Dynamic Variable Filtering for Hard Random
3-SAT Problems

Anbulagan, John Thornton, and Abdul Sattar

Knowledge Representation and Reasoning Unit (KRRU)
School of Information Technology
Griffith University, Gold Coast Campus
PMB 50 Gold Coast Mail Centre, QLD 9726, Australia
{a.anbulagan, j.thornton,a.sattar}@griffith.edu.au
Telephone: (07) 5552 8730, Fax: (07) 5552 8066

Abstract. The DPL (Davis-Putnam-Logemann-Loveland) procedure is
one of the most effective methods for solving SAT problems. It is well
known that its efficiency depends on the choice of the branching rule. One
of the main improvements of this decision procedure has been the devel-
opment of better branching variable selection through the use of unit
propagation look-ahead (UPLA) heuristics (e.g., [12]). UPLA heuris-
tics perform one of the following actions during two propagations of
a free variable at each search tree node: detecting a contradiction earlier,
simplifying the formula, or weighing the branching variable candidates.
UPLA heuristics can be considered as polynomial time reasoning tech-
niques. In this paper, we propose a new branching rule which does more
reasoning to narrow the search tree of hard random 3-SAT problems.
We term this reasoning technique the Dynamic Variable Filtering (DVF)
heuristic. In our empirical study we develop four different variants of the
DPL procedure: two (ssc34 and ssc355) based on this new heuristic and
another two (Satz215-0 and Satz215sT") based on static variable filter-
ing heuristics. ssc355 additionally integrates the Neighborhood Variable
Ordering (NVO) heuristic into ssc34. We then compare the best known
versions of the state-of-the-art Satz DPL procedure (Satz215), with each
of our four procedures. Our results suggest that improved branching rules
can further enhance the performance of DPL procedures. On hard ran-
dom 3-SAT problems, our best procedure (ssc355) outperforms Satz215
with an order of magnitude in terms of the number of branching nodes
in the search tree. While the run-times for dynamic variable filtering are
still uncompetitive with Satz215, we have yet to explore the benefits
that can be gained from avoiding redundant propagations and we still
can improve the performance of the NVO heuristic. A further interesting
property of dynamic filtering is that all backtracking can be eliminated
during the DPL unit rule process. This property can also be explored in
our future work for improving DPL procedure efficiency.

Keywords: Constraints, Problem Solving, Search.

T.D. Gedeon and L.C.C. Fung (Eds.): AI 2003, LNAI 2903, pp. 100-111, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Dynamic Variable Filtering for Hard Random 3-SAT Problems 101

1 Introduction

The satisfiability (SAT) problem is central in mathematical logic, artificial in-
telligence and other fields of computer science and engineering. In conjunctive
normal form (CNF), a SAT problem can be represented as a propositional for-
mula F on a set of Boolean variables {x1, xa,...,x,}. A literal [is then a vari-
able x; or its negated form z;, and a clause ¢; is a logical or of some literals
such as x1 V 9 V @3. A propositional formula F consists of a logical and of
several clauses, such as ¢; A ca A ... A ¢, and is often simply written as a set
{c1,¢2, ...y em b of clauses.

Given F, the SAT problem involves testing whether all the clauses in F can
be satisfied by some consistent assignment of truth values {true, false} to the
variables. If this is the case, F is satisfiable; otherwise it is unsatisfiable. The
SAT problem, as the original of all NP-Complete problems [3], is fundamen-
tally important to the study of computational aspects of decision procedures.
When each clause in F contains exactly k literals, the restricted SAT problem
is called k-SAT. 3-SAT is the smallest NP-Complete sub-problem of SAT.

One of the best known and most widely used algorithms to solve SAT prob-
lems is the DPL (Davis-Putnam-Logemann-Loveland) procedure [5]. Many SAT
solvers such as Posit 7], Tableau [4], Satz [12], Satz214 [14] and enfs [6] are
based on this procedure. DPL essentially enumerates all possible solutions to a
given SAT problem by setting up a binary search tree and proceeding until it
either finds a satisfying truth assignment or concludes that no such assignment
exists. It is well known that the search tree size of a SAT problem is generally
an exponential function of the problem size, and that the branching variable
selected by a branching rule at a node is crucial for determining the size of the
sub-tree rooted at that node. A wrong choice may cause an exponential increase
of the sub-tree size. Hence, the actual performance of a DPL procedure depends
significantly on the effectiveness of the branching rule used.

Much of the research on DPL has focussed on finding clever branching rules
to select the branching variable that most effectively reduces the search space.
In this paper, we too propose a new branching rule based on a dynamic variable
filtering heuristic as a polynomial time reasoning technique aimed at signifi-
cantly narrowing the search tree for solving hard random 3-SAT problems. The
key idea underlying this new branching rule is to further detect failed literals
that would remain undiscovered using a unit propagation look-ahead (UPLA)
branching rule, before choosing a branching variable. In other words, we perform
more reasoning in the open space between the UPLA heuristic and the MOMS
(Maximum Occurrences in clause of Minimum Size) heuristic in the actual DPL
branching rule. To test this idea, we use Satz215 (the best version of the Satz
DPL procedure) where we simply replace its branching rule by a new branching
rule. The new rule allows filtering of free variables, and at the same time reduces
the sub-problem size at each node until the filtering process is saturated.

We develop two DPL procedures that use a dynamic variable filtering heuris-
tic, and two other DPL procedures that use a static filtering heuristic. We then

102 Anbulagan et al.

analyse these four DPL procedures with respect to Satz215, using a large sample
of hard random 3-SAT problems.

An empirical study of the proposed variants of DPL indicates significant per-
formance improvements can be obtained, with the two dynamic filtering heuris-
tics consistently outperforming Satz215 in terms of mean search tree size when
solving hard random 3-SAT problems. In some tests, the best dynamic filtering
procedure was able to reduce the search tree size by an order of magnitude over
Satz215, and for the 300 variable problems (1000 problems solved), the best
dynamic filtering procedure produced a mean search tree size of 2679 nodes, in
contrast to Satz215’s mean size of 6634 nodes. Not surprisingly, given the ad-
ditional reasoning involved in the branching rule, the new heuristics proved less
competitive in terms of run-times, with Satz215 running approximately twice
as fast on the largest (300 variable) problems.

Li and Gérard [15] discussed the hardness of proving an unsatisfiable hard
random 3-SAT problem with 700 variables, and empirically calculated the ap-
proximately optimal number of branching nodes. They conjectured that obtain-
ing this optimal sized tree was not possible using a branching heuristic. However,
our results indicate that a dynamic variable filtering heuristic can achieve an op-
timal number of branching nodes. Therefore our work shows, in principle, that
optimal branching can be achieved. The second major issue is whether optimal
branching can be achieved efficiently. At present our results show Satz215 still
performs significantly better than the dynamic filtering heuristics in terms of
run-time. However we have not explored the potential gains that could result
from avoiding redundant UPLA propagations. This we leave to future work.

The paper is organized as follows: In the next section we present the Satz
DPL procedure, one of the best known SAT procedures for solving hard random
3-SAT problems and structured SAT problems. In the subsequent section, we
present our new dynamic filtering branching rules which perform additional rea-
soning to find a best branching variable. In section 4, we present a comparison
of results for our new DPL procedures with Satz215 on a set of hard random
3-SAT problems. Finally, we conclude the paper with some remarks on current
and future research.

2 The Satz Solver

Satz [12, 13] is one of the best DPL procedures developed for solving both hard
random SAT problems and structured SAT problems. Its powerful branching
rule allows it to select the best branching variable for generating more and
stronger constraints. It is a well-structured program and allows integration of
new ideas easily. In 1999, Li further improved Satz to produce Satz214 [14],
and in 2001, Daniel Le Berre suggested the further detection of implied literals
within Satz214, resulting in the latest and best version of Satz, Satz215 [11].

Definition: Let PROP be a binary predicate such that PROP(x,1) is true iff x
is a variable that occurs both positively and negatively in binary clauses and

Dynamic Variable Filtering for Hard Random 3-SAT Problems 103

occurs in at least ¢ binary clauses in F, and let 7 be an integer, then PROP, (x)
is defined to be the first of the three predicates PROP(x,4), PROP(x,3), true
(in this order) whose denotational semantics contains more than 7 variables.

In figure 1, we present Satz’s branching rule which integrates the UPLA
heuristic. The unary predicate PROP, is used to restrict the number of free
variables executed by the heuristic and the parameter 7 is empirically fixed to
10. This UPLA heuristic plays a crucial role in the Satz-family and is used to
reach dead-ends earlier with the aim of minimising the length of the current path
in the search tree. We distinguish the UPLA heuristic from the conventional
unit propagation procedure (UP) that is usually used in DPL as follows: UP
is executed to reduce the size of a sub-problem possessing unit clauses after
a branching variable selected, while UPLA is integrated in the branching rule
and is executed at each search tree node.

Given a variable x;, the UPLA heuristic examines x; by adding the two unit
clauses possessing x; and Z; to F and independently making two unit propaga-
tions. These propagations result in a number of newly produced binary clauses,
which are then used to weigh the variable z;. This is calculated in figure 1, using
the function dif f(F1, F2) which returns the number of new binary clauses in F;
that were not in F». Let w(x;) be the number of new binary clauses produced
by setting the variable to true, and w(#;) be the number of new binary clauses
produced by setting the variable to false. Satz then uses a MOMS heuristic to
branch on the variable z; such that w(z;) * w(x;) * 1024 + w(&;) + w(z;) is the
highest. The branching variable selected follows the two-sided Jeroslow-Wang
(J-W) Rule [8] designed to balance the search tree.

The UPLA heuristic also allows the earlier detection of the so-called failed
literals in F. These are literals [where w(l) counts an empty clause. For such
variables, Satz immediately tries to satisfy I. When there is a contradiction
during the second unit propagation, Satz will directly perform backtracking,
else the size of the sub-problem is reduced which allows the selection of a set of
best branching variable candidates at each node in search tree.

So, during two propagations of a free variable through the UPLA heuristic,
three circumstances can occur:

— The free variable selected becomes a candidate for branching variable.

— Only one contradiction found during two unit propagations, meaning the size
of formula F will be reduced during the other successful unit propagation
process.

— Two contradictions are found during two unit propagations causing the
search to backtrack to an earlier instantiation.

3 Using Variable Filtering to Narrow the Search Tree

The branching rules used in Satz are powered by the UPLA heuristic. The main
objective of using UPLA in Satz is to detect contradictions earlier or to find
a set of best branching variable candidates. In reality, Satz’s UPLA heuristic

104 Anbulagan et al.

B = 0;
For each free variable z;, do
Begin
let F' and F” be two copies of F
F' = UPLACF U{x;}); F” := UPLA(F" U{Z:});
If both F' and F” contain an empty clause then backtrack();
else if F' contains an empty clause then xz; := false; F :=F";
else if F” contains an empty clause then xz; := true; F :=F';
else
B := BU{z};
w(z;) :=dif f(F',F) and w(z;) :=dif f(F', F);
End;

For each variable z; € B, do M(x;) 1= w(&;) * w(x;) * 1024 4+ w(F;) + w(xs);
Branch on the free variable z; such that M(x;) is the highest.

Fig.1. The Satz Branching Rule

performs a series of variable filtering processes at each node as a static variable
filtering agency. We therefore term Satz’s UPLA heuristic a Static Variable
Filtering (SVF) heuristic, because it will only perform between one to three
filtering processes at each node (depending on the evaluation of PROP,(z)).
During the filtering process, some variables are assigned the value true or false
through a forced unit propagation when a contradiction occurs during another
unit propagation. Note that UPLA examines a free variable by performing two
unit propagations. This process will automatically reduce the size of sub-problem
and collects the (almost) best branching variable candidates at each node of
the search tree. In the empirical studies presented in [12, 13] the Satz solver
using UPLA was shown to outperform a range of other UP heuristic based DPL
procedures. It was concluded that the superior performance of Satz was due to
its greater use of variable filtering processes.

Our work is based on the insight that the size of a sub-problem during the
variable filtering process can be further reduced in the Satz- family of DPL pro-
cedures. Here, we propose a new heuristic called the Dynamic Variable Filtering
(DVF) heuristic that further filters the free variables and at the same time re-
duces the sub-problem size at each node until the filtering process is saturated.
We illustrate the new branching rule powered by the DVF heuristic in figure 2.

We expect this new heuristic to perform better than the UPLA heuristics in
terms of reducing the search tree size. To verify this, we carried out an empir-
ical study and modified the branching rule of the DPL procedure Satz215" for
our purpose. Four new DPL procedures based on the variable filtering heuristic
are proposed. Two of them (Satz215-0 and Satz215sT) are based on the SVF
heuristic, and the other two solvers (ssc34 and ssc355) are based on the DVF
heuristic.

! available from http://www.laria.u-picardie.fr/~cli/EnglishPage.html

Dynamic Variable Filtering for Hard Random 3-SAT Problems 105

Do
Finit = F; B :=0;
For each free variable x;, do
Begin
let F' and F” be two copies of F
F' i= UPLACF U{z;}); F” := UPLACF" U{z:});
If both F' and F” contain an empty clause then backtrack();
else if F' contains an empty clause then z; := false; F :=F";
else if F” contains an empty clause then z; := true; F :=F ;
else
B := BU{xz:};
w(x;) =dif f(F',F) and w(@;) :=dif f(F", F);
End;
Until (F = Finit);

For each variable z; € B, do M(xz;) := w(Z;) * w(x;) * 1024 + w(z;) + w(zs);
Branch on the free variable z; such that M(x;) is the highest.

Fig.2. The Dynamic Variable Filtering Branching Rule

Satz215-0. This is same as the Satz215 DPL procedure, except we examine
all free variables using the SVF heuristic without any restriction to the free
variables. This process is executed only once at each node.

Satz215sT. This is same as the Satz215 DPL procedure, except we refuse to
use the T parameter in the branching rule. This DPL procedure performs at
most three filtering processes for each variable at each node.

ssc34. This is same as the Satz215 DPL procedure, except we replace the
branching rule used in Satz215 with the DVF heuristic based branching rule. It
performs the variable filtering process until the sub-problem cannot be further
reduced at each node before a branching variable selected. In fact, ssc34 examines
the free variables many times using the UPLA heuristic at each node. One might
think that this saturation process is very costly, but it is not the case.

s§s¢355. Since ssc34 examines all free variables many times using the UPLA
heuristic at each node, we attempt to limit the number of free variables ex-
amined by only exploring the neighborhood variables of the current assigned
variable. For this purpose, we create the ssc355 DPL procedure by integrating
a simple Neighbourhood Variable Ordering (NVO) heuristic in ssc34. Bessiere
et. al. [2] proposed a formulation of a dynamic variable ordering heuristic in the
CSP domain that takes into account the properties of the neighborhood of the
variable. The main objective of our simple NVO heuristic in ss¢355 is to restrict
the number of variables examined by UPLA in the DVF heuristic.

106 Anbulagan et al.

8000 T T

¢ satz215

O satz215sT

70001 A satz215-0

* $5C34

O ssc355 ?

6000

o
=1
=1
=]
T

4000

5, 3000 -

avg. nb. of branching nodes

2000

1000

Y

0 & & & <+ 1 L 1 1 1
80 100 120 140 160 180 200 220 240 260 280 300 320

nb. of variables

Fig. 3. Mean search tree size of each DPL procedure as a function of n for hard
random 3-SAT problems at the ratio m/n=4.25

4 Comparative Experimental Results

We compare the four DPL procedures we introduced in the previous section
with Satz215 on a large sample of hard random 3-SAT problems generated by
using the method of Mitchell et. al. [16]. Given a set V of n Boolean variables
{x1, 22, ..., 2, }, we randomly generate m clauses of length 3. Each clause is pro-
duced by randomly choosing 3 variables from V and negating each with proba-
bility 0.5. Empirically, when the ratio m/n is near 4.25 for a 3-SAT problem F,
F is unsatisfiable with a probability 0.5 and is the most difficult to solve. We
vary n from 100 variables to 300 variables incrementing by 20, at ratio (m/n) =
4.25, with 1000 problems solved at each point by all the five DPL procedures.

Figure 3 shows the performance of five DPL procedures on all problem in-
stances, where the mean search tree size is computed from the number of branch-
ing nodes reported by each procedure. It illustrates that ssc355’s mean search
tree size is the smallest, e.g., for 300 variables, ssc355’s search tree consists of
2679 nodes, in contrast to Satz215’s search tree of 6634 nodes.

Figure 4 also illustrates that ssc355’s search tree size is smaller than the other
DPL procedures on the unsatisfiable problem instances. For example, on the hard
random unsatisfiable 3-SAT problems, with 300 variables, ssc355’s mean search
tree size consists of 4405 nodes, in contrast to Satz215’s mean search tree size of
10328 nodes. Also, the mean search tree size of ss¢355 achieves the approximate
optimal search tree size proposed by Li and Gérard in [15].

Three of the DPL procedures (Satz215, Satz215-0, and Satz215sT) integrate
the SVF heuristic. The comparative results presented in figures 3 and 4 show
that the mean search tree sizes of Satz215-0 and Satz215sT are smaller than

Dynamic Variable Filtering for Hard Random 3-SAT Problems 107

12000 T T T T T T T T

satz215
satz215sT %
satz215-0
ssC34 /
$5¢355 /

10000

O*D>OoC

8000

6000

avg. nb. of branching nodes

4000

2000

0 o o & & 4 I 1 L L L
80 100 120 140 160 180 200 220 240 260 280 300 320

nb. of variables

Fig. 4. Mean search tree size of each DPL procedure as a function of n for hard
random unsatisfiable 3-SAT problems at the ratio m/n=4.25

Satz215. This means that more reasoning at each node has reduced the search
tree size.

Overall, in terms of search tree size, the DVF heuristics used in ssc34 and
ss¢355 outperform the other SVF heuristic-based DPL procedures. This better
performance is explained because the DVF sub-problem at each node is explored
more fully to find a contradiction or to simply reduce the sub-problem size
through a unit propagation before selecting a best branching variable.

The integration of a simple NVO heuristic on top of DVF in ssc¢355 yields
a promising result compared to ssc34 (which only uses the DVF heuristic). In
terms of search tree size, the gain of ssc355 over ssc34 increases with the size of
the input problem.

Finally, figure 5 illustrates mean run-time of each DPL procedure on a Dual
Xeon PC with a 2.4 GHz CPU. At present our results show that Satz215 still
performs significantly better than the dynamic filtering heuristics in terms of
run-time. However we have not explored the potential gains that could result
from avoiding redundant UPLA propagations. A further improvement of the
NVO heuristic also can ameliorate promisingly the run-time of ssc355 DPL
procedure. This we leave to future work.

5 Related and Future Work

In addition to real world benchmark problems, hard random 3-SAT problems
are used for testing or comparing DPL procedures. Since hard random 3-SAT
problems are difficult to solve in an acceptable time when the number of variables
is greater than 500, a challenge to prove that a hard random 3-SAT problem with
700 variables is unsatisfiable, was put forward by Selman et. al. in IJCAT’97 [18].

108 Anbulagan et al.

O satz215

O satz215sT
al A satz215-0

® gscld

O s5c355

g p
g 6 e
& .-:,l'f
o 5 I}
£ W
1
E 4 i
g i
o e
3 ¥ S
/4 ’
2 P 4

Mﬁé
i - i A

- i I |
a0 100 120 140 160 180 200 220 240 260 280 ao0 3z0
nb. of variables

Fig.5. Mean run-time of each DPL procedure as a function of n for hard
random 3-SAT problems at the ratio m/n=4.25

To answer the challenge, Li and Gérard [15] have studied the limit of branch-
ing rules in DPL procedures for solving hard random unsatisfiable 3-SAT prob-
lems. After running an empirical study for more than five months, they suggested
in their paper that the current state-of-the-art DPL procedures are already close
to optimal for solving hard random unsatisfiable 3-SAT problems and that the
resolution of the challenge problem with 700 variables cannot be proved by
a branching rule based DPL procedure.

A final answer to the challenge was realised by Dubois and Dequen [6] with
their cn fs solver. This solver integrates a backbone search heuristic (introduced
by Monasson et. al. [17] in 1999) into a DPL-based branching rule. Dubois and
Dequen’s implementation allows the DPL procedure to solve hard random un-
satisfiable 3-SAT problems with 700 variables (12 problems solved) in a mean
run-time of 26 days using an AMD Athlon PC running at 1 GHz under a Linux
operating system. When solving hard random unsatisfiable 3-SAT problems with
300 variables (456 problems solved), cnfs’s mean search tree size consists of
12739 nodes, in contrast to satz214’s mean search tree size of 18480 nodes [0].
Although the cnfs solver can solve hard random unsatisfiable 3-SAT problems
with up to 700 variables, on the other hand its means search tree size is still
far from the approximate optimal mean search tree size calculated by Li and
Gérard [15].

After reviewing the results presented in [0, 15], we decided the first step in
our research would be to reduce the mean search size rather than looking for
a more efficient solver. As the result, we have developed the Dynamic Variable
Filtering (DVF) heuristic, for reinforcing the branching rule of a DPL procedure.
In effect, we further explore the open space between the UPLA heuristic process
and the MOMS heuristic process in Satz215. The results of our empirical study

Dynamic Variable Filtering for Hard Random 3-SAT Problems 109

show that DVF heuristic can achieve an optimal number of branching nodes as
presented in [15].

In the last stages of finishing this paper, we obtained the new more powerful
version of cnfs, the kenfs? solver. We ran kenfs on the same hard random
unsatisfiable 3-SAT problems with 300 variables used in our earlier study. As
aresult, ken fs’s mean search tree size came of 7418 nodes (compared to ssc355’s
mean search tree size of 4405 nodes) although kcn fs performs three times better
than ss¢355 in terms of run-time.

To further investigate the effectiveness of our DVF heuristics, we also com-
pared our techniques with the 2clseq solver [1] and O K solver [10]. 2clseq inte-
grates a UPLA heuristic, binary clause reasoning, using intelligent backtracking
and a pruneback technique. Hence it performs more reasoning in each node of the
search tree and proved very competitive with the other solvers during 2002 SAT
competition for solving real-world problems. The second procedure, OK solver,
integrates an adaptive density-based heuristics in its branching rule. In 2002
SAT competition, OK solver won both categories for the random benchmarks
(only satisfiable and all problems).

We compared ssc355 with 2clseq and O K solver on our hard random 3-SAT
problems with 300 variables. The preliminary results of this comparison show
that sse355 still performs significantly better than both solvers in terms of run-
time and search tree size. When solving the hard random satisfiable 3-SAT prob-
lem v300¢1275g4, the run-time of 2clseq and O K solver are 34.78 and 2.25 sec-
onds with search tree sizes consist of 683 and 2612 nodes respectively. In contrast,
$s¢355 solves the problem in 0.02 seconds with a search tree size of 48 nodes.
When running the hard random unsatisfiable 3-SAT problem v350¢1488¢255,
2clseq had no result after 6000 seconds, and OK solver solved the problem in
438 seconds with a search tree size of 275,159 nodes. Again ssc355 strongly out-
performed these techniques, solving the problem in 190 seconds with a search
tree size of 65,784 nodes.

The work presented in this paper is a first attempt at building an efficient
SAT solver than can approach an optimal branching rule. In principle, our re-
sults show DVF can obtain optimal results - hence, if the efficiency issues can be
addressed, DVF could prove to be a better heuristic than backbone search. In
our future work, we envisage at least three further improvements of our current
approach. Firstly, it is clear that savings can be made by avoiding redundant
unit propagation searches for variables that remain unchanged between itera-
tions of UPLA. The kind of benefits that we hope to obtain have already been
exploited in arc-consistency algorithms. Secondly, further improvements of the
NVO heuristic appear promising, as our first implementation is fairly simplistic.
Finally, we are also looking at integrating a backjumping technique into DVF,
exploiting the feature that backtracking only occurs during the UPLA process
in DVF, compared to Satz215, where backtracking can also occur during the
UP process.

2 available from http://www.laria.u-picardie.fr/~dequen /sat/

110 Anbulagan et al.

6 Conclusion

In this paper, we have proposed a new heuristic, Dynamic Variables Filtering
(DVF), for improving the performance of DPL-based procedures. In terms of
search tree size, our preliminary results already show that DVF heuristic out-
performs some of the best solvers in the area, while still remaining reasonable
efficient in terms of search time.

Our evidence further suggests that the branching rules integrated in DPL
procedures can obtain predicted optimal performance by using a DVF heuristic.
Finally, we anticipate that the efficiency of DVF can be improved by eliminating
the redundant unit propagation, improving the NVO heuristic and integrating
a backjumping technique.

References

[1] Bacchus, F. Enhancing Davis Putnam with Extended Binary Clause Reasoning.
In Proceedings of AAAT Conference, 2002, USA, pp. 613-619. 109
[2] Bessiere, C., Chmeiss, A., and Sais, L. Neighborhood-based Variable Ordering
Heuristics for the Constraint Satisfaction Problem. In Proceedings of Seventh
International Conference on Principles and Practice of Constraint Programming,
2001, Paphos, Cyprus, pp. 565-569. 105
[3] Cook, S.A. The Complezxity of Theorem Proving Procedures. In Proceedings of
3rd ACM Symp. on Theory of Computing, Ohio, 1971, pp. 151-158. 101
[4] Crawford, J. M., and Auton, L.D. Experimental Results on the Crossover Point
in Random 3SAT. Artificial Intelligence Journal, 1996, Vol. 81, no. 1-2. 101
[6] Davis, M., Logemann, G. and Loveland, D. A Machine Program for Theorem
Proving. Communication of ACM 5 (1962), pp. 394-397. 101
[6] Dubois, O., and Dequen, G. A Backbone-search Heuristic for Efficient Solving of
Hard 3-SAT Formulae. In Proceedings of 17th International Joint Conference on
Artificial Intelligence, 2001, Seattle, Washington, USA. 101, 108
[7] Freeman, J. W. Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. Dissertation, Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, PA, 1995. 101
[8] Hooker, J.N., Vinay, V. Branching Rules for Satisfiability. Journal of Automated
Reasoning, 15:359-383, 1995. 103
[9] Jeroslow, R., Wang, J. Solving Propositional Satisfiability Problems. Annals of
Mathematics and AI 1 (1990), pp. 167-187.
[10] Kullmann, O. Investigating the behaviour of a SAT solver on random formulas.
Submitted to Annals of Mathematics and AI, 2002. 109
[11] Le Berre, D. Ezploiting the Real Power of Unit Propagation Lookahead. In Pro-
ceedings of Workshop on the Theory and Applications of Satisfiability Testing,
2001, Boston University, MA, USA. 102
[12] Li, C.M., and Anbulagan. Heuristics Based on Unit Propagation for Satisfiabil-
ity Problems. In Proceedings of 15th International Joint Conference on Artificial
Intelligence, 1997, Nagoya, Aichi, Japan, pp. 366-371. 100, 101, 102, 104
[13] Li, C.M., and Anbulagan. Look-Ahead Versus Look-Back for Satisfiability Prob-
lems. In Proceedings of Third International Conference on Principles and Practice
of Constraint Programming, 1997, Schloss Hagenberg, Austria, pp. 341-355. 102,
104

(14]

[15]

[16]

Dynamic Variable Filtering for Hard Random 3-SAT Problems 111

Li, C.M. A Constraint-based Approach to Narrow Search Trees for Satisfiability.
Information Processing Letters, 71, 1999, pp. 75-80. 101, 102

Li, C.M., and Gérard, S. On the Limit of Branching Rules for Hard Random
Unsatisfiable 3-SAT. In Proceedings of 14th European Conference on Artificial
Intelligence, 2000, Berlin, Germany. 102, 106, 108, 109

Mitchell, D., Selman, B., and Levesque, H. Hard and FEasy Distributions of SAT
Problems. In Proceedings of 10th AAAT Conference, 1992, San Jose, CA, pp.
459-465. 106

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. Deter-
mining Computational Complexity for Characteristic ’Phase Transitions’. Nature,
400, 1999, pp. 133-137. 108

Selman, B., Kautz, H., and McAllester, D. Ten Challenges in Propositional Rea-
soning and Search. In Proceedings of 15th International Joint Conference on Ar-
tificial Intelligence, 1997, Nagoya, Aichi, Japan. 107

	Dynamic Variable Filtering for Hard Random 3-SAT Problems
	Introduction
	Using Variable Filtering to Narrow the Search Tree
	Comparative Experimental Results
	Related and Future Work
	Conclusion

