development of 

home digital multimedia archives [SMA]. And, naturally, with an increasing 
information production even larger digital multimedia archives appear at service 

providers (e.g. TV and radio broadcasters, Internet providers, etc.). Thus, the issue of 

digital information storage steadily becomes more and more interesting and we can 

talk about emerging digital libraries. This term stands for a (large-scale) collection of 
stored digital information of any type (e.g. audio, visual, textual), made for either 

professional or consumer environments; examples of this are digital museum 

archives, Internet archives, video libraries available to commercial service providers 

and private information collections in the home, all of them being characterized by a 

quickly increasing capacity and content variety. 

The development of digital libraries is not only related to technological 

advances in high-capacity storage media. The issue of efficiently retrieving the 

information stored in these libraries becomes of utmost importance as larger data 

volumes are stored. Actually, it can be said that the missing possibility to quickly 

access stored information degrades the high technological value of new high- 

capacity storage media and seriously jeopardizes the usability of the stored 

information. As nicely formulated in the preface of [Sme97], "anyone who has 

surfed the Web has exclaimed at one point or another that there is so much 

information available, so much to search and so much to keep up with". This citation 
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describing a particular problem of finding a desired information on the World-Wide 

Web (WWW) can analogously be applied to a digital library of any type: 

If information of interest is not easily accessible within a large digital library, that 

information can be of no use, in spite of its value and the fact that it is present in that 

library. 

Manually searching through GBytes of unorganized stored data is a tedious and 

time-consuming task. Consequently, with increasing information volumes the need 

grows for shifting the information retrieval to automated systems. There, algorithms 

are applied capable of performing any information retrieval task with the same 

reliability and with the same or even higher efficiency as when the retrieval is done 

manually. 

Realizing this shifting in practice is not a trivial problem, especially in the case 

of images or video ". To explain this, we here analyze some characteristic retrieval 

tasks, such as "find me an image with a bird", "find me the movie scene where 

Titanic hits the iceberg", "find me the CNN business news report from 15 November 

1999", "find me a 'western'  movie in the database", "classify all the images 

according to the place where they were taken" or "find me all images showing 

Paris". These retrieval tasks are formulated on a cognitive level, according to the 

human capability of understanding the information content and analyzing it in 

terms of objects, persons, sceneries, meaning of speech fragments or the context of a 

story in general. Opposed to this, the only feasible analysis of a video or an image at 

the algorithmic or system level can be in terms of their features, such as color, texture, 

shape, frequency components, audio and speech signal characteristics, and using the 

algorithms operating on these features. Such algorithms are, for instance, image 

segmentation, detection of moving objects, extraction of textures and shapes, 

recognition of color compositions, determination of relations among different objects 

or analysis of the frequency spectrum of the audio or speech signal. These 

algorithms can be developed using the state-of-the-art in image and audio analysis 

and processing, computer vision, statistical signal processing, machine intelligence, 

pattern recognition and other related areas. 

As illustrated in Figure 13.1, we can understand an automated feature-based 

content analysis as a system-level parallel to the cognition-based analysis. There the 

features are chosen and algorithms are developed in the way that the retrieval 

"Within the context of this book we refer to video as to a program in its entirety, consisting of an 
image sequence and the eventual accompanying audio/speech stream. 
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results are similar at the end of each branch of the scheme. Experience shows, 

however, that the parallelism in Figure 13.1 is not viable in all cases. We can explain 

this with the example of searching for an image containing a bird. While such a 

search performed by a human will always succeed, this cannot be said for the 

feature-based image analysis, simply because a complicated and large feature set 

describing the characteristics of a bird in general is required as well as complex 

algorithms operating on that feature set, which would enable the system to 

recognize the appearance of any arbitrary bird, in any possible pose and also in cases 

where parts of a bird are occluded. Finding a suitable feature set and developing 

related algorithms for such a retrieval task is very difficult. Consequently, the 

development of feature-based content analysis algorithms for the scheme in Figure 

13.1 has not been directed to enable queries on the highest semantic level, such as 

the above example with a bird, but mainly towards extracting certain semantic 

aspects of the information which would allow for a reduction of the overall large 

search space. This tendency can be recognized in numerous algorithms proposed in 

recent literature, many of which will be explained in detail in further chapters of this 

book. 

Figure 13.1: Cognitive versus feature-based retrieval 
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For instance, an algorithm in [Vai98] is able to classify with high accuracy 

images showing a city versus those showing a landscape. Further in [Vai99], a 
Bayesian framework is presented for semantic classification of outdoor vacation 

images. There, landscape images can be classified into those showing a sunset, a 

forest or mountains. Similar examples can also be found in the area of digital video 

libraries. The algorithms proposed in [Han99b] and [Yeu97] provide the possibility 

to detect episode or scene boundaries of a TV broadcast (movie, situation comedy, 

etc.). A methodology for detecting commercial breaks in a TV news program is 

presented in [Liu98]. There, the audio track of the broadcast is analyzed and 

commercial breaks are efficiently separated from the rest of the program because of 

their specific audio characteristics. An approach to detect commercial breaks in an 

arbitrary TV broadcast is presented in [McG99], based on parallel investigation of 

several feature types.' Also a sophisticated feature-based analysis is applied in [Fis95] 

in order to classify video programs in different genres. Another class of approaches 

[DeM98], [Han97c], [Han00], [Pfe96] concentrates on video abstraction, i.e. compact 

representation of long video sequences by extracting and organizing a number of its 

most representative frames and segments. 

Even the feature-based content-analysis techniques belonging to the current 

technological state-of-the-art and developed with the objective of search-space 

reduction can be used to build efficient tools for multimedia information retrieval, 

since they provide the user with reliable directions for browsing efficiently through 

a digital library and lead them quickly to the information of interest. The MPEG-7 

standardization platform [ISO97] addresses ways to define standard sets of 
descriptors for multimedia information based on features which should provide 
further directions for the development of feature-based content-analysis algorithms. 
And with new solutions, the performance of information retrieval systems can only 

improve, leading to a further reduction of the search space and user's involvement 

during the search procedure. The material presented in Chapters 14 to 17, which is 

briefly outlined in the next two sections of this chapter, is a further contribution to 
this positive development. 

13.2 Scope of Part III 

Part III of this book concentrates on a feature-based analysis of the visual content of 

images and video, enabling an easier image and video retrieval from large-scale 
multimedia digital libraries. 

The scheme in Figure 13.2 presents a series of video processing/analysis steps 

which provide an organizational structure allowing efficient reviewing of the global 



318 CHAPTER 13 

video content (e.g. story flow of a movie, topic series of a news program, etc.) and a 

fast access to and retrieval of any arbitrary part of a video (e.g. an arbitrary movie 

episode, a news report on a certain topic, a highlight of a sport program, etc.). The 

scheme depicts a generally known video-analysis procedure which first breaks up a 

video into temporally homogeneous segments called video shots, then condenses 

these segments into a set of characteristic frames called key frames and finally 

performs a high-level analysis of a video content. This high-level analysis basically 

includes determining "semantic" relationships among shots (e.g. their grouping into 

news reports, movie episodes, etc.) using temporal characteristics of shots and 

suitable features of their key frames. As indicated in the scheme, beside of being 

used for high-level video analysis key frames also directly participate in forming the 

organizatorial video-content structure described above. There, they provide visual 

keys to different aspects of a video content. A large number of algorithms was 

presented in recent literature for all three mentioned processing/analysis steps, 

aiming at a robust and high-quality performance with as much automation as 

possible. We contribute to these efforts in this book and dedicate each of the 

Chapters 14 to 16 to one of the processing/analysis steps in Figure 13.2. 

Figure 13.2: A video-content analysis scheme 
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Then we consider the fact that the prevailing amount of information reaching the 

digital libraries and being stored there will be in a compressed form. This is because 

large and fast advances in the compression area are gladly employed to maximally 

utilize the available storage space in digital libraries, but also to increase the 

information-transmission rate and density. Consequently, compressed images and 

video need to be expected as inputs into feature-based content-analysis algorithms, 

which, however, must not influence the efficiency of these algorithms compared to 

the case where they operate on uncompressed data. The most important issue 

related to this efficiency is the possibility to easily reach all the necessary features in 

a compressed image/video. We address this issue in Chapter 17 for the case of 

image compression. 

13.3 O v e r v i e w  of Part III 

Dividing a video sequence into shots is the first step towards video-content analysis 

and content-based video browsing and retrieval. A video shot is defined as a series 

of interrelated consecutive frames, taken contiguously by a single camera and 

representing a continuous action in time or space [Bor93]. As such, shots are 

considered to be the primitives for higher-level content analysis, indexing and 

classification, discussed in later chapters of this book. Chapter 14 presents a 

statistical framework for shot-boundary detection based on minimization of the 

average detection-error probability. We model the required statistical functions 

using a robust metric for visual content discontinuities (based on motion 

compensation) and take into account knowledge about the shot-length distribution 

and visual discontinuity patterns at shot boundaries. Major advantages of the 

proposed framework are its robust and sequence independent detection 

performance, as well as its capacity to detect different types of shot boundaries 
simultaneously. 

Abstracting a video by extracting a number of characteristic or key frames is 

useful for different applications in video libraries. The form and the size of the key- 

frame abstract needs, however, to be adapted to the structure of the video material, 

as well as to the targeted application. Chapter 15 presents two methods for 

extracting key frames, aiming at different applications in video-retrieval systems. 

The first method is characterized by the possibility to control the total number of key 

frames extracted for the entire sequence. While this number does not exceed the 

prespecified maximum, key frames are spread along a video such that the quality of 

capturing all relevant variations of its visual content is maximized and that a 

storyboard of a video is provided. The objective of the second approach to key-frame 
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extraction presented in Chapter 15 is to minimize the size of the key-frame abstract 

while providing all the necessary aspects of the visual content of a video. This 

algorithm is designed to produce a set of key frames which capture the content of a 

video in a similar way as when key frames are extracted manually based on human 

cognition. 

As already mentioned in Section 13.1, information retrieval from digital 

libraries by formulating queries on the highest semantic level is not realistic in view 

of the current technological state-of-the art. However, examples were also shown 

where certain semantic components can be recognized in the stored information and 

be used to organize the information in such a way that the overall large search space 

is reduced as far as possible. Using, for instance, the algorithm from [Vai98] for city- 

versus-landscape image classification, the time for finding an image showing the 

New York skyline can be considerably reduced since only relevant images, i.e. those 

showing cities, are submitted to the user. Although he/she still needs to browse 

through the city image collection and must search for the particular image of interest 

(New York), the number of images he/she needs to check is much smaller than the 

entire image library. 

In Chapter 16 we first present an idea how to translate the above image-search 

example to the case of video retrieval, and especially retrieval of movies, which is a 

very important program category in video storage systems. We assume that a typical 

movie can be represented as a series of high-level semantic contexts called episodes, 
which correspond to different classes in an image database. If a movie is segmented 

into episodes, a search for different movie segments showing specific faces or 

sceneries can be performed only within the relevant episode, which reduces the 

overall search space and, therefore, also the retrieval time. We develop a feature- 

based algorithm for automatically segmenting movies into logical story units, which 

are the approximates for the actual movie episodes. 

Movie segmentation into logical story units is followed by the description of an 

algorithm for analyzing TV news programs at a high level. The algorithm detects the 

appearance of anchorperson shots, which can be considered as the first step in 

recovering the report structure of a news program at a later stage. 

Chapter 17 addresses the issue of content accessibility in compressed images 

and video. This accessibility is analog to the efficiency of regaining the features of 

content elements being important for a given retrieval task. Since current 

compression standards, like JPEG or MPEG are not optimized regarding the content 

accessibility, a high computational load in reaching image and video features 

combined with large amount of information stored in a database, can negatively 

influence the efficiency of the interaction with that database. 
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In order to make the interaction with a database more efficient, it is necessary 

to develop compression methods which explicitly take into account the content 

accessibility of images and video, together with the three classical optimization 

criteria that are (1) minimizing the resulting bit rate, (2) maximizing the quality of 

the reconstructed image and video and (3) minimizing the computational costs. This 

challenge can also be formulated as to reduce the computational load in obtaining 

the features from a compressed image or video. As a concrete step in this direction a 

novel image compression methodology is presented where a good synergy among 

the four optimization criteria is reached. 
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Chapter 14 

Statistical Framework for 
Shot-Boundary Detection 

14.1 Introduction 

The basis of detecting shot boundaries in video sequences is the fact that frames 

surrounding a boundary generally display a significant change in their visual 

contents. The detection process is then the recognition of considerable discontinuities 
in the visual-content flow of a video sequence. The process of shot-boundary 

detection, having as input two frames k and k+l of a video sequence, is illustrated in 

Figure 14.1. Here l is the interframe distance with a value l > 1. 

Figure 14.1: Illustration of the process for detecting a shot boundary between frames k and 
k+l 

323 
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In the first step of the process, feature extraction is performed. Within the context of 

this book, extracted features depict various aspects of the visual content of a video. 

Then, a metric is used to quantify the feature variation from frame k to frame k+l. The 

discontinuity value z(k,k+l) is the magnitude of this variation and serves as an input 

into the detector. There, it is compared against a threshold T. If the threshold is 

exceeded, a shot boundary between frames k and k+l is detected. 

To be able to draw reliable conclusions about the presence or absence of a shot 

boundary between frames k and k+l, we need to use the features and metrics for 

computing the discontinuity values z(k,k+l), that are as discriminating as possible. 

This means that a clear separation should exist between discontinuity-value ranges 

for measurements performed within shots and at shot boundaries. In the following, we 

will refer to these ranges as R and R, respectively. The problem of having 

unseparated ranges R and R is illustrated in Figure 14.2, where some discontinuity 

values within shot I belong to the overlap area. Such values z(k,k+l) make it difficult 

to decide about the presence or absence of a shot boundary between frames k and k+l 

without avoiding detection mistakes, i.e. missed or falsely detected boundaries. 

Figure 14.2: The problem of unseparated ranges R and R 
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We realistically assume that the visual-content differences between consecutive 

frames within the same shot are mainly caused by two factors: object~camera motion 
and lighting changes. Depending on the magnitude of these factors, the computed 

discontinuity values within shots vary and sometimes lie in the overlap area, as 

shown in Figure 14.2. Thus, an effective way to better discriminate between 

discontinuity values belonging to ranges R and R is to use features and metrics that 

are insensitive to motion and lighting changes. However, this is not the only 

advantage of using such features and metrics. Since different types of sequences can 

globally be characterized by their average rates and magnitudes of object/camera 

motion and lighting changes (e.g. high-action movies vs. stationary dramas), 

eliminating these distinguishing factors also provides a high level of consistency of 
n 

ranges R and R across different sequences. If the ranges R and R are consistent, 

the parameters of the detection system (e.g. the threshold T) can first be optimized 

on a set of training sequences to maximize the detection reliability, and then the 

system can be used to detect shot boundaries in an arbitrary sequence without any 

human supervision, while retaining a high detection reliability. 

As will be shown in the following section, motion compensating features and 

metrics can be found, capable of considerably reducing the influence of motion on 

discontinuity values. However, the influence of strong and abrupt lighting changes, 

induced by flashes or a camera directed to a light source, cannot be reduced in this 

way. For instance, one could try working only with chromatic color components, 

since the common lighting changes can mostly be captured by luminance variations. 

But this is not an effective solution in extreme cases, where all color components are 

changed. Strong and abrupt lighting changes can result in a series of high 

discontinuity values, which can be mistaken for the actual shot boundaries. In the 

remainder of this chapter we define possible causes for high discontinuity values 

within shots as extreme factors. These factors basically include strong and abrupt 

lighting changes, as well as some extreme motion cases, which cannot be captured 

effectively by motion compensating features and metrics. 

While the influence of extreme factors on discontinuity values cannot be 

neutralized by choosing suitable features and metrics, it is possible to neutralize 

such influences by embedding additional information in the shot-boundary detector. 

For instance, the temporal patterns formed by consecutive discontinuity values can be 

investigated for this purpose. Then, the decision about the presence or absence of a 

shot boundary between frames k and k+l made by the detector is not only based on 

the comparison of the computed discontinuity value z(k,k+l) and the threshold T, but 

also based on the match between the pattern formed by consecutive discontinuity 
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values surrounding z(k,k+l) and a known pattern that is specific for a shot boundary. 

This is illustrated in Figure 14.3. 

Different types of shot boundaries need to be taken into account during the 

detection process, where each of these types is characterized by its own 

characteristic temporal pattern. We can distinguish abrupt boundaries, which are the 

most common boundaries and occur between two consecutive frames k and k+l, 

from gradual transitions, such as fades, wipes and dissolves, which are spread over 

several frames. 

Beside the information on temporal boundary patterns, the a priori information 

describing global knowledge about the visual-content flow can also be taken into 

account when detecting shot boundaries. An example of such information is the 

dependence of the probability for a shot boundary on the shot length. While being 

almost zero at the beginning of a shot, this probability rises with increasing shot 

length and converges to "1". In this way, the information on shot lengths is also 

highly efficient in preventing false detections due to extreme factors. 

Figure 14.3: Matching of the temporal pattern formed by N consecutive discontinuity values 
and a temporal pattern characteristic for a shot boundary. The quality of match between two 
patterns provides an indication for boundary presence between frames k and k+l 

If we combine the usage of motion compensating features and metrics for computing 

the discontinuity values with embedding the additional information in the detector 

to reduce the influence of extreme factors on these values, we are thus likely to 

obtain highly reliable detection results. The scheme of such a detection procedure is 

illustrated in Figure 14.4. 
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Compared to the detector in Figure 14.1, the threshold T does not remain 

constant but has a new value at each frame k. This is the consequence of the 

embedded additional information which regulates the detection process by 

continuously adapting the threshold to the quality of the pattern match for each new 

series of consecutive discontinuity values and the time elapsed since the last 

detected shot boundary. The remaining issue is to find the function T(k) providing 

the optimal detection performance. Statistical detection theory provides means for 

solving this problem efficiently. Using the statistical properties of discontinuity 

values and the additional information embedded in the detector, we can compute 

the threshold function T(k) such, that the average probability for detection mistakes 

is minimized. 

After reviewing existing approaches to shot-boundary detection in Section 14.2, 

we develop in Section 14.3 a statistical framework for shot-boundary detection as 

shown in Figure 14.4, which addresses all the issues discussed above. Due to the 
m 

consistent ranges R and R, a high generality of functions and parameters used is 

provided, so that our framework can operate without human supervision and is 

suitable for implementation into fully automated video-analysis systems. In Section 

14.4 we apply the proposed detection framework to abrupt shot boundaries and 

evaluate the detection performance. Finally, some conclusions about the material 

presented in this chapter can be found in Section 14.5. 

Figure 14.4: A shot-boundary detector with improved detection performance regarding a 
reduction of the false-detection rate 
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14.2 Previous work on shot-boundary detection 

The problem of reliably detecting shot boundaries in a video has been the subject of 

substantial research over the last decade. In this section we give a concise overview 

of the relevant literature. The overview concentrates, on the one hand, on the 

capability of features and metrics to reduce the motion influence on discontinuity 

values. On the other hand, it investigates existing approaches to shot-boundary 

detection, involving the threshold specification, treatment of different boundary 

types and usage of additional information to improve the detection performance. 

14.2.1 Discontinuity values from features and metrics 

Different methods exist for computing discontinuity values, employing various 

features related to the visual content of a video. Characteristic examples of features 

used are pixel values, histograms, edges and motion smoothness. For each selected 

feature, a number of suitable metrics can be applied. Good comparisons of features 

and metrics used for shot-boundary detection with respect to the quality of the 

obtained discontinuity values can be found in overview papers [Fur95], [Aha96], 

[Bor96] and [Lie99]. 

The simplest way of measuring the discontinuity between two frames is to 

compute the mean absolute intensity change for all pixels of a frame [Kik92]. We 

first define I(x,y) as the intensity of the pixel at coordinates (x,y) and compute the 

absolute intensity change of that pixel between frames k and k+l as 

Dk,k+ ~ (X, y) =11 k (X, y)-- Ik+; (X, y) l (14.2.1) 

The values (14.2.1) are then summarized over all pixels of the frame with dimensions 

X and Y, and averaged to give the discontinuity value, that is 

1 X Y 

z(k, k + l) = - ~  y" ~ Dk,k+ , (x, y) 
x=l y=l 

(14.2.2) 

A modification of this technique is only counting the pixels that change considerably 

from one frame to another [Ots91]. Here, the absolute change of the intensity I(x,y) is 

compared with the prespecified threshold 7"1, and is only considerable if the 

measured absolute difference exceeds the threshold, that is 

Dk k+~(x" Y) = elseif l lk (X' y ) -  Ik+1(x' Y) l > T1 (14.2.3) 
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An important problem of the two approaches presented above is the sensitivity of 

discontinuity values (14.2.2) to camera and object motion. To reduce the motion 

influence, a modification of the described techniques was presented in [Zha93], 

where a 3x3 averaging filter was applied to frames before performing the pixel 

comparison. Much higher motion independence show the approaches based on 

motion compensation. There, a block matching procedure is applied to find for each 

block b i ( k  ) in frame k a corresponding block bi,m(k + l) in frame k+l, such that it is 

most similar to the block bi(k ) according to a chosen criterion (difference formula) 

D, that is: 

min D(b i (k), b i j (k + l)) Dk,k+ , (i) = D(b i (k), b~, m (k + l)) = j--~..Nc,~o,~ (14.2.4) 

Here, Ncancliaate s is the number of candidate blocks b~,~(k+l), considered in the 

procedure to find the best match for a block b i ( k  ) . If k and k+l are neighboring 

frames of the same shot, the values Dk,k+1(i ) can generally be assumed low. This is 

because for a block b~ (k) almost the identical block bi, m (k + l) can be found due to a 

global constancy of the visual content within a shot. This is not the case if frames k 

and k+l surround a shot boundary, since, in general, the difference between 

corresponding blocks in the two frames will be large due to a radical change in 

visual content across a boundary. Thus, computing the discontinuity value z(k,k+l) 
as a function of differences Dk,k§ ) is likely to provide a reliable base for detecting 
shot boundaries. 

An example of computing the discontinuity values based on the results of 

block-matching procedure is given in [Sha95a]. There, a frame k is divided into 

NBlocks = 12 nonoverlapping blocks and differences DIb i (k), b~,j (k + l)) are computed 

by comparing pixel-intensity values within blocks. Then, the obtained differences 

Dk,k+~(i ) are sorted and normalized between 0 and 1 (where 0 indicates a perfect 

match), giving the values d~,k+l(i ). These values are multiplied with weighting 

factors c i and summarized over the entire frame to give the discontinuity values, 
that is 

N Blocks 

z(k ,k  + l)= ~ Cidk,k+,(i ) (14.2.5) 
i=1 

A popular alternative to pixel-based approaches is using histograms as features. 

Consecutive frames within a shot containing similar global visual material will show 

little difference in their histograms, compared to frames on both sides of a shot 

boundary. Although it can be argued that frames having completely different visual 
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contents can still have similar histograms, the probability of such a case is small. 

Since histograms ignore spatial changes within a frame, histogram differences are 

considerably more insensitive to object motion with a constant background than 

pixel-wise comparisons are. However, a histogram difference remains sensitive to 

camera motion, such as panning, tilting or zooming. If histograms are used as 

features, the discontinuity value is obtained by bin-wise computing the difference 

between frame histograms. Both grey-level and color histograms are used in 

literature, and their differences are computed by a number of metrics. A simple 

metric is the sum of absolute differences of corresponding bins, with NBins being the 
total number of bins, that is 

N Bins 

z(k, k + l) = Z ] H k  ( j ) -  Hk+ I (j) l (14.2.6) 
j=l 

when comparing grey-level histograms and 

N Bins 

z(k, k + l) = ~. IH~ ( j ) -  HkR+, (j) I+1 H~ ( j ) -  HkG., (j) I+i H~ ( j ) -  Hk B, (j) i 
j=l 

(14.2.7) 

if color histograms are compared [Yeo95a]. In (14.2.6), H k (j) is the j-th bin of the 

grey-value histogram belonging to frame k. In (14.2.7), H k (j), H k (j) and H k (j) are 
the j-th bins of histograms of the R-, G- and B-color component of the image k. 
Another popular metric is the so-called Z 2- tes t ,  proposed in [Nag92] for grey-level 
histograms: 

N'i"~]Hk(j)--Hk+t(j)[ 2 
z(k, k + l)= ~ (14.2.8) 

j=l Hk+l(j) 

However, according to experimental results reported in [Zha93], the metric (14.2.8) 

does not only enhance the discontinuities across a shot boundary, but also the effects 

caused by camera/object motion. Therefore, the overall detection performance of 

(14.2.8) is not necessarily better than that from (14.2.6), whereas it does require more 

computational power. 

A metric involving histograms in the HVC color space [Fur95] ( H u e -  color 

type, Value-  intensity, luminance, Chroma - saturation, the degree to which color is 

present) exploits the advantage of the invariance of Hue under different lighting 

conditions. This is useful in reducing the influence of common (weak) lighting 

changes on discontinuity values. Such an approach is proposed in [Arm93a], where 
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only histograms of H and C components are used. These one-dimensional 

histograms are combined into a two-dimensional surface, serving as a feature. Based 

on this, the discontinuity is computed as 

X Y 

z(kt k if-l)-- Z Z { ll~k,k +l(xt Y)IXAHue X AChroma } ( 1 4 . 2 . 9 )  
x=l y=l 

where 6 k,k+l(x,y) is the difference between the bins at coordinates (x,y) in HC- 

surfaces of frames k and k+l, and zXHue and A chroma are the resolutions of Hue and 

Chroma components used to form the two-dimensional histogram surface. 

Also the histograms computed block-wise can be used for shot-boundary 

detection, as shown in [Nag92]. There, both the images k and k+l are divided into 16 

blocks, histograms Hk, i and Hk+l, i are computed for blocks bi(k)and bi(k+l ) and 

the z2-test is used to compare corresponding block histograms. When computing 

the discontinuity as a sum of region-histogram differences, 8 largest differences were 

discarded to efficiently reduce the influence of motion and noise. An alternative to 

this approach can be found in [Ued91], where first the number of blocks is increased 

to 48, and then the discontinuity value is computed as the total number of blocks 

within a frame, for which the block-wise histogram difference exceeds a prespecified 

threshold 7"1, that is 

48 

z(k, k + l) = 2 D(bi (k), b i (k + l)) (14.2.10) 
i=1 

with 

D(bi(k ), bi(k + l)) = 10 

NB" 2 1 ~-~'~(Sk,i(j)--Sk+l,i(j) ) 
if 

j=l Hk,i(]) 
else 

(14.2.11) 

According to lOts93], the approach from [Ued91] is much more sensitive to abrupt 

boundaries than the one proposed in [Nag92]. However, since emphasis is put on 

blocks, which change most from one frame to another, the approach from [Ued91] 

also becomes highly sensitive to motion. 

Another characteristic feature that proved to be Useful in detecting shot 

boundaries is edges. As described in [Mai95], first the overall motion between 

frames is computed. Based on the motion information, two frames are registered and 

the number and position of edges detected in both frames are compared. The total 

difference is then expressed as the total edge change percentage, i.e. the percentage 
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of edges that enter and exit from one frame to another. Due to registration of frames 

prior to edge comparison, this feature is robust against motion. However, the 

computational complexity of computing the discontinuity values is also high. Let Pk 

be the percentage of edge pixels in frame k, for which the distance to the closest edge 

pixel in frame k+l is larger than the prespecified threshold T~. In the same way, let 

Pk§ be the percentage of edge pixels in frame k+l, for which the distance to the 

closest edge pixel in frame k is larger than the prespecified threshold 7"1. Then, the 

discontinuity value between these frames is computed as 

z(k, k + l) = max(pk , Pk§ ) (14.2.12) 

Finally, we discuss the computation of the discontinuity value z(k,k+l) using the 

analysis of the motion field measured between two frames. An example for this is 

the approach proposed in [Aku92], where the discontinuity value z(k,k+l) between 

two consecutive frames is computed as the inverse of motion smoothness. For this 

purpose, we first compute all motion vectors ~;(bi(k),bi,m(k + 1)) between frames k 

and k+l and then check if they are significant by comparing their magnitude with a 

prespecified threshold 7"1: 

wi'l(k)=/10 if l~;(bi(k)'bi'm(k+ l)) >I"1 
(14.2.13a) 

Then, we also take into consideration the frame k+2 and check if a motion vector 

between frames k and k+l significantly differs from the related motion vector 

measured between frames k+l and k+2. This is done by comparing their absolute 

difference with a prespecified threshold T2: 

wi'2(k)-- I]O ifotherwiselV(bi(k)'bi"n(k + l))- z;(bi(k + l)'bi'm(k + 2)) l> T2 (14.2.13b) 

The sum of values (14.2.13a) for all blocks bi(k ) is the number of significant motion 

vectors between frames k and k+l, and can be understood as a measure for 

object/camera velocity. Similarly, the sum of values (14.2.13b) is the number of 

motion vectors between frames k and k+l that are "significantly" different from their 

corresponding vectors between frames k+l and k+2, and can be understood as the 

measure for motion continuity along three consecutive frames of a sequence. Using 

these two sums, we can now compute the motion smoothness at frame k as 
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N Bloc~ 

ZWi,I(k) 
M(k)= /--1 

N Blocks 

ZWi,2(k) 
i=l  

(14.2.14) 

The more motion vectors change across consecutive frames, the lower is the motion 

smoothness (14.2.14). Finally, the discontinuity value can be obtained as an inverse 

of (14.2.14), that is 

N Blocks 

1 Ewi'2(k) 
i=1 z(k, k + 1)= ~ = (14.2.15) 

M(k) N~,~ 
~_~Wi,l(k) 
i=1 

14.2.2 Detection approaches 

Threshold specification 

The problem of choosing the right threshold for evaluating the computed 

discontinuity values has not been addressed extensively in literature. Most authors 

work with heuristically chosen global thresholds [Nag92], [Ots91], [Arm93a]. An 

alternative is given in [Zha93], where the authors first measure the statistical 

distribution of discontinuity values within a shot. Then they model the obtained 

distribution by a Gaussian function with parameters /a and or, and compute the 
threshold value as 

T =/a + r cr (14.2.16) 

where r is the parameter related to the prespecified tolerated probability for false 

detections. For instance, when r=3, the probability of having falsely detected shot 

boundaries is 0.1%. The specification of the parameter r can only explicitly control 

the rate of false detections. The rate of missed detections is implicit and cannot be 

regulated, since the distribution of discontinuity values measured on boundaries is 

not taken into account. 

However, even if they can be specified in a non-heuristic way, as shown by 

(14.2.16), the crucial problem related to the global threshold still remains, as 

illustrated in Figure 14.5. If the prespecified global threshold is too low, many false 
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detections will appear in the shot, where high discontinuity values are caused by 

extreme factors, as defined in Section 14.1. If the threshold is made higher to avoid 

falsely detected boundaries, then the high discontinuity value corresponding to the 

shot boundary close to frame 500 will not be detected. 

A much better alternative is to work with adaptive thresholds, i.e. with 

thresholds computed locally. The improved detection performance that results from 

using adaptive threshold function T(k) instead of the global threshold T is also 

illustrated in Figure 14.5. If the value of the function T(k) is computed at each frame k 

based on the extra information embedded in the detector (Figure 14.4), high 

discontinuity values computed within shots can be distinguished from those 

computed at shot boundaries. Three detection approaches applying adaptive 
thresholds can be found in recent literature. 
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Figure 14.5: Improved detection performance when using an adaptive threshold function 
T(k) instead of a global threshold T. 

A method for detecting abrupt shot boundaries using an adaptive threshold is 

presented in [Yeo95a]. There, the values T(k) are computed using the information 

about the temporal pattern that is characteristic for abrupt boundaries. The authors 
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compute the discontinuity values with the interframe distance l=1. As shown in 

Figure 14.6, the N last computed consecutive discontinuity values are considered, 

forming a sliding window. The presence of a shot boundary is checked at each 

window position, in the middle of the window, according to the following criterion: 

if z(k, k + l) = maxN(Vz(k + i, k + l + i)) /x z(k, k + l) > a Zsm 
i=--~ .... -~ 

abrupt shot boundary 
(14.2.17) 

In other words, an abrupt shot boundary is detected between frames k and k+l if the 

discontinuity value z(k,k+l) is the window maximum and a times larger than the 

second largest discontinuity value Zsmwithin the window. The parameter a can be 

understood as the shape parameter of the boundary pattern. This pattern is 

characterized by an isolated sharp peak in a series of discontinuity values. Applying 

(14.2.17) to such a series at each position of a sliding window is nothing else than 

matching the ideal pattern shape and the actual behavior of discontinuity values 

found within the window. The major weakness of this approach is the heuristically 

chosen and fixed parameter a .  Because a is fixed, the detection procedure is too 

coarse and too inflexible, and because it is chosen heuristically, one cannot make 

statements about the scope of its validity. 

Figure 14.6: Illustration of a sliding window approach from [Yeo95a] 

In order to make the threshold specification in [Yeo95a] less heuristic, a detection 

approach was proposed in [Han97a] and [Han97b], which combines the sliding 

window methodology with the Gaussian distribution of discontinuity values 

proposed in [Zha93]. Instead of choosing the form parameter a heuristically, this 
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parameter is determined indirectly, based on the prespecified tolerable probability 

for falsely detected boundaries. Zhang et al. observe in [Zha93] that the 

discontinuity values (there obtained by comparing color code histograms) can be 

regarded as a realization of an uncorrelated Gaussian process if no shot change or 

motion is present. This observation is extended in [Han97b] to any other temporal 

segment with a uniform content development, independent of the present amount of 

action. Within a single shot, the series of discontinuity values can then be modeled 

either as a single uncorrelated Gaussian process or as a temporal concatenation of 

multiple uncorrelated Gaussian processes. Shots themselves are separated by 

individual large-valued outliers, or peaks. Based on this a statistical model for the 

discontinuity values is defined that has the following properties: 

Each discontinuity value measured along a sequence can be assigned one state of 

a two-state model: the state "S" when it is within a Gaussian shot segment, and 

the state "D" when it is computed at shot boundaries. A state "S" can be followed 

by another state "S" or by a state "D". State "D" is always followed by state "S'; 

Each state "S" has three parameters, determining the process that generates the 

discontinuity value z(k,k+l) in that state, namely: the duration of the state L, the 

mean and the variance of the corresponding Gaussian process; 

�9 State "D" has duration 1. 

Figure 14.7 shows the defined statistical model of a fictive series of discontinuity 

values, with each Gaussian segment "S" represented by its mean value. The 

detection procedure is activated only if the discontinuity value in the middle of the 

sliding window is the window maximum. As shown in Figure 14.8a, it is assumed 

that the series of discontinuity values captured by the window and lying at each side 

of the window maximum can be described by one and the same Gaussian 

probability density function. We define these functions as Pteft (z,k) and Fright (z,k). 

The new threshold value T(k), illustrated in Figure 14.8b together with the defined 

Gaussian distributions, is computed as the solution of the following integral 

equation: 

t 2 Pledt (z, k) + Prixht (Z, k) dz 
T(k) 

(14.2.18) 
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Here, P is the given tolerable probability for falsely detected boundaries. As in 

[Zha93], the rate of missed detections cannot be regulated, since the distribution of 

discontinuity values measured on boundaries is not taken into account. Note that 

the form parameter a is "hidden" in the computed threshold value T(k). 

Figure 14.7: Temporal segment structure of the series of consecutive discontinuity values 
computed along a sequence 

Figure 14.8: Moment situation within a sliding window. (a) A "D" state in the middle of the 
window surrounded by unbroken segments of "S" states, each of them described by one and 
the same Gaussian distribution. (b) The threshold T(k) together with Gaussian probability 
density functions of discontinuity values on both sides of the window maximum 
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Different types of shot boundaries 

One way in which the additional information embedded in the detector can 

influence the process of shot-boundary detection much more effectively is using the 

statistical detection theory. One of the first applications of the statistical detection 

theory to signal analysis can be traced back to the work of Curran [Cur65]. A 

characteristic example of recent works in this area can be found in [Vas98]. There, 

the proposed statistical method for detecting abrupt shot boundaries includes the a 

priori information based on shot-length distributions, which can be assumed 

consistent for a wide range of sequences. However, this a priori information is the 

only type of information embedded in the detector, and is, by itself not sufficient to 

prevent false detections caused by extreme factors. A more robust statistical 

framework for shot-boundary detection is presented in Section 14.3 of this chapter. 

Different boundary types were considered in most of the approaches presented 

in recent literature, although the emphasis was mostly put on the detection of abrupt 

boundaries. This preference can be explained by the fact that there is no strictly 

defined behavior for discontinuity values around and within gradual transitions. 

While the abrupt boundaries are always represented by an isolated high 

discontinuity value, the behavior of these values around and within a gradual 

transition is not unique, not even for one and the same type of transition. In the 

following we will present some recent approaches to detecting non-abrupt 
boundaries. 

One of the first attempts for detecting non-abrupt boundaries can be found in 

[Zha93], where a so-called twin-comparison approach is described. The method 

requires two thresholds, a higher one, T h, for detecting abrupt boundaries, and a 

lower one, T I, for detecting gradual transitions. First the threshold T h is used to 

detect high discontinuity values corresponding to abrupt boundaries, and then the 

threshold 7"i is applied to the rest of the discontinuity values. If a discontinuity value 

is higher than 7"I, it is considered to be the start of a gradual transition. At that point, 

the summation of consecutive discontinuity values starts and goes on until the 

cumulative sum exceeds the threshold T h . Then, the end of the gradual transition is 

set at the last discontinuity value included in the sum. 

In [Ham94], a model-driven approach to shot-boundary detection can be 

found. There, different types of shot boundaries are considered to be editing effects, 

and are modeled based on the video production process. Especially for dissolves and 

fades, different chromatic scaling models are defined. Based on these models feature 

detectors are designed and used in a feature-based classification approach to 
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segment the video. The described approach takes into account all types of shot 

boundaries defined by the models. 

One further method for detecting gradual transitions can be found in [Men95], 

which investigates the temporal behavior of the variance of the frame pixels. Since 

within a dissolve different visual material is mixed, it can be assumed that frames 

within a dissolve loose their sharpness. This can be observed in the temporal 

behavior of the frame variance, which starts to decrease at the beginning of the 

transition, reaches its minimum in the middle of the transition and then starts to 

increase again. A characteristic parabolic pattern of variance behavior is reported. 

The detection of the transition is then reduced to detecting the parabolic curve 

pattern in a series of measured variances. In order to be recognized as a dissolve, the 

potential pattern has to have a width and the depth that exceeds the prespecified 

thresholds. 

In [Son98], a chromatic video edit model for gradual transitions is built based 

on the assumption that discontinuity values belonging to such a transition form a 

pattern consisting of two piece-wise linear functions of time; one decreasing and one 

increasing. Such linearity does not apply outside the transition area. Therefore, the 

authors search for close-to-linear segments in the series of discontinuity values by 

investigating the first and the second derivative of the slope in time. A close-to- 

linear segment is found if the second derivative is less than a prespecified 

percentage of the first derivative. 

Although each of the described models is reported to perform well in most 

cases, strong assumptions are made about the behavior of discontinuity values 

within a transition. Furthermore, several (threshold) parameters need to be set 

heuristically. The fact that patterns which are formed by consecutive discontinuity 

values and correspond to a gradual transition can strongly vary over different 

sequences still makes the detection of gradual transitions an open research issue 

[Lie99]. 

14.3 A robust statistical framework 
for shot-boundary detection 

In this section we develop the statistical framework for shot-boundary detection, 

which is in accordance to the scheme in Figure 14.4. In contrast to detection 

methodologies we discussed earlier, our statistical framework includes all aspects 

discussed until now relevant for maximum detection performance: 
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m 

In order to provide a high level of discrimination between ranges R and R, we 

compute the discontinuity values using motion compensating features and 
metrics. 

We use both the information on temporal boundary patterns and on shot-length 

distributions in the detector to compute the adaptive threshold T(k). Here we 

apply the sliding window methodology and compute the threshold value at each 
window position. 

We apply statistical detection theory to build a robust boundary-detection 

framework. This theory provides means to effectively embed the extra 

information from the previous item and compute the threshold value T(k) using 

the criterion that the average probability for detection mistakes must be 
minimized. 

In terms of the statistical detection theory, shot-boundary detection can be 

formulated as the problem of deciding between the two hypotheses: 

�9 S- boundary present between frames k and k+l 
�9 S- no boundary present between frames k and k+l 

In order to take into account the information about temporal boundary patterns, we 

consider the N last computed consecutive discontinuity values together, in this way 
forming a sliding window. We define the vector z(k) as 

z(k) = I z ( k -  i,k + l - i ) ,  i= ---N2, ""--N/2 (14.3.1) 

m 

We also define the likelihood functions p(zlS) and p(zlS), which indicate at which 

degree an arbitrary series of discontinuity values z(k), defined by (14.3.1), belongs to 

series not containing any shot boundary and those containing a shot boundary, 

respectively, that is 

p(z(k) lS) = p z k -  N--2 'k + l -  ,..,z k +--~,k + l + s/ 
and (14.3.2) 
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p(z(k) lS) = p z k - - ~ , k  + l -  ,..,z k +--2 ,k + l + 

In terms of statistical detection theory, the defined likelihood functions can be 

considered analogous to previously used ranges of discontinuity values R and R. 

Consequently, the requirements for a good discrimination between ranges can now 
m 

be transferred to the likelihood functions p(zl S) and p(zl S). Further, we define the a 

priori probability function P(S,k), which defines the probability that there is a 

boundary between frames k and k+l based on the number of frames elapsed since the 

last detected shot boundary. As the criterion for deriving the rule for deciding 

between the two hypotheses, we choose minimizing the average probability for 

detection mistakes, given as 

Pe(k) = (1- P(S,k)) yp(z(k) IS)dz(k) + P(S,k) ~p(z(k) IS)dz(k) 
z_s z_-~ 

(14.3.3) 

Minimization of (14.3.3) provides the following decision rule at the frame k: 

p(z(k) lS) ~ 1-  P(S,k) 

p(z(k) P(S,k) (14.3.4) 

which can be transformed into 

z km--~,k+l - , . . , z  k + - ~ , k + l +  
S 

T(k) (14.3.5) 

We call Z s and Z~ the discontinuity-value domains belonging to the two hypotheses. 
m 

The domain Z~ contains all vectors z(k), for which the hypothesis S is chosen in 

(14.3.5), and vice versa. However, the N-dimensional likelihood functions (14.3.2) are 

difficult to compute. Therefore, we simplify the shot-boundary detector (14.3.4) in 

several respects, under the condition that the detection performance is not degraded: 

We keep the sliding-window concept, but use only the scalar likelihood functions 
m 

p(zlS) and p(ziS) evaluated for the discontinuity value z(k,k+l) lying in the 

middle of the window. 

Instead of capturing the dependencies between elements of the vector z(k) via 

their mutual likelihood functions p(zlS) and p(zlS), we pursue the following 
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procedure. We first investigate the temporal pattern belonging to a certain 

boundary type. Each of these patterns is characterized by specific relationships 

among discontinuity values. A typical example is an isolated peak of an abrupt 

shot boundary, which can be fully captured by finding the ratio between the 

maximal and the second largest value in a discontinuity value series. The higher 

this ratio, the more probable is the presence of an abrupt shot boundary at the 

place of the maximal discontinuity value. The ratio between the maximal and the 

second largest discontinuity value can now be defined as pattern-matching 
indication (PMI), i.e. an indication that the pattern formed by consecutive 

discontinuity values is similar to the one that is characteristic for a certain 

boundary type, and therefore also as an indication of having a boundary of a 

certain type between frames k and k+l. Thus the PMI can be defined for any 

arbitrary type of shot boundary by the following generalized function: 

~(k,k+l)= F z k - - - ~ , k + l -  , . . ,z  k+-~ , k+ l+  (14.3.6) 

At last, we define the conditional probability function Ppatt(~c(k, k +/)IS), which is 

the probability of having a shot boundary between frames k and k+l, based on 

matching of temporal patterns. It is computed at each window position, and 

serves as the modifier for the a priori probability P(S,k). The lower the indication 

r k + l), the less likely is the presence of a shot boundary between frames and 

the lower are the values of PPatt(ll/(k, k +/)IS). In such cases the a priori probability 

is modified downwards. This modification becomes crucial if the a priori 
probability and the likelihood functions are in favor of the hypothesis S, whereby 

m 

S is the proper hypothesis. In this way, boundaries detected falsely due to 

extreme factors can be eliminated. On the other hand, large values r  + l) 
indicate a similarity between the pattern formed by the elements of the vector 

z(k) and the pattern of a shot boundary. In such cases the probability that high 

discontinuity values are caused by extreme factors is small and the correction of 

the a priori probability by PPatt(lll(k, k + l)IS) is not necessary. 

On the basis of the simplifications described above, the general vector detection rule 

(14.3.4) has been now reduced to the scalar rule (14.3.7)" 

p(z(k, k +/)IS) 

p(z(k, k + I) IS) 

1- P(S, k)Ppatt (ll, l(kt k -Jr-l)IS) 
P(Stk)Ppatt(l[./(k,k + l)IS) 

(14.3.7) 
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Since a different function (14.3.6) is required for each boundary type, we cannot use 
one generalized detector (14.3.4) for detecting all shot boundaries, but need separate 
scalar detectors (14.3.7) operating in parallel, each being used for one specific type of 

shot boundary. 

In Section 14.4 we develop the detector (14.3.7) for abrupt shot boundaries. We 

start with the computation of discontinuity values based on suitable features and 

metrics. This is followed by the definition of the a priori probability function P(S,k) 
and by finding the scalar likelihood functions p(zlS) and p(zIS). At last, PMI 

function r k + l) and the conditional probability function PP~tt(r k +/)IS) are 

defined. 

14.4 Detector for abrupt shot boundaries 

Abrupt shot boundaries take place between two consecutive frames of a sequence. 

For this reason it is handy to work with discontinuity values, computed with 
interframe distance l=1. 

14.4.1 Features and metrics 

In order to maximize the discrimination of likelihood functions p(zlS) and p(zlS) 
we compute the discontinuity values by compensating the motion between video 

frames using a block matching procedure, described in Section 14.2. 

Similarly as in [Sha95a], we divide frame k into NB1ocks nonoverlapping blocks bi(k ) 
and search for their corresponding blocks bi,~(k+l ) in frame k+l. The block- 

matching criterion used here is the comparison of average luminance values of 
blocks bi(k)and b~,m(k + 1), that is 

D(bi(k),bi,i(k + 1))= ]Wave(bi(k))- Yave(bi,j(k + 1))[ (14.3.8) 

After the corresponding blocks bi,m(k + 1) have been found using the formula 

(14.2.4), we obtain the discontinuity value z(k,k+l) by summarizing the differences 

between blocks b; (k) and bi, m (k 4- 1) in view of block-wise average values of all three 

color components Yave, Uave and Vaw, that is 

z(k, k + 1) 1 N,,oc~ 
= ~ ~ D(b i (k), bi, m (k + 1)) (14.3.9) 

N Blocks i= 1 
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with 

D(bi(k),bi,m(k + 1))= IYave(bi(k)) - Yave(bi,m(k + 1))[ + 

iUav~(bi(k)) - Uave(bi,m(k + 1))i + 

IV~e(b,(k))- V~(bi,m(k + 1) t 
(14.3.10) 

14.4.2 A priori probability function 

Studies by Salt [Sa173] and Coll [Co176], involving statistical measurements of shot 

lengths for a large number of motion pictures, have shown that the distribution of 

shot lengths for all the films considered matches the Poisson function well [Pap84]. 

Therefore, we integrate the Poisson function to obtain the a priori probability for a 

shot boundary between frames k and k+l, that is 

X ( k )  w 

P(S,k)  = ~ / a  e- ~ (14.3.11) 
w=0 w! 

The parameter/~ represents the average shot length of a video sequence, w is the 

frame counter, which is reset each time a shot boundary is detected, and X(k) is the 
current shot length at the frame k. Although in [Co176] and [Sa173] the Poisson 

function was obtained for motion pictures, we assume that this conclusion can be 

extended further to all other types of video programs. However, to compensate for 

possible variations in program characteristics, we adapt the parameter/~ to different 

program types (movies, documentaries, music video clips, etc.) and sub-types (e.g. 

an action movie vs. drama). The adjustment of the parameter/a is easy and can be 

performed automatically, if the program type is known at the input into the video 

analysis system. In our experiments we kept/a constant at the value 70. 

14.4.3 Scalar likelihood functions 

We now perform a parametric estimation of scalar likelihood functions p(zlS) and 
w 

p(zl S), to be used in the detection rule (14.3.6). In order to get an idea about the most 

suitable analytical functions used for such estimation, the normalized distributions 

of discontinuity values z(k,k+l) computed within shots and at shot boundaries are 

obtained first, using several representative test sequences. 
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A normalized distribution of discontinuity values computed within shots is 

shown in Figure 14.9a. The shape of the distribution indicates that a good analytic 

estimate for this distribution can be found in the family of functions given as 

p(zlS)-- hlzh2e -a3z (14.3.12) 

The most suitable parameter combination (hl,h2,h3) is then found experimentally, 

such that the rate of detection mistakes for the test sequences is minimized. The 

optimal parameter triplet is found as (1.3, 4,-2). The corresponding analytical 

function, serving as parametric estimate of the likelihood function p(zlS), is also 

shown in Figure 14.9a. 

Figure 14.9: (a) The normalized distribution of values z(k,k+l) computed within shots 
(discrete bins) and its analytic estimate (continuous curve), (b) normalized distribution of 
values z(k,k+l) computed at shot boundaries (discrete bins) and its analytic estimate 
(continuous curve) 

The analog procedure is applied to obtain the parametric estimate of the likelihood 

function p(zIS). Figure 14.9b shows the normalized distribution of discontinuity 

values z(k,k+l), computed at shot boundaries, for which the same set of test 

sequences as above is used. Judging by the form of the distribution, a Gaussian 

function 

1 2 \  o" J p(zlS) = r  e (14.3.13) 
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can be taken as a good analytic estimate of it. Again we found the optimal values for 

the pair of parameters (/~,cr) by experimentally minimizing the rate of detection 

mistakes for the set of test sequences. This pair of values was obtained as (42, 10), 

resulting in the Gaussian function presented in Figure 14.9b. 

z(k,k + 1) 

Zsm 

k 

Figure 14.10: Abrupt boundary pattern with characteristic parameters 

14.4.4 PMI and the conditional probability functions 

Based on the discussion in the previous sections, we can state that the presence of an 

isolated sharp peak belonging to an abrupt shot boundary in the middle of the 

sliding window can efficiently be described by the ratio of the discontinuity value 

z(k,k+l) in the middle of the window and the second largest discontinuity value 

Zsmwithin that window. A typical peak of an abrupt shot boundary with values 

z(k,k+l) and Zsm is illustrated in Figure 14.10. The corresponding PMI function to be 

used in the detector (14.3.7) is now given as 

~,(k, k+ 1) = z(k,k+l) (14.3.14) 
Zsm 

The value of the PMI function (14.3.14) serves as the argument of the conditional 

probability function Ppatt(u/(k, k + 1) I S), defined as 

1 / k+l  
Ppatt(lll(k,k+l) lS)=-~ l+e r f  O'erf (14.3.15) 
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with 

x 

err(x)= --2 ~e_t2dt (14.3.16) 
I"C o 

The parameters d and cr ~rf are the "delay" from the origin and the spreading factor 

determining the steepness of the middle curve segment, respectively. The optimal 

parameter combination (d, cYerf)is found experimentally such that the detection 

performance for the test sequences is optimized. The resulting optimal pair of 

parameters was found as (13, 5). The conditional probability (14.3.15) is illustrated in 

Figure 14.11. 

PPatt(~c(k,k + 1)IS) 

1 

i 

d 

r 1) 

Figure 14.11: The conditional probability function Ppatt(~ll(k, k + 1)IS) 

14.4.5 Experimental validation 

Achieving a high detection performance was an important issue when we developed 

the statistical detection framework. To test the performance of the detector (14.3.7) 

for abrupt boundaries, we used 5 sequences that belong to 2 different categories of 

programs, movies and documentaries, and that were not previously employed for 

training the detection procedure. The results presented in Table 14.1 illustrate a high 

detection rate and no falsely detected boundaries. Furthermore, the obtained good 

results remain consistent over all sequences. 
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Test material 

Documentary 1 
Documentary 2 
Documentary 3 
Movie 1 
Movie 2 
Total 

Length 
in frames 

700 
800 
900 

10590 
17400 

30390 

Total 

3 
5 
6 

90 
95 
199 

Detected 
boundaries 

3 
5 
6 

90 
94 

198 

Falsely 
detected 

boundaries 

Table 14.1: Detection results for abrupt shot boundaries 

14.5 Conclusions  

Most existing approaches for shot boundary detection are based on explicitly given 

thresholds or relevant threshold parameters, which directly determine the detection 

performance. Due to such a direct mutual dependence, the detection performance is 

highly sensitive to specified parameter values. For instance, a threshold set to 2.3 

will interpret a discontinuity value 2.31 as a shot boundary and a value 2.29 as a 

regular value within a shot. Beside the sensitivity, the problem of specifying such a 

precise threshold remains. And, consequently, the scope of the validity of such a 

precise threshold is highly questionable. 

Manual parameter specification clearly cannot be avoided in any of the 

detection approaches. However, the influence of these parameters on the detection 

performance can be diminished and the detection can be made more robust if the 

parameters are used at lower levels of the detection framework, so only for the 

purpose of globally defining the framework components. Each component then 

provides the detector with nothing more than an indication of the presence of a 

boundary based on a specific criterion. The decision making about the presence of a 

shot boundary is then left solely to the detector, where all the indications coming 

from different sources are evaluated and combined. In this way, the importance of a 

single manually specified parameter is not as great as when that parameter is 

directly a threshold, and can therefore be assumed valid in a considerably broader 

scope of sequences. In the statistical detection framework presented in this chapter, 

this is the case with parameter sets (]h,h2,h3) and (/a,cr), which are used to define 

the likelihood functions (14.3.12) and (14.3.13), as well as with parameters d and cr err 

used to formulate the conditional probability function (14.3.15). 
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The only parameter which needs to be adjusted depending on the type of 

sequence is /~, which is used in the formula (14.3.11) to define the a priori 

probability. However, setting the value for ~ is easy, since it determines the average 

shot length characteristic for a certain program type. For instance, the /~ value for 

movies can be set to a value within a range 80-100, and for music TV clips to 30-40. 

The adjustment of the/~ value can be performed fully automatically if the program 

type information is available in the shot-boundary detection system. An example is a 

video analysis system, as illustrated in Figure 13.2, which operates directly on DVB 

streams. Here, each transmitted program compliant to DVB standard also contains a 

header, w h i c h -  among other d a t a -  contains the program type (movie, 

documentary, music TV clip, etc.). Therefore, /~ can be set easily by means of a 

simple look-up table. 

Since the parameters used in our framework can either be assumed generally 

valid or be adjusted automatically, no human supervision is required during the 

detection procedure. At the same time, since the parameters are optimized for a 

general case, similar high detection performance can be expected for any input 

sequence. Both of these aspects make the developed framework suitable for an 

implementation in a fully automated sequence analysis system. The facts that the 

detection method presented in this chapter can operate on a wide range of video 

sequences without human supervision, and keep the constant high detection quality 

for each of them, are the major advantages the proposed detection framework has 

over the methods from recent literature. 
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Chapter 15 

Automatically Abstracting 
Video using Key Frames 

15.1 Introduct ion 

A structured collection of selected video frames, or key frames, is a compact 

representation of a video sequence and is useful for various applications on a video. 

For instance, it can provide a quick overview of the video-database content, enable 

access to shots, episodes and entire programs in video-browsing and retrieval 

systems and be used for making a commercial for a video. Furthermore, a video 

index may be constructed based on visual features of key frames, and queries by 

example may be directed at key frames using image-retrieval techniques [Zha97a]. 

Also the higher-level video processing and analysis steps involving comparisons of 

shots can benefit from visual features captured in key frames [Yeu95a], [Yeu97], 

[Han99b]. To enable these applications, key frames can be extracted in various 

fashions, such as 

Extracting the most  memorable video frames: It is in human nature to remember 

some most memorable segments of a video, e.g. a zoom of an actor in a funny 

pose, a slow camera pan along a beautiful landscape or an impressive action 

scene. A number of key frames can be extracted to represent each of these 

segments. 

Summarizing the visual content of a video: The visual content of a video can be 

"compressed" by first collecting fragments showing all of its relevant elements, 

351 
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such as landscapes, objects, persons, situations, etc., and by then searching for a 

limited number of frames to represent each of these elements. An alternative 

summarizing approach is to investigate the story flow of a video sequence and to 

represent each successive logical segment (event, episode) by suitable frames. 

Then, by concatenating these frames chronologically, a storyboard can be obtained 

giving a compact video overview [Pen94a]. 

Key frames can be extracted manually or automatically. Both possibilities are 
illustrated in Figure 15.1. If key frames are extracted manually, they comply with 

human cognition, that is, human understanding of a video content and human 

perception of representativeness and technical quality of a frame. For instance, each 

key frame can be extracted based on the role the persons and objects captured 

therein play in the context of the target application. From several candidate frames, 

the one being most representative (e.g. taken under the best camera angle) is chosen. 

Furthermore, it is expected that no blurred or "dark" frames are extracted, or those 

with coding artifacts, interlacing effects, etc. 

Figure 15.1: Manual vs. automated key-frame extraction 
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In order to develop feature-based algorithms for automatically extracting key frames 

that have the same quality as those extracted manually, we must map the extraction 

criteria complying with human cognition onto the machine criteria. However, such 

mapping is highly problematic, not only technically (Chapter 13), but also due to the 

missing ground truth for the key-frame extraction. 

If several users manually extract key frames from one and the same video and 

for the same target application, it can realistically be assumed that each of the 

obtained sets will be unique, concerning both the total number of frames contained 

therein and the specific frames extracted. One reason for this is the subjectivity of 

human perception of a video content. Especially when choosing the most memorable 

video segments and extracting the corresponding key frames are concerned, the 

dispersion among extraction results obtained by different users will be high [Paa97]. 

However, even if there is a consensus among users about which segments should be 

represented in the visual abstract, again different key-frame sets can be expected. A 

trivial example is a stationary shot showing an anchorperson in a news program. 

Such a shot can equally well be represented by any of its frames. 

Based on the discussion above we conclude that automatically extracting key 

frames for the purpose of capturing the most memorable moments of a video 

sequence is a difficult problem, mainly due to the subjectivity of the definition what 

is memorable. Compared to this, the role of subjectivity in extracting key frames for 

making a visual summary of a video is significantly smaller. This can be explained 

by the fact that such a summary ideally contains all relevant visual-content elements 

(faces, objects, landscapes, situations, etc.) and not a subjective selection of these 

elements. In this way, we understand the key-frame based video summary as a unity 

of all possible subjective key-frame selections. This makes the extraction of 

"summarizing" key frames easier to automate. The only aspect which remains 

subjective and therefore difficult to take into account by automation is to choose a 

representative frame out of several equally acceptable candidate frames. However, 

as illustrated in the example that involves a stationary anchorperson shot, selecting 

any of the candidate frames does not considerably influence the quality of the 

resulting key-frame set. For this reason, instead of considering the possibility of 

selecting any frame out of equally acceptable candidates as a problem for 

automation, we hold that it is an additional degree of freedom in the automation of 

the key-frame extraction procedure. 

We now define the objective of this chapter so as to provide methods for 

automatically extracting key frames which summarize the visual content of a video. 

Since the complex extraction criteria related to human cognition are difficult to map 

onto the system level, we circumvent this mapping by applying a practical 
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extraction methodology which is based on reducing the visual-content redundancy 

among video frames. In the following, we define and discuss three different groups 

of key-frame extraction techniques belonging to this methodology: sequential 

extraction in a local context (SELC), sequential extraction in a global context (SEGC) and 

non-sequential extraction (NSE). 

A typical video can be seen as a concatenation of frame series, each 

characterized by a high visual-content redundancy. These frame series can be entire 

video shots or shot segments. Then, the redundancy of the visual content found in 

such series can be reduced by representing each of them by one key frame. Taking 

again as an example a stationary shot showing an anchorperson in a news program, 

the frames of such a shot are almost identical and can be compressed to a single 

frame. Applied to the entire video sequence, key frames can then be seen as its 

(non)equally distributed sample frames [Pen94a]. This we call sequential extraction in 

a local context (SELC). 

Since a SELC technique extracts key frames only in the local context, similar 

key frames may be extracted from different (remote) sequence fragments, which 

results in a redundancy within the obtained key-frame set. This indicates that by 

using some alternative techniques one can further reduce the number of extracted 

key frames while still keeping all the relevant visual information of a sequence. One 

of possibilities is to modify SELC approaches by taking into account all previously 

extracted key frames each time a new frame is considered. Then, a new key flame is 

extracted only if it is considerably different from all other already extracted key 

frames. We call such a technique sequential extraction in a global context (SEGC). 

Another alternative is a non-sequential extraction (NSE), where all frames of a 

sequence are taken and grouped together, based on the similarity of their visual 

content. The key-frame set is then obtained by collecting representatives of each of 
the groups. 

If concatenated, the key frames obtained by means of a SELC technique 

represent a "red line" through the story of a video and closely provide a storyboard. 

However, for some applications involving video content, having a storyboard of that 

video is not required. This is the case with key-frame based video queries in 

standard image retrieval tools. In such applications, the redundancy among key 

frames makes the query database too large, slows down the interaction process and 

puts larger demands on storage space for keeping the key frames than actually 

necessary. In these cases, SEGC or NSE techniques are more suitable. While SELC 

and SEGC techniques allow for on-the-fly (on-line) key-frame extraction and are 

computationally less expensive than the NSE techniques, the NSE techniques 

consider the key-frame extraction as a postprocessing step and mostly involve 
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complex clustering procedures. However, a higher complexity of NSE techniques is 

compensated by the fact that they are more sophisticated and, therefore, provide a 

higher representativity of key frames while keeping the number of key frames 

minimal. 

After a review of existing approaches to automated key-frame extraction in 

Section 15.2, we present in Sections 15.3 and 15.4 two novel extraction methods. The 

first method belongs to the SELC group of approaches and aims at providing a good 

video summary, also including its storyboard, while keeping the total number of 

extracted key frames for the entire sequence close to the prespecified maximum. This 

controllability is, on the one hand, an important practical issue, regarding the 

available storage space and the interaction speed with a video database, but, one the 

other hand, it also means an additional constraint that needs to be taken into account 

during the key-frame extraction procedure. In contrast to the method in Section 15.3, 

the major objective of the method presented in Section 15.4 is minimizing the 

redundancy among video frames and providing a set of key frames which is similar 

to the one based on human cognition for a given video sequence. We can explain this 

objective with the example of a simple dialog sequence, where stationary shots of 

each of the two characters participating in a dialog are alternated. Since a user would 

summarize such a sequence by taking only two frames, one for each of the 

characters, this should be obtained automatically as well. The approach in Section 

15.4 belongs to the NSE group; it is based on cluster validity analysis and is designed 

to work without any human supervision. Conclusions to this chapter can be found 

in Section 15.5. 

15.2 Previous  work  on key- frame extraction 

A number of methods for automating the key-frame extraction procedure can be 

found in recent literature. As will be shown in this section, some of the methods are 

based on the criterion of reducing the visual-content redundancy among consecutive 

frames, as defined above. However, some characteristic key-frame extraction 

methods based on other criteria will be described as well. 

A first attempt to automate key-frame extraction was done by choosing as a 

key frame the frame appearing after each detected shot boundary [Sha95b]. 

However, while one key frame is sufficient for stationary shots, in dynamic 

sequences it does not provide an acceptable representation of the visual content. 

Therefore, methods were needed to extract key frames that are in agreement with 

the visual-content variations along a video sequence. One of the first key-frame 

extraction approaches developed in view of this objective is presented in [Zha95a], 
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with all details given in [Zha97b]. Key frames are extracted in a SELC fashion 

separately for each shot. The first frame of a shot is always chosen as a key frame. 

Then, similar methodology is applied as for detecting shot boundaries. The 

discontinuity value z (~s  t, k) is computed between the current frame k of a sequence 

and the last extracted key frame Flast using color histograms as spatial features 

(Chapter 14). If this discontinuity value exceeds a given threshold T, the current 

frame is selected as a new key frame, that is 

Step 1: F1ast = 1 

Step 2: Vk e [2,S] if z(Flast,k ) > T ~ F~sI = k (15.2.1) 

Here, S is the number of frames within a shot. The extraction procedure (15.2.1) is 

then adapted by means of the information on dominant or global motion resulting 

from camera operations and large moving objects, according to a set of rules. For a 

zooming-like shot, at least two frames will be extracted, at the beginning and at the 

end of a zoom. The first frame represents a global and the other one a more detailed 

view of a scene. In case of panning, tilting and tracking, the number of frames to be 

selected depends on the rate of visual-content variation: ideally, the visual content 

covered by each key frame has little overlap, or each frame should capture different 

object activities. Usually frames that have less than 30% overlap in their visual 

content are selected as key frames. A key-frame extraction method similar to (15.2.1) 

can also be found in [Yeu95a]. There, however, the motion information is not used. 

Another SELC extraction approach is proposed in [Gun98], where the authors 

first compute the discontinuity value between the current frame k and the N 

previous frames. This is done by comparing the color histogram of the frame k and 

the average color histogram of the previous N frames, that is 

! 

k-N I e 1 z(k, {k - 1, . . ,  k - N}) = ~ ~ I Hk ( i ) - -~  
j=k -1  e=Y ,U ,V  

~~H~(i)  
j=k-~ 

(15.2.2) 

If the discontinuity value (15.2.2) exceeds the prespecified threshold T, the current 

frame k is extracted as a new key frame F1ast, i.e. 

if  z ( k , { k - 1 , . . , k - N } ) > T  ~ Flast = k (15.2.3) 

A possible problem with the extraction methods described above is that the first 

frame of a shot is always chosen as a key frame, as well as those frames lying in shot 

segments with varying visual content. As discussed in [Gre97], when a frame is 
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chosen that is close to the beginning or end of a shot, it is possible that that frame is 

part of a dissolve effect at the shot boundary, which strongly reduces its 

representative quality. The same can be said for frames belonging to shot segments 

of great camera or object motion (e.g. strong panning or a zoomed object moving 

close to the camera and hiding most of the frame surface). Such frames may be 

blurred, and thus in some cases not suitable for extraction. A solution to this 

problem can be found in [DeM98], where the authors first represent a video 

sequence as a curve in a high-dimensional feature space. The 13-dimensional feature 

space is formed by the time coordinate and 3 coordinates of the largest "blobs" 

(image regions), where 4 intervals (bins) are used for each luminance and 

chrominance channel. Then the authors simplify the curve using the 

multidimensional curve-splitting algorithm. The result is, basically, a linearized 

curve, characterized by "perceptually significant" points, which are connected by 

straight lines. A key-frame set of a sequence is finally obtained by collecting frames 

found at perceptually significant points. With a splitting condition that checks the 

dimensionality of the curve segment that is split, the curve can be recursively 

simplified at different levels of detail, that is with different densities of perceptually 

significant points. The final level of detail depends on the prespecified threshold, 

which evaluates the distance between the curve and its linear approximation. We 

consider the main problem of this approach to be evaluating the applicability of 

obtained key frames, as it is not clear which level and objective of video 

representation is aimed at. For instance, it is unlikely that the objective of the 

approach is to provide a good video summary, since there is no proof that extracted 

key frames lying at "perceptually significant points" capture all important aspects of 

a video. On the other hand, the connection between perceptually significant points 

and most memorable key frames according to user's cognition is not clear either. 

An example of NSE key-frame extraction approaches can be found in [Zhu98]. 

There, all frames in a video shot are classified into M clusters, where this final 

number of clusters is determined by a prespecified threshold T. A new frame is 

assigned to an existing cluster if it is similar enough to the centroid of that cluster. 

The similarity between the current frame k and a cluster centroid c is computed as 

the intersection of two-dimensional HS histograms of the HSV color space (H - Hue, 

S - Saturation, V -  Value). If the computed similarity is lower than the prespecified 

threshold T, a new cluster is formed around the current frame k. In addition, only 

those clusters that are larger than the average cluster size in a shot are considered as 

key clusters, and the frame closest to the centroid of a key cluster is extracted as a 

key frame. 
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Extraction of key frames in all approaches discussed above is based on 

threshold specification. The thresholds used in [Zha95a], [DeM98] and [Zhu98] are 

heuristic, while the authors in [Gun98] work with a threshold they obtained by 

means of the technique of Otsu [Sah88]. By adjusting the threshold, the total number 

of extracted key frames can be regulated. However, such regulation can be 

performed only in a global sense, meaning that a lower threshold will lead to more 

key frames, and vice versa. An exact or at least an approximate control of the total 

number of extracted key frames is not possible. First, it is difficult to relate a certain 

threshold value to the number of extracted key frames. Second, one and the same 

threshold value can lead to a different number of extracted key frames in different 

sequences. A practical solution for this problem is to make the threshold more 

meaningful and to relate it directly to the extraction performance. An example is the 

threshold specification in form of the maximum tolerable number of key frames for a 

given sequence. An NSE approach using this sort of thresholds can be found in 

[Sun97]. There, two thresholds need to be prespecified: r, controlling which frames 

will be included in the set and N, being the maximum tolerable number of key 

frames for a sequence. Key frame extraction is performed by means of an iterative 

partitional-clustering procedure. In the first iteration step, a video sequence is 

divided into consecutive clusters of the same length L. The difference is computed 

between the first and the last frame in each cluster. If the difference exceeds the 

threshold r, all frames of a cluster are taken as key frames. Otherwise, only the first 

and the last frame of the cluster are taken as key frames. If the total number of 

extracted frames is equal to or smaller than the tolerable maximum N, the extraction 

procedure is stopped. If not, a new sequence is composed out of all extracted frames 

and the same extraction procedure is applied. The biggest disadvantage of this 

method is the difficulty of specifying the threshold r, since it is not possible to relate 

the quality of the obtained key-frame set to any specific r value. 

If the total number of extracted key frames is regulated by a threshold, the 

qualities of the resulting key-frame set and of the set obtained for the same sequence 

but based on human cognition are not necessarily comparable. For instance, if the 

threshold is too low, too many key frames are extracted and characterized by a high 

redundancy of their visual contents. As a result of a threshold set too high, the key- 

frame set might be too sparse. Especially if the rate of visual-content change allows 

for only one optimal set of key frames for the best video representation, finding the 

threshold value providing such a key-frame set is very difficult. 

Authors in [Avr98] and [Wo196] aim at avoiding this problem and propose 

threshold-free methods for extracting key frames. In [Avr98], the temporal behavior 

of a suitable feature vector is followed along a sequence of frames; a key frame is 



A UTOMA TICALL Y ABSTRA CTING VIDEO USING KEY FRAMES 3 5 9 

extracted at each place of the curve where the magnitude of its second derivative 

reaches the local maximum. A similar approach is presented in [Wo196], where local 

minima of motion are found. First, the optical flow is computed for each frame and 

then a simple motion metric is used to evaluate the changes in the optical flow along 

the sequence. Key frames are then found at places where the metric as a function of 

time has its local minima. However, although the first prerequisite for finding good 

key frames was fulfilled by eliminating threshold dependence of the extraction 

procedure, the two described methods have the same disadvantage as the method 

proposed in [DeM98], namely an unclear applicability of the resulting key frames. 

Figure 15.2: Scheme of the key-frame extraction approach with controlled number of key 

frames 

15.3 Extracting key frames by approximating the 
curve of visual-content variations 

In the key-frame extraction method presented in this section we aim at providing a 

good video summary while keeping the number of extracted key frames close to the 

prespecified maximum. This SELC method can be considered as an alternative to the 

approach from [Sun97]. However, it has the advantage that the number of 
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thresholds is reduced to one; it is the maximum allowed number of key frames N for 

the entire sequence. 

As illustrated in Figure 15.2, key frames are extracted for each shot of a 

sequence separately. This is done in two major phases. The first phase starts at the 

beginning of a shot i and lasts until the boundary to the shot i+1 is detected. During 

this time, the variation of the visual content is modeled along a shot i. The result of 

this phase is twofold. First, a curve is obtained which models the visual-content 

variations along shot i. Second, the total magnitude G of visual-content variations 

along a shot i is available at the moment the boundary between shots i and i+1 is 

detected. The second phase starts at the moment the boundary to the shot i+1 is 

detected, and consists of two consecutive steps. In the first step, a fraction K, of the 

prespecified N key frames is assigned to shot i, proportional to the computed value 

G, and such that the sum of key frames assigned to all shots of a sequence does not 

exceed the prespecified maximum N. The number N can be adjusted if we know a 

priori the type of the program to be processed. In the second step, a threshold-free 

procedure is applied to find optimal positions for the assigned number of key frames 

along a shot i. Such an optimal distribution is obtained iteratively, by means of a 

suitable numerical algorithm. In the following subsections, we will describe both 

extraction phases and all of their steps in more detail. 

15.3.1 Model ing visual content variations along a shot 

In order to model the variations of the visual content along a shot i, we must 

consider relevant content variations, i.e. those that make the extraction of a new key 

frame necessary. For instance, object motion by a constant background is not as 

relevant for key-frame extraction as, for instance, camera panning, tilting and 

tracking. This is because the object motion alone does not result in a drastic change 

of the visual content, and does not need to be captured by several key frames. 

Opposed to this, a camera motion constantly introduces new visual material, which 

needs to be represented by more than one key frame. For efficiently capturing 

camera operations while excluding the sensitivity of key-frame extraction to object 

motion, we compute the discontinuity values z(k,k+l) using color histograms and 

according to (2.2.7), but here in the YUV color space and for l=1: 

N Bins 

z(k,k + 1)= ~-~ (I H~(j ) -  HkYI(j) I+l H~( j ) -  HkU,~(j) I+1H~(j)- HkV~(j) I) 
j=l 

(15.3.1) 
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Figure 15.3: (upper) Discontinuity values for nine shots of a typical movie, 
(lower) Functions (15.3.2) modeling the visual content variations 

Accumulating the discontinuity values (15.3.1) along a shot and taking the current 

cumulative value at each frame k results in the function Ci (k), which we consider as 

the model for visual-content variations along a shot i: 

k - 1  

C i (k) = Z z(j, j + 1) (15.3.2) 
J = A , i  

The frame fl,iis the first frame of the shot i and the summation process (15.3.2) is 

reset at the shot boundary.  Since z(k,k+l) can only have non-negative values, Ci(k) 

is a non-decreasing function. It has a close-to-linear behavior in shot segments with a 

uniform rate of visual content variations (e.g. a stationary segment or a constant 

camera motion) and changes in steepness wherever  changes in the variation rate 

occur (e.g. camera motion after a stationary segment). Figure 15.3a shows the 
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discontinuity values computed for nine shots of a typical movie sequence and Figure 

15.3b the behavior of the corresponding functions C i ( k  ) . When the end of a shot is 

reached, we obtain with (15.3.3) the total magnitude of visual content variations 

along the shot i, with S~ being the number of frames in that shot: 

S i -1  

Ci = C~ (Si) = ~_, z(j, j + 1) (15.3.3) 
J=A,i 

15.3.2 D i s t r i b u t i n g  N k e y  f r a m e s  over  the  s e q u e n c e  

After the total magnitude of visual content variations for the shot i has been 

obtained by means of (15.3.3), the total prespecified number N of key frames is 

distributed along all shots of a sequence proportional to values Ci. The higher Ci, 

the more diverse visual content is assumed in the shot i, which then requires more 

key frames in order to be represented well. As N shot s is the number of shots in the 
entire sequence, we assign K i key frames to shot i according to the following ratio: 

Ci N (15.3.4) 
K i = Nsaots 
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Figure 15.4: Key-frame assignments according to the procedures (15.3.4) and (15.3.5) 
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Equation (15.3.4) assumes that the values C i are known for all shots of a sequence, 

so the denominator in (15.3.4) can now be computed. Since, in practice, on-line key- 

frame extraction is more appealing, we adapt the assignment rule (15.3.4) so that a 

suitable number of key frames can be assigned to a shot i immediately after the 

boundary between shots i and i+1 has been detected. The adapted assignment rule is 

given as follows: 

i 

Zs, 
Ci  N C N S N =  

- ~  = ~ i n t  C~ S ~ - 'C j  K i N shots i S N shots ~ (15.3.5) Zc, Zc, 
i--1 i=1 i=1 

Here, S is the total sequence length and S t is the length of the shot j. Compared to 

the off-line assignment (15.3.4), the rule (15.3.5) uses only the information available 

at the moment when K~ is computed. Since the total cumulative variations of the 

visual content along the entire sequence (denominator in (15.3.4)) is not known, we 

can only summarize until the shot i. This disadvantage is, however, compensated by 

taking into consideration also the time parameter, e.g. shot lengths. Thereby we 

assume that the ratio between the total sequence length and the values Ci for all 

shots of a sequence can be well approximated by the ratio between these two 

quantities, where both are only taken up to the current shot i. 

Assignment results obtained using (15.3.4) and (15.3.5) may differ in the 

beginning, that is, for a low shot index i. However, with increasing i we expect the 

value (15.3.5) to converge towards the value (15.3.4). In order to show this, we chose 

to distribute an unusually large number of N=100 key frames along nine shots of the 

sequence illustrated in Figure 15.3a. Assignment results using both methods are 

presented in Figure 15.4. 

15.3.3 Distributing key frames within a shot 

In the final step, K i assigned key frames need to be located within a shot. For the 

sake of notation and derivation, in the following we will consider k in (15.3.2) to be a 

continuous variable, although a practical implementation will use a discretized 

version. If we would interpolate C i (k) for non-integer values of k from neighboring 

values for integer k, i.e. C i (LkJ) and C i (~k]) ,  then C~ (k) becomes a non-decreasing 

function. We will assume this property in the sequel. The underlying theory used 

here for distributing key frames along a shot is that K i key frames should be 
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distributed along a shot such that the visual content is summarized in the best 

possible way. Since the function C i (k) represents the variations of the visual content 

along the shot, it also provides the information about the amount of redundancy 

present in each of the shot segments. The steeper the function, the less redundancy is 

to be found among consecutive frames in that segment, and vice versa. 

Consequently, properly distributing key frames along a shot is equivalent to 

finding a suitable way of representing the function Ci(k ) by K i (non-) equidistant 

samples, where the sample density is dependent on function steepness and where 

each sample is a key frame representing a series of consecutive frames around it. A 

key frame Fj, j=l ..... Ki, lies in the middle of the interval (tj_~,tj) and represents all 

frames in that interval. We approximate the function C i (k) along this interval by its 

value at frame k = Fj, that is, by C i (Fj). By doing this for each key frame, a step curve 

is obtained, which closely approximates the function Ci(k ) along a shot i. 

Maximizing the quality of such an approximation is now equivalent to properly 

placing the horizontal line segments and defining their optimal lengths, which is, 

again, equivalent to properly positioning the key frames Fj in the middle of these 

segments. To achieve such optimal positioning, we choose to minimize the following 
L~ error function: 

Ki tj 

x(F 1 . . . .  , F K i , t  1 . . . .  , t K i _ l ) = Z  I [ C i ( k ) - C i ( F j  )]dk 
j=l tj_~ 

(15.3.6) 

Note that t o and t K, are the (known) temporal starting and endpoints of the shot i. 

Figure 15.5 illustrates the meaning of (15.3.6). It shows the function Ci(k ) and how 
the key frames are distributed such that the area between this function and the 

approximating rectangles, defined by Fj and tj, is minimized. The minimization of 

(15.3.6) is carried out in two steps. First, if we assume that the breakpoints tj_ 1 and 
t~ are given, then the partial integral 

tj 

)-  II c, (k)-c, dk 
t j-1 

(15.3.7) 

is minimized by taking as key frame the center of the interval considered: 

tj_ 1 + tj for j = 1,2 ..... K i 
F j =  2 (15.3.8) 
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Figure 15.5: Illustration of the function Ci(k), the distribution of key frames Fj and 

breakpoints tj 

Note that this result is independent of the actual cumulative action function on this 

interval as long as C i (k)is a non-decreasing function. After substituting (15.3.8) into 

(15.3.6), we can minimize the resulting expression with respect to the breakpoints tj. 

The resulting solution is given by the following set of K~ equations: 

C~ ( t , )= 1(C i (Fj)-t-C i (Fj+l)) for j =  1 . . . . .  K i (15.3.9) 

The interpretation of this set of equations is that the breakpoint tj is chosen such that 

the value of the function C i (k) at that breakpoint is the average of the Ci (k) values 

at the key frames preceding and following that breakpoint. Together, (15.3.8) and 
(15.3.9) form the solution of the desired key-frame distribution according to the 

criterion (15.3.6). To solve the key- frame positions from (15.3.8) and (15.3.9), one can 

employ a recursive search algorithm. To this end, we rewrite (15.3.9) as follows: 

C i ( F j + l )  = 2C i ( t j ) - C  i (Fj) for j=  1 ..... K; (15.3.10) 

If we start with assuming a breakpoint t 1, then we can compute key frame F1 using 

(15.3.8). From (15.3.10) we can then compute breakpoint t 2 (substitute j=l in 

(15.3.10)). Subsequently, from t 2 w e  can compute F 2 using (15.3.8), from which 
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t3 follows (substitute j=2 in (15.3.10)). In this way we can recursively compute for the 

assumed value of t 1 the value of t~, which should be identical to the given length of 
the i-th shot. Depending on the mismatch between the computed and actual value, 

the position of the breakpoint tl can be adjusted. Note that this recursive search 

procedure is very close to the one often used for designing scalar quantizers 
[Max60]. 

6 I 
. 

I 

4 Ci / 

2 "" 

0 . . . .  ' 

0 50 100 150 200 250 

6 

4 

2 

0 
0 

f 
I 

50 100 150 200 250 

I 
I 

. I  
/ 

. /  

6 

4 

2 

0 
0 5O 

. t  
/ 

. /  
. /  

100 150 

I 

200 

6 

4 

2 

0 . . . .  
0 

. /  

50 100 

250 

I 

/ 

150 200 250 
Frame index k 

6 I .  " 
I 

4 / . I  
/ 

2 . /  

0 . . . .  
0 50 100 150 200 250 

6 i I 

4 / t 

2 

0 ' ~ "  ~ ' ~  
0 50 100 150 200 250 

6 i I 

4 

2 

0 50 100 150 200 250 

6 I 

4 

2 

0 " " 
0 50 100 150 200 250 

Frameindex k 

Figure 15.6: Distribution of different number of key frames along a fictive video shot with a 
variable rate of visual-content variations. 

15.3.4 E x p e r i m e n t a l  v a l i d a t i o n  

The major issue in the key-frame extraction approach presented in this section is 

related to distributing a given number of key frames along a shot, such that the best 

possible summarization of the visual content of a shot is obtained. We therefore 

concentrate here on testing the optimization process (15.3.6) in the controlled 
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situation. Visual content variations along an arbitrary shot i are modeled by two 
artificially produced functions Ci(k ) . The form of the first function is given in the 
diagrams of Figure 15.6 and indicates that there is a constant low rate of visual 

content variation in the beginning of the shot, followed by an exponentially 

increasing variation rate, while the shot ends with a segment having the constant 

variation rate, but one that is higher than in the first shot segment. The exponential 

form of the second function, shown in diagrams of Figure 15.7, indicates a steadily 

increasing rate of visual-content change, for instance, in the case of an accelerated 
camera panning, tilting or tracking. 
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Figure 15.7: Distribution of different number of key frames along a fictive video shot with 

exponential visual-content variations. 

Independent of the number K i of assigned key frames, the varying key-frame 

density along shot i should follow the visual-content variations modeled by the 

function Ci(k ) . Furthermore, in shot segments with a constant variation rate, key 



368 CHAPTER 15 

frames are distributed homogeneously and all shot segments need to be represented. 

The last requirement should prevent that all or a large majority of key frames are 

concentrated on one small shot segment, while the rest of the shot's visual material 

is not captured by key frames. 

We show in Figures 15.6 and 15.7 the results of distributing 2, 3, 5, 6, 7, 11, 12 

and 13 key frames along a shot i for both modeling functions C i (k). In all cases, key 

f r a m e s -  represented by vertical lines - were distributed as expected. On the one 

hand, it can be seen how in each case the concentration of key frames follows the 

dynamic of the function Ci (k). On the other hand, from the fact that key frames are 

always distributed along the entire shot, it can be concluded that the visual content 

of all shot segments is well captured in each of the key-frame sets. 

15.4 Key-frame extraction based on 
cluster-validity analysis 

The objective of the key-frame extraction method presented in this section is to 

minimize the redundancy among video frames and provide a set of key frames for a 

given video sequence, which is similar to the one based on human cognition. While 

in the method from Section 15.3 key frames are extracted separately for each shot, 

the extraction procedure described here can be applied to a sequence containing an 

arbitrary number of shots. Furthermore, the method presented in this section does 

not require any human supervision or parameter (threshold) specification. This 

makes the extraction procedure very user friendly and it supplies the user with a 

stable quality of obtained key frames for any arbitrary sequence. 

The visual-content redundancy is reduced here by applying a partitional 

clustering [Jai88] to all video frames. The underlying idea is that all frames with the 

same or similar visual content will be clustered together. Each cluster can be 

represented by one characteristic frame, which then becomes a key frame of a 

sequence, capturing all the visual material of that cluster. Since frames in different 

clusters contain different visual material, the redundancy among obtained key 

frames is low. At the same time, all variations of the visual material along a sequence 

is captured in its key-frame set. 

Consequently, the problem of finding the optimal number of key frames for a 

given sequence is reduced to finding the optimal number of clusters in which the 

frames of a video can be classified based on their visual content. The main difficulty 

here is that the optimal number of clusters needs to be determined automatically. To 
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solve this, we apply known tools and methods of cluster validity analysis and tailor 

them to our specific needs. 
As illustrated in Figure 15.8, the extraction approach in this section consists of 

three major phases. First, we apply N times a partitional clustering to all frames of a 

video sequence. The prespecified number of clusters starts at I and is increased by 1 

each time the clustering is applied. In this way N different clustering possibilities for 

a video sequence are obtained. In the second step, the system automatically finds the 

optimal combination(s) of clusters by applying the cluster-validity analysis. Here, 

we also take into account the number of shots in a sequence. In the final step, after 

the optimal number of clusters is found, each of the clusters is represented by one 

characteristic frame, which then becomes a new key frame of a video sequence. 

Figure 15.8: Key-frame extraction scheme based on cluster validity analysis 

15.4.1 Clustering 

The clustering process is performed on all video frames. For this purpose, each 

frame k of a video sequence is represented by a D-dimensional feature vector ~(k), 

consisting of features ~pv(k). The feature vector can be composed using texture, 

color, shape information, or any combination of those. Similarly as in the previous 
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section, we wish to efficiently capture with key frames the changes introduced in the 

visual material, by e.g. camera panning, while the key frames must remain relatively 

insensitive to object motion. Therefore, we have chosen a D-dimensional feature 

vector, consisting of the concatenated D/3-bin color histograms for each of the 

component of the YUV color space. Furthermore, since ~(k) is easily computable, we 

also compensate in this way for an increased computational complexity of the 

overall extraction approach due to the extensive cluster validity analysis, but still 

achieve an acceptable frame content representation. The feature vector used in this 

chapter is given as 

~(k) = (q~ (k) lv = 1 .... D) = 

= 5- (1),.. 3- (1),.. H2 5- 
(15.4.1) 

By taking into account the curse of dimensionality [Jai82], we made the parameter D 

dependent on the sequence length. Now we compute it as S/5 [Jai82], whereby S is 

the number of frames to be clustered, and in this case also the number of frames in 

the sequence. 

Since the actual cluster structure of the sequence is not known a priori, we first 

classify all frames of a sequence into 1 to N clusters. Thereby, the number N is 

chosen as the maximum allowed number of clusters within a sequence by taking 
into account the sequence length. Since each cluster corresponds to one key frame, 

the number N is equivalent to the maximum allowed number of key frames used in 

the previous section; here we use the same notation. Although N can be understood 

as a threshold parameter, its influence on the key-frame extraction result is minimal. 

This is because here we choose N much higher than the largest number of clusters to 

be expected for a given sequence. The longer the sequence, the higher is the potential 

number of clusters for classifying its video material. We found the variation of N 

with the number of sequence frames S defined by the function (15.4.2) suitable for 

the wide range of sequences tested: 

N =  N(S)=10+ int(S--~) 
25 

(15.4.2) 

When we defined (15.4.2), we took into account that enough alternative options 

should be offered to the cluster validity analysis to obtain reliable results and that 

the number of options should increase with sequence length. On the other hand, the 

value N needs to be kept in limits, since the "noisy" clustering options become more 
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probable with an increasing number of clusters and can negatively influence the 

cluster validity analysis. 

After the clustering phase we perform a cluster-validity analysis to determine 

which of the obtained N different clustering options, i.e. which number  of clusters, is 

the optimal one for the given sequence. In the following we will explain this 

procedure in full detail. 

15.4.2 Cluster-validity analysis 

For each clustering option characterized by n clusters (1< n < N),  we find the 

centroids c; (1 < i < n) of the clusters by applying the standard k-means clustering 

algorithm to feature vectors (15.4.1) for all frames in the sequence. In order to find 

the optimal number of clusters for the given data set, we compute the cluster 
separation measure p(n) for each clustering option according to [Dav79] as follows: 

p(n)= 1s I ~i q-~j ) ! -'~i=l'<~<-~AXii'j ]..lij n > 2 (15.4.3) 

with the following parameters: 

1 1 

~i = I~(vlv~i) ~(c~)p T, t t  v v 
v = l  = 

(15.4.4) 

The better all of the n clusters are separated from each other, the lower is p(n) and 

the more likely is that the clustering option with n clusters is the optimal one for the 

given video material. The value ~ is called dispersion of the cluster i, while tt ij is the 

Minkowski metric [Fri67] of the centroids characterizing the clusters i and j. For 

different parameters r/1 and r/2, different metrics are obtained [Dav79]. 

Consequently, the choice of these parameters has also a certain influence on the 

cluster-validity investigation. We found that the parameter setting r h =1 and //2=2 
gave the best performance for our purpose. E i is the number  of elements in the 

cluster i. Note that the p(n) values can only be computed for 2 < n < N due to the 

fact that the denominator in (15.4.3) must be nonzero. We now take allp(n)values 

measured for one and the same sequence and for 2 < n < N ,  and normalize them by 

their global maximum. Three different cases are possible for the normalized 

p(n) curve, as illustrated in Figure 15.9a-c. 
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Figure 15.9: Illustration of three possible cases for the normalized p(n)curve. 

Case 1: The normalized p(n) curve is characterized by a pronounced global minimum 

at n =  n opt, as shown in Figure 15.9a. This can be interpreted as the existence of n op t 

clear natural clusters in the video material with nopt >1. In this case, we assume a set 

of nopt clusters to be the optimal cluster structure for the given video sequence. 

Case 2- The normalized p(n) curve has s distinct low values. This means that it is 

possible to classify the given video material into s different numbers of clusters with 

a similar quality of content representation. An example of this is illustrated in Figure 

15.9b for s=2 with options containing noptl o r  n opt2 clusters. 

Case 3: All values of the normalized p(n) curve are high and remain in the same 

range (around 1), as illustrated in Figure 15.9c. This case can be interpreted twofold: 

either there is no clear cluster structure within the given video material (e.g. an 

action clip with high motion) or the video sequence is stationary and it can be 

treated as one single cluster. In the remainder of this chapter we will consider a 

sequence as stationary if there is no or only non-significant camera or object motion 

(e.g. a zoom of a person talking, characterized by head and face motion). In general, 

if p(n)curve is obtained as shown in Figure 15.9c, the decision about the optimal 

cluster structure is made depending on the detected number of shots in that 

sequence. 

As a result of the above, the problem of finding the optimal cluster structure for any 

video sequence given by the normalized p(n) values for 2 < n _< N is reduced to 

recognizing the most suitable of the three above cases. To be able recognize this, we 

first must sort all the normalized values p(n), 2 < n _< N ,  in the ascending order, 
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resulting in a sorted set Psortea(m),1< m < N - 1 .  Then, we introduce the reliability 

measure r(m), 1 < m < N -  2, defined as: 

P sortecl ( m) r(m) = (15.4.5) 
t 0 sorted ( m  + 1) 

Finally, we search for the value of the index m for which the function r(m) has its 

minimum. Two possible results of the minimization procedure are given by the 

expressions 

min (r(m))= r(1) (15.4.6a) 
1<re<N-2 

min (r(m))= r(s), s ~ 1 
1<re<N-2 

(15.4.6b) 

We will interpret these results for two different types of sequences, namely 

sequences containing several video shots and sequences corresponding to single 

video shots. 

Sequences containing several video shots 

We first analyze the situation involving sequences which contain more than one 

video shot. If there is a pronounced global minimum of the p(n) curve at n = nopt, as 

shown in Figure 15.9a, the reliability vector r(m) has its global minimum at m=l. 

Therefore, the validity of (15.4.6a) is equivalent to the defined Case 1. Then, the 

optimal number of clusters is chosen as 

rain p(n)) (15.4.7) Flop t -~ 2<n<N( 

If the equation (15.4.6b) is valid, the scope of possible options is constrained either to 

Case 2 or to Case 3, where Case 3 can be considered less probable for the following 

two reasons: On one hand, the probability that there is a highly stationary content 

across several consecutive shots is low. On the other hand, enough distinction of the 

visual material belonging to different shots of the sequence can be expected, so t h a t -  

if not only one -a l so  several equally acceptable clustering options can be allowed. 

Therefore, we relate the validity of (15.4.6b) in case of complex sequences to the 

defined Case 2. That is, all cluster sets belonging to Psorted(i), 1<_i<_ S, are taken as 

possible solutions for grouping the frames of a sequence. 
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S ingle  v ideo shots  

The probability that one finds a natural cluster structure containing more than one 

cluster in sequences consisting of only one video shot is generally much smaller than 

finding one in sequences containing several shots. This is because changes of the 

visual content within a shot are continuous, mostly characterized by a camera/object 

motion without dominant stationary segments. For this reason, a large majority of 

p ( n )  curves obtained for single video shots can be expected to correspond to the 

model in Figure 15.9c. Hence, it is crucial that a reliable distinction can be made 

between stationary shots and non-stationary shots of which the natural cluster 

structure is unclear, as this is the basis of obtaining a suitable abstract structure for 

single video shots. 

If n op t clusters are suggested by (15.4.7) for a given shot, and if that shot is 
D 

stationary, the average intra-cluster dispersion En~ computed over all n op t clusters 

should be similar to the dispersion e one computed for one cluster containing all 

frames of that shot. Otherwise, the dispersion e one can be assumed to be 

considerably larger than En~. In view of this analysis, we define the decision rule 

(15.4.8) to distinguish stationary shots from the non-stationary ones. For this 

purpose we first use (15.4.7) to find n op t clusters for a given shot and compute the 

dispersion En~. Then we also compute the dispersion E on e and compare both with 
m 

e, ref, which can be understood as the reference for the stationarity and is obtained by 

averaging dispersions measured for a large number of different stationary shots. 

not stationary 

]~" one --  -~ref] > ]-~nop t -- -~ref] ( 1 5 . 4 . 8 )  < 
stationary 

If the shot is stationary, it is represented by only one cluster, including all frames of a 

shot. With non-stationary shots we proceed by checking the evaluations (15.4.6a-b). 

If the equation (15.4.6a) is valid, nop  t is chosen as the optimal number of clusters, 

indicating that clearly distinguishable natural clusters exist within the shot. If 

(15.4.6b) is valid, we can either assume that there are several clustering options for 

the given shot, or that no natural cluster structure can be recognized by the 

algorithm. The first possibility is relatively improbable because the range of content 

variations within a shot of an average length is limited. Therefore, the validity of 

(15.4.6b) for a single shot is related to an unclear cluster structure, which is difficult 

to represent. On the one hand, one single cluster is too coarse, since variations of the 

visual content are present. On the other hand, choosing too many clusters would 
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lead to an over-representation of the shot. For these cases we found the smallest 

number of clusters proposed by (15.4.6b) as a good solution for this problem. Thus, 

from s clustering options suggested by (15.4.6b), we choose nm~ , clusters, defined by 

(15.4.9), to represent a single video shot with an unclear cluster structure: 

F/mi  n = min(n i ) (15.4.9) 
l < i < s  

15.4.3 Key frames from clusters 

Once a suitable cluster structure is found for the given video sequence, one 

representative frame is chosen from each of the clusters and taken as a key frame of 

the sequence. As being usual in the clustering theory, we choose for this purpose the 

cluster elements being closest to cluster centroids. We find the key frame F i of the 

cluster i by minimizing the Euclidean distance between feature vectors (15.4.1) of all 

cluster elements k and the cluster centroid c i, that is 

5 ~  ~<k<E~minI~lq)v(k)--q~v(Ci)]2,,=l (15.4.10) 

15.4.4 Experimental validation 

In order to test the video-abstraction method presented in this section, we 

concentrate here first on the evaluation of the proposed procedure for cluster- 

validity analysis, since both the key-frame sets and the preview sequences of a video 

abstract are directly dependent on the number and quality of obtained clusters. 

We first tested the algorithm performance on sequences consisting of single 

video shots. For this purpose, we used 76 shots of a typical Hollywood-made movie 

and characterized them manually regarding the variations in their visual contents. 
m 

The value of the parameter e ref from (15.4.8) was obtained experimentally as 0.0228, 

for which we used a number of stationary shots of different lengths and containing 

different visual material, and can therefore be assumed generally valid. As 

illustrated in Table 15.1, each of the shots belonging to the test set is assigned a 

description of how its content varies in time. From this description, the most suitable 

number of clusters for grouping all the frames of a shot is derived and used as a 

ground truth. For instance, a stationary shot should get assigned I cluster, and a shot 

with Q distinct stationary segments should get assigned Q clusters. For 66 shots 

(87%) of the test set, their frames were clustered in the same way as given by the 

ground truth. 
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Shot 2" Frames 42-286 stationary with minor object 
motion (1 cluster) 

~ 1 7 6  

Shot 10: Frames 1582-1751 slight zoom (1 or 2 clusters) 
o o ~  

Shot 24: Frames 4197-4358 two stationary camera positions 
(2 clusters) 

~ 1 7 6 1 7 6  

Shot 29: Frames 5439-5776 three stationary camera 
positions (3 clusters) 

~ 1 7 6  

Shot 45: Frames 7218-7330 slow camera panning 
(1 or 2 clusters) 

~ 1 7 6 1 7 6  

Shot 51" Frames 8614-8784 stationary camera, followed by 
a strong zoom (2 clusters) 

o ~  

Table 15.1: A fragment of the test set for evaluating the performance of the cluster-validity 
analysis algorithm for single shots 

In order to test the performance of the cluster-validity analysis algorithm for 

sequences containing several shots, we established a controlled test environment 

involving a set of sequences with a clearly defined structure in terms of the 

possibilities for clustering their frames. For each of these sequences we estimated the 

suitable number of clusters for organizing their visual content and used this 

estimation as the ground truth. An indication of the algorithm performance can be 

found in Table 15.2 for the following test sequences used: 

�9 Sequence 1: A dialog between two movie characters. Due to two fixed 

camera positions, two clearly defined clusters are expected, one for each of the 

characters. 

�9 Sequence 2" Three movie characters in discussion, with the camera showing 

each of them separately and all together. Four clear clusters are expected. 

�9 Sequence 3" Two major camera positions to be captured by two clear 

clusters. 

�9 Sequence 4- A long sequence covering different visual material in a series. 

Five clear clusters are expected for sequence representation 
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Although for the fourth sequence a clear cluster structure containing 5 clusters was 

expected, the algorithm suggested two possible clustering options. However, this 

was still acceptable, since the 5 clusters found corresponded to the expected ones 

and the option with 6 clusters contained the same clusters and an additional one, 

capturing a segment with object motion. 

Test 
sequences 

Expected 
number 

of clusters 

Expected 
cluster 

structure 

Obtained 
number 

of clusters 

Obtained 
cluster 

structure 
Sequence I 2 Clear 2 Clear 
Sequence 2 4 Clear 4 Clear 
Sequence 3 2 Clear 2 Clear 
Sequence 4 5 Clear 5,6 Unclear 

Table 15.2: Algorithm performance for some video sequences containing more than one video 
shot 

Based on the results of cluster-validity analysis, key-frame sets and preview 

sequences were formed. For each of the obtained clusters, a key frame was extracted 

using (15.4.10). Besides of the fact that in each case the obtained cluster combination 

corresponded to the one given by the ground truth, we also found the resulting key- 

frame set providing a good representation of the video content. This implies that 

frames nearest to cluster centroids are suitable to be used as key frames, and that the 

cluster-validity analysis is here the crucial step in making the video abstract. 

15.5 Conc lus ions  

After discussing the possibilities for automation of the key-frame extraction in the 

first section of this chapter, we presented in Sections 15.3 and 15.4 two methods by 

which key frames are automatically extracted for making a summary of a video's 

visual content. Both methods were developed such that the human intervention in 

dimensioning the extraction process is either limited to easily specified parameters 

or not necessary at all. In the method from Section 15.3, the maximal number N of 

key frames for the entire sequence is prespecified, while the approach from Section 

15.4 is capable of functioning without human supervision. There, the value of the 
m 

reference dispersion for stationary shots eref found in subsection 15.4.4 can be used 

for measurements on a wide range of different sequences. Compared to the majority 

of key-frame extraction methods from recent literature, such a transparent 
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parameter dependence makes the two approaches described in this chapter highly 

user-friendly. 

Regarding the achieved visual-content representation, we first discuss in more 

detail the approach from Section 15.3. Two conclusions related to the ability of the 

method to summarize the visual content of a video can be drawn from the 

experimentally obtained key-frame distribution in Figures 15.6 and 15.7. First, the 

"sampling interval" between consecutive key frames is clearly dependent on the rate 

of visual content variation, i.e. on the steepness of the function C i (k).  The  higher the 

variation rate, the more key frames are used to capture the appearing new visual 

material. This indicates that all relevant elements of the visual content appearing in a 

shot will be represented in the resulting key-frame set. Second, although the 

sampling of the function C~ (k) is generally not equidistant, key frames are always 

distributed such that the entire visual material of a shot is captured. This is opposed 

to an alternative where e.g. all K i frames concentrate only on one shot segment. 

However, if the total number of key frames or any other threshold parameter is a 

constraint, it is difficult to prevent the cases of redundant key frames or to prevent 

ending up with too few key frames for a good sequence representation. Clear 

practical advantages of this method are the possibility of extracting key frames on- 

the-fly and of obtaining a good video summary and storyboard of a video, while 

keeping the amount of extracted information limited and closed to the prespecified 

one. 

By using the extraction method presented in Section 15.4, one can obtain a very 

compact set of key frames for an arbitrary sequence, the quality of which is similar to 

a key frame set based on human cognition. Each frame selected using (15.4.10) can 

be assumed to have a high technical quality, since it corresponds to a cluster 

centroid, which is by definition the cluster element most similar to all other elements 

of that cluster. For that reason, having an "outlier" as a key frame, lying e.g. in a 

high-motion, in a blurred, dissolve or fade segment, is not as probable as having as a 

key frame a frame lying in a stationary, minimum-motion and maximum-clarity 

sequence segment. Although this method can be applied to a video segment of an 

arbitrary length, the segments of interest in this chapter are rather constrained to 

specific events, like for instance a dialog discussed before. The reason for this 

constraint is that long video segments are mostly characterized by an enormous 

variety in their visual contents, which is difficult to classify in a number of distinct 

clusters and, consequently, to represent by a limited number of key frames. 



Chapter 16 

High-Level 
Video Content Analysis 

16.1 Introduction 

Segmenting a video into shots, as discussed in Chapter 14, can be considered an 

elementary or a low-level video-analysis step. The reason for such a characterization 

is that this process, as well as the obtained results, do not depend on the actual 

content of the segmented video. In this chapter we concentrate on automatically 

analyzing a video at a higher level, at which semantic video segments can be 

distinguished. 

As illustrated in Figure 16.1, the semantic video segments can be the reports in 

news programs, episodes in movies, highlights of sport events, topic segments of 

documentary programs, etc., and are concatenations of interrelated consecutive 

video shots. This indicates that the objective of high-level video content analysis can 

be formulated as finding subsets of all shot boundaries detected along a video, such 

that the series of consecutive shots, captured by shot boundaries belonging to these 

subsets, correspond to the semantic video segments of interest. 

Autonomous systems able to analyze a video at a high (semantic) level can 

effectively be used to facilitate the user interaction with large volumes of video 

material stored in emerging digital video archives (libraries). Figure 16.2 illustrates 

how the results of high-level video analysis are used to organize the incoming or 

already stored video material, in order to provide access to semantic video 

segments of interest. The target applications of interest can be formulated as, e.g., 

379 
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search requests for all news reports on Bosnia, a movie episode containing the 

Alpine landscape or a favorite action scene, the "match point" of a tennis game, etc. 

Figure 16.1: Illustration of two different video-analysis levels 

Similarly as in the case of key-frame extraction, the possibilities for automation of 

high-level video analysis are not unlimited. The first problem, as already discussed 

in Chapter 13, is that embedding the human ability of understanding the content of a 

video into an autonomous system is technically not feasible. A technically feasible 

solution to this problem is to find ways of relating the video semantics to some 

specific temporal behavior of suitable low-level features. There are numerous 

examples, which can indicate the possibilities for developing such methods. Some of 

them are described in sections 16.2, 16.3 and 16.4 of this chapter, such as detecting 

TV commercials in various programs, recovering the semantic structure of a news 

program or detecting the episodes in movies. However, since low-level features are 

powerless in some cases, for instance, when extracting video segments where a 

specific actor or the "Alpine landscape" appears, realistic objectives need to be set 

when choosing the target applications. Thus, instead of attempting to develop 

algorithms capable of finding the movie episode where "Alpine landscape" appears, 

alternative algorithms are aimed at, which first find all episode boundaries of a 

movie, represent them by a number of key frames and then submit the entire 

episode structure together with the key frames to a browsing tool. There, a user can 
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easily get an overview of the movie content by looking at episode representation, 

recognize the "Alpine landscape" in one of the key frames and quickly retrieve the 
corresponding episode. As it will be shown in sections 16.2 and 16.3, detecting 

episode boundaries in a movie is possible by analyzing only the temporal 

consistency of low-level visual features of a movie. 

The second problem concerns the missing ground truth for the results of high- 

level video analysis. These are the cases of, for instance, extracting the highlighting 

or most memorable video segments: due to a highly subjective human perception of 

the video content in such cases, the dispersion among the results obtained by a 

subjective analysis of one and the same sequence by several users will be high 

[Paa97]. However, in many other analysis cases, the problem of missing ground 
truth is not present, for instance, when detecting TV commercials in an arbitrary 

video or segmenting news programs into reports. Therefore, only the latter cases are 

considered in this chapter, although some examples of extracting semantic segments 

with a "questionable" ground truth will be described in Section 16.2. 

Figure 16.2: High-level video analysis and related operations embedded into an autonomous 
system 
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An important issue which needs to be taken into account when automating the high- 

level video analysis is that no generally applicable analysis methods exist. One 

reason for this is that the semantic video segments of interest vary for different 

program types, user environments and applications. Furthermore, the characteristics 

of such segments, in terms of low-level features being most suitable for their 

detection, vary over different programs. Therefore, rather a specific analysis 

methodology can be developed for each particular program type. We set as the 

objective of this chapter to develop methods for automated high-level analysis of 

two specific video types: movies and news programs. In the remainder of this section, 

we will explain our motivation for choosing these two particular program types, and 

give an overview of methods for their analysis developed in Section 16.3 and Section 

16.4 of this chapter. 

With respect to the discussion in Chapter 14, we witness a strong development 

of home video libraries and expect that the digital storage of video material at home 

will soon overtake the current analog video cassette recording systems [Oka93], 

[dWi92], [dWi93], [Yan93], and that the volumes of stored data in home video 

archives will rapidly grow in time. Stored in these archives we find programs of 

various types, such as movies, news, documentaries, TV shows, sport broadcasts, 

etc. In view of their large popularity with private users, it can realistically be 

assumed that now and in the future, movies belong to the most frequently stored 

programs, covering the highest percentage of the stored data volumes in home video 

archives. Although the major user interest regarding a movie is simply to watch it, 

some other applications involving movie content may be desirable to users as well. 

Such applications include, for instance, retrieving and watching of selected movie 

scenes, searching for a shot where an actor appears in a funny pose and watching a 

short preview of a movie. Although they are still new for a common user, these 

applications can be expected to become more and more popular with the emerging 

and quickly developing technology [SMA]. The most important objective in this 

development is to provide methods and tools for automatically analyzing movie 

content and providing the user with semantic video segments of interest, with 

minimal user involvement in the analysis process. This is understandable, since 

users at home want to be entertained; they do not want to be burdened with 

programming or adjusting their video equipment, especially not if this burden 

exceeds the level reached by some current VCRs that can be programmed in various 

ways, but are already too complicated for an average user. 

Regarding the movie analysis in this chapter, we follow the objective of 

automatically providing semantically meaningful entry points into a movie. These 

points are ideally the boundaries between consecutive movie episodes. We define an 
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episode as a series of consecutive shots unified by the same chronological time-frame 
of the story. Since we can base our episode-boundary detection only on low-level 

features, it is unlikely that the detected boundaries always correspond to the actual 

episode boundaries. For this reason, the results of our approach generally do not 

reveal movie episodes but their approximates, which we define as Logical Story Units 
(LSUs). Compared to episodes, which are defined by their semantic contents, LSUs 

are defined in terms of specific spatio-temporal features which were found to be 

characteristic for an episode. As it will be explained later, we found the global 

temporal consistency of the visual content of an episode a powerful means for 

defining an LSU as an episode approximation. 

A news broadcast, which is the other program type considered in this chapter, 

has been widely recognized as a highly interesting "storing object" in emerging 

large-scale digital video databases [Boy99], [Che97]. The main reason lies 

undoubtedly in the information content of news programs, which may be useful for 

applications in many professional areas (e.g. education, journalism, government) as 

well as for private needs. One could think of building up large information archives 

containing all available sorts of informative programs, e.g. news, documentaries, 

TV-debates, political or social discussions, reportages, etc. In such archives, news is 

at least as important as all other mentioned program types, since it concisely covers 

huge amounts of topics related to society, daily politics, sports, business, etc. The 

importance of news programs may even be larger, since not all daily events get a 

thorough coverage through e.g. a dedicated documentary. Collecting news over a 

longer time period from different broadcasters can therefore provide a solid top 

level for an information collection, whereby other informative programs on certain 

topics, if any, are linked to relevant news reports and serve as lower-level (more 

detailed) information sources. If large information archives are to be used efficiently, 

all the information segments need to be organized, either according to their topics or 

to any other specific criteria. Here, the issue of automating the news-program 

analysis and reducing human interaction is a great challenge, and becomes more and 

more important, if not crucial, as increasing information volumes are stored in video 

archives. Such tools should be capable of autonomously segmenting a news program 

into reports, recognizing the report topic or fulfilling of the specified application 

criteria, and should classify it with all other closely related reports, enabling, in this 

way, direct execution of search requests, such as "find me a business report in a 

CNN news program from 2.4.1997", or "give me everything what is available on car 

races". 

In this chapter we concentrate on developing methods for automatically 

detecting anchorperson shots in an arbitrary news program. Since these shots are 
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directly related to news reports and since, in most cases, they directly determine the 

report boundaries, their detection can be considered as an important step in 

automatically recovering the report structure of a news program, and also in 

reaching the overall topic-based organization structure of a news archive. When 

developing our method, we made use of a specific visual structure of an 

anchorperson shot, which can also be found repeatedly in different segments of a 

news broadcast. 

Before we present a method for detecting LSU boundaries in movies in Section 

16.3 and a method for detecting anchorperson shots in news programs in Section 

16.4, in Section 16.2 we give a brief overview of some of the methods reported in 

recent literature, which indicate the current possibilities in using low-level features 

in extracting semantic aspects out of different types of video. Conclusions belonging 

to this chapter can be found in Section 16.5. 

16.2 Related work 

16.2.1 D e t e c t i n g  d i f ferent  t empora l  events  in a v i d e o  

We start this section by discussing the method of capturing and characterizing a 

video by temporal events, such as dialogues, actions and story units [Yeu97]. The 

method consists of two major steps. In the first step, the semantic labeling of all video 

shots in a video is performed by applying time-constrained clustering. There, shots of a 

video are clustered based on their visual similarity and mutual temporal locality. In 

other words, two visually similar shots are not clustered together if they are too far 

from each other. Gi is the i-th cluster, the shots x, y and w are elements, d the 

distance between shots in terms of their visual similarity, T the maximum allowed 

temporal distance between two shots within the same cluster and a the maximum 

allowed visual dissimilarity between two shots. The clustering procedure can be 

defined as follows: 

�9 max d(x, w) <_ 6 , V x  E G i 
we C i 

�9 maxdt(x,y)<_T , V x e G  i 
Y~C i 

�9 d(x ,  w) > a or d t (x, w) > T ,  V x  ~ Gi, Vw ~ Gj ,  j ~ i 

(16.2.1a) 

(16.2.1b) 

(16.2.1c) 

Assuming that all shots of a sequence are clustered in N clusters G i , all shots within 

one cluster get assigned a label. Then, by replacing each shot of a video by its 

corresponding label, we can represent the entire video as a series of labels, that is, as 
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A B C A D G H B A C D K H D B A C . . .  (16.2.2) 

In the second step, the label sequence (16.2.2) is investigated for different 

prespecified patterns appearing therein and corresponding to dialogs, actions, etc. 

For instance, dialog patterns are found as interchanging labels such as 

A B A X Y Z A B A B A B C D E F E D E G H I . . .  
~ ~, ~__.v___~ 

Dialog Dialog Dialog 

(16.2.3) 

Or, as another example, action patterns are characterized by a series of shots with 

contrasting visual contents, expressed by no or only a minimal repetition of shot 

labels, that is 

A B C D E F B G H I . . .  (16.2.4) 

16.2.2 De tec t ing  scene  boundar ie s  in a m o v i e  

In [Ken98], the authors consider a movie as a series of consecutive scenes and propose 

an approach for finding probable boundaries of scenes. The approach is based on 

investigating the coherence measured along a series of consecutive shots and 

representing the consistence of the visual material contained therein. We first 

introduce the recall between shots s m and s, as SRecall(s~ ,sn) being proportional to 
the function Sim(s m ,s  n ) d e s c r i b i n g  their visual similarity and the function TR(Sm,S , )  

taking into account their lengths and their relative temporal positions within a video, 

that is 

SRecall(s m , sn ) = Sim(s m , S n ) TR(sm , s,  ) (16.2.5) 

Then we define the total recall of all the shots older than the boundary by all the 

shots newer than the boundary as 

Recall(si,si+l) = ~_~ ~ SRecall(sm,Sn) 
m<i n>i+ l  

(16.2.6) 

The coherence at the boundary between shots siand si+ 1 is now computed as the 

total recall Recall(si,s/+l) normalized by the maximum potential recall Ideal(si,si+~) 

possible at that boundary, that is 
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Coh(s/,Si§ = Recall(si ,si+ 1 ) (16.2.7) 
Ideal(si,Si+x) 

The maximum potential recall Ideal(si,si+l) is computed similarly as Recall(si,si+~), 
except that Sim(Sm,Sn) in (16.2.5) is fixed at its maximum value of 1. 

The significant local minima of the coherence curve measured along a sequence 

indicate the potential scene boundaries. A methodology for high-level video 

segmentation based on similar principles as the one from [Ken98] was published in 

[Han99b] and [Han99c] and is explained in detail in Section 16.3. 

16.2.3 Extracting the most characteristic movie segments 

As discussed in the introduction to this chapter, it is very difficult to develop 

methods which automate the detection of semantic content elements for which no 

clear ground truth is defined. Therefore, in literature not many approaches can be 

found dealing with this problem. In [Pfe96] the most characteristic movie segments are 

extracted for the purpose of automatically producing a movie trailer (a short 

summary). Movie segments to be included in such a trailer are selected by 

investigating the specific visual and audio features and by taking those segments 

which are characterized by high motion (action), basic color composition similar to 

average color composition of a whole movie, dialog-like audio track, and high contrast. 
It is claimed that this method yields good quality movie abstracts, since "all 

important places of action are extracted" [Pfe96]. 

16.2.4 Automated recognition of video genres 

The method for detecting video types (genres) presented in [Fis95] is a good example 

of an attempt to obtain some conclusions related to an extremely high abstraction 

level of a video by simply investigating its low-level features. The proposed 

approach consists of three steps. In the first step, the syntactic properties of a digital 

video, such as color statistics, shot-boundaries, motion vectors, simple object 

segmentation and audio-statistics, are analyzed. The results of the analysis are used 

in the second step to derive video-style attributes, such as shot lengths, camera 

panning and zooming, types of shot boundaries (abrupt ones vs. dissolves, fades, 

etc.), object motion and speech vs. music, which are considered to be the 

distinguishing properties for video genres. In the final step, an "educated guess" is 

made about the genre to which the video belongs, based on a mapping of the 

extracted style attributes with those corresponding to different prespecified genres. 
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Experiments were reported using a number of sequences which were to be classified 

in one of the following genres: news, car races, tennis, commercials and animated 

cartoon. It is interesting to see in which way the style attributes were related to a 

particular genre. For instance, for a news program, the appearance of interchanging 

low- vs. high-motion video segments is investigated. There, low-motion segments 

correspond to anchorperson shots, which are separated by high-motion report 

segments. Also, a distinction is made between the anchorperson and some other 

"talking head" through the requirement that the periodically appearing low-motion 

segments need to be visually similar. This is done by computing and block-wise 

comparing the histograms of three subsequent low-motion segments. On the other 

hand, tennis is a good example of how audio can be used for detecting a video genre. 

As reported in [Fis95], a tennis game has a highly pronounced structure of the audio 

stream, characterized by interchanging "bouncing-ball" and speaker phases. 

16.2.5 News-program analysis 

We now move to high-level analysis of news programs. Due to their defined 

"container" structure, these programs are popular targets for developing content- 

analysis algorithms. The guiding objective when developing such algorithms is that 

these must automatically recognize the report structure of news programs and reach 

a topic-based organization of the news material on the system level with maximally 

reduced human interaction. While some of the proposed methods address this 

objective directly, many of them concentrate only on certain semantic aspects of a 

news program, which can be used at some later stages to reach the above objective. 

Examples are given in [Fur95], [Ari96], where the detection of anchorperson shots 

within a news program is performed. 

Anchorperson shot detection using temporal shot characteristics 

The approach to anchorperson-shot detection, presented in [Fur95], consists of three 

major steps. In the first step, potential anchorperson shots are found based on the 

fact that these shots are more or less stationary, compared to other shots within a 

news program. So, a shot is considered a candidate anchorperson shot if the 

following two expressions are valid, with/~ and ry 2 being the mean and variance of 

discontinuity values z(k,k+l), measured along a shot: 

2 (16.2.8) 
ry <T 2 



388 CHAPTER 16 

Figure 16.3: Spatial structure models of four different types of anchorperson shots 

The second step is performed by taking a candidate anchorperson shot and 

analyzing the temporal changes in regions A, B and C, indicated on four 

characteristic types of anchorperson shots in Figure 16.3. Changes between 

consecutive frames along these shots are expected in frame regions where the 

speakers are, that is, in regions A and B. Opposed to this, no motion should be 

registered in regions C. These conditions can mathematically be formulated as 

follows: 

IX A > Y  3 > 0  O'2A > Z  4 > 0  

/~B > T3 >0 and a2B > Z 4 > 0  

]'/C ~ 0  O'2C ~ 0  

(16.2.9) 

If a candidate anchorperson shot fulfills the conditions (16.2.9) for any combinations 

of regions, as indicated in Figure 16.3, it can be considered as an anchorperson shot. 
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Obviously, this procedure can also provide the information on the 

anchorperson-shot type (e.g. one of the four types from Figure 16.3). In view of this, 

after the first anchorperson shot is found, it is used to find all anchorperson shots of 

the same type among the remaining candidates. This is done by computing the 

average frame of the detected anchorperson (model image) and by comparing it to 

average frames of candidate shots. The second step of the procedure is repeated until 

model images of all anchorperson-shot types appearing in a news broadcast are 

computed and all anchorperson shots have been detected. 

Figure 16.4: "Cut points" and "loop points" 

Anchorperson-shot detection using planar graphs 
J 

The method for anchorperson-shot detection proposed in [Ari96] uses the results of 

shot boundary detection to detect the appearance of an anchorperson. The first frame 

of each detected shot is extracted and considered as a "cut point". Then, a planar 

graph is formed with the cut points as nodes and the shots as edges connecting each 
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two nodes. Under the assumption that each news report starts and ends with the 

same anchorperson shot, a loop structure can be assumed within the obtained graph, 

where each loop corresponds to a report starting from one node (anchorperson) and 

ending in the same node. This is illustrated in Figure 16.4. Then, in order to detect all 

starting frames of anchorperson shots, nodes forming the loop points need to be 

detected. For this purpose, a threshold is defined and all nodes with distances 

smaller than the threshold are considered as starting frames of anchorperson shots. 

Recovering news-program structure by combining different media 

An attempt to automatically recover the entire semantic structure of a news 

broadcast can be found in [Hua99b]. The proposed approach for high-level news 

analysis is based on utilizing cues from different media and has the objective of 

recovering semantic segments from broadcast news at different levels of abstraction. 

The authors observe a hierarchy of a typical news program, which consists of four 

semantic levels. At the lowest level, a news program can be split into news material 

and commercials. Then, within the news material, anchorperson shots can be 

separated from shots taken outside the studio. Here, the anchorperson shot usually 

introduces and summarizes a report, which is followed by detailed reporting from a 

site. At the next level, anchorperson shots and related shots from different sites can 

be merged into reports. 
In order to recover the first hierarchy level, news is separated from commercials 

by registering the changes in the audio-waveform, which are mainly caused by the 

background music in the commercials. In the second step, the news material is 

classified into segments corresponding to anchorperson shots and the rest using text- 

independent speaker recognition techniques. These techniques make it possible to 

distinguish an anchorperson segment from background speech coming from other 

sources (non-anchorperson shots) as well as from various audio segments (e.g. music 

in commercials). This step is meant to use the detected anchor's identity to 

hypothesize about a set of report boundaries that consequently partition the 

continuous text into adjacent blocks of text, each corresponding to a single report. In 

further steps this helps in obtaining higher levels of hierarchy by grouping the text 

blocks into reports. 

16.2.6 Methods for analyzing sports programs 

Instead of movies and news, some authors considered sports programs when they 

developed high-level video-analysis methods. The analysis approach presented in 
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[Sau97] uses spatio-temporal features to classify the video material of a basketball 

sequence in segments such as wide-angle and close-up views, fast breaks, steals, 

potential scores, number of ball possessions and possession times. For instance, shots 

are classified as wide-angles and close-ups, by an investigation of their motion 

intensity. While wide-angle shots are taken from a distance and are relatively 

stationary, close-up shots are highly dynamic, since the camera only shows a small 

portion of a scene and usually follows an object. The term "fast break" is defined as 

a "fast" movement of the ball from one end of the court to the other. In order to 

detect fast breaks, one accumulates the magnitude of the motion vectors along a 

sequence in such a way that the accumulation is reset to zero each time the motion 

changes direction. If the camera follows the ball during a fast break, a long and 

persistent pan is registered in these segments. Therefore, the search for fast breaks is 

actually the search for extremely long segments in the accumulation curve between 

two reset points. By exploring specific camera motion and lengths of corresponding 

video segments, one can also characterize steals and ball-possessions. 

Also, as referred to in [Sau97], a system is developed in [Gon95], that can 

automatically parse TV soccer broadcasts. There, the standard layout of a soccer field 

was used to classify the video material into nine different categories, such as 

"around the left penalty line" or "near the top right corner". 

16.3 Automatically segmenting movies 
into Logical Story Units 

As already discussed in Section 16.1, we here present an approach for high-level 

movie analysis which was developed with the objective to provide semantically 

meaningful entry points into a movie. Although we envision such entry points as 

boundaries between consecutive movie episodes, detecting episode boundaries with 

great precision is difficult if only spatio-temporal features are used. Approximates of 

movie episodes captured by the boundaries detected using our approach are defined 

here as Logical Story Units. We start this section by justifying the episode boundaries 

as the meaningful semantic entry points into a movie. Then, we choose appropriate 

low-level features and define the LSU-boundary procedure such that the detected 

boundaries are as close to the actual episode boundaries as possible. 

16.3.1 Hierarchical  m o d e l  of a m o v i e  structure 

We first define a hierarchical model of a movie structure, which consists of three 

hierarchy levels, namely 
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�9 Shots 

�9 Events 

�9 Episodes 

While shots are elementary "technical" temporal units of a video in general, we 

define an event as the smallest semantic segment of a movie. Such an event can be a 

dialog, an action scene or, generally, any series of shots unified by location or 

dramatic incident. However,  an event does not need to be an unbroken series of 

consecutive shots; it can also alternate with another event. This is often used in the 

process of movie generation to represent several events taking place in parallel. 

Several alternating events are, all together, a good example of the highest semantic 

segment, which we define in this chapter as an episode. There, all events are unified 

by the same chronological time frame of the story and form a rounded context, which 

is in a certain sense separated from the neighboring contexts. 

Figure 16.5: Episodes 1 and 3 cover only one event and have a simple structure. Episode 2 
covers two events, presented by their alternating fragments. 

An episode does not need to be related to several events; it can also concentrate on a 

single event. Since no shot within a movie is isolated but semantically it always 

belongs to a certain part of the story, each shot can be said to belong to one or to 

another episode. This implies that a movie can be understood as a concatenation of 

episodes. The hierarchical model  of the movie structure, involving shots, events and 

episodes, is illustrated in Figure 16.5. There, we denote the fragment i of the event j 

by E/. The model shows how an episode is built up around one movie event or 

around several of them taking place in parallel. Thereby a shot can either be a part of 

an event or it can serve for its "description" by, e.g., showing the scenery where the 

next or the current event takes place, showing a "story telling" narrator in typical 
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retrospective movies, etc. In view of such a distinction, we further refer to shots of a 

movie as either event shots or descriptive shots. 

Based on the above definitions, it can be said that if a movie is segmented into 

episodes, each boundary between two consecutive episodes provides an entry point 

into a new global segment of a story, having a rounded context and therefore being 

suitable for retrieval separately from the rest of the movie. 

16.3.2 Definit ion of LSU 

We now define the procedure of detecting the LSU boundaries such that they closely 

approximate the actual episode boundaries. In order to do this, we first analyze the 

characteristics of an episode and investigate the possibilities to efficiently capture 

them using suitable features. 

It can realistically be assumed that an event is related to a specific location 

(scenery) and to certain movie characters. In other words, every now and then 

within an event similar visual content elements (scenery, background, people, faces, 

dresses, specific patterns, etc.) appear, and some of them even appear repeatedly. 

Since an episode is built around events, the same can be assumed for an episode as 

well; it is either related to only one event or to several of them alternating in time: 

Assumption: An episode can generally be characterized by a global temporal 

consistency of its visual content, that is, by good matches of its visual-content elements 

found anywhere within a certain limited time interval. 

According to this assumption, approximate episode boundaries can be found by 

investigating the temporal behavior of visual low-level features. In this sense, we 

define the LSU as follows: 

An LSU is a series of temporally contiguous shots which is characterized by 

overlapping links that connect shots with similar visual content elements. 

Since the definition of an LSU is based only on an assumption about the episode 

characteristics, which is not always fulfilled, the LSU boundaries do not exactly 

correspond to the episode boundaries in some cases. We will now explain some of 

the most characteristic problematic cases in view of the LSU definition and the 

movie-structure model in Figure 16.5. 

For this purpose, we first investigate a series of shots a to j, as illustrated in 

Figure 16.6. Let the boundary between episodes m and m+l lie between shots e andf.  
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We now assume that the shot e, although belonging to the episode m, has a different 

visual content than the rest of the shots in that episode. This can be the case if, e.g., e 

is a descriptive shot, which generally differs from event shots. Consequently, the 

content consistency could be followed by overlapping links in the LSU(m) up to shot 

d, so that the LSU boundary is found between shots d and e. If the shot e contains 

enough visual elements also appearing in the episode m+l so that a link can be 

established, e is assumed to be the first shot of the LSU(m+I) instead of shot f. This 

results in a displaced episode boundary, as shown in Figure 16.6. However, if no 

content-consistency link can be established between shot e and any of the shots from 

the episode re+l, another LSU boundary is found between shots e and f. Suppose 

that f is a descriptive shot of the episode m+l, containing a different visual content 

than the rest of the shots in that episode, so again no content-consistency link can be 

established. Another LSU boundary is found between shots f and g. If the linking 

procedure can now be started from shot g, it is considered to be the first shot of the 

new LSU(m+I). In this case, not a precise LSU boundary is found but one that is 

spread around the actual episode boundary, where all places where the actual 

episode boundary can be defined are taken into consideration. Consequently, the 

shots e and f are not included in the LSUs, as shown in Figure 16.6. 

Episode 
boundary 

a 

LSU(m) 
"ie ll." 

Displaced[ I 
boundary ~ 

Spread 
boundary 

h i j  
LSU(m+U 

Figure 16.6: Possible differences between an LSU and an episode boundary. 

We now proceed to define the LSU analytically, using the illustration of the LSU 

definition in Figure 16.7. The basis of the definition of an LSU given above is that a 

visual dissimilarity between two video shots can be measured. For now we assume 

that the dissimilarity D(k,k+l) between the shots k and k+l is quantitatively available. 

Then, three different cases can be distinguished, depending on the relation of the 

current shot k and the m-th LSU. 
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Figure 16.7: Illustration of LSUs characterized by overlapping links connecting similar shots 

Case 1: Visual content elements from shot k 1 reappear (approximately) in shot 

kl + p~. Then, shots k~ and k~ + p~ form a linked pair, illustrated in Figure 16.7 by 

the arrow. Since shots k 1 and kl + pl belong to the same LSU(m), consequently all 

intermediate shots also belong to LSU(m): 

[k~,k~+p~]~LSU(m) if p~ ~ m i n  D(k~,k~+l)<T(k~). 
I=1 ..... c 

(16.3.1) 

Here c is the number of subsequent shots (look-ahead distance) with which the 

current shot is compared to check the visual dissimilarity. The threshold function 

T(k) specifies the maximum dissimilarity allowed within a single LSU. Since the 

visual content is usually time-variant, the function T(k) also varies with the shot 

under consideration. 

Case 2" There are no subsequent shots with sufficient similarity to shot k2,  i.e. the 

inequality in (16.3.1) is not satisfied. However, one or more shots preceding shot k 2 

link with shot(s) following shot k 2 (see Figure 16.7). Then, we enclose the current 

shot by a pair of shots that belongs to LSU(m), i.e. 

[k2 - P3, k2 + P2 ] E L S U ( m )  

if (P3,P2 > 0 ) r  min min 
i=1 ..... r l=-i+1 ..... c 

D(k 2 - i, k 2 + l) < T(k  2 ). 
(16.3.2) 
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Here r is the number of shots to be considered preceding the current shot k 2 (look- 

back distance). 

Case 3: If for the current shot k 3 neither (16.3.1) nor (16.3.2) is fulfilled, and if shot 

k 3 links with one of the previous shots, then shot k 3 is the last shot of LSU(m). This 

can also be seen in Figure 16.7. 

Figure 16.8: Illustration of the LSU boundary-detection procedure. The shots indicated by 

(a) and (b) can be linked and are by definition part of LSU(m). Shot (c) is implicitly declared 

part of LSU(m) since the shot (d) preceding (c) is linked to a future shot (e). Shot (e) is at the 

boundary of LSU(m) since it cannot be linked to future shots, nor can any of its r 
predecessors. 

16.3.3 Novel approach to LSU boundary detection 

The objective is to detect the boundaries between LSU's, given the definition of an 

LSU and the concept of linking shots described by Cases 1-3 from the previous 

section. In principle one can check equations (16.3.1) and (16.3.2) for all shots in the 

video sequence. This, however, is computationally intensive and also unnecessary. 

According to (16.3.1), if the current shot k is linked to shot k+p (link between shots 

(a) and (b) in Figure 16.8), all intermediate shots automatically belong to the same 

LSU, so they need not to be checked. Only if no link can be found for shot k (shot (c) 

in Figure 16.8), it is necessary to check whether at least one of r shots preceding the 

current shot k can be linked with a shot k+p (for p>O, as stated in (16.3.2)). If such a 

link is found (link between shots (d) and (e) in Figure 16.8), the procedure can 

continue at shot k+p; otherwise shot k is at the boundary of LSU(m) (shot (e) in 

Figure 16.8). The procedure then continues with shot k+l for LSU(m+I). 
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In order to determine whether a link can be established between two shots, we 

need the threshold function T(k). We compute this threshold recursively from 

already detected shots that belong to the current LSU. For this purpose we define 

the content inconsistency value u(k) of shot k as the minimum of D(k,n) found in 

(16.3.1) (or in (16.3.2) if (16.3.1) does not hold), that is 

[D(kl, ka + p~) if (4.3.1) holds 

u(k) = \D(k 2 _ P3, k2 + P2) if (4.3.2) holds 
(16.3.3) 

Then the threshold function T(k) we propose is: 

/ N k + 1 y'~i=l u(k - i) + u o (16.3.4) 

Here a is a fixed parameter whose value is not critical between 1.3 and 2.0. The 

parameter N k denotes the number of links in the current LSU that have led to the 

current shot k, while the summation in (16.3.4) comprises the shots defining these 

links. Essentially the threshold T(k) adapts itself to the content inconsistencies found 

so far in the LSU. It also uses as a bias the last content inconsistency value u 0 of the 

previous LSU for which (16.3.1) or (16.3.2) is valid. 

Figure 16.9: Comparison of shot k with shot n by matching HxW blocks from each key frame 
of shot image k with shot image n. Shot k had 2 key frames and shot n had 3 key frames. 
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16.3.4 Inter-shot diss imi lari ty  measure  

The LSU detection algorithm and the computation of the threshold function require 

the use of a suitable dissimilarity function D(k,n). We assume that the video 

sequence is segmented into shots, and that each detected shot is represented by one 

or multiple key frames so that its visual information is captured in the best possible 

way. 

For each shot, all key frames are merged in one large variable-size image, 

called the shot image, which is then divided into blocks of HxW pixels. Each block is 

now a simple representation of one visual-content element of the shot. Since we 

cannot expect an exact shot-to-shot match in most cases, and because the influence of 

those details of a shot's visual content which are not interesting for an LSU as a 

whole should be as small as possible, we choose to use only those features that 

describe the blocks globally. In view of this we only use the average color in the 

L*u*v* uniform color space as a block feature. 

For each pair of shots (k,n), with k<n, we would now like to find the mapping 

between the blocks b k and b,, each being an HxW block from the shot image k and n, 

respectively, such that 

�9 each block b k in a key frame of shot image k has a unique correspondence to a 

block b, in shot image n. If a block b, has already been assigned to a block b k of a 

key frame belonging to shot image k, no other block of that key frame may use it. 

All blocks b, are only available when a new key frame of shot k is to be matched. 

Figure 16.9 illustrates this in more detail. 

�9 the average distance in the L*u*v* color space between corresponding blocks of 

the two shot images is minimized: 

min ~ d(bk,bn) (16.3.5) all possible block combinations all blocks b 

where 

d(bktb n )-- ~(n* (b k ) -  L* (b n ))2.  (z,/* (b k ) -  u* (b n ))2,  (v* (b k ) -  v* (b n ))2 (16.3.6) 

and where all possible block combinations are given by the first item. Unfortunately 

this is a problem of high combinatorial complexity. We therefore use a suboptimal 

approach to optimize (16.3.5). The blocks b k of a key frame of shot k are matched in 
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the unconstrained way in shot image n, starting with the top-left block in that key 

frame, and subsequently scanning in the line-fashioned way to its bottom-right 

block. If a block b, has been assigned to a block b k, it is no longer available for 

assignment until the end of the scanning path. For each block b k the obtained match 

yields a minimal distance value, d~(bk). This procedure is repeated for the same key 

frame in the opposite scanning fashion, i.e. from bottom-right to top-left, yielding a 

difference mapping for the blocks b k and a new minimal distance value for each 

block, denoted by d2(bk). On the basis of these two different mappings for a key frame 

of shot k and corresponding minimal distance values d~(bk) and d2(bk) per block, the 

final correspondence and actual minimal distance d~(bk) per block is constructed as 

follows: 

�9 dm(bk) = d,(bk), if d,(bk)= d2(bk) (16.3.7a) 

�9 d~(bk) = dl(bk), if dl(bk)< d2(bk) and d~(bk) is the lowest distance value measured for 

the assigned block in the shot image n (one block in shot image n can be assigned 

to two different blocks in a key frame of shot k: one time in each scanning 

direction) (16.3.7b) 

dm(bk) = oo , otherwise. (16.3.7c) 

�9 dm(bk) = d2(bk), if d2(bk)< dl(bk) and d2(bk) is the lowest distance value measured for 

the assigned block in the shot image n (16.3.7d) 

d~(bk) = oo , otherwise. (16.3.7e) 

where oo stands for a fairly large value, indicating that no objective best match for a 

block b k could be found. The entire procedure is repeated for all key frames of a shot 

k, leading to one value dm(bk) for each block of a shot image k. Finally the average of 

the distances dm(bk) of the B best-matching blocks (those with lowest dm(bk) values) in 

the shot image k is computed as the final inter-shot dissimilarity value: 

1 ~ d m (b k ) (16.3.8) 
D( k, n) = -B B best matching 

blocks 

The reason for taking only the B best-matching blocks is that two shots should be 

compared only on a global level. In this way, we allow for inevitable changes within 

the LSU, which, however, does not degrade the global continuity of its visual 

content. 
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16.3.5 Experimental validation 

We illustrate the performance of the proposed LSU boundary-detection approach 

with the example of two full-length movies which belong to quite different 

categories in view of their dynamics and the variety of their contents. The objective 

of the evaluation is to compare the obtained LSU boundaries with the actual episode 

boundaries and to investigate the consistency of results for both different types of 

movies. 

Establishing the ground truth 

In order to evaluate the performance of our segmentation procedure, we need 

reference episode boundaries, serving as a ground truth. Generally, such reference 

boundaries can be obtained if the information about the movie generation process is 

available, i.e. the movie script. Since such information was not available for our tests, 

the first step in the evaluation procedure was to obtain a set of reference boundaries 

which (closely) correspond to the ground truth. This was done by a number of test 

subjects, who manually segmented both movies in units which they believed to be 

episodes. The obtained segmentation results differed mainly in the number of 

episode boundaries that were detected; this was especially noticeable in the complex 

movie segments and can be explained by the fact that each subject perceived that 

episode to be constructed differently. On the basis of manual segmentation results, 

we defined two different classes of episode boundaries 

�9 Probable boundaries - registered by all test subjects 

�9 Potential boundaries - registered by some of the test subjects 

In total, 19 probable and 17 potential boundaries were detected for the first movie 

and 26 probable and 16 potential boundaries for the second one. Since the probable 

boundaries were those all test subjects had selected, we considered them to be 

fundamental, and relevant for evaluating our detection method. This is not the case 

with potential boundaries, and they are, therefore, not considered in the boundary set 

belonging to the ground truth. 

Parametrizing the LSU-boundary detection procedure 

After establishing the ground truth, we had our algorithm perform the automatic 

segmentation of the movies for different values of parameters B and ~. Thereby, we 
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limited the range of the parameter ~ only to [1.4-1.5], while B, here expressed as a 

percentage of the total number of blocks in a shot, varied in the range 40-70%. We 

learned that taking less than 30% of the blocks makes the inter-shot comparison too 

coarse. On the other hand, more than 70% makes the comparison too detailed. 

Although both parameters determine the sensitivity of the detection procedure and, 

consequently, also the number and positions of detected boundaries, parameter B is 

more interesting since it defines the limits of inter-shot comparison, concerning both 

the amount of detail taken into account and how "global" this comparison should 

be. On the other hand, we left the parameters c and r, defined in (16.3.1) and (16.3.2), 

constant at values c=8 and r=3, since the segmentation results were fairly insensitive 

to the setting of these parameters. We represented each shot by two subsampled key 

frames, taken from the first and last shot segment. Dimensions of key frames were 

88x72 and 80x64, and the parameters H and W determining the size of the blocks to 

compute (16.3.8) were chosen correspondingly, as 8. 

Evaluation 

We now evaluate the performance of the detection algorithm for each parameter 

pair (B, cz). In view of the possible tolerable displacements between an LSU and the 

corresponding episode boundary (Figure 16.6), we consider here an automatically 

obtained LSU boundary as properly detected if it was close enough to the one 

detected manually. For this purpose we set the maximum tolerable distance to 4 

shots. Any other automatically detected boundary was considered to be false. Also, if 

no LSU boundary was detected within 4 shots of the actual episode boundary, it was 

considered missing. 

In order to quantitatively estimate the quality of the automated boundary 

detection for a certain parameter combination (B, ~), we used the following 

expression: 

Q = Properly detected probable boundaries 

1+ Falsely detected boundaries 
(16.3.9) 

The parameter Q denotes the quality of the boundary detection, depending on the 

number of properly detected LSU boundaries and the number of falsely detected 

ones for a given parameter combination. As it will be shown by the obtained 

experimental results, the quality parameter Q is rather sensitive to the number of 

falsely detected boundaries. This was also the main intention when we defined the 

function (16.3.9), since the objective of the detection procedure, presented in this 
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section, is to provide semantically meaningful entry points into a movie. Such points 

can only be found at properly detected boundaries, while the number  of falsely 

detected ones needs to be kept low. After computing the quality parameter  Q for 

each parameter  combination (B, a) belonging to ranges defined above, we sorted all 

values of Q and ranked them in descending order. The parameter  combination 

having the largest Q gets the rank "1". Parameter combinations having the same 

value of Q are assigned the same rank. 

B,o~ 

MOVIE 1 

Detected Detected Falsely Quality 
probable potential detected ranking 
bounds bounds bounds 

40, 1.4 11/19 2/17 0 (2) 
40, 1.5 9/19 1/17 0 (3) 
50, 1.4 12/19 3/17 0 (1) 
50, 1.5 11/19 1/17 0 (2) 
60, 1.4 14/19 4/17 1 (4) 
60, 1.5 12/19 4/17 1 (6) 
70, 1.4 14/19 6/17 2 (7) 
70, 1.5 13/19 4/17 1 (5) 

MOVIE 2 

Detected Detected Falsely Quality 
probable potential detected ranking 
bounds bounds bounds 

Overall 
quality 
ranking 

18/26 6/16 4 (6) (4) 
18/26 5/16 3 (4) (3) 
19/26 4/16 2 (3) (1) 
18/26 4/16 3 (4) (2) 
19/26 4/16 2 (3) (3) 
19/26 5/16 1 (2) (4) 
21/26 4/16 1 (1) (5) 
20/26 7/16 4 (5) (6) 

Table 16.1: LSU boundary-detection results for different parameter settings. Bold numbers 
indicate the parameter combination providing the optimal overall detection performance. 
Combinations with the same Q values have been assigned the same ranking. 

The first column of Table 16.1 shows all parameter  combinations (B, a) used in the 

experiments. The other columns show for each of the movies the number  of 

probable and potential boundaries that were detected, the number  of false alarms 

and the ranking for each parameter  combination according to the computed 

detection quality Q. In the final step, ranks of all pairs (B, a) obtained for both 

movies have been added up and the obtained results have been sorted in ascending 

order. The parameter combination with the lowest sum of two ranks was assigned 

the overall rank "1" and considered as the optimal combination for both movies. 

As shown by the overall ranking list in the last column of the table, the best 

performance for both movies is obtained when 50% of blocks are considered for 

computing the overall inter-shot difference value and when the threshold 

multiplication factor a is 1.4. It can also be observed that the quality of a parameter  

combination decreases the more it differs from the optimal parameter  set. This is 
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mainly due to the influence of parameter B: if less blocks are taken into account 

when (16.3.8) is computed, the inter-shot comparison becomes too global, resulting 

in an unacceptably low number of detected boundaries. On the other hand, the large 

number of blocks considered in (16.3.8) can make the boundary detection too 

sensitive, resulting in an increased number of falsely detected boundaries. 

For the chosen optimal parameter combination B=50% and a =1.4, the average 

percentage of detected probable boundaries is 69%, with only 5% of false detections. 

This is compatible with the requirement that, while as many boundaries as possible 

are properly detected, the number of falsely detected boundaries should be kept 

low, since they do not correspond to semantically meaningful entry points into the 

movie. However, absolutely seen, the obtained total percentage of 69% of properly 

detected boundaries for the optimal parameter combination is low. This is mainly 

the consequence of insufficient changes of visual features at certain episode 

boundaries or, in other words, of having two consecutive episodes each containing 

mutually similar visual content. 

Table 16.1 also shows that the efficiency of the algorithm concerning the 

detection of probable and potential boundaries is not the same. The higher 

percentage of probable boundaries that were detected can be explained by the fact 

that those boundaries were characterized by a radical change of the scenery, which 

could easily be recognized by the algorithm. On the other hand, most of the potential 

boundaries were marked by some of the users in highly complex parts of the 

movies, where clearly distinguishing different episodes was a difficult task. Since 

our assumption about the temporal consistency of the visual content within an 

episode, i.e. its change at an episode boundary, was often not fulfilled in such 

complex movie segments, no good detection performance could be expected there. 

16.4 Detecting anchorperson shots in news programs 

A typical news report consists of one or several consecutive segments, each of them 

containing one or several concatenated video shots and belonging to one of the 

following categories: 

�9 An anchorperson shot 

�9 A news shot series (e.g. a series of shots taken by a reporter on a site, outside the 

studio) 

Although the commercial segments can also be found in many news broadcasts, we 

do not consider them here, since they can easily be detected and separated from the 



404 CHAPTER 16 

actual news program by using any of the approaches proposed in recent literature 

(e.g. [Liu98]). In order to recover the next semantic level of a news-program 

structure, we must first classify the entire news material into one of the above two 

categories. Such classification is required since the beginning and the end of an 

anchorperson shot represents a potential report boundary which cannot be 

determined otherwise, e.g. by just analyzing the audio track of a news broadcast. 

After the classification is completed, the reports can be formed by merging related 

anchorperson shots and news shot series. A method to recover the report structure 

in this way can be found in [Hua99b] (explained in Section 16.2). 

In this section, we concentrate on the problem of automatically detecting 

anchorperson shots in an arbitrary news program and propose a new approach for 

performing this operation. Compared to already existing anchorperson-shot 

detection methods described in Section 16.2, we believe our method can yield an 

increase in detection robustness, mainly due to the minimized usage of different 

thresholding parameters and, at the same time, maximal exploitation of inherent 

properties of the news program structure, related to anchorperson shots. 

16.4.1 Assumptions and definitions 

We base our anchorperson shot detection approach on the assumption that an 

anchorperson shot is the only type of video shots in a news program that has 

multiple matches of most of its visual content along the entire news program. Other 

(news) shots may match well only in their closest neighborhood (e.g. within a single 

report) where they can eventually find enough similar visual features. Such an 

assumption is realistic due to specific visual characteristics of anchorperson shots 

and their regular appearance along a news sequence. We also assume that the first 

anchorperson shot kap in a news program containing S video shots certainly appears 

within the interval [1, N], where N<S is assumed to be around 5 shots. In order to 

make the detection as robust as possible, we took into account different types of 

anchorperson shots, including non-stationary ones. We introduce now the following 

definition: 

Anchorperson shots are visually characterized by studio background and by one or two 

news readers sitting at the desk, appearing separately or together, also with some 

possible variations of a camera angle and the magnitude of a zoom. These shots can be 

static or dynamic (containing some camera operations like zooming or panning). They 

all generally contain a certain (high) percentage of the same or similar visual features. 
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During the detection procedure we compare video shots based on their key frames. 

Hereby, we assume that, prior to the anchorperson shot detection procedure, a news 

sequence has already been segmented into video shots, and that each shot is 

represented by a visual abstract consisting of a limited number of key frames. The 

proposed anchorperson shot detection approach consists of two steps: 

�9 A threshold-free procedure of finding the sequence-specific template for 

anchorperson shots, 

�9 Using the template to detect all anchorperson shots in a sequence by applying 

adaptive thresholding. 

Figure 16.10: Obtaining a dissimilarity values set for the shot k 

16.4.2 F i n d i n g  a t e m p l a t e  

Based on assumptions made above, we start the procedure for finding the 

anchorperson- shot template by matching each shot k ~ [1, N], N<S, with all other 

news shots n ~ [k + Ak, S], as shown in Figure 16.10. In this way, a set of dissimilarity 

values {D(k,k + Ak ) . . . . .  D(k,S)} is obtained for each shot k. The dissimilarity 

measure used here to compute values D(k,n) compares two shots on basis of their 

abstracts (key frames) and is the same as the one used in the previous section. The 

"security" interval [k, k + Ak ] serves to avoid a possible good match of a news shot 
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with its surrounding shots and, consequently, to separate the shot k ap even stronger 

from the rest. For each shot k ~ [1, N] we now take the P best matches (lowest values) 

from the set of dissimilarities and average them to compute the overall matching 

value. The shot with the lowest overall matching value is assumed to be an 

anchorperson shot, and is used as the template for finding all other anchorperson 

shots of a news sequence. With kmm.i,j being the j-th of the P shots, between which 

and the shot k i the lowest dissimilarity D is measured, we find the shot k~p using 

the following expression: 

P 

kap r mjn ~ D(k i , kmm, i,j ) (16.4.1) 

16.4.3 Template matching 

After the template has been found, again the inter-shot dissimilarity metric D(k,n) is 

used on all shots of a sequence to test which are anchorperson shots. Low 

dissimilarity values will be obtained when the template is matched with another 

anchorperson shot. For each shot k of a sequence we now define its similarity with 

the template shot as 

1 
s(k) = (16.4.2) 

D( temp , k) 

whereby D(temp,k) is the dissimilarity between the template temp and the shot k. In 

order to perform the detection of anchorperson shots automatically, we use the 

similar adaptive threshold T(k) as in the previous chapter, defined here as the 

function of the similarity (16.4.2): 

T(k)= a ( ~ s ( k - i ) + S o )  (16.4.3) 
N k + 1 ~i=1 

Here a is again a fixed threshold parameter, as in the previous section. The 

parameter N k denotes the number of shots until k and since the last detected 

anchorperson shot. It also uses the similarity value s o computed before the last 

detected anchorperson shot as a bias. For each shot k, a value s(k) is available as well 

as the threshold value T(k). An anchorperson shot is detected when s(k)>T(k). 
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16.4.4 Experimental validation 

We now illustrate the performance of the developed algorithm on the example of 

two news sequences produced by different broadcasting companies and having the 

following global characteristics: 

�9 Sequence 1 :12  minutes long, 5 anchorperson shots, one news reader, first 

appearance in the first sequence shot, 

�9 Sequence 2:25 minutes long, 17 anchorperson shots, two news readers, first 

appearance in the third sequence shot. 

We represented each video shot by two subsampled key frames with sizes 165x144 

for Sequence 1 and 180x144 for Sequence 2. The parameter setting for both sequences 

was N=5, P=3, Ak =25 and a =3.1. For computing the inter-shot differences (16.3.8) 

we chose the dimensions of the blocks in shot images H=W=8 and found 70% of all 

blocks in a shot image to be a good value for B. With this parameter setting we will 

now evaluate each of the two steps separately. 

Sequence I 

Sequence 2 

Relative 
distance 
~(~,,~) 

73 % 

17% 

Total number of 
anchorperson 

shots 

17 

Detected 
anchorperson 

shots 

17 

False 
detections 

Table 16.2: Reliability evaluation of the template finding procedure and AP detection results 

On both sequences we applied the template-finding procedure and managed to find 

the proper template for each of them. Figure 16.11 shows the matching results of two 

template-candidates along the Sequence 2. We then measured the relative distance 

6(V, 2.)= 100(~-1)~ (16.4.4) 
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between the chosen minimum overall matching value ~, corresponding to the 

template, and the second smallest matching value r corresponding to the major 

other competitor shot for template selection. The larger the relative distance, the 

more reliable is the found template. Table 16.2 shows in its second column these 

relative distances for both sequences. The lower relative distance in the second 

sequence is most probably the result of the particular sequence structure, which 

shows an introduction for the coming reports after the first anchorperson shot. This 

introduction contains very similar visual information as the shots in the later parts of 

that sequence, which partially violates the assumptions made at the beginning of 

this section. 
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Figure 16.11" Results of the matching procedure for two different templates k ~ [1, N] and 
shots [k + Ak, S] 

We then matched the found templates along the corresponding sequences to detect 

all anchorperson shots. The results of the template-matching procedure are given in 

the third and fourth column of Table 16.2 in terms of missed and false detections. 

Only one shot of Sequence 2 was falsely interpreted as the anchorperson shot. This 
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shot featured an interview between the news reader and a reporter outside the 

studio. Both the news reader and the reporter were positioned within their 

"windows" and the background of the screen in terms of its color composition fully 

corresponded to the studio background found in regular anchorperson shots. 

Similar color compositions were, thus, the most probable reason for a falsely 

interpretation of this shot as a regular anchorperson shot. 

An idea about the robustness of the method presented in this section can be 

obtained by analyzing the types of anchorperson shots detected by each of the 

templates, and the visual content of a template itself. The first sequence contained 

three different variations of an anchorperson shot with one news reader. In some 

cases, the news reader was on the left side, zoomed in or zoomed out, with a news 

icon in the top right comer. In one of the shots, the news reader was in the middle of 

the screen and no news icon was present. This shot was also chosen as the template 

for Sequence 1. 

I I I I I 

0.9 

0.8 stk) 

0.7 

"o 0.6 
0 

N 0.5 
r  

�9 -~ 0.4 1 .~ ) 
.e 

0.1 ~ , ~  

0 i l i i 
0 50 1 O0 150 200 

Shot index k 

Figure 16.12: Detection diagram for Sequence 2 and a =3.1 
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All 17 anchorperson shots from Sequence 2 were distributed as follows: 13 of them 

show the first (7 shots) or the second (6 shots) news reader on the right side of the 

screen with a news icon on the opposite side, 2 of them show the first news reader in 

the middle of the screen and no news icon, and 2 of them show both news readers 

together from two different camera positions. Two anchorperson shots were highly 

dynamic and characterized by a strong zoom from the studio to a news reader. As 

the template, one of the shots showing the first news reader on the right side of the 

screen was chosen. 

Reliability of the detection process can be evaluated by analyzing the heights of 

the detection peaks in s(k) curves. One such curve, corresponding to the second 

sequence, is shown in Figure 16.12 together with the adaptive threshold T(k). 

16.5 Conclusions 

As already mentioned in the introduction to this chapter, the need for tools capable 

of automatically managing large amounts of information will steadily become larger 

with increasing volumes of video contents stored in emerging video archives. A 

high level of sophistication is required by such tools, since video material needs to 

be analyzed at the semantic level. The examples described in Section 16.2, as well as 

the methods for high-level analysis of movies and news in Sections 16.3 and 16.4, 

respectively, have shown a high potential of the low-level feature space in 

recovering the semantic information. This potential needs to be further exploited in 
the future. 

In Section 16.3 an approach was presented for automatically segmenting 

movies into units which closely approximate actual movie episodes. The 

segmentation is based on an investigation of the visual content of a movie sequence 

and its temporal variations, as well as on the assumption that the visual content 

within a movie episode is temporally consistent. Consequently, an LSU is defined 

on the basis of overlapping links, which connect shots with similar visual content. 

We determine whether a link between two shots exists or not by applying an 

adaptive threshold function to shot dissimilarities. Based on the assumptions and 

definitions made in Section 16.3, the number of missed episode boundaries for a 

particular movie primarily depends on the degree with which an episode boundary 

corresponds to a large discontinuity in the global visual content flow. Similarly, the 

number  of falsely detected boundaries is directly related to the global temporal 

consistency of the visual content within an episode. 

Regarding the results in Table 16.1, it can be seen that, although the percentage 

of the detected LSU boundaries is relatively low, the large majority of all detected 
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boundaries indeed provide meaningful entry points into a movie. This is because 

the percentage of non-meaningful entries (falsely detected boundaries) is low. Since 

this corresponds to the objective of the approach, the results obtained for the 

optimal parameter combination can be considered good. A strong improvement of 

the performance, in terms of increasing the percentage of properly detected 

boundaries, is not possible by using only the visual information. We expect that 

involving of the audio-track analysis into the proposed procedure will be helpful. 

Also, the results of applying the algorithm to two movies belonging to quite 

different movie categories did not differ much, indicating that the detection 

performance, and therefore also the defined LSU model, are sufficiently consistent 

for different types of movies. And, finally, as the proposed technique computes the 

detection threshold recursively, and only looks ahead at a limited number of shots, 

the entire process, including the shot-change detection, key-frame extraction, and 

LSU boundary detection, can be carried out in a single pass through a sequence. 

Reports in a news program can be considered equivalent to episodes in a 

movie, since they can also be retrieved separately from the news program due to 

their rounded context. In this sense, a report boundary is the same type of a 

meaningful entry point into a news program as the episode boundary is for a movie. 

However, while episode boundaries can approximately be determined by 

investigating only the visual content of a movie, this cannot be said for the report 

boundaries. This is due to the fact that a news report is composed out of "lossy" 

shots, describing the report topic from different aspects and having generally a 

totally different visual content. Besides this, also no visual content can be related to a 

certain topic. An example for this is a report about a soccer match consisting of 4 

higher-level segments: an anchorperson shot characterized by a news reader and a 

studio background, a series of shots from the soccer field, another anchorperson shot 

and the series of shots showing the press conference. 

The furthest we can get by analyzing only the visual content of a news 

program is detecting the anchorperson shots. This is because anchorperson shots are 

characterized by a relatively constant visual content along the entire news program. 

A technique developed for the detection of anchorperson shots was demonstrated in 

Section 16.4. As shown by experimental results, the detection can be performed with 

acceptable reliability under the given assumptions. The most important assumption 

is that no shot of a news sequence other than anchorperson shot can be used to find 

P good matches along the entire sequence. And indeed, a definite probability for 

failure of this condition can be the major reason for lowering the algorithm's 

robustness in a general case, which can be observed on a lower relative distance for 

the second sequence in Table 16.2. We believe that this problem can be solved by 
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further improving the inter-shot dissimilarity metric so that different types of 

anchorperson shots are distinguished better from the rest of the sequence, while at 

the same time it allows for variation among these types. 



Chapter 17 

Compression Trends: 
The "Fourth Criterion H 

17.1 Introduct ion 

For a long time, a considerable scientific and technical effort has been invested in the 

development and improvement of high-quality image and video compression with 

respect to three important "classical" criteria: 

�9 minimization of bit rate, 

�9 minimization of distortion in decompressed images and video 

�9 reaching balanced and low computational costs on both the encoder and decoder 

side. 

It is without a doubt that the excellent performance of the existing compression 

methodologies has strongly contributed to a fast growth of telecommunication 

networks, visual-information production, distribution and exchange. However, it 

becomes obvious that these methods will soon not be able to cope with all aspects 

being consequent to this growth. The most characteristic example of these aspects 

are content-based operations in large-scale image and video databases, such as video 

analysis and abstraction steps explained in Chapters 14 to 16, a query-by-example or 

a content-based classification. These applications require a high content accessibility 
for all images and videos stored in a database. In view of the analysis in Chapter 13 

we define here the image and video content on the cognitive level as a set of content 

elements like objects, persons and sceneries captured by a camera as well as their 

413 



414 CHAPTER 17 

spatio-temporal positions and mutual relations in an image or a video clip. Content 

elements are characterized by features including their color, shape, texture and 

(mutual) spatio-temporal position coordinates. Then, the content accessibility on the 

system level becomes analog to the efficiency of regaining the features of content 

elements which are important for a given content-based operation. This efficiency is 

low in case the existing compression methodologies are applied to images and 

videos stored in a database, because most of the features being interesting for 

content-based operations can be obtained only after performing complex 

decompression steps. Since query or classification generally involves large number 

of images or videos which all need to be decompressed first, the cumulative 

computational load resulting from the decompression alone can considerably 

increase the total interaction time between the user and a database and so decrease 

the user friendliness of a database. In order to illustrate this extra computational 

load we analyze a database of 100.000 JPEG compressed images. If each image needs 

to be decompressed prior to performing a query-by-example and if we assume that 

JPEG decompression lasts only for 0.01 second, there are 1000 seconds of extra time 

in interacting with the database due to decompression alone. Such increase in the 

interaction time in case of video query or classification is expected to be even higher 

in view of considerably larger amount of data contained therein compared to single 

images. 

The problem of quickly accessing the content of compressed images and video 

has been known already for some years. The solutions towards speeding up the 

interaction with large volumes of compressed images or video were, however, so far 

mostly proposed in the way not to jeopardize the existing compression standards. In 

other words, a large majority of attempts to regain the content from compressed 

images or video were constrained by what the structural properties of e.g. the JPEG 

or MPEG format allowed. Since JPEG is based on a frequency transformation (DCT- 

Discrete Cosine Transform), methods were proposed in [Cha95a], [Cha95b] and 

[Smi94] for extracting some image features for retrieval applications in the frequency 

domain, that is, directly from the DCT-properties of JPEG-compressed images. 

Similarly to this, the authors in [Men95] and [Men96] propose techniques for 

extracting certain content elements directly from MPEG compressed video by 

exploiting properties of the MPEG video format. So in [Men95], an algorithm is 

proposed for detecting boundaries between neighboring video shots which requires 

minimal decoding of an MPEG compressed video and detects abrupt and gradual 

shot boundaries using DCT DC coefficients and motion vectors. This technique is 

extended in [Men96], where motion vectors are used for camera operation detection 

and estimation, such as zoom and pan, as well as for moving object detection and 
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tracking. An indication about the increase in efficiency when performing the 

operations on images in a DCT-compressed domain directly is given in [Smi93] 

where the authors propose a series of methods for image manipulation without the 

need for their decompression. Very good results are reported, such as 50 to 100 times 

faster processing compared to the case where images need to be decompressed first. 

Figure 17.1: Subsampled version of the original image, which can be obtained after partial 

image decompression 

As an alternative to feature extraction approaches described above, a fast access to 

content-related information in JPEG-compressed images and MPEG-compressed 

video can be provided by performing a partial decompression. Such decompression 

involves only the steps preceding the computationally expensive inverse DCT and 

results in a low-resolution (subsampled) version of an image or a video. As shown in 

Figure 17.1 on the example of a "Lena" image, the subsampled version obtained 

from a JPEG-compressed image consists of collected DC coefficients of all DCT 

image blocks. The method for obtaining a so-called DC sequence from MPEG- 

compressed video was proposed in [Yeo95b]. In that approach, DC images are 

created for all I frames and the approximations of subsampled P and B frames are 

obtained by performing a motion compensation in the DCT domain. The proposed 

approach results in a video sequence consisting of subsampled frames, which 
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proved to be suitable for performing some basic steps of video analysis, such as 

shot-boundary detection, key-frame extraction and even for some higher-level 

analysis steps (Chapter 16). However, the possibilities for performing content-based 

operations on subsampled images and video frames are generally rather limited. 

This is mainly due to the missing high-frequency components and small dimensions 

of subsampled image versions (e.g. eight times smaller height and width in case of 

the JPEG-DC image or the MPEG-DC video frame), which allow for performing 

content-based operations only in view of some global content aspects of an image or 

a video, such as color composition and some dominant shapes (objects) or motion. 

A possibility to provide an access to the content of images and video without 

having to analyze and process them first is to provide them a priori with side 

information containing so-called "content descriptors". These descriptors can be of 

various types, and are meant to represent certain aspects of the image or video 

content which may be of interest for a potential content-based operation, such as 

query or classification. Then, a content-based operation on images or videos from a 

database can be performed using weakly coded descriptors, without any need for 

decompressing the images or videos themselves. The development and 

standardization of suitable content descriptors for audiovisual information is the 

objective of MPEG-7 [ISO97]. Nevertheless, this alternative for providing a fast 

content access to compressed images and video has the disadvantage that the 

descriptors reveal only certain aspects of image content and cannot take into account 

all possible image features required for an arbitrary query or classification scenario, 

applied to a database. Thus, while it is highly practical for specific applications, this 

alternative is not sufficiently general to ensure unconstrained interaction with an 

image or a video database. 

The first move in an entirely new direction regarding the compression of visual 

information was made in [Pen94b]. There, images in a large thematic database were, 

instead of compressing them using e.g. JPEG, represented by small sets of 

perceptually significant coefficients, making in this way direct search on compressed 

image content possible and introducing a new great challenge for the research 

community. In [Pic95b], providing a fast access to the content of compressed images 

and video has been proposed as the additional, fourth optimization criterion when 

developing new compression methods. 

Figure 17.2 shows an idea of how to include the fourth criterion into the 

development of an image or video CODEC*. 

* CODEC is a common abbreviation for a joint COder-DECoder system 
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Figure 17.2: Image~video compression enabling fast content access. Content is easily 
accessible by quickly decoding transparently encoded CA 

In this scheme, an arbitrary image or video is represented by its Content Abstract 
(CA) for which we set the following requirements: 

�9 CA is considerably compacter than the original representation of an image or 

video, 

�9 CA is easy to generate from the original image or video, 

�9 It is possible to reconstruct the original image or video from CA quickly and with 

a low distortion, 

�9 The characteristics of any content element being relevant to given content-based 

application (e.g. analysis, query or classification) can be regained from CA much 

more efficiently than if one of the existing compression methodologies (JPEG, 

MPEG) is applied. 
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If CA is sufficiently compact, a good compression of the original is guaranteed 

already by generating the CA. Figure 17.2 also shows the possibility of encoding the 

generated CA in order to further reduce the bit rate. This encoding needs, however, 

to be "transparent", i.e. such that only a small computational load is required for 

decoding the CA. 

In the remaining sections of this chapter we present a newly developed image 

CODEC which by far complies to the scheme in Figure 17.2. The concept on which 

this CODEC is based is presented in Section 17.2. This is followed by an analysis of 

CODEC components in Section 17.3 and a performance evaluation in Section 17.4. 

The conclusions relevant to this chapter are given in Section 17.5. 

17.2 A concept of an alternative image CODEC 

We approach the development of our CODEC by considering the following issues. 

First, the definition of an image or video content from the previous section indicates 

that the content elements are to be searched for mainly in the spatio-temporal 

domain. This means that any transformation of an image or a video signal into a 

frequency domain, such as DCT or Wavelet, actually decreases the content 

accessibility in a general case. Exceptions can only be found by those content 

elements which are easily identifiable in the frequency domain as well. For this 

reason, we concentrate here on spatial-domain image compression techniques, 
examples of which are Vector Quantization (VQ) [Ger92] and Fractal Image 

Compression [Jac92]. Second, it is not realistic to expect that a full-resolution spatial 

(pixel-level) image content is available in the compressed domain if a good 

compression ratio needs to be obtained. This is simply because of the fact that the 

compression is based on reducing the redundancy and the irrelevancy of this 

content, so that only non-redundant and relevant content components are available 

in the compressed format. However, in order to obtain an increase in the efficiency 

of image-database operations we require that non-redundant and relevant image 

information contained in the compressed format is already usable for performing 

some of the image-database operations. We also require that the full-resolution 

spatial image content should quickly be reconstructable from its non-redundant and 

relevant elements, or in other words, that the complexity of the image- 

decompression procedure is considerably reduced if compared to transform-based 

decoders. In the following, we first recapitulate the principles of fractal image 

compression from Section 8.4.4 and describe vector quantization. Subsequently we 

choose the most suitable of the two techniques as the base for developing our 

CODEC. 
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In case of fractal compression, an image is first partitioned at two different 

levels: in range blocks of size N x N  at the first level, and in domain blocks of size 

2Nx2N at the second level. A transformed domain block is searched for each range 

blocks such that the mean square error between the two blocks is minimal. Hereby 

the following transformations are performed on the domain blocks: they are first 

subsampled by factor two to get the same dimensions as the range blocks. Then, 

eight isometries of subsampled domain blocks are found, including the rotated 

original block and its mirrored versions (mirroring over 0, 90, 180 and 270 degrees). 

Finally, an adjustment of the scale factor and the luminance offset is performed. 

Consequently, a fractal compressed image is defined by a set of relations for each 

range block, the index number and the orientation of the best fitting domain block, 

the luminance scaling and the luminance offset. Using this description, the decoder 

can reconstruct the compressed image by taking any initial random image and by 

calculating the content of each range block from its associated domain block. This 

reconstruction is repeated iteratively by taking the resulting image as a new initial 

image until the desired quality of the reconstructed image is reached. 

As illustrated in Figure 17.3, compressing an image using VQ is the process of 

taking an image block of N x N  pixels and finding its corresponding (most similar) 

block in a code book. A code book is a collection of representative blocks, constructed 

on the basis of a number of training images. Each image block is then represented by 

the code-book address, where the corresponding block is found. Consequently, a 

VQ-compressed image is simply a concatenation of addresses, collected for all image 

blocks. If the same code book is available at the receiver side, a VQ-compressed 

image can easily be decoded by filling in the blocks from a code book in the proper 

positions in the image, according to the addresses received by the decoder. 

Because of the above descriptions of Fractal and VQ image CODECs, we find 

the CODEC based on Vector Quantization more suitable for our needs. First, it 

realizes image decompression as a fast "look-up-and-fill" procedure and involves no 

iterations. Second, VQ-compressed images can be compared and classified based on 

their block correspondences. This is because these correspondences directly depict 

the image content with respect to the code book used. Compared to this, a list of 

geometric and luminance transformations of domain blocks describing the Fractal- 

compressed images do not provide a clear impression about the image content and, 

therefore, cannot be used as efficiently for image-database operations as the block 

correspondences and code book of the VQ. However, not all the characteristics of the 

basic VQ scheme are suitable for direct usage for the CODEC development in this 

chapter. Therefore, we adapt the basic VQ scheme in order to better suit the 

applications addressed here. 
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Figure 17.3: Scheme of an image CODEC based on vector quantization 

The adaptation is related mainly to the highly complex and time-consuming process 

of code-book generation. This process basically includes a partitional clustering of the 

visual material collected from a set of training images. Its high complexity is due to a 

large amount of data to be clustered and due to the iterative nature of the clustering 

process. Consequently, the code book is made only once and used to compress and 

decompress all images in a database. It is also optimized to provide the maximal 

quality of all reconstructed images from that database. This optimization is 

performed such that, first, the training images are selected as the most representative 

for all the images contained in a database. Second, the clustering process is designed 

to take into account all linear and non-linear dependencies among blocks to be 

found in training images. Each cluster is then represented by one most 

representative image block, which then becomes an element of a code book. The 

described process of code-book generation by the basic VQ implies that the code 

book can be used effectively only for compressing images that belong to the same 
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categories as those from the training set. This is, however, unpractical for 

applications in general image databases because of the following reasons. First, 

images can be very diverse, so that one single code book might not be sufficient for 

coding all of them with an acceptable quality. Second, if a database is extended by 

new images belonging to a different class, a time-consuming update of a code book 

is required. Third, image exchange among different databases (users) is difficult if 

different code books are used. 

To provide a good solution to these problems, we apply in our CODEC a 

strongly simplified procedure for code-book generation, w h i c h -  due to a reduced 

complexity- allows for generating a code book for each individual image. Using 

image-specific code books not only makes it unnecessary to perform highly complex 

code-book generation/update and to have one code book for the entire database; it 

has several other important advantages as well. First, the quality of reconstructed 

images can only improve since an image is abstracted and later reconstructed using 

the same (its own) blocks. Second, in contrast to the basic VQ, here the code book 

needs to be included in the compressed image format. As will be shown in Section 

17.4, this makes it even easier to perform various image-database operations without 

the need for image decompression. 

Figure 17.4: Image CODEC enabling an easy content access in compressed images 
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17.3 Image CODEC based on simplified VQ 

Figure 17.4 illustrates all components of our new image CODEC in :form of a block 

diagram. The first two steps of the encoder are the processes of making a code book 

and of finding the correspondences of image blocks with those belonging to a code 

book. Subsequently, a compressed image stream is formatted, where we only use as 

many bits as necessary to encode all the addresses in order to minimize the resulting 

bit rate. Apart from the fact that the code book used is image specific and therefore 

included into the compressed stream, the decompression process fully complies with 

the one of the basic VQ. As indicated in the scheme by the full arrow, a low 

computational complexity on the decoder side is already one possibility for a fast 

content access. The other possibility indicated by the dashed arrow is related to the 

direct usage of the image-specific code book and block correspondences for content- 

based operations. 

In view of the scheme in Figure 17.2, the code book obtained for an image 

forms together with block correspondences the CA of that image. Similarly, the bit- 

stream formatting with the objective of minimizing the number of bits used for block 

correspondences can be understood as "transparent" coding of the CA. The issues 

regarding the compactness of obtained CA, the total computational load related to 

CA generation and image reconstruction from CA, as well as the content 

accessibility on the obtained CA will be discussed in detail in Section 17.4. In the 

following we proceed by defining all major components of the CODEC scheme in 

Figure 17.4. 

17.3.1 Code-book generation 

We first define an efficient methodology for generating an image code book. For this 

purpose, an image is first divided into non-overlapping square pixel blocks b, with 

dimensions NxN, and each block is represented by the average color (L*u*v* color 

space) of all block pixels. We choose to work with relatively small blocks, i.e. with N 

=2 as the code book will have to be included into the compressed image format. The 

experiments have shown that if a similar quality of reconstructed images is to be 

achieved, and larger blocks, e.g. N=4, are used, the code-book size becomes 

unacceptably large (up to 20% of an image). 

As shown in Figure 17.5, the code-book generation starts by including the first 

image block b 1 into the code book. Each further block along the arrow is compared 

with all blocks already in the code book. For this purpose, the Euclidean distance is 

computed for the three components of the average colors of blocks, that is 
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. 2 

d(bk,bn) m ~(n* (bk)- L* (bn)) 2 -}-(u*(bk)-u*(bn)) 2 ff'(v*(bk)-V (bn)) (17.3.1) 

A block bi joins the code book if it cannot be matched well with any of already 

selected blocks, i.e. when the distance (17.3.1) between the block b i and each block 

from the code book exceeds the threshold T. 

Figure 17.5: Illustration of the simplified procedure for making a VQ code book. Grey blocks 
are included in the code book. 

While the code book of the basic VQ is obtained by a sophisticated procedure which 

optimally represents the visual material of training images, the major objective of the 

sequential procedure from Figure 17.5 is to quickly generate a code book. In order to 

achieve a code-book quality similar to that of the basic VQ, the described fast 

procedure for code-book generation requires some fine tuning. For this purpose, we 

make the threshold T locally adaptive, based on the following analysis. Since coding 

artifacts are particularly visible in smooth image regions (e.g. artifacts like false 

contours), the threshold function needs to be chosen such that these regions are 

represented by a sufficient number of code-book vectors. On the other hand, the 

number of blocks extracted from textured regions can be kept low since the coding 

artifacts are less visible there. This implies that it is convenient to make the threshold 

value at each block b i dependent on the amount of texture present in its 

surroundings, that is 

T = T(bi) = fltexture around bi) (17.3.2) 
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By properly choosing the threshold function (17.3.2), a number of code-book blocks 

can be extracted that is similar to using a fixed value of T. However, the extracted 

blocks are distributed better over an image, providing at a later stage a higher 

overall quality of the reconstructed image. In other words, the number of code-book 

vectors representing textured image regions slightly decreases in favor of those 

representing smooth regions. 

Figure 17.6: Zero coefficients in a DCT block obtained by applying the quantization 

We now define the threshold function T(bi ) by suitably modeling the variations of 

the amount of texture over an image. This is done by first dividing the gray-scale 

version of an image into nonoverlapping blocks Bj with dimensions 8x8 pixels, and 

by applying the Discrete Cosine Transform (DCT) to each of them. Then, all the 

elements of the DCT block are quantized according to the following procedure, 

which is analog to the one from JPEG: 

ROUND DCT(u,v! I with Q(q)= 
Q(q)*W(u,v)J" \ 1 0 0 -  q 

q<50 

~ ,  q___50 

(17.3.3) 

We call q the quantization parameter which can vary in the range 0<q<100. Q is the 

gain factor depending on q and W(u,v) is the corresponding element of the JPEG 

luminance quantization table. 

As a consequence of the quantization, a number m i of DCT coefficients of the 

block Bj will become zero, which is mainly the case with those corresponding to 

higher frequencies, as shown in Figure 17.6. The more texture is present in an image 
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area, the stronger are the high-frequency components of the image signal in that 

area. Then, the DCT coefficients corresponding to these components are also high, 

and therefore will hardly ever become zero after quantization. This is not the case 

with smooth regions, where a large number of zero coefficients are present after the 

quantization. For this reason we relate the number  m i of zero-DCT coefficients to 

the presence or absence of a texture and formulate the threshold function as follows: 

m j-64 I 
i f  b i E Bj ~ T(bi)= pl _p2~e p3 (17.3.4) 

Parameters Pl, P2 and P3 define the behavior of the threshold function and are to be 

specified experimentally. Since the parameter q directs the DCT quantization process 

(17.3.3), the threshold-function behavior can indirectly be adjusted by specifying a 

value for q. The higher the q, the lower is the gain factor Q, the smaller is the 

quantization step, the less DCT coefficients are zero and the threshold function 

(17.3.4) is shifted upwards.  

Figure 17.7: Code book extraction for an image using a constant and a variable threshold: a) 
original image, b) image blocks included in the code book by using a constant threshold, c) 
image blocks included in the code book by using the threshold function (17.3.4) 

Figure 17.7a shows an image from our test set, for which we generated two code 

books of a similar size. The first one is obtained by using a fixed threshold. The 

positions from which image blocks are taken and included into the code book are 

indicated as black spots in Figure 17.7b. Then we used the variable threshold to 

generate another code book, where we adjusted the function (17.3.4) by choosing a 
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suitable q such that a similar number of blocks is extracted, as in Figure 17.7.b. The 

positions from where image blocks are taken using the threshold (17.3.4) are 

indicated by black spots in Figure 17.7c. It can be seen that the prevailing majority of 

blocks in Figure 17.7b are concentrated in high-texture regions, leaving the smooth 

regions insufficiently represented. 

17.3.2 F i n d i n g  the b l o c k  c o r r e s p o n d e n c e s  

The step of generating the code book is followed by the search for correspondences 

between image blocks b i and blocks cj of the code book. In this way, each block b i 

is represented by an address in the code book, which is embedded into the 

compressed image format and determines which block c j is used to approximate 

block b i during the image reconstruction in the decoder. 

We find that block cj corresponds to the image block b; by comparing b i with 

all blocks cj using the distance function (17.3.1) and then by minimizing (17.3.1) for 

all indices j. As S is the total number of blocks b i in an image, and M the number of 

code-book blocks, the procedure of establishing the block correspondences can 

analytically be formulated as 

Vi ~ [1,S] b i OC C t ~ d(b itc t )  = min d(b i , c j )  
I<j<M 

(17.3.5) 

17.3.3 C o m p r e s s e d  i m a g e  format  spec i f i ca t ion  

The format of an image, compressed using the CODEC presented in this chapter, is 

illustrated in Figure 17.8, and consists of the following information: 

�9 File header 

�9 Code book 

�9 List of addresses for block correspondences 

0 10 
i i 
[lllllllllilllIllllllll 
......... IIIIIIIIIIIII 

Header I I I I I I I I.. I I I I I ~176176 1112131 
Code book 

10+ 3N2M 
i =.e~ 

,iiiiH!iiiliiiiil I I I I i I I I I II I I I i I I I I l;.Ji!lll 
ii~i|iiI|iiiM IIIII ~ .... ::::.i 
|iiiiilIiiili!IiiH" " " l l Ill Addresses i .......... 
I t I I M I I too..1ofi 

l ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 17.8: Format of a compressed image file 
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We will now define each of these components in detail. 

File header 

The file header contains 10 Bytes, which represent (in the order of appearance): 

�9 the format identification mark (3 Bytes), 

�9 image width and height (4 Bytes) 

�9 the number M of blocks in a code book (3 Bytes) 

Code book 

All code-book blocks cj, j~ 1..M are addressed in the order in which they are 

extracted. In the compressed bit stream, they are represented by the RGB triplets of 

all of their pixels, ordered in the 1-dimensional uncompressed array of 3 M N  2 Bytes, 

that is 

(17.3.6) 

Block correspondences 

The code book is followed by the list of addresses for block correspondences. For the 

total number of S blocks b i in an image, there are S addresses varying in the range 

1..M. In order to reduce the size of this bit stream component, we use only so many 

bytes as are necessary to represent all addresses of characteristic blocks. For M 

blocks in a code book, the minimum required number w of bytes is computed as 

w = 8(Llog2 M J+ 1 ) (17.3.7) 

17.4 Performance evaluation 

In this section we evaluate the performance of the developed image CODEC. We 

concentrate in Subsection 17.4.1 on the CODEC performance with respect to the 

obtained compression factor, the quality of reconstructed images and the overall 

computational costs. For this purpose we use a test-image set containing 54 different 

color images with dimensions 320x320 pixels. We experimentally found good 
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parameter values in (17.3.4) as p1=5.35, p2=4, and p3=3, and used them in our 

experiments. Subsequently, in Subsection 17.4.2 we evaluate the content accessibility 

for the CODEC we developed. 
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Figure 17.9: Measurements for one test image: a) Compression factor as function of q, b) 

average PSNR of the R, G and B color component as a function of the compression factor 

17.4.1 CODEC performance regarding classical criteria 

We first investigate a typical range of the compression factor, which is to be obtained 

using our CODEC. For this purpose we took one image from our test set and 

compressed it for values of the quantization parameter q in (17.3.3) varying between 

5 and 95. The compression factor as a function of the parameter q is displayed in 

Figure 17.9a. The obtained range for this factor is [4.25, 7.93] for the test image used. 
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Then, we took the same test image and measured the PSNR (Peak-to-Peak 

Signal-to-Noise Ratio) for R, G and B color component over the entire range of the 

compression factor in order to see how the quality of reconstructed images depends 

on compression efficiency. We averaged the PSNR values of the three color channels 

at each measurement point and displayed them over corresponding compression 

factors in Figure 17.9b. A range of the average PSNR values was obtained as [30.74, 

34.57]. In order to get a better impression of the above results, we also compressed 

the same test image using JPEG. We let the JPEG quality factor vary in its entire 

effective range from 5 to 95 and obtained the compression factors between 9.02 and 

94.3 and PSNR between 24.62 and 39.97. Especially for the range of the compression 

factor obtained for our CODEC, the PSNR varied in the case of JPEG compression 

between 39.97 and 43.6, as also shown in Figure 17.9b. A comparison of the curves in 

Figure 17.9b indicates that JPEG performs better in terms of compression efficiency 

and resulting image distortion. 
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Figure 17.10: Variations of the compression factor and PSNR for all test images and q=30 
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Figure 17.11: Reconstructed images followed by the originals. The following quantitative 
data were obtained for q=30: a) code-book size 2%, compression factor 8, b) code-book size 5.3 
%, compression factor 6, c) code-book size 4.1%, compression factor 6.4 
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Besides compression efficiency and image distortion, the classical criteria also 

include the overall computational complexity. Compared to the basic VQ, the JPEG 

CODEC is characterized by well-balanced computational costs on the encoder and 

decoder side, which makes it more practical. Thus, in order to make the VQ 

competeable with JPEG regarding the cost balance, a strong reduction of the encoder 

complexity would be required. This was one of the objectives when developing the 

methodology for a simplified code-book generation in Subsection 17.3.1. Although 

we managed to considerably reduce the encoding complexity in our CODEC 

compared to the basic VQ, this complexity is still relatively large. This is mainly due 

to small block dimensions, which, as explained before, were chosen such to increase 

the compression efficiency. For instance, only 4% of image information, contained in 

the code book of an image with dimensions 320x320 pixels, corresponds to 1024 

blocks with dimensions 2x2 pixels. Consequently, for each of the 25600 blocks of that 

image, 1024 computations of difference values (17.3.1), threshold (17.3.4) and their 

mutual comparisons are required. 

The above comparison of our CODEC and JPEG regarding the classical 

optimization criteria has shown that JPEG has a better performance. We, however, 

took this into account with a reference to the fact that a CODEC that performs well 

regarding the three classical criteria is not necessarily optimal when it comes to the 

fourth criterion: providing a higher content accessibility [Pic95b]. 

To complete the evaluation of the CODEC performance regarding the 

compression efficiency and image distortion, we also investigated the consistency of 

the CODEC performance regarding these criteria for different images. For this 
purpose we fixed the quantization parameter q to the value 30 and computed the 
compression factor and PSNR for all images from our test set. The results are 

displayed in Figure 17.10. The variations of computed values can be explained by 

the variability of the code-book size, which depends on image content and is the 

only variable segment of the compressed image stream. In our measurements, the 

relative code-book size varied between 1.4% and 9.78%, with an average of 4.6%. 

Perceptual quality of the reconstructed images for q=30 can be evaluated by 

comparing the originals and decompressed images in Figures 17.11a-c. 

17.4.2 Increase of content accessibility 

We address in this section some of the possibilities for easy content access in images 

which are compressed using the CODEC developed in this chapter. These access 

possibilities are: 
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Easy image or image-region decompression 

Easy access to some spatial image features directly in the compressed domain 

(dominant and less important colors, image and image-region histograms) 

An advantage of having the VQ as the underlying principle of the CODEC presented 

here is that decompressing an image is a simple "look-up-and-fill" procedure. 

Namely, a VQ-compressed image can easily be decoded by filling it with blocks 

from a code book, according to addresses received by the decoder. This is a clear 

advantage regarding the computational complexity of the decoder, if compared i.e. 

with the JPEG decompression procedure, characterized by a computationally 

complex inverse DCT. Further, since the list of addresses in the compressed image 

format (Figure 17.8) preserves the information about image structure, no 

decompression of the entire image is required in order to fully reconstruct any of its 

regions. Such a reconstruction is easily performed by simply choosing the region 

blocks in the address list, finding their corresponding blocks in the code book and 

filling the image regions of interest. However, an image, or any of its regions does 

not need to be reconstructed in order to obtain certain spatial image features; an 
image-database application involving these features can be performed directly on 

compressed images. 
As a first example, the image-specific code book itself, which is directly 

accessible in the compressed image format (Figure 17.8), can effectively be used for 
performing global classification of images or some more general image queries. In 
our approach, a block is selected in a code book if the average color of its pixels is 
sufficiently representative for that image. This implies that if average colors are 

computed for all code-book blocks c i, a general idea can be obtained about the 
colors present in the image. In this way, images containing drastically different color 
content can be separated from each other, o r -  if different from the query image 

regarding their colors- not given by the system as query results. 

Image classifications and queries based on image-specific code books can be 

made even more specific if also the information related to the usage of code-book 

blocks for image reconstruction is taken into account. This information can easily be 

retrieved from the list of addresses for block correspondences. Then, by counting the 

numbers of times ai, that a code-book block c~ is present in the address list, the 

image and an arbitrary image region can be represented as 

image r  [a l c l , . . aMc  M ] (17.4.1a) 

image region r [a m c m, . .  a,  c n ] (17.4.1b) 
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After the average color of each block c~ has been computed, the expressions (17.4.la- 

b) can provide a global idea about the color composition of the image (region), both 

in terms of which general colors are present there and in which amount. The higher 

the number a~, the more important role plays the block ci in the image (region), and 

thus also the average color of its pixels, that is 

max a i = aaom~an t ~ c dominant ~ dominant average color (17.4.2) 
l 

As an example, we now estimate the computational complexity of obtaining the 

information on a general color composition of an image based on (17.4.1a) and on 

computing the average color of each block c i. We estimate the complexity by 

determining the number of reading ( Oread ), adding ( Oa~ a ), multiplying ( Omultiply ) and 

comparing (Ocompare) operations which are to be performed. 

With S addresses to be found in the last segment of the compressed image 

format in Figure 17.8, the number of operations required to obtain all the coefficients 

ai can be estimated as follows: 

Cai = S(Oread q- Oad d ) (17.4.3) 

Then, the average color is computed for each block of the code book with the 

following amount of operations: 

Co, = 3 ( N 2 Oa~e + Om,,Itipty ) (17.4.4) 

The entire complexity of obtaining the information on a general image color 

composition complying with (17.4.1a) is now given as 

Ccolorcomposi,o n = C a + MCc, + MOmultiply (17.4.5) 

As another example, histograms for image (regions) can easily be computed by 

collecting pixels of blocks c i and taking into account the values a i . Here, we 

compute the bins h of an 1-dimensional color histogram H(h), where h can be the 

value of any pixel-color component K (K=R, G or B) and where only characteristic 

blocks c , used for reconstruction of an image region (17.4.1b), are considered: 

HR,C,B(h)= ~ a i r  h (i) (17.4.6a) 
i=m 
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with 

I li,h, p ixe l (K = h) ~ c i 

v h (i) = \0, otherwise 
(17.4.6b) 

The function Vh(i ) indicates whether a pixel with its K color component 

corresponding to h is present in the block c i, and in which amount l~, h . Also by 

counting the number of operations required for the expression (17.4.6a), we estimate 

the complexity of obtaining an image region histogram directly from the compressed 

image in Figure 17.8 as 

Chist = Ca~ + ( n -  m)(X2(Oread 4- Ocompar e )4-(li, h 4- 1)Oadd 4- Omultiply ) (17.4.7) 

We now like to compare the Chist from (17.4.7) with the complexity of computing the 

same histogram on the decoded image. This last complexity is given as: 

C hist,decompressed "- C decompressed 4- X Y  ( 0  read 4- 0 compare 4- 0 add ) (17.4.8) 

Since the size of the code book M is only a small fraction (average of 4.6% in our 

tests) of the total number of pixels in an image obtained by multiplying both image 

dimensions X and Y, and since 0< li, h <_ N 2 with N=2,  the second summand in 
(17.4.8) can be considered considerably larger than the second summand in (17.4.7). 

Further, if, for instance, JPEG CODEC is used as alternative, the first summand 

Cdecompressed in (17.4.8) includes the total (high) number of operations required for JPEG 
decompression. As such, this summand can realistically be assumed far larger than 

the value Ca, in (17.4.7). Therefore, it can be said that the histogram computation 

using (17.4.6) is computationally considerably less expensive than if performed after 

e.g. a JPEG-compressed image is decoded. 

17.5 Conclusions 

The image CODEC presented in this chapter was developed to suit emerging 

applications on large-scale image databases, where a fast and easy access to image 

content can considerably improve the efficiency of interacting with an image 

database. While the currently available CODECs are optimized with respect to the 

classical criteria (bit rate, image distortion and overall computational complexity), 

introducing an additional fourth criterion on content accessibility has the effect that 

existing CODECs are no longer optimal and, as discussed in Section 17.1, that the 
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development of new CODECs is needed. It would be best if we could retain an 

excellent compression efficiency, low distortion of reconstructed images and nicely 

balanced and low computational complexity of JPEG in newly developed CODECs 

and still be able to easily perform any operation on image content. Such a perfect 

balance among the four optimization criteria needs indeed to be the guiding 

objective of research in this area. The development of the CODEC in this chapter can 

be understood as a first step in the process of reaching this objective. We deliberately 

left the powerful concept of transform-based CODECs in order to remain in the 

spatial domain and so to provide means for accessing the image content more easily. 

In this way we expected a priori a lowering of the compression efficiency and the 

quality of the reconstructed images, compared to JPEG. Also we took into account a 

possible misbalance and an increase of computational complexity at the encoder 

side. However, as a compensation, we are able to decompress an image much more 

quickly and to reach some of the characteristic image features directly in the 

compressed domain. Although we can say that in some way we found an acceptable 

trade-off between four optimization criteria, we are also aware of the fact that the 

developed CODEC is far from optimal. Nevertheless, we hope with our CODEC to 

provide a solid base for further research in this area. 
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