\ |

High Assurance
sServices
Computing

@ Springer

High Assurance Services Computing

Jing Dong - Raymond Paul - Liang-Jie Zhang
Editors

High Assurance Services
Computing

@ Springer

Editors

Jing Dong

Department of Computer Science
University of Texas, Dallas

2601 N. Floyd Road

P.O. Box 830688

Richardson TX 75083

USA

jdong @utdallas.edu

Raymond Paul
Department of Defense
4502 7th St. NE.,
Washington DC 20017
USA

raymond.paul @osd.mil

ISBN 978-0-387-87657-3
DOI 10.1007/978-0-387-87658-0

Liang-Jie Zhang

IBM Research

19 Skyline Dr.
Hawthorne NY 10532
USA
zhanglj@us.ibm.com

e-ISBN 978-0-387-87658-0

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009928694

(© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Table of Contents

Preface VIl

Chapter 1 Translucent Replication for Service Level Assurance..........c.ccuu.... 1
Vladimir Stantchev and Miroslaw Malek

Chapter 2 Trustworthiness Assessment Framework for Net-Centric
Systems 19
Raymond Paul, Jing Dong, I-Ling Yen, and Farokh Bastani

Chapter 3 A Trust Monitoring Architecture for Service-Based Software45
Mohammad Gias Uddin and Mohammad Zulkernine

Chapter 4 Human Interoperability Enterprise for High-Assurance
Systems 65
Raymond Paul, Stefania Brown-VanHoozer, and Arif Ghafoor

Chapter 5 Service Composition Quality Evaluation in SPICE Platform 89
Paolo Falcarin

Chapter 6 High-Assurance Service Systems 103
Jay Bayne

VI Table of Contents

Chapter 7 A Graph Grammar Approach to Behavior Verification
of Web Services 127
Chunying Zhao, Kang Zhang

Chapter 8§ A Formal Framework for Developing High Assurance Event
Driven Service-Oriented Systems 145
Manuel Peralta, Supratik Mukhpadhyay, and Ramesh Bharadwaj

Chapter 9 Towards A Dependable Software Paradigm
for Service-Oriented Computing 163
Xiaoxing Ma, S.C. Cheung, Chun Cao, Feng Xu, Jian Lu

Chapter 10 Developing Dependable Systems by Maximizing Component
Diversity 193
Jeff Tian, Suku Nair, LiGuo Huang, Nasser Alaeddine and Michael F. Siok

Chapter 11 High Assurance BPEL Process Models 219
Mark Robinson, Hui Shen, Jianwei Niu

Chapter 12 Specifying Enterprise Web-Oriented Architecture................... 241
Longji Tang, Yajing Zhao, Jing Dong

Chapter 13 Designing an SOA for P2P On-Demand Video Delivery 261
Zhenghua Fu, Jun-Jang Jeng, Hui Lei, and Chao Liang

Chapter 14 A Coverage Relationship Model for Test Case Selection
and Ranking for Multi-version Software 285
Wei-Tek Tsai, Xinyu Zhou, Raymond A. Paul, Yinong Chen, Xiaoying Bai

About the Editors 313

About the Authors 315

Index 323

Preface

Services computing is an emerging discipline cross-cutting the science, engi-
neering and technology. It bridges the gap between Business Services and IT Ser-
vices. The scope of services computing covers the whole lifecycle of services in-
novation research and practice that includes services modeling, creation,
deployment, discovery, composition, analysis, and management. The goal of ser-
vices computing is to facilitate the application of loosely-coupled services and
computing technology for building systems more efficiently and effectively. The
core technology suite includes Service-Oriented Architecture (SOA) and Web ser-
vices. SOA is a common platform for implementing large scale distributed appli-
cations by composing services, which are platform independent components run-
ning on different hosts of a network. It offers native capabilities, such as
publication, discovery, selection and binding for creating new applications by
combining services as basic building blocks. A repository of existing services in-
dependent of the underlying infrastructures can be discovered and composed in an
application. The requester and the provider exchange messages via the network
through standard protocols.

SOA is now being deployed in mission-critical applications in domains that in-
clude space, health-care, electronic commerce, telecommunication, and military.
Many critical systems require multiple high assurance, including reliability, safety,
dependability, security, and availability. Failures of such systems may cause the
loss of human lives and finance. For example, the reliability of aircraft/spacecraft
navigation and guidance control systems can affect human lives; the correctness
and timeliness of military command and control systems can be crucial to the suc-
cess of defense missions; the failure of a medical process-control system can cause
death or injury to the patient; the failure of a banking system can cause property
losses for many clients; the failure of a security management system in a network
server can cause chaos and result in financial or intellectual property losses; the
failure of railroad control systems can cause delays and subsequent financial

VI Preface

losses or can even lead to catastrophic life threatening failures. In modern human
society, our reliance on computer systems can be observed in our daily lives.
From the current trend, our reliance on high assurance systems will grow at an in-
creasing pace. Thus, there is a pressing need for developing computer systems
whose quality can be guaranteed to a high degree; otherwise, we will risk the well-
being of societies at the hands of computer hardware and software failures or mis-
uses by human intruders. Existing methods dealing with such constraints may be
not readily applied in service-oriented environment. Different from traditional
computer-based systems, services are typically third-part entities. There is no
standard way to define high assurance properties in service specifications. Service
interfaces normally focus on the descriptions of functional aspects, such as input,
output, pre/post conditions (IOPE). The high assurance properties of a service are
generally unclear or defined in an ad hoc manner in the service interfaces. This
poses new challenges on service discoveries with high assurance requirements.

A successful service needs to provide the required functionality and the neces-
sary Quality of Service (QoS). The QoS parameters are typically specified in ser-
vice level agreements (SLAs) that the service provider needs to guarantee and
their violation will be penalized appropriately. The QoS constraints that a service
provider guarantees may include run-time properties, such as timeliness, transac-
tion rate, and availability, as well as design-time properties, such as language of
service and compliance. Such high assurance guarantees are difficult to ensure
when services are spatially distributed over a network subject to active attacks,
network congestion, and link delays, which may pose a formidable challenge in
delivering services that meet the SLAs.

There are a number of important issues in high assurance services computing:

e How to describe, assess, and ensure Quality of Service in service-oriented sys-
tems?

¢ How to manage and evaluate dependability of service compositions from indi-
vidual services?

e How to analyze and assess the trustworthiness of service requestors and service
providers?

e How to facilitate service creations and executions?

e How to verify service behavior and service level agreement?

e How to engineer service-oriented systems?

e How to test service applications?

This book is a collection of fourteen chapters solving some of these problems.

About This Volume

Chapter 1 defines separate levels of Quality of Service (QoS) assurance within
a service-oriented architecture. Each of these levels includes replication options

Preface IX

that can bring substantial benefits toward high assurance of run-time related non-
functional properties (NFP) in complex environments. Experimental results based
on architectural translucency in health care applications showed an increase of
50% on the NFP levels with more stable QoS levels. The NFP representation has
been formalized for automating runtime assurance and matching between required
and provided QoS levels. System reconfiguration techniques for the different lev-
els within an SOA will dynamically adapt the architecture so that it provides QoS
assurance at different loads.

Chapter 2 considers the challenges of assessing highly critical net-centric sys-
tems. A trustworthiness ontology is developed to capture the trustworthiness as-
pects and their correlations as well as to model various classes of system entities
and their integrations. The ontology provides information to guide the trustworthi-
ness analysis and data collection. Based on the ontology, a trustworthiness as-
sessment framework is developed. In the framework, systematic steps are formu-
lated to achieve trustworthiness assessments. Techniques and tools to perform the
assessments in each step are incorporated in the ontology to allow the actual
analysis and derivation of assessment results. A holistic assessment technique is
developed to provide a single overall measure of the trustworthiness of a system
or a subsystem.

Chapter 3 presents a monitoring architecture for managing trust rules in service
interactions. The trust rules identify the contexts of trust concerns and snapshot
system events encapsulating a service outcome that is crucial to the target system.
The proposed architecture, called Trust Architecture for Monitoring, may reside in
each service provider, which allows the analysis of the trustworthiness of users
based on trust rules and calculation schemes. A service requestor is penalized for
the violation of trust rules and rewarded otherwise, which thus facilitates the quan-
tification of its trustworthiness. Incorporating the recommendations from similar
service providers may help collaborative decision making. The performance over-
head of the architecture has been evaluated based on the monitoring of a prototype
trust-aware file-sharing grid.

Chapter 4 addresses the key policy challenges of human interoperability enter-
prise (HIE) and highlights major steps that can lead to the development of a holis-
tic interoperability policy framework for engineering high-assurance systems. The
human performance criteria for high-assurance and trustworthy systems are elabo-
rated. The HIE systems are designed by integrating core technology components
and methodologies drawn from the area of human cognitive engineering. The key
challenges and elicit solutions of HIE systems are closely related to the techno-
logical areas including Human-Centered Computing, Information, Knowledge and
Intelligence Management, service-oriented architecture, and behavioral sciences.

Chapter 5 describes the architecture of the Service Execution Environment that
hides the complexity of the communication environment and the Service Creation
Environment to help service developer in evaluating the quality of an orchestra-
tion of telecom-IT services. Both static and dynamic non-functional properties are
aggregated by the Aggregator service that calculates the overall aggregated non-

X Preface

functional properties of a service composition designed by the developer, relying
also on the Monitor manager which provides live values of dynamic non-
functional properties such as response time.

Chapter 6 introduces a performance measurement framework for cyberphysical
systems. The framework includes a cyberspatial reference model for establishing
the identity and location of servers and clients in distributed high-assurance ser-
vice systems. It also defines a set of service performance indices to measure the
reliability, availability, safety, security and timeliness properties. An application
neutral, yet operational definition of value useful in high assurance service sys-
tems is developed for defining their respective value propositions.

Chapter 7 applies graph grammars for verifying the behavior of service-
oriented systems. The behavior verification problem is cast to a visual language
parsing problem. A behavior graph is parsed with user-specified rule-based con-
straints/properties expressed by a graph grammar. A parsing result indicates
whether the observed behavior satisfies its requirements or not. A parsing error
represents a potential problem in the service behavior. The approach allows devel-
opers to check the acceptable sequence of message exchanges between services
confirming to some requirements/specifications.

Chapter 8 provides a distributed service-oriented asynchronous framework in
an event-driven formal synchronous programming environment. This model-
driven framework is based on a synchronous programming language SOL (Secure
Operations Language) that has capabilities of handling service invocations asyn-
chronously and provides strong typing to ensure enforcement of information flow
and security policies. The clients' requirements and the service level agreements
can be ensured in the service-oriented systems that have been formally verified.
An infrastructure for deploying and protecting time- and mission-critical applica-
tions on a distributed computing platform is developed especially in a hostile
computing environment, such as the Internet, where critical information is con-
veyed to principals in a manner that is secure, safe, timely, and reliable.

Chapter 9 offers a coordination model for building dynamically adaptive ser-
vice oriented systems. Each service is situated in and coordinated by an active ar-
chitectural context, which mediates the interactions among the services. The archi-
tecture of service oriented applications is self-adaptive for bridging the gaps
between environment, system and application goals with an ontology-based ap-
proach. An access control model is proposed for secure service coordination logic
as well as keeping service autonomy discretionarily with a decentralized authori-
zation mechanism. Three classes of trust relationships are also identified for a trust
management framework to help the understanding and assurance of the trustwor-
thiness of service oriented applications.

Chapter 10 develops a generalized and comprehensive framework to evaluate
and maximize diversity for general service-oriented systems. The dependability at-
tributes of individual service components under diverse operational conditions are
evaluated. The internal assessments of services are linked to their external de-
pendability attributes. The preferences of a specific set of stakeholders can also be

Preface XI

used to assess the relative importance and trade-off among dependability attrib-
utes. The evaluation framework also includes an overall methodology that maxi-
mizes system diversity using a mathematical optimization technique for ensuring
system dependability via diversity maximization that combines collective
strengths of individual services while avoid, complement, or tolerate individual
flaws or weaknesses.

Chapter 11 transforms the BPEL processes into Unified Modeling Language
(UML) sequence diagrams for consistency analysis. Since sequence diagrams are
intuitive and show temporal-based execution naturally, they help to ease the learn-
ing curve of BPEL’s nomenclature and reduce errors. Two examples have demon-
strated the discovery of certain errors in the sequence diagrams with tool support.

Chapter 12 specifies both structurally and behaviorally the Enterprise Web-
Oriented Architecture (EWOA) and analyzes its software quality attributes. The
specification of the EWOA is based on a generic model of the Enterprise Service-
Oriented Architecture. The EWOA style consists of a set of design principals
based on REST and Web 2.0, a set of architectural elements of infrastructure,
management, process, and a set of software quality attributes. Based on the analy-
sis of the security and manageability issues of EWOA, the pure RESTful system
architecture with RESTful QoS governance and a hybrid approach with both
REST and SOAP for enterprise are proposed.

Chapter 13 outlines a service oriented architecture for the Peer-Assisted Con-
tenT Service (PACTS) that is a video on demand streaming system. The PACTS
organizes elements of traditional video streaming and peer to peer computing into
loosely-coupled composable middleware services and distributing them among
participating entities for high-quality low-cost video streaming at a large scale and
in real time. The implementation of PACTS has demonstrates effectively offload
server’s bandwidth demand without sacrificing the service quality and in dynamic
settings with system churns. It shows significantly reduces bandwidth utilization
at the server by leveraging peer assistance. The service level agreement specifica-
tion is modeled to differentiate QoS to end users based on their bandwidth contri-
butions to the system to derive the minimum and maximum QoS level given a
bandwidth budget at the server side.

Chapter 14 proposes a Model-based Adaptive Test (MAT) for multi-versioned
software based on the Coverage Relationship Model (CRM) for case selection and
ranking technique to eliminate redundant test cases and rank the test cases accord-
ing to their potency and coverage. It can be applied in various domains, such as
web service group testing, n-version applications, regression testing, and specifi-
cation-based application testing. Two adaptive test cases ranking algorithms are
provided by using the coverage probability. Experiments are conducted using the
proposed techniques. The experiment results indicate that the CRM-based test
case selection algorithm can eliminate redundant test cases while maintaining the
quality and effectiveness of testing.

XII Preface

This book is intended particularly for practitioners, researchers, and scientists
in services computing, high assurance system engineering, dependable and secure
systems, and software engineering. The book can also be used either as a textbook
for advanced undergraduate or graduate students in a software engineering or a
services computing course, or as a reference book for advanced training courses in
the field.

Acknowledgements

We would like to take this opportunity to express our sincere appreciation to all
the authors for their contributions and cooperation, and to all the reviewers for
their support and professionalism. We are grateful to Springer Publishing Editor
Susan Lagerstrom-Fife and her assistant Sharon Palleschi for their assistance in
publishing this volume.

Jing Dong
Raymond A. Paul
Liang-Jie Zhang

Chapter 1

Translucent Replication for Service Level
Assurance

Vladimir Stantchev*! and Miroslaw Malek**

* International Computer Science Institute, Berkeley, California (vstantch@icsi.berkeley.edu)

** Humboldt-University at Berlin, Germany

Abstract: Web services are emerging as the technology of choice for providing
functionality in distributed computing environments. They facilitate the integra-
tion of different systems to seamless IT supporting infrastructure for business
processes. Designing a service-oriented architecture (SOA) for this task provides a
set of technical services and composition techniques that offer business services
from them. There are two basic aspects of a successful service offering: to provide
the needed functionality and to provide the needed Quality of Service (QoS). Mis-
sion-critical applications in health care require high and stable QoS levels. The
complexity of different web service platforms and integration aspects make the
high assurance of such run-time related nonfunctional properties (NFPs) a non-
trivial task. Experimental approaches such as architectural translucency can pro-
vide better understanding of optimized reconfigurations and assure high and stable
QoS levels in mission-critical clinical environments.

1. Introduction

Web services are emerging as a dominating technology for providing and combin-
ing functionality in distributed systems. A service-oriented architecture (SOA) of-
fers native capabilities, such as publication, discovery, selection and binding [1].
Since services are basic building blocks for the creation of new applications, the
area of composite services is introduced on top of native capabilities. It governs
the way applications are developed from basic services. Here, richer interface de-

! Vladimir Stantchev is also a senior lecturer at the Fachhochschule fuer Oekonomie und
Management in Berlin, Germany

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_1, © Springer Science+Business Media, LLC 2009

2 V. Stantchev and M. Malek

finitions than the Web Service Description Language (WSDL) are needed and
they can be provided in the form of contracts [2, 3].

There are two basic aspects of a successful service offering: to provide the
needed functionality and to provide the needed Quality of Service (QoS). QoS pa-
rameters are part of the nonfunctional properties (NFPs) of a service, typically
specified in service level agreements (SLAs). We distinguish between runtime re-
lated and design-time related NFPs. Run-time related NFPs are performance
oriented. Examples are response time, transaction rate, availability. Design-time
related NFPs such as language of service and compliance are typically set during
design time and do not change during runtime. Run-time related NFPs can change
during runtime when service usage patterns differ (times of extensive usage by
many users are followed by times of rare usage), or when failures occur. Such
failures can occur within the service, as well as in the network components that lie
between user and service. NFPs and QoS are regarded (together with semantics)
as topics that encompass all three levels of services within an SOA (basic services,
composite services, managed services) [1].

Formalization and specification of NFPs and their SLAs is currently a very ac-
tive research field. The enforcement of these levels for runtime-related NFPs can-
not be done automatically a priori, due to the changes in service usage and net-
work availability. An approach to dynamically adapt service performance to these
changes can ensure continuous meeting of service levels. Providing such dynami-
cally reconfigurable runtime architectures is regarded as one of the main research
challenges in the area of service foundations [1]. Such approach should employ
service reconfiguration at runtime, as changes in source code of a service are not a
feasible option. One approach to identify possible reconfigurations in an SOA and
evaluate their implication is called architectural translucency [4]. It describes the
notion that different levels in an SOA can have different implications to service
levels of NFPs and that understanding these implications is key to provide service
level assurance. A central aspect of this approach is to evaluate different replica-
tion configurations at the operating system (OS) and serviceware (SW) level and
how they affect web service performance.

Health care applications often require high and stable QoS levels. This is particu-
larly true for clinical environments where mission-critical IT systems support life-
saving activities.

In order to apply architectural translucency to address high assurance of NFPs
in such clinical environments, several questions arise. First, what is the relation
between replication and assured service levels, especially concerning runtime re-
lated NFPs (Section 2) and how can we formally represent performance aspects
(Section 3). Second, what methods are well suited to research this relation and to
recommend optimized replication configurations (Section 4). Finally, what are the
possibilities to integrate automated assurance of service levels in a clinical envi-
ronment based on these recommendations (Section 5).

1 Translucent Replication for Service Level Assurance 3

2. Service Level Assurance of Performance

This section describes the effect of web service replication on performance,
presents architectural translucency as approach to decide optimized reconfigura-
tions and the importance of the OS and SW levels as places for possible replica-
tions.

2.1 Replication and Performance

Performance, more specifically transaction rate, is defined as the system output
(d) that represents the number of successfully served requests from a total of in-
put z(d) requests during a period of time d. This is a generalized view of the equa-
tion model presented in [5], where it is referred to as throughput Xa.

The performance of a serial composed service chain is determined by the ser-
vice with the lowest performance. If that service is Service N then its performance
can be defined as follows:

w'_S',.-;~z.'if.‘t?-?\: - f_f;‘(;}‘t‘f(.t'J\f (f 1)

w

The performance of a serial composed service chain that includes Service N
would be:

ServiceChawn < fSL-*J'c'ir..‘t?.-\"(t))

b/

—_—

The performance of replicated composed service chain that includes Service N
would be:

,ServiceChain _~ ¢
W ~

i 0 f,f\'r_:‘r‘i."z-t"t"-'\"(

< 2% t1)

This definition corresponds to transaction rate as NFP.

Another typical run-time related NFP is response time. The average response
time can be derived from the transaction rate as follows:

4 V. Stantchev and M. Malek

RT:

vg —

Therefore, replication has advantageous effects on service chain performance
when no replica synchronization is required. This applies to transaction rate and
response time as NFPs in a SOA.

The traditional view of availability is as a binary metric that describes status.
Status can be "up" or "down" at a single point of time. A well-known extension is
to compute the percentage of time, on average, that a system is available during a
certain period. This results in statements where a system is described as having
99.99% availability, for example.

There are several extended definitions of availability that address the inherent
limitations of this definition — availability should be considered as a spectrum, ra-
ther as a binary metric. It should also reflect QoS aspects. One possibility is to
measure availability by examining variations in system QoS metrics over time [6].
Therefore, assurance of stable QoS metrics leads to better availability.

2.2 Architectural Translucency

The complexity involved in providing a single web service is often underesti-
mated. A look at hardware platforms, even commodity hardware, reveals complex
microprocessors and processing architecture. Standard OSs are far away from mi-
crokernel designs and contain a large number of OS extensions. These are called
modules in a Linux system and drivers in a Windows system. Beside typical de-
vice drivers, extensions include network protocol implementations, file systems
and virus detectors. Typical component environments such as .NET and J2EE of-
ten serve as the middleware for providing web services [7], here referred to as ser-
viceware. A look at the application programming interfaces of these environments
reveals their complexity.

One general problem in such complex environments is where to introduce a
certain measure (e.g., replication), so that the system can assure optimized per-
formance at certain loads.

Much work has been done in the area of QoS-aware web service discovery [8],
QoS-aware platforms and middleware [9,10,11,12], and context-aware services
[13]. However, all of these approaches do not address assurance of service levels
by a single service, but rather deal with the composition of services where aggre-
gated NFP levels would satisfy a specific requirement.

The existing standards for specification of QoS characteristics in a service-
oriented environment can be grouped according to their main focus: software de-
sign/process description (e.g. UML Profile for QoS and QML - QoS Modeling

1 Translucent Replication for Service Level Assurance 5

Language) [14], service/component description (e.g. WS-Policy) and SLA-centric
approaches (e.g. WSLA - Web Service Level Agreements [15], WSOL - Web
Service Offerings Language [16], SLAng - Service Level Agreement definition
language [17] and WS-Agreement [18]).

Extensive research concerning NFPs exists in the field of CORBA (Common
Object Request Broker Architecture), particularly in the areas of real-time support
[19,20], replication as approach for dependability [21,22,23,24], adaptivity and
reflection [25,26], as well as mobility [27,28]. Similar approaches involving repli-
cation have been proposed for J2EE-based web services [29,30,31].

To the best of the authors’ knowledge, there are no other published works that
address the question where and how an optimized reconfiguration can be intro-
duced in the complex of hardware, OS and component environment in order to op-
timize the NFPs of web services. Of particular interest is to evaluate whether re-
configurations at one level are generally more advantageous than others. This is
the main objective of architectural translucency as an approach for service level
improvement and assurance. The approach is an extension of architectural ap-
proaches that aim to improve NFPs in one location, e.g., reliability at the OS level
[32], scalability by clustering of web servers [33] or email servers, as well as in-
troducing software RAID approaches [6]. Architectural translucency defines le-
vels that encompass these approaches and compares replication configurations at
the different levels. These levels are: hardware, operating system and serviceware.

Failures at the network level lead to network partitions. There is currently no
convincing way to mathematically model network partitions [34]. Furthermore, it
is NP-hard to derive a partition model from link and node failure models [35].
Currently, architectural translucency does not address questions of network avail-
ability and performance. Nevertheless, there are several promising approaches that
can be combined with architectural translucency in order to incorporate network
availability in overall availability of distributed systems. One possible way is to
incorporate network failures in availability metrics that define Avail j,,, = Avail,,,.
workXAvailg,,i.. [34]. Better assignment of object replicas to nodes can further im-
prove availability in such settings [36].

2.3 Experimental Computer Science

Architectural translucency can be classified in the field of experimental computer
science [37]. There are three key ideas in experimental computer science — a hypo-
thesis to be tested, an apparatus to be measured, and systematic analysis of the da-
ta to see whether it supports the hypothesis [37]. The hypothesis is that replica-
tions at different levels and in different ways have different effect on web service
run-time related NFPs (specifically performance). The apparatus consists of typi-
cal platforms for web services (Windows Server with .NET and Internet Informa-
tion Server (IIS), UNIX with WebSphere) and web service benchmarks. Tools like

6 V. Stantchev and M. Malek

Microsoft Application Center Test (ACT) and HP LoadRunner allow for auto-
mated testing of web services during long periods and with different loads. They
also facilitate the gathering of large amounts of test data. Statistical tools such as
SPSS [38] and R [39] are well suited to further analyze this data.

3. Performance Models

Some approaches to model performance-related aspects of a system are described
in [40,41,42,43]. One promising approach to analytically model multi-tier Internet
applications was recently published in [44]. The model is based on a network of
queues where the queues represent different application tiers. This research effort
is similar to efforts of Kounev and Buchmann [45] and, more recently, Bennani
and Menasce [46]. The second work is based on previous research published in
[47,5,48,49,50]. Kounev and Buchmann also use a network of queues to predict
performance of a specific two tier application and solve the model numerically us-
ing existing analysis software. Bennani and Menasce model a multi-tier Internet
service that serves multiple types of transactions. The model is again based on a
network of queues with customers belonging to multiple classes.

There are some other recent efforts to model multitier applications. These are
often extensions of single-tier models. One approach [51] considers server provi-
sioning only for the Java application tier and uses an M/G/1/PS model for each
server in this particular tier. Another approach [52] models the same tier as a
G/G/N queue. Other works have modeled an entire multi-tier application using a
single queue (e.g., a M/GI/1/PS queue in [53]).

Various works describe complex queuing models. Such models can capture si-
multaneous resource demands and parallel subpaths within a tier of a multitier ap-
plication. One example is Layered Queuing Networks (LQNs). They are an adap-
tation of Extended Queuing Networks which account for the fact that software
servers run atop of other layers of servers, thus giving complex combinations of
simultaneous resource requests [54,55,56,57,58]. The focus of these works lies
primarily on Enterprise Java Beans-based application tiers.

Extensive work exists in the area of modeling of single-tier Internet applica-
tions, most commonly HTTP servers. One of the early works [59] introduced a
network of four queues to model static HTTP servers. Two of the queues model
the web server, and two — the Internet communication network. Another approach
[60] also presented a queuing model and related average response time to availa-
ble resources. A GPS-based (Generalized Processor Sharing) queuing model of a
single resource (e.g., CPU) at a web server was proposed in [61,62]. A G/G/1
queuing model was suggested in [63], a M/M/1 queuing model to compute web
request response times — in [64]. One web server model with performance control
as objective was introduced in [65]. Menasce [66] presented in 2003 a combina-
tion of a Markov chain and a queuing network model, an idea originally presented

1 Translucent Replication for Service Level Assurance 7

in [67]. Despite these tremendous developments such models still cannot fully re-
flect the complexity of the three layers of web service platforms concerning NFPs.
Therefore, experimental methods can help to further enhance our knowledge of
optimized configurations in such complex settings.

4. Translucent Replication

In service-oriented computing (SOC) a node receives a stream of requests,
processes them and sends back a stream of results. From an operating system point
of view there exist two general strategies for request processing — threaded request
processing and event-driven request processing. There are two questions that arc-
hitectural translucency can address in this context:

1. Are there ways to introduce (or alter default) replication settings at the OS and
SW level?

2. Can a system assure optimized performance (or other QoS) by reconfiguring
such OS or SW settings?

4.1 Threaded Request Processing

When implementing pure threaded request processing an OS creates a thread for
each client request. The whole request and maybe its subsequent ones from the
same client are processed in the context of this newly created thread. This ap-
proach offers good parallelization of request processing and good utilization of
available resources. Main disadvantage is the large overhead of the thread life-
cycle (creation, management, deletion). Modern OSs address this by employing
thread pools — a specific number of request processing threads are created in ad-
vance and left idle. The OS can then dynamically assign them to incoming re-
quests. Implementations differ in handling new requests if all worker threads are
busy.

4.2 Event-driven Request Processing

With pure event-driven request processing the OS processes all requests within a
single worker thread. Arriving requests are stored in a queue which is used as in-
put for the worker thread. The worker fetches and processes the requests one at a
time. The per request overhead here is minimal (managing the request queue) and
a queuing policy with request priorities can be introduced. The approach is never-

8 V. Stantchev and M. Malek

theless contradictory with a key goal of architectural translucency — to ensure high
resource utilization. The low degree of parallelism can result in longer idle times.

4.3 Thread and Process Replication

At operating system level there are two general ways for functional replication —
replication of threads and replication of processes. While in the former a node
creates a new thread to process a client request, in the latter it creates a new
process to handle an incoming request. Generally, it can be assumed that a per-
thread replication should be more favorable to performance as per-process replica-
tion, as the overhead of process management is larger from an OS point of view.
The research of this hypothesis requires knowledge about the mechanisms to con-
trol this type of replication at the OS level of typical platforms for web services.

4.4 Levels

The hypothesis is that there are different levels (HW, OS, SW) where a service
provider can introduce replication and different ways to replicate at each level.
Furthermore, there are differences in web service performance when the provider
applies them. The objective is to define these different ways of replication and
find reconfiguration techniques for them. High assurance during runtime often
makes hardware changes unfeasible or costly. Therefore, in this chapter we focus
on architectural translucency aspects at the OS and SW level.

4.4.1 Operating System Level

When working with typical OS/Middleware configurations for SOC (Windows
Server 2003 with IIS 6 and the .NET Framework, or UNIX and IBM WebSphere)
a service provider has to consider several specifics.

Pure threaded or event-driven implementations are rare. There are different de-
sign patterns for hybrid implementations (staged request processing, thread pools,
reactor pattern).

Windows 2003 with IIS 6 uses the thread pools pattern — when deploying a
web service in IIS 6 it creates one process for the service that also contains a num-
ber of precreated threads. While IIS 5 allowed only changing the number of these
threads per web service process (number specified in the configuration file ma-
chine.config), IIS 6 allows also specifying the number of process replicas to serve
multiple requests. Furthermore, IIS 6 ignores threading parameters known from
IIS 5 such as maxWorkerThreads and minFreeThreads, as threading optimiza-

1 Translucent Replication for Service Level Assurance 9

tion is automated. A test of replication alternatives at the OS level involves speci-
fying a higher number of process replicas for a web service (see Figure 1).
WebSphere also uses the tread pools pattern; configuration settings are accessible
via the application server menu. The menu item Thread-Pools contains an over-
view of the existing thread pools within the application server. By selecting Web
Container the specific parameters of the thread pool can be configured. The set-
tings for processes and the Java Virtual Machine (JVM) are accessible in the
group Java and Process Management, menu Process Definition.

Per-thread Replication

Service Process
‘ Thread Replical ‘
‘ Thread Replica ... ‘
Requests Responses
‘ Thread Replica ... ‘
‘ Thread Replica n ‘

Per-process Replication

Service Process Replica 1
Thread Replica 1

‘ Thread Replica n ‘

Requests - -
Service Process Replica 2
‘ Thread Replica 1 ‘
‘ Thread Replica n ‘

Fig. 1. Replication at OS Level: Per-process Replication vs. Per-thread Replication

Responses

Two Process Replicas

One P Replica
10 -~
= Advantage
3 I
I e
o/ I I I I I
0 10 20 30 40 50

Requests (simultaneous)

Fig. 2. Replication at OS Level: Advantage of Per-process Replication vs. Per-thread Replication

10 V. Stantchev and M. Malek

Tests have demonstrated that having two process replicas per web service in-
stead of one can lead to throughput increases of up to 50% under higher loads
(more than 40 simultaneous client requests, see Figure 2). This applies to services
that are already optimized using asynchronous requests and minimizing need for
exclusive hardware access (e.g., hard disk). Performance is also far more stable
with confidence intervals of 99%.

4.4.2 Serviceware Level

Nodes in SOC typically use an application server to manage and host services.
Such application server corresponds to the serviceware level of the presented ap-
proach. It simplifies generic service management tasks, e.g., service configuration,
deployment, connection (with other services) or monitoring. These tasks are often
done using service containers.

Services within a service container can be composed using two general struc-
tures: direct composition and composition via a service bus. Direct composition of
services within a service container resembles the component programming para-
digm: services are explicitly connected with other required services at deployment
time. As precondition the required services must be available. The service bus
concept connects all deployed services to a central bus which is responsible for
request routing to the services. This allows more complex interactions such as the
publish/subscribe approach known from enterprise application integration.

When looking at replication at the serviceware level there are two basic alterna-
tives — replication of service containers (see Figure 3) or replication of services
within service containers (see Figure 4).

Service Container Replica 1

[semeer |
1

!

Service Container Replica 2

==
Il

!

Fig. 3. Replication of a Service Container

1 Translucent Replication for Service Level Assurance 11

Service Container

Service 1 Replica 1

Service 1 Replica 2

Service 2 Replica 1
Service 2 Replica 2

Service 3 Replica 1

Service 3 Replica 2

Fig. 4. Replication of Services within a Service Container

150 200 250
I I I

100
I

Duration in ms

Level of Assured
B f S O U I k * Performance | __
w) F Ll T L !
o
T T T T T
0 5000 10000 15000 20000

Number of Requests

Fig. 5. High Assurance through Serviceware Replication

From an object-oriented point of view both these alternatives can be imple-
mented by instantiating new service or container objects. An objective of architec-
tural translucency is to allow for such reconfigurations without reprogramming.

12 V. Stantchev and M. Malek

When dealing with replication at the serviceware level using WebSphere, the
question is how to distribute instances in different Web Containers (Web Contain-
ers serve as service containers in WebSphere). Possible ways are to use another
main context or to change the main context manually within the EARs. Manual
change is done by editing the file application.xml in the META-INF directory.
The service provider has to edit the pairs of names so that there is no match within
a pair, especially concerning the elements display-name, web-uri and context-
root. Names of web archive (WAR) files also have to be adapted accordingly be-
fore packing the EAR with jar.

Our results here show distinct performance advantages for replication within a
service container as compared to replication of service containers. Furthermore,
when we focus on aspects of high assurance we observe substantially higher con-
fidence intervals in performance stability, as shown exemplarily in Figure 5. The
required response time (30ms) is assured for all but 16 requests from 22 000 re-
quests overall, resulting in an assurance rate higher than 99.9 percent. Our frame-
work deals also with these delayed requests by a resubmission after a certain time-
frame expires.

5. High Assurance in the Operating Room

The application scenario focuses on the surgical sector. It is not only one of the
largest cost factors in health care but also a place where failures to provide timely
needed information can be perilous, endangering life and health of a patient.

Pre- and postoperative processes are key factor for the effective and safe utili-
zation of the surgical sector.

5.1 Perioperative and Postoperative Processes

The perioperative processes start with a notification from an operating room nurse
or an anesthesia nurse, that the staff should transport the next patient to the operat-
ing room. Then a transport service or a nurse moves the patient from the ward to
the operating room area. In the main registration area clinicians transfer the patient
from the ward bed to an operating room table. Afterward the patient resides in the
induction area, where he is anesthetized. Then clinicians move the patient to the
operating room, where the preparation for the operation starts, for example opera-
tion specific bedding, sterile coverage etc. The surgery starts with the cut and fi-
nishes with the suture. After the surgery clinicians transport the patient to the post
anesthesia recovery unit, where he is moved again to the ward bed and recovers
from anesthesia. After the recovery the staff transports the patient back to the
ward.

1 Translucent Replication for Service Level Assurance 13

There is an extensive usage and movement of things (devices, instruments,
beds) related with these processes. Furthermore, such devices and instruments
need a preparation (e.g., disinfection) prior to usage. Proximity of clinicians to
such things typically indicates intended or current usage. Therefore, position in-
formation is a key input for the planning and steering process.

Furthermore, there are high requirements regarding performance and other
NFPs that the IT infrastructure needs to satisfy.

5.2 Technology Environment and Architectural Approach

There exist a variety of position sensing systems than are suited for deployment in
such environments [68]. An integration of such system, together with a hospital
information system (HIS) and enterprise resource planning system (ERP) can pro-
vide the needed functionality to optimize surgical processes.

Figure 6 shows our integration approach within an SOA. Here the WLAN posi-
tioning system, the HIS and the ERP system are integrated in the SOA with wrap-
pers that provide web service interfaces to the enterprise service bus (ESB). Clini-
cians are using Tablet PCs as mobile devices; Devices and patients are equipped
with WLAN tags.

The usage of an SOA in such mission-critical environments depends heavily on
the high assurance of run-time related NFPs. For example, data about position of
monitored objects (more than 10000) has to be available within 5 seconds. The AT
engine is responsible for service QoS assurance by monitoring and management.
In a first step, it measures performance of services in their standard configurations
at the OS and serviceware levels. We then import the QoS requirements and eva-
luate them. We presented a structure for their formalization in [69]. Using these
formalized requirements, the AT engine configures the proper settings at each ser-
vice platform. During runtime, when the engine notices that for example a service
is experiencing higher loads, it dynamically reconfigures the replication settings of
the service platform to further provide the expected QoS.

Representation and further information processing are depicted in the upper
part of the figure. The system provides portal-based access to process-related in-
formation. Examples are electronic patient records (EPRs) or case definitions that
are extracted from the HIS and visualized on the Tablet PC. Which patient record
or case definition is visualized depends on the current location of the Tablet PC
and otherWLAN-enabled objects that surround it (e.g., patient tags).

Furthermore, the system offers more complex planning, steering and evaluation
functions. These are provided by composite services.

14 V. Stantchev and M. Malek

Management y
Cockplt ,

ice orch: tion-based
h ustom ;?raﬁmsi

Enterprise Service Bus

Portal-based Information

8] (9] @] T Y O O
Q O O © 0O 0 0O

WS Wrapper

WS Wrapper WS Wrapper

AT Engine
Position
Sensing

Fig. 6. Architectural view of the solution. HIS - hospital information system, ERP - enterprise
resource planning system, AT - architectural translucency

6. Summary

Mission-critical environments in clinics require high assurance of performance
and other run-time related NFPs. Typical platforms for providing web services are
complex and hardly predictable. Seamless IT support of processes often requires
integration of different off-the-shelf systems such as HIS and ERP. Location
awareness can optimize usage planning, monitoring and steering of resources in
clinical environments. Position sensing systems based on radio technology (e.g.,
RFID, WLAN) provide such information and are key components of clinical IT
support. The design of an SOA is a promising approach to integrate these different
systems. Such integration typically requires the development of web service
wrappers around the interfaces of the systems and leads to further increases in
complexity. This makes QoS assurance even more compelling. A definition and
separation of levels within an SOA, as well as a look at replication options at these
levels can bring substantial benefits toward high assurance of run-time related
NFPs in such complex environments. Experimental approaches such as architec-
tural translucency are well suited for this task and can increase assured NFP levels
by 50%. They can also provide more stable QoS levels.

Automated run time assurance further requires formalization of NFP represen-
tation and matching between required and provided QoS levels. Furthermore, au-
tomated assurance systems need to provide integrated system reconfiguration

1 Translucent Replication for Service Level Assurance 15

techniques for the different levels within an SOA. Such run time reconfiguration
will dynamically adapt the architecture so that it provides QoS assurance at differ-
ent loads.

References

[1] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. Computer, 40(11):38-45, Nov.
2007.

[2] Nikola Milanovic and Miroslaw Malek. Current solutions for web service composition. IEEE
Internet Computing, 8(6):51-59, 2004.

[3] Francisco Curbera. Component contracts in service-oriented architectures. Computer,
40(11):74-80, Nov. 2007.

[4] Vladimir Stantchev and Miroslaw Malek. Architectural Translucency in Service-oriented Ar-
chitectures. IEE Proceedings - Software, 153(1):31-37, February 2006.

[5] Daniel A. Menascé. QoS issues in Web services. Internet Computing, IEEE, 6(6):72-75,
2002.

[6] A. Brown and D.A. Patterson. Towards Availability Benchmarks: A Case Study of Software
RAID Systems. Proceedings of the 2000 USENIX Annual Technical Conference, 2000.

[7] Gerry Miller. The web services debate: .net vs. j2ee. Commun. ACM, 46(6):64—67, 2003.

[8] Y. Makripoulias, C. Makris, Y. Panagis, E. Sakkopoulos, P. Adamopoulou, M. Pontikaki,
and A. Tsakalidis. Towards Ubiquitous Computing with Quality of Web Service Support.
Upgrade, The European Journal for the Informatics Professional, VI(5):29-34, 2005.

[9] S.S. Yau, Yu Wang, Dazhi Huang, and H.P. In. Situation-aware contract specification lan-
guage for middleware for ubiquitous computing. Distributed Computing Systems, 2003.
FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends of, pages 93-99,
28-30 May 2003.

[10] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware
middleware for Web services composition. IEEE Transactions on Software Engineering,
30(5):311-327, 2004.

[11] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. An approach for QoS-aware service
composition based on genetic algorithms. Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1069-1075, 2005.

[12] A. Solberg, S. Amundsen, J.@. Aagedal, and F. Eliassen. A Framework for QoS-Aware
Service Composition. Proceedings of 2nd ACM International Conference on Service
Oriented Computing, 2004.

[13] Y. Tokairin, K. Yamanaka, H. Takahashi, T. Suganuma, and N. Shiratori. An effective QoS
control scheme for ubiquitous services based on context information management. cec-eee,
00:619-625, 2007.

[14] Svend Frolund and Jari Koistinen. Quality of services specification in distributed object sys-
tems design. In COOTS’98: Proceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), pages 1-1, Berkeley, CA, USA, 1998. USENIX Assoc.

[15] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web Service Level Agreement
(WSLA) Language Specification. IBM Corporation, 2002.

[16] V. Tosic, K. Patel, and B. Pagurek. WSOL-Web Service Offerings Language. Web Servic-
es, E-Business, and the Semantic Web: CAiSE 2002 International Workshop, WES 2002, To-
ronto, Canada, May 27-28, 2002: Revised Papers, 2002.

16 V. Stantchev and M. Malek

[17] D.D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining Service Lev-
el Agreements. Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing
Systems-FTDCS, pages 100-106, 2003.

[18] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tu-
ecke, and M. Xu. Web Services Agreement Specification (WS-Agreement). Global Grid Fo-
rum GRAAP-WG, Draft, August, 2004.

[19] A. Polze and L. Sha. Composite Objects: Real-Time Programming with CORBA. In Pro-
ceedings of 24th Euromicro Conference, Network Computing Workshop, Vol. II, pp.: 997-
1004, Vaesteras, Sweden, August 1998.

[20] W. Feng. Dynamic client-side scheduling in a real-time corba system. In COMPSAC, pages
332-333. IEEE Computer Society, 1999.

[21] Pascal Felber, Rachid Guerraoui, and André Schiper. Replication of corba objects. In Sacha
Krakowiak and Santosh K. Shrivastava, editors, Advances in Distributed Systems, volume
1752 of Lecture Notes in Computer Science, pages 254-276. Springer, 1999.

[22] V. Marangozova and D. Hagimont. An infrastructure for corba component replication. In
Judith M. Bishop, editor, Component Deployment, volume 2370 of Lecture Notes in Com-
puter Science, pages 222-232. Springer, 2002.

[23] M. Werner. Replikation in CORE. Bericht an das Graduiertenkolleg
"Kommunikationsbasierte Systeme", Oct 1996.

[24] Pascal Felber and Priya Narasimhan. Reconciling replication and transactions for the end-to-
end reliability of corba applications. In Meersman and Tari [70], pages 737-754.

[25] Pierre-Charles David and Thomas Ledoux. An infrastructure for adaptable middleware. In
Meersman and Tari [70], pages 773-790.

[26] Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian. A reflective middleware
framework for communication in dynamic environments. In Meersman and Tari [70], pages
791-808.

[27] Gregory Biegel, Vinny Cahill, and Mads Haahr. A dynamic proxy based architecture to
support distributed java objects in a mobile environment. In Meersman and Tari [70], pages
809-826.

[28] Sandeep Adwankar. Mobile corba. In DOA ’01: Proceedings of the Third International
Symposium on Distributed Objects and Applications, page 52, Los Alamitos, CA, USA,
2001. IEEE Computer Society.

[29] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuckovic, and H. Wu. A Framework
for Prototyping J2EE Replication Algorithms.

[30] Etienne Antoniutti Di Muro. A software architecture for translucent replication. In DSM
’05: Proceedings of the 2™ international doctoral symposium on Middleware, pages 1-5,
New York, NY, USA, 2005. ACM.

[31] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application specif-
ic data replication for edge services. In WWW ’03: Proceedings of the 12th international con-
ference on World Wide Web, pages 449-460, New York, NY, USA, 2003. ACM.

[32] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of
commodity operating systems. ACM Trans. Comput. Syst., 23(1):77-110, 2005.

[33] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier.
Cluster-based scalable network services. In SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages 78-91, New York, NY, USA, 1997.
ACM.

[34] Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated services.
ACM Trans. Comput. Syst., 24(1):70-113, 2006.

[35] A. Rosenthal. Computing the Reliability of Complex Networks. SIAM Journal on Applied
Mathematics, 32(2):384-393, 1977.

[36] Haifeng Yu and Phillip B. Gibbons. Optimal inter-object correlation when replicating for
availability. In PODC *07: Proceedings of the twenty-sixth annual ACM symposium on Prin-
ciples of distributed computing, pages 254-263, New York, NY, USA, 2007. ACM.

1 Translucent Replication for Service Level Assurance 17

[37] Peter J. Denning. Acm president’s letter: What is experimental computer science? Commun.
ACM, 23(10):543-544, 1980.

[38] M.J. Norusis and S. Inc. SPSS 11.0 Guide to Data Analysis. Prentice Hall, 2002.

[39] B.D. Ripley. The R project in statistical computing. MSOR Connections. The newsletter of
the LTSN Maths, Stats & OR Network, 1(1):23-25, 2001.

[40] Ann T. Tai, William H. Sanders, Leon Alkalai, Savio N. Chau, and Kam S. Tso. Performa-
bility analysis of guarded-operation duration: a translation approach for reward model solu-
tions. Perform. Eval., 56(1-4):249-276, 2004.

[41] Krishna R. Pattipati and Samir A. Shah. On the computational aspects of performability
models of fault-tolerant computer systems. IEEE Trans. Computers, 39(6):832-836, 1990.
[42] Gianfranco Ciardo, Raymond A. Marie, Bruno Sericola, and Kishor S. Trivedi. Performabil-
ty analysis using semi-markov reward processes. IEEE Trans. Computers, 39(10):1251-1264,

1990.

[43] Kishor S. Trivedi, Antonio Puliafito, and Dimitris Logothetis. From stochastic petri nets to
markov regenerative stochastic petri nets. In Patrick W. Dowd and Erol Gelenbe, editors,
MASCOTS, pages 194-198. IEEE Computer Society, 1995.

[44] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser Tantawi.
An analytical model for multi-tier internet services and its applications. In SIGMETRICS
’05: Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 291-302, New York, NY, USA, 2005. ACM.

[45] S. Kounev and A. Buchmann. Performance Modeling and Evaluation of Large-Scale J2EE
Applications. Proc. of the 29th International Conference of the Computer Measurement
Group (CMG) on Resource Management and Performance Evaluation of Enterprise Compu-
ting Systems-CMG2003, 2003.

[46] Mohamed N. Bennani and Daniel A. Menascé. Resource allocation for autonomic data cen-
ters using analytic performance models. In ICAC *05: Proceedings of the Second Internation-
al Conference on Autonomic Computing, pages 229-240, Washington, DC, USA, 2005.
IEEE Computer Society.

[47] Daniel A. Menascé, Larry W. Dowdy, and Virgilio A.F. Almeida. Performance by Design:
Computer Capacity Planning By Example. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2004.

[48] Daniel A. Menascé, Virgilio A. F. Almeida, Rudolf Riedi, Flavia Ribeiro, Rodrigo Fonseca,
and Jr. Wagner Meira. In search of invariants for e-business workloads. In EC *00: Proceed-
ings of the 2nd ACM conference on Electronic commerce, pages 5665, New York, NY,
USA, 2000. ACM.

[49] Daniel A. Menascé and Virgilio A. F. Almeida. Scaling for e-business. Prentice Hall PTR
Upper Saddle River, NJ, 2000.

[50] Daniel A. Menascé, Virgilio A.F. Almeida, and Larry W. Dowdy. Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems.Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1999.

[51] Daniel Villela, Prashant Pradhan, and Dan Rubenstein. Provisioning servers in the applica-
tion tier for e-commerce systems. ACM Transactions on Internet Technology (TOIT), 7(1):7,
2007.

[52] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-driven server migration for Internet data
centers. Quality of Service, 2002. Tenth IEEE International Workshop on, pages 3—12, 2002.

[53] A. Kamra, V. Misra, and EM Nahum. Yaksha: a self-tuning controller for managing the per-
formance of 3-tiered Web sites. Quality of Service, 2004. IWQOS 2004. Twelfth IEEE Inter-
national Workshop on, pages 47-56, 2004.

[54] J.A. Rolia, K.C. Sevcik, et al. The Method of Layers. IEEE Transactions on Software Engi-
neering, 21(8):689-700, 1995.

[55] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative system perfor-
mance: computer system analysis using queueing network models. Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1984.

18 V. Stantchev and M. Malek

[56] C.M. Woodside and G. Raghunath. General Bypass Architecture for High-Performance Dis-
tributed Applications. Proceedings of the Sixth IFIP WG6. 3 Conference on Performance of
Computer Networks: Data Communications and their Performance, pages 51-65, 1996.

[57] Roy Gregory Franks. Performance analysis of distributed server systems. PhD thesis, Otta-
wa, Ont., Canada, Canada, 2000. Adviser-C. Murray Woodside.

[58] J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy. Performance modeling and prediction
of enterprise JavaBeans with layered queuing network templates. ACM SIGSOFT Software
Engineering Notes, 31(2), 2005.

[59] Louis P. Slothouber. A model of web server performance. In Proceedings of the Fifth Inter-
national World Wide Web Conference, 1996.

[60] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-Based Resource Provisioning in
a Web Service Utility. Proc. of the 4th USENIX Symp. on Internet Technologies and Sys-
tems.

[61] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource allocation for
shared data centers using online measurements. In SIGMETRICS ’03: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pages 300-301, New York, NY, USA, 2003. ACM.

[62] A. Chandra, P. Goyal, and P. Shenoy. Quantifying the Benefits of Resource Multiplexing in
On-Demand Data Centers. Proceedings of the First Workshop on Algorithms and Architec-
tures for Self-Managing Systems, 2003.

[63] B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme Overloads in Internet Services.
Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distri-
buted Computing (PODC), 2004.

[64] R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer, A. Tantawi, and A. Youssef. Performance
management for cluster based Web services. Integrated Network Management, IFIP/IEEE
Eighth International Symposium on, pages 247-261, 2003.

[65] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees for web serv-
er end-systems: A control-theoretical approach. IEEE Transactions on Parallel and Distri-
buted Systems, 13(1):80-96, 2002.

[66] Daniel A. Menascé. Web server software architectures. Internet Computing, IEEE, 7(6):78—
81, 2003.

[67] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications. Wiley-
Interscience New York, NY, USA, 1998.

[68] Vladimir Stantchev, Trung Dang Hoang, Tino Schulz, and Ilja Ratchinski. Optimizing clini-
cal processes with position-sensing. IT Professional, 10(2):31-37, 2008.

[69] Vladimir Stantchev and Christian Schropfer. Techniques for service level enforcement in
web-services based systems. In The 10th International Conference on Information Integration
and Web-based Applications and Services (iiWAS2008),New York, NY, USA, 11 2008.
ACM.

[70] Robert Meersman and Zahir Tari, editors. On the Move to Meaningful Internet Systems,
Confederated International Conferences DOA, CooplS and ODBASE 2002, Irvine, Califor-
nia, USA, Proceedings, volume 2519 of Lecture Notes in Computer Science. Springer, 2002.

Chapter 2

Trustworthiness Assessment Framework for
Net-Centric Systems

Raymond Paul**, Jing Dong*, I-Ling Yen*, and Farokh Bastani*,

*University of Texas at Dallas, Richardson, Texas, USA

**Department of Defense, USA

Abstract Modern applications are becoming increasingly large-scale and net-
work-centric, involving a variety of different types of system entities. Also, the as-
surance requirements for these systems are evolving due to the continuing emer-
gence of new threats from new operational environments. To assure the
trustworthiness of these systems to a sufficiently high degree of confidence is a
challenging task. Most existing methods require different specialized assessment
techniques for not only different types of system entities but also different trust-
worthiness aspects. Also, most existing techniques lack consideration of the over-
all system trustworthiness assessment from an integrated system perspective or
fail to provide a holistic view. To address these problems, we develop an ontolo-
gy-based approach to provide systematic guidelines for net-centric system assess-
ment. The ontology-based approach captures evolving system trustworthiness as-
pects and effectively models their relationships and correlations. It can also
organize system entities and associate appropriate assessment techniques for each
class of system entities and their integrations.

1. Introduction

Due to the advances of computer and networking technologies, many applications
are becoming large-scale and network-centric. A net-centric system (NCS) typi-
cally involves a distributed set of sensors, actuators, processors, software, along
with a variety of other resources interconnected together by a network and inte-
racting with and controlled by end users. Operational scenarios range from tele-
control and tele-monitoring systems to distributed coordination and communica-
tion systems, command and control systems, emergency response, and other areas.

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_2, © Springer Science+Business Media, LLC 2009

20 R. Paul et al.

All these domains are mission- and/or safety-critical since these systems interact
with the physical world and failures could potentially have catastrophic conse-
quences. Hence, it is imperative to be able to build ultra dependable and trustwor-
thy NCS and to be able to certify the trustworthiness of these systems to a high
degree of confidence before deploying them in the field.

Many techniques have been developed to achieve high assurance and trustwor-
thiness. But almost all of these techniques focus on one or a few trustworthiness
aspects. When designing a high assurance system, it does not have to be the inven-
tion of new techniques for every part of the system. Rather, it is mostly a decision
process to determine which technique to use to achieve certain desired properties
in a subsystem. There are many existing techniques that can be considered and
adopted. However, how to know which technique is the best to use for a part of
the system. The general solution is to use analysis techniques to determine wheth-
er a certain combination of techniques does result in a system that satisfies high
assurance requirements. Thus, assessment techniques play an important role for
the design as well as the assessment phases of mission- and safety- critical sys-
tems.

There are significant challenges in trustworthiness assessment for NCS [19]. In
general, it is very expensive to assess the trustworthiness of software systems to a
high degree of confidence. Considering just the reliability aspect, it has been
shown that it would take hundreds of years of testing to achieve adequate confi-
dence in the reliability of a safety-critical system. Net-centric systems face numer-
ous other challenges, including security, usability, and performance issues that re-
quire even more time and effort for high-confidence assessment. Compounding
these challenges is the fact that these systems are mission-specific and likely to be
dynamically composed from existing COTS (commercial off the shelf) and GOTS
(government off the shelf) hardware and software components and services
[17,18]. Due to the potential lack of complete information regarding the develop-
ment history of COTS components and their exact implementation details, they
can pose severe but difficult-to-detect security and reliability threats, including the
potential for embedded “Trojan horses” and other malicious logic designed to
trigger rare failures during critical periods. These make it difficult to achieve high
confidence in the assurance levels of COTS hardware and software components.
In addition, while compositional assessment methods are widely used for certify-
ing hardware systems by, for example, calculating the reliability of a complex sys-
tem from the reliability of its constituent components, this type of assessment
technique has in general proven to be difficult to achieve for software. The reason
is that hardware assessment typically focuses on problems due to wear-and-tear
and other degradations that impact components independently of each other. This
is not the case for software where reliability problems are predominantly due to
specification, design, development, and implementation faults. The reliability of
the system depends on the way one component uses another component. Because
of this, it is possible to build a system where some components are faulty but yet
the system is highly reliable since those faults are not triggered due to the way the

2 Trustworthiness Assessment Framework for Net-Centric Systems 21

components are used in the system. Likewise, it is possible to build a system using
components that are individually highly reliable but that collectively lead to poor
reliability due to unexpected interactions between the components [3].

Besides the complexity in trustworthiness assessment techniques, assessment
time and cost are also major concerns. Mission-specific systems must typically be
built and deployed rapidly since the mission requirements may change dynamical-
ly. Thus, there is a need to be able to rapidly and dynamically certify the trustwor-
thiness of the system systems to a high degree of confidence. This is difficult to do
using solely testing or verification methods.

In this chapter, we consider the challenges of assessing highly critical NCS sys-
tems and develop technical solutions to address the numerous and interdependent
issues involved. We use ontology to capture the evolving trustworthiness metrics
and increasing varieties of NCS system entities and their correlations. Based on
the ontology, we develop systematic steps to guide trustworthiness assessment.
Various assessment techniques are associated with the ontology nodes to facilitate
systematic or even semi-automated assessment data collection, integration, and
analysis.

A large number of techniques have been developed over the past years for
trustworthiness and dependability assessment and most of these methods can be
associated with the ontology to assist with NCS assessment. However, there are
still many missing links in such techniques. For example, security assessment do-
main is still in its infancy. A major area in trustworthiness assessment that is miss-
ing is that of holistic evaluation. Almost all of the assessment techniques focus on
a single aspect, such as software reliability, data security, system performance,
etc.; however, this is not always adequate as can be seen by considering some sce-
narios. For example, when a commander in a battlefield needs to compose a plan
to accomplish one or multiple missions, it is desirable to know whether the plan is
good enough in terms of accomplishing the missions. It would also be interesting
if there are multiple plans and the goal is to assess them to determine which plan is
the best for the given missions. In this case, it is desirable to offer a single score
for each plan, i.e., the probability that a given plan can successfully accomplish
the specified missions. This requires the integration of the evaluations of various
trustworthiness aspects of the system and provides a holistic measurement. Thus,
in this paper, we also develop techniques for integration in an attempt to provide
holistic assessments.

The rest of the chapter is organized as follows. In Section 2, the ontology for
trustworthiness assessment, including the system entities dimension and the trust-
worthiness aspects dimension, is presented. Section 3 introduces an integrated as-
sessment framework that provides systematic assessment procedures based on the
trustworthiness assessment ontology. A holistic assessment technique is intro-
duced in Section 4. Section 5 concludes the chapter and identifies some future re-
search directions.

22 R. Paul et al.

2. Ontology for Trustworthiness Assessment

To deal with trustworthiness assessment of high assurance NCS, we need to deal
with two dimensions of complexity. First, the NCS is highly complex, consisting
of systems of systems. Each subsystem and the constituent system entities and
components can be of very different characteristics. Techniques for assurance and
assessment of different system entities and components can be very different. For
example, methods for hardware and software reliability assurance and assessment
are significantly different. Similarly, assurance and assessment of security for data
and for software components involve the use of different techniques. Also, the
techniques for compositional assessment of different types of components may al-
so be different. To facilitate the management of techniques for dealing with differ-
ent entities and their integrations, we construct an evolving ontology of system
entities and integrations and associate various high-confidence assurance and as-
sessment techniques with the ontology nodes.

Another complex dimension in high assurance and trustworthiness assessment
is the set of metrics to be used. The requirements for achieving “high assurance,
ultra dependability, and trustworthiness” for critical applications have been evolv-
ing along with the continuing advances in computer and communication environ-
ments. In the early era, hardware and software reliability, system availability, and
real-time concerns were the major focus in high-assurance systems engineering. In
[3], the definition of dependability is clearly elaborated. However, with the growth
of computing environments, some new requirements for high-assurance systems
have emerged. For example, with advances in data and knowledge mining, the
concept of “privacy-preserving” capabilities has been introduced and is an increa-
singly essential property for high-assurance information systems. Also, Internet
applications are moving toward open environments and “trust” is increasingly be-
coming another measure that is important in dependable computing. To cope with
this problem, we develop an ontology to capture the evolving requirements in
high-assurance systems. Ontology facilitates easy evolution. To differentiate from
conventional dependability definitions, we use trustworthiness to include depen-
dability as well as other high-assurance attributes.

Most of the trustworthiness aspects are directly or indirectly related to each
other to some extent. Frequently, techniques that improve one aspect may impact
some other aspects. Thus, when building the ontology of trustworthiness aspects,
it is necessary to express the interdependencies and correlations among the as-
pects. However, existing works on categorizing dependability/trustworthiness as-
pects do not consider such correlations. Consider an example of the correlations
between trustworthiness aspects. Redundancy is always required for achieving re-
liability, availability, and survivability. A higher degree of redundancy implies a
higher level of reliability, availability, and survivability. On the other hand, a
higher degree of redundancy can lead to more points in the system that may be
vulnerable to security attacks and a higher probability that one weak point be-

2 Trustworthiness Assessment Framework for Net-Centric Systems 23

comes compromised and, hence, results in a system having weaker security. How-
ever, this only indicates the correlations among reliability, availability, survivabili-
ty, and security, but they are not directly dependent upon each other. Instead, all
these aspects are dependent on redundancy. To provide a clear view of the correla-
tions of the trustworthiness aspects in the ontology, we further define an ontology
of trustworthiness evidences. The trustworthiness evidences are quantitatively or
qualitatively measurable properties of the system or system entities and they are
orthogonal to each other. For example, the level of redundancy and software logi-
cal correctness can be trustworthiness evidences of the system. The trustworthi-
ness evidence ontology facilitates the expression of the correlations of trustwor-
thiness aspects and can help optimally balance various conflicting trustworthiness
aspects in the design of high-assurance systems.

Overall, we consider an integrated ontology that spans the dimension of system
entities and integrations and the dimension of trustworthiness aspects with a sub-
ontology of trustworthiness evidences. The two dimensions can evolve indepen-
dently and can be used together to provide a fine-grained guidance for trustworthy
assessment. Trustworthiness assessment and assurance techniques can be asso-
ciated with the corresponding nodes in the ontology. Current assessment tech-
niques focus on individual types of components, such as reliability assessment for
software versus reliability assessment for hardware, software aging models versus
hardware degradation models, assessment of the efficacy of hardware redundancy
methods versus those for software redundancy, etc. The merged ontology with as-
sociated assessment techniques can provide an organized view to link existing
techniques together. It can also reveal the missing links in assessment techniques.
Based on the ontology, a systematic and well guided trustworthiness assessment
and verification process can be developed for large-scale NCS.

In the following subsections, the two dimensions of the ontology are discussed
in detail.

2.1 Ontology of the Trustworthiness Aspects Dimension

2.1.1 Trustworthiness Aspects

A variety of trustworthiness aspects have been proposed in the literature for high-
assurance systems. The fundamental requirement of any high assurance system
should include reliability and availability [3].

e Reliability: The reliability of a system for a time interval (0,t) is the probability
that the system continuously operates correctly for the entire time interval giv-
en that it is available at the start of the time interval [4, 14].

24 R. Paul et al.

e Availability: The availability of a system is the probability that the system is
ready for correct service when needed.

The increasing use of computing systems in automation and control applica-
tions where failures can potentially have catastrophic consequences has led to the
formulation of additional trustworthiness requirements for safety-critical systems.
While reliability and availability measures are concerned with the “good” or “de-
sirable” things that the system should do, safety concerns address the “bad” things
that should not happen during the operation of the system. Safety analysis tech-
niques were first used in Inter-Continental Ballistic Missile (ICBM)-based weapon
systems to ensure the absence of scenarios that could potentially lead to disastrous
failures [12]. System safety is defined as follows:

e Safety: The safety of a system is the probability that it does not result in any
catastrophic consequences for the user(s) or the environment.

With the advent of networked systems and the growing concern about cyber at-
tacks, concerns about other “bad” things that should not happen during the opera-
tion of a system have been investigated in the context of system security. Unlike
reliability, availability, and safety issues, security is an umbrella term that covers
several more specific trustworthiness issues, including system integrity, confiden-
tiality, privacy, trust, authenticity, nonrepudiability, and credibility:

e Security: The security of a system is the probability that it can operate correct-
ly in spite of intentional efforts to cause it to do otherwise. It consists of several
additional aspects:

— Integrity: The integrity of a system is the probability that it does not have
any unauthorized system alterations.

— Confidentiality: The confidentiality of the system is the probability that it
does not allow unauthorized disclosure of information.

— Privacy: The privacy of the system is the probability that private informa-
tion will not be disclosed in spite of potential inferences from multiple in-
formation sources [1, 7].

— Authenticity: The authenticity of a system is the probability with which it
can assure the integrity of specified data items, including the integrity of
the actual content of the information as well as auxiliary associated infor-
mation such as the creator of the information or its creation time.

— Nonrepudiability: The nonrepudiability characteristic of a system is the
probability with which it can assure the availability and integrity of infor-
mation regarding the creator of a data item as well as the availability and
integrity of information regarding those who access that item [8].

— Credibility: The credibility of a computer system is the probability that its
operation is trustworthy (i.e., well-intentioned, truthful, unbiased) and re-
flects adequate expertise (i.e., knowledgeable, experienced, competent)

[9].

2 Trustworthiness Assessment Framework for Net-Centric Systems 25

Another umbrella term in trustworthiness is system maintainability. In its orig-
inal hardware context, system maintainability was a measure of the ease with
which the system can be repaired in the event of a failure. This was captured by
the repairability measure of the system. With software playing an increasingly
important role in computer systems, maintainability now also includes other fac-
tors as described below.

e Maintainability: The maintainability of a system is the probability that it has
the ability to undergo repairs and modifications. Maintainability can be decom-
posed into the following attributes:

Modifiability: The modifiability of a system is the probability that its de-
sign and implementation can be updated to add new capabilities or alter
existing capabilities.

Repairability: The repairability of a system is the probability that detected
faults in the system, whether due to latent development defects or due to
failures caused by physical wear and tear, can be successfully corrected to
restore the system to its correct operational state.

Configurability: The configurability of the system is the probability that it
has adjustable parameters that can be set during its operation to enable it to
function correctly under different operational situations.

Adaptability: The adaptability of a system is the probability that its design
and/or implementation can be rapidly altered to enable it to function cor-
rectly under different operating conditions.

Autonomy: The autonomy of a system is the probability that the system
can correctly adapt to different operating conditions by itself.

Another set of quality factors is the performance of the system, including tem-
poral and spatial measures. These are defined as follows:

e Performance: There is usually a range of acceptable values for each perfor-
mance attribute. The specification of the acceptable range of values for an
attribute can sometimes be a fuzzy quantity [10]. For example, for hard real-
time systems, such as missile control systems, the system fails if it cannot meet
complete its task within a specified deadline. For soft real-time applications,
however, such as net-centric conferencing systems, some missed deadlines can
be tolerated [15]. In the latter case, the range is a fuzzy value.

Timeliness: This is a measure of the time taken by the system to complete
its task. This is especially critical for real-time systems [5, 11].

Precision: This is a measure of the quantity of data present in the output of
the system, e.g., the number of bits in a numerical value [10].

Accuracy: This is a measure of the deviation of the output of the system
from the correct output [10].

Though reliability, availability, and security address several major aspects of
trustworthiness, the design issues concerning these aspects generally do not scale

26 R. Paul et al.

up to catastrophic failures or attacks. With some specific types of redundancy,
survivability can be an additional aspect that specifically addresses catastrophic
failures or attacks.

e Survivability: This is defined as the probability that the system can complete
its mission in a timely manner in spite of attacks, failures, and catastrophic nat-
ural disasters. It integrates security assurance techniques with risk management
strategies to protect the core capabilities, such as essential services, of a net-
centric system even under adverse conditions [13, 16].

A higher level grouping of these aspects includes dependability, resilience, and
trustworthiness.

¢ Dependability: The dependability of a system is the probability that it delivers
service that can be justifiably depended on, i.e., the probability that it will per-
form correctly under the specified operational and environmental conditions
over a specified time period [3]. Dependability includes availability, reliability,
safety, integrity, confidentiality, and maintainability.

¢ Resilience: The resilience of a system is the probability with which it can bring
itself back to a correct state from an incorrect or failed state and then resume
normal operation [2]. It is related to conventional fault-tolerant computing me-
thods. Resilience aspects include maintainability and survivability.

e Trustworthiness: The trustworthiness of a system is the degree to which one
can justifiably accept or rely upon the operation of the system [3]. Trustwor-
thiness is a comprehensive system quality measure that includes all the depen-
dability and resilience as well as security and performance attributes. Based on
the individual trustworthiness aspects and group of aspects listed above, the on-
tology along the trustworthiness aspect dimension can be described above and
illustrated as shown in Fig. 1.

Trustworthiness

Is a superset of

Is a superset of

Dependabiliy

Reliability A’L‘ﬂll‘ablht)‘.’ Safety || Securnity Sur\'n‘ablht‘y Performance [l\r‘l‘annamabmry
\ |[a3 I | Il Il |
v ‘Has aspects | |T1mehness|| Precision | ‘ Accuracy |
[[y [[|
|Cunf1demm1iry‘ ‘ Privacy ‘ |Imegriry| ‘ Au(heuhr_‘it}-" ‘Nonrepudiabiht_\." ‘Creduabﬂiry" Has aspects

[
|Mod1flab1hry| | Repairability ‘ |Cnnf1gumb1hr§-" ‘Adaprabll@" ‘Aurnnomj.-'|

Fig. 1. High level ontology of trustworthiness aspects.

2 Trustworthiness Assessment Framework for Net-Centric Systems 27

2.1.2 Trustworthiness Evidences

Many of the trustworthiness aspects are correlated. However, it is difficult to de-
scribe such correlations since it is not the case that one aspect is directly depen-
dent on another; rather, the system trustworthiness evidences that these aspects are
dependent on define the correlations among the trustworthiness aspects. We pro-
pose a novel and effective way to observe the correlations among trustworthiness
aspects by defining a trustworthiness evidences ontology.

Each trustworthiness evidence defines a set of observable as well as quantita-
tively or qualitatively measurable properties of the system or system entities and
the trustworthiness evidences are orthogonal to each other. We build different cat-
egories of trustworthiness evidences. At the top level, the trustworthiness evidence
is partitioned into:

e Positive trustworthiness evidences. Positive trustworthiness evidences can be
classified into many categories. Each trustworthiness evidence may be further
decomposed into finer-grained trustworthiness evidences. Trustworthiness evi-
dence can be collected to facilitate high assurance, dependability, trustworthi-
ness assessment.

e Negative trustworthiness evidences. Negative trustworthiness evidences de-
scribe external evidences that are not within the system but may impact the sys-
tem assurance. For example, faults and threats are negative trustworthiness evi-
dences. In [3], a thorough taxonomy of faults and threats has been constructed,
which can be used as the negative evidences.

Trustworthiness

Positive Negative
evidences evidences

has

| | 1 1 | 1
Private info| | Unauthorized | | Unauthorized | | Attack | [Disaster| | Operator
Inference | | modification viewing events | [events emor

events events events events
Logical conectnees QoS pmpem [nfo corre-:mess
evidences evidences evidences

has

[T I 1
Redundancy| [Diversity | (Repair rate onﬁgumbihn Cost Accessibility
evidence || evidence || evidence evidence eV ldence evidence evidence I_bﬂ
1

[I I I 1
Component| [Architectural) | Assembly]ntegrancn Data source Transnussion Inference || Storage |[Modification
comrecmess | | comrectness | | corectness| | correcmess| |comrectmess|| comectness ||comectmess| (correctness|| correctness
evidence evidence evidence || evidence evidence evidence evidence || evidence evidence

Fig. 2. Ontology of trustworthiness evidences.

28 R. Paul et al.

The ontology of trustworthiness evidences can be quite extensive. The granu-
larity of the evidences is determined based on whether it is possible for evidence
data collection at the leaf nodes. A partial ontology is shown in Fig. 2. In this fig-
ure, some major faulty and attack evidences are included in the negative trustwor-
thiness evidences. The positive evidences are divided into the system configura-
tion, software logical correctness, information correctness, and QoS properties
evidence sets. These positive evidences are further divided into finer grained evi-
dences.

Trustworthiness

Isa sui;erset of

Dependability Resilience

[Reliability] [A¥ailability][Safety |[Security] [Survivability | [Performance | Maintainability

Has aspects

| =
= 22 . [Has aspeets] [Timeliness] [Precision | [Accuracy |
: |

| § IS | | | |
[Confidentiality] [Privacy] [Integrity] [Authenticity] [Nonrepudiability] |Creditabili_ry| Has aspects

Is a superset of

Trustworthiness

evidences

[I
. [Modifiability] [Repairability | [Configurability] [Adaptability] [Autonomy]

Depend|
o

‘Postive..,
evidences |

Negative
evidences

| 1 2 T I I 1
Private info| | Unauthorized | [Unawthorized | | Attack | [Disaster | | Operator
Inference || modification viewing events events error

events events events events el

System configuration Logical correctness QoS property Info correctness|

evidences evidences evidences evidences
has & *has
I I 1
Redundancy || Diversity | |Repair rate | [Configurability| Time Cost Accessibility
evidence evidence evidence evidence has evidence evidence evidence has
I

I I I I I I I I 1
Component| [Architecturall | Assembly | |Integration| [Data source||Transmission|| Inference Storage | [Modification|
correctness | | correctness ||cerrectness| [correctness| |correctness|| correctness ||correctness||correctness| | correctmess

evidence evidence evidence evidence evidence evidence evidence evidence evidence

Fig. 3. Integrated trustworthiness ontology defined on trustworthiness evidence ontology.

2 Trustworthiness Assessment Framework for Net-Centric Systems 29

2.1.3 Trustworthiness Ontology

The dependencies of the trustworthiness aspects on the trustworthiness evidences
can be constructed by merging the high level trustworthiness aspects ontology
given in Fig. 1 and the ontology of trustworthiness evidences given in Fig. 2 and
drawing the dependency links from each trustworthiness aspect to the related
trustworthiness evidences. The merged ontology is shown in Fig. 3.

The dependency definitions for the trustworthiness aspects given in Fig. 3 are
partial and are shown only for two trustworthiness aspects, namely, availability
and confidentiality. The relationship of the two trustworthiness aspects can be ob-
served from the ontology. Some examples are as follows:

e Redundancy evidence contributes to the assessment of the availability, reliabili-
ty, and confidentiality aspects. In other words, these aspects are correlated in
terms of the redundancy evidence. In reality, the higher the level of redundan-
cy, the higher will be the likelihood of a subsystem or a system entity being
available. But the higher the redundancy level, the higher is the probability that
one weak point in the system may be compromised.

e Attack evidences can result in unauthorized viewing evidences and unautho-
rized modification evidences. Thus, confidentiality and availability are both
impacted due to attacks.

e Confidentiality and availability do not appear to share other trustworthiness
evidences.

2.2 Ontology of the System Entities Dimension

With the rapid advances in computer and communication technologies, many ap-
plication systems are shifting into the network-centric paradigm. A network-
centric system typically involves a distributed set of sensors, actuators, processors,
software, along with a variety of other resources interconnected together by a net-
work and interacting with and controlled by end users. The system entities in a
network-centric application can have a significant impact on the types of faults
and threats and on the trustworthiness analysis. Here we define the ontology for
the system entities and the relationships of their trustworthiness evidences (as
shown in Fig. 4). A subsystem consists of multiple system entities and their inte-
ractions. Similarly, a system consists of subsystems and system entities and their
interactions. System entities can be categorized into:

e Computer platforms. Each computer platform consists of the hardware and
many systems software components, such as operating systems and system util-
ities. In this chapter, we assume that the computer platforms are connected
through public or private networks.

30 R. Paul et al.

¢ Devices. Physical devices are of many different varieties, such as various sen-
sors and actuators, robots, unmanned or crew controlled vehicles, etc. Some
devices are equipped with software control units and/or communication capa-
bilities.

e Communication channels. Communication channels provide the connectivity
among computer platforms, devices, and human operators and users. They can
be wired, wireless, or operate across some other medium.

e Application software and policies. Generally, in a large-scale system, there
may be a lot of application software for achieving various tasks. They may run
on a single computer platform or across multiple computer platforms and de-
vices. Also, with the network-centric nature of many modern applications, the
systems are becoming multi-institutional or even multi-national. Different poli-
cies must be defined in the system to govern the system operations and re-
source accesses.

¢ Information. Information category can be further decomposed into raw data,
metadata, semantic information, inferred knowledge, etc.

e Human. Humans always play an important role in large-scale systems. Most of
the system interactions involve operators and users.

Trustworthiness
Evidence

Can be denived from

Is integration of
multiple

has

Trustworthiness
Evidence

e
Can be derived from

|
=
Is intepration of Devel
| altpls - F
| multiple [_..\r = I i
| [

(individual unit in a
network centric system) has

Canbe

] |

Trustworthmess
Evidence

[| | [[|
Single computer| | Single device| | Commumication | | Human | | Information || Application
platform (hwisw) channel I_' I—I software and
(hw/sw) policies

Fig. 4. Ontology of system, subsystem, and system entities.

2 Trustworthiness Assessment Framework for Net-Centric Systems 31

We separate the hardware components into computer platforms and devices,
though it is difficult to draw a clear line between these entities. Generally comput-
er platforms have higher computation and storage power and have a common sys-
tem structure, including the hardware, operating systems, etc., and are capable of
hosting a variety of application software. On the other hand, devices are mostly
specialized for specific purposes, are frequently mobile, and can vary greatly in
their power. Software and policies are highly important in modern systems and
they can have substantial variations. They are being placed in the same category
since most policies are realized through software.

The interactions among system entities can have significant impact on the
overall system trustworthiness analysis and assessment. In the literature, the anal-
ysis techniques for interactions among multiple system components have not been
widely studied. This is especially true for different types of system entities. Thus,
it is important to understand the possible interactions to facilitate systematic anal-
ysis and to ensure that all parts of an integrated system are covered in the assess-
ment process. Each system entity can have interactions with another system entity.
For example, software and hardware components may have close interactions.
Successful completion of critical tasks requires both software and hardware to
have correct behavior. Software techniques are frequently used to mask hardware
failures. Hardware techniques can be used to detect and isolate software faults.
Standalone subsystems interact with each other through communication channels.
When delivering information via communication channels, the subsystem needs to
process the information to make it suitable for delivery. Human interaction with
other system entities is also a critical issue in high-assurance systems. Many sys-
tem failures can be traced back to human errors [6]. Thus, it is important to inves-
tigate the human entity in high assurance systems.

System level trustworthiness evidences are defined based on the trustworthi-
ness evidences of its entities. Methods for such derivations can be associated with
the corresponding nodes in the ontology. Some of these methods can be very diffi-
cult to derive. For example, the reliability of the system depends on the way one
system entity uses another. A system can be highly reliable even if some entities
are faulty as long as those faults are not triggered under the system interaction pat-
terns. Likewise, even if individual entities are highly reliable, collectively the sys-
tem may lead to poor reliability due to unexpected interactions between the enti-
ties [3].

Consider an example information subsystem in a net-centric application. The
system offers data, metadata, and semantics of the data and knowledge. An infor-
mation system also needs to manage the access rights and host information
processing software and environment. Thus, the information subsystem can con-
sist of the following system entities.

e Devices:

— Sensor networks that serve as one type of information sources.

32 R. Paul et al.

e Platforms:

— Server platforms that interface with the operators for entry of information
from various sources.

— Storage platforms that host raw data and metadata.

— Platforms for access control management and authentication, such as certi-
fication authorities.

— Platforms hosting data processing and knowledge inference.

e Policies:

— Access control policies.
— Data management and interoperation policies.

e Software:

— Access control and authentication software.
— Data management software.
— Data processing software.

e Human:

— Users who own the viewing and/or modification privileges for all or a sub-
set of the data sets.

— System administrators who manage the platforms, file systems, or databas-
es.

— System operators.

e Communication channels

— Wireless and wired networks and communication software that link all
platforms and devices together.

Besides the system entities, interactions among the system entities can also be
defined. Based on these subsystems and system entities in each of the categories
and interactions among the system entities, the ontology of system entities can be
expanded. Some partial expansion for the example information subsystem is
shown in Fig. 5.

2 Trustworthiness Assessment Framework for Net-Centric Systems 33

Entity Interaction
mdividual vt i a
setwok centc sysien)
Among certification
i
Among info_
I I I I ing nodes
Sin(]gllefde‘;ice Communication | | Human | |Informntion
W/SW channel I |
users | CAs and
| oD] T
Wireless System Y = :
ensor channels admins e -l Among CAs and mfo.
natworks among - y I ing nodes
______ Hetwak = . +L|m"1 - | Among sensors and
3 T | I storage nodes
among Among users and
platofims storage nodes
Commumieatto)l @ | [Data | = aeeens
» nchammels
among humans)

Fig. 5. Expanded ontology along the system entities dimension.

Entity Tnteractios
(individual unitin a
has network centric system)

Trustworthiness
Evidence Can be Interface
Smgl : Singieldevi C | icati H ‘ Infc : A].ll
mgle computer ce| | Communication || Human 'ormation pplication
platform (hw/sw) channel I_'_I I—I software and
(hw/sw) | policies
T T [:
| | | I
Require Require PEcin = 7 =
; 2 quire Require Require Require
evidence evidence evidence evidence ‘ evidence evidence

~
\ Y | ~J]
1 1 Private info| [Unauthorized || Unauthorized | | Attack | | Disas Operator
) Inference | [modificati viewing | | events | | events [emor
has | | | events evenl events T \Qvems
I I N
Logcal correcmess Qo5 property Info correcmess
l evidences | | evidences | evidences

Fig. 6. Merging trustworthiness ontology and system entities ontology.

34 R. Paul et al.

3. An Ontology-based Integrated Assessment Framework

We have developed ontologies along the trustworthiness aspects and system
entities dimensions. These ontologies can be merged together to facilitate rigorous
trustworthiness analysis. Merging ontologies requires the expansion of each trust-
worthiness evidences at the leaves of the ontology based on the system entity on-
tology to include the relevant system entities.

In this section, we illustrate the ontology merging process in several steps.
First, a partial expansion at lower levels (system entities and trustworthiness evi-
dences) is shown in Fig. 6. For example, the attack evidence can be applied to
computer platforms, devices, software, and communication channels. An unautho-
rized viewing evidence can be applied to the information entity. The operator error
evidence can only be applied to the human entity. The logical correctness evi-
dence can be applied to software and policies. The information correctness evi-
dence requires the verification of the information sources, such as from sensor
networks (devices), existing information (information), or human operators and
users.

The ontology can provide a clear categorization of negative evidences (faults
and threats) based on the categories of system entities and evidences themselves.
Also, it further indicates the necessary evidences required to achieve assurance of
various system entities. Techniques for collecting the evidences should be asso-
ciated with the merged ontology to facilitate overall system assessment. For ex-
ample, there are many techniques for collecting the logical correctness evidences
for software and hardware components, including testing and formal verification.
Based on the testing or verification results, the reliability of the reliability of the
corresponding component can be derived. The logical correctness evidences can
be used for security assessment as well. The data collection for some of the evi-
dences and events given in Fig. 6 cannot be collected directly and further decom-
position is needed. For example, consider the undesired viewing event for the in-
formation components. This event can be further decomposed into node
“compromisation” event, policy inconsistency event, etc. The probability of occur-
rence of these events in the system can be used for system confidentiality assess-
ment.

The merged ontology can provide a clear categorization of negative events
(faults and threats) based on the categories of system entities and events them-
selves. Also, it further indicates the necessary evidences required to achieve assur-
ance of various system entities. To further illustrate the merged ontology, we ex-
pand the confidentiality aspect for the example information subsystem described
in Fig. 5. The expanded ontology is shown in Fig. 7. In this example, the expan-
sion is done partially, only considering the attack events and unauthorized viewing
events. Each of the trustworthiness evidences is expanded based on the involved
system entities. Some examples of the merged view are discussed in the following.

2 Trustworthiness Assessment Framework for Net-Centric Systems 35

e The attack event may be applicable to platforms, devices, and communication
channels. The platforms could be storage platforms, certification authorities,
and nodes for data entries. Thus, for assessing confidentiality of the subsystem,
trustworthiness evidence, the attack probability, for the storage platforms, the
certification authority platforms, and the communication channels among them
are to be considered.

e The unauthorized viewing event can be due to a compromised platform, a com-
promised device subsystem, a compromised communication channel, or an un-
trustworthy human. Also, incorrect software and policies can cause information
breaches as well.

[Confidentiality of an information subsystem |

Trustworthiness
evidences

evidences

Private info| | Unauthorized | | Unauthorized | [Attack | | Disaster | [Operator
Inference | | modification viewing events events error

events events events events » e

Unauthorized viewing due to QoS p Attack and
a compromuised platform evid{ [—* compromise

r nodes

(7]

h 4 ¥ v
storage | |certification| [information —M
nodes authority source DB | h

cert]

i ati Inauthori lewl 16 t
Redundancy information Unauthorized viewing _d\ e to 2 authority
: sensor-net a compromised device id = :
evidence =i information
— Unauthorized viewing due to a ¥|source entry
lcompromised cos n.muuics(iou channel] s Aftack and node
Compone| PO = 2 2 missi > nise o
correctne: _ _ ectnes S = - .
evidencd e . Unauthorized viewing due to lidence AR =
information . an untrustworthy human Sel i
processing software Attack and compromise

Unauthorized viewing due to | SR iRitalitn SHannels

L
incorrect software
Between storage Among

Access control 0 T .

Unauthorized viewing due to and sensomet storage nodes,
poticy incorrect polic
: poliey Between CA p-| Among CAs
Data file . and storage
management policy

Fig. 7. Expanding trustworthiness evidences based on system entity ontology.

The merged ontology clearly indicates the evidence data to be collected for
each system entity. Based on the merged ontology, the system analysis can be
done in a well guided manner.

The discussion above (including Fig. 6 and 7) focuses on ontology merge of the
system entities and the trustworthiness evidences. Consider the upper levels in the
merged ontology. Each trustworthiness aspect of the system depends on the trust-
worthiness evidences of the system. The trustworthiness evidences of the system

36 R. Paul et al.

can be derived from the trustworthiness evidences of the subsystems and individu-
al system entities. The trustworthiness of the subsystem and individual system ent-
ities can also be derived from the trustworthiness evidences of the subsystems and
individual system entities, respectively. Such derivations form the basis of the on-
tology-driven trustworthiness evidence based integrated trustworthiness assess-
ment technology. In Fig. 8, the derivation of trustworthiness at various levels is il-

lustrated.
.,o-| Tiustworthiness I
1
i / |I;a’;lrpeu-etoz‘
A
/]
/ ."I Resilience
S
Ir}," ‘." Has aspects
T o5 L :
[Relability| [Axailabthity] [Safefy|[Secwity] [Suvivability | [Performance | Maintzinability
i Il | |
E%
|
)
[Eds aspects | [Timeliness| [Precision | [Accuracy |
| 1
[

I |
| pudisbility] [Cradizability|

2a/b. Derive
at subsystem
level 3. Integrated
into

[

la/b. Derive
at individual
entity level

Is mtesvation of
multiple

1. Collect trustworthiness evidence
data for all system entities and their

plasform (hw/sw) h 1 fh and
(hw'sw) policies

Fig. 8. Trustworthiness evidence based assessment procedure.

2 Trustworthiness Assessment Framework for Net-Centric Systems 37

Based on the ontology, a systematic procedure can be used to guide system as-
sessment and it is illustrated in the following.

e System entity level trustworthiness assessment.

@)

@)

Step 1: Collect trustworthiness evidence data. The first step for all trust-

worthiness assessment is to collect trustworthiness evidence data for each

system entities. Note that earlier discussions (Fig. 6 and 7) offer more de-

tailed guidelines for data collection for various system entities and vari-

ous trustworthiness evidences.

— If the goal is to assess the system entity level trustworthiness, then
go to Step la.

— If the goal is to assess the individual trustworthiness aspects at the
system entity level, then go to Step 1b.

— If the goal is to assess trustworthiness at a higher level, then go to
Step 2.

Step 1a: The single trustworthiness measurement. This measurement can

be derived from trustworthiness evidence collected for the system entity.

Step 1b: Measurements of each trustworthiness aspect.

e Integrated assessment for a subsystem.

(@)

Step 2: Collect or derive trustworthiness evidence data. Trustworthiness

evidence data of the subsystem can be derived from the trustworthiness

evidence data of the constituting system entities and the architecture that

specifies the interactions among the entities. For some trustworthiness

evidences, the data can be collected directly. The derivation algorithm is

evidence set dependent.

— If the goal is to assess the subsystem level trustworthiness, then go to
Step 2a.

— If the goal is to assess the individual trustworthiness aspects at the
subsystem level, then go to Step 2b.

— If the goal is to assess trustworthiness only at the overall system lev-
el, then go to Step 3.

Step 2a: The single trustworthiness measurement. This measurement can

be derived from trustworthiness evidence of the subsystem.

Step 2b: Measurements of each trustworthiness aspect. The derivation

formula for the measurements is aspect dependent.

e Integrated assessment for the overall system.

(@)

Step 3: Collect or derive trustworthiness evidence data. Trustworthiness
evidence data of the system can be derived from the trustworthiness evi-
dence data of the constituting subsystems and the architecture that speci-
fies the interactions among the subsystems. The derivation algorithm is
evidence type dependent.

38 R. Paul et al.

— If the goal is to assess the system level trustworthiness, then go to
Step 3a.
— If the goal is to assess the individual trustworthiness aspects at the
system level, then go to Step 3b.
o Step 3a: The single trustworthiness measurement. This measurement can
be derived from trustworthiness evidence of the subsystem.
o Step 3b: Measurements of each trustworthiness aspect.

The steps discussed above, including assessment data collection for individual
system entities regarding various trustworthiness evidences, integration of the evi-
dence data from system entities level to subsystem level and to system level, and
derivation of trustworthiness aspect assessment results from the evidence data, in-
volve various assessment techniques. To complete the framework, the merged on-
tology should be further expanded to include the assessment techniques. In Step 1,
the techniques for evidence collection can be associated with the corresponding
nodes in the merged ontology. In Steps 2 and 3, assessment of a subsystem or the
overall system can be done directly at the system level. For example, testing can
be conducted at the overall system level to collect evidences of its behavior and
subsequently assess its trustworthiness properties. In some situations, such subsys-
tem or system level testing and verification is infeasible. For example, in a large-
scale system that is widely distributed, it may be difficult to simulate the realistic
environment for testing. Also, such testing could be too costly. Further, at design
time, it may often be difficult to understand the impact of selecting a certain tech-
nique or component in the overall system behavior. Since many different composi-
tions may have to be considered, the testing of each composition is simply not
possible. Thus, it is necessary to derive the system level properties from subsys-
tem level and component level evidences. Such derivation techniques are highly
challenging. Techniques for many different types of integrations are still to be in-
vestigated.

An example ontology with the assessment techniques is given in Fig. 9. The as-
sessment techniques shown in the figure are for the reliability aspect. We consider
the techniques for the integration of the trustworthiness evidences at the system
entity level into the evidences at the subsystem level and direct assessment tech-
niques at the subsystem level. For the integration of multiple system entities of the
same type, we need to consider integration of software entities, integration of
hardware entities, integration of communication channels, and integration of in-
formation sources (though some are not shown in the figure). In cyber world, we
disregard human-human interactions and only consider humans interacting with
the cyber world (mainly with software). We also consider integration of system
entities of different types, such as integrating hardware and software, software and
human, software and information, human and information, etc. Most of the exist-
ing techniques in reliability assurance and assessment are based on integrated test-
ing.

2 Trustworthiness Assessment Framework for Net-Centric Systems 39

The integrated assessment framework is flexible and expandable. Each dimen-
sion has its own ontology which can evolve independently. Expansion from the
nodes in the merged ontology can be linked to the nodes in the individual ontolo-
gies. The ontologies can be customized to fit the needs of the special applications.

[Relisbility

2a/b. Derive
trustworthiness properties
at subsystem level

Subsystem

— L
Is integration of =
multiple | T c| Develop

process
|

has

Trustworthmess
Evidence

Can be derived from

Entity
(individual unit in a
has network centric system)
Trustworthiness
Evidence

Human-information
interactions

Software-hardware | | Sofrware-information | | Software-human | | Software-commu
interactions interactions interactions interactions

| [),

|
_ Software-software | [hardware-hardware
Integration interactions interactions
techniques: | . o o
reliability Integration
techmiques: | . . .
Mission-based limhility
hardware/sofrware
system relisbiliey | © © ° Integrated | (Operational
assessment testing profile | . . .
conversion

Fig. 9. Ontology with integrated assessment techniques.

4. Holistic Assessment Techniques

The goal of the framework discussed in Section 3 is to provide a comprehen-
sive guidance toward systematic assessment of integrated systems considering
various trustworthiness aspects. One important assessment that is frequently de-
manded is a holistic view of the overall system or subsystem. For example, a
commander may demand a single “score” to represent the trustworthiness of a sys-
tem. When a third party delivers a product, the manager may want to know the
level of assurance in a holistic view, instead individual aspects. It is difficult to
give such a single “score” in a rigorous way. In this section, we define a mission-
driven integration method to integrate multiple aspects into one single measure of

40 R. Paul et al.

the trustworthiness of the NCS, which indicates the probability of success of the
given missions. The assessment is based on a collection of events that can impact
the degree to which one can use the system to successfully accomplish all the spe-
cified mission objectives. These events are classified into two categories, namely,
essential events, E, and adverse events, A. The set of essential events consists of
all those events that must occur in order for the system to complete the mission
successfully. These include the following types of events:

e The system is available when needed: This is the first step in using the sys-
tem and requires the system to be operational when the user needs it. This cor-
responds to the classical availability measure among the set of dependability
aspects. It is also affected by the reliability, maintainability, adaptability, and
reconfigurability qualities of the system.

¢ An authorized user can use the system when needed: This event ensures that
the system will not make it difficult for an authorized user to use it. It factors in
the possibility that security measures to prevent unauthorized accesses could
pose obstacles for legitimate users. Examples include the possibility of forgot-
ten passwords and failures of biometric authentication systems.

e The computations of the system are logically correct: This is related to some
aspects of reliability and safety dependability aspects. It requires the system to
generate correct outputs when presented with inputs that satisfy the precondi-
tions of the system.

e The system timing and performance qualities are acceptable: This is related
to performance issues in addition to reliability and safety issues. It is a critical
requirement for real-time systems that must generate outputs in a timely man-
ner. It is also important in other situations and encompasses classical termina-
tion requirements, i.e., the requirement that the system must not have any infi-
nite loops or be susceptible to deadlocks, livelocks, etc. In terms of real-time
performance, it may be possible to specify the tolerance of missed deadlines, as
well as the tolerance of the quality of a result to meet deadlines.

e The cost and resource requirements of the system are acceptable: This cor-
responds to the practicality of the system. For example, if the system requires
too many processors in order to complete its computations on time, then it may
be reliable but not practical.

The second class of events is the set of adverse events, i.e., events that should
probably not occur if the system is to be able to complete its mission successfully.
The occurrence of an adverse event does not automatically mean that the system
will not be able to complete its mission successfully for the specified mission. In-
stead, it decreases the probability that the system will be successful. The potential
adverse events are as follows:

¢ Unauthorized users can access the system: This is a part of the security re-
quirements of the system. For safety-critical system, it can also lead to safety
assurance issues since a malicious unauthorized user could deliberately lead the

2 Trustworthiness Assessment Framework for Net-Centric Systems 41

system to an unsafe state. In practice, the authentication problem is more com-
plicated since an authorized user for some capabilities of the system may be an
unauthorized user for other features. For example, an authorized user of the
system may be able to view and update some confidential information in the
system but may not be allowed to reconfigure the system while another autho-
rized user (such as a system administrator) may be able to reconfigure the sys-
tem but may not be allowed to access any confidential information in the sys-
tem.

e The system triggers operator or user errors: This is related to the usability
aspects of the system. Human errors are often significant causes of failures of
systems. These can be prevented by better human factors design as well as the
use of sanity checks and other methods of detecting potential user errors. In-
creasing the system autonomy, as in the design of autonomic or self-stabilizing
systems, can help alleviate the stress on the users and, hence, reduce human er-
rors, especially with regard to system adaptation and configuration changes.

e The system or the environment enters an unsafe state: Malfunctions in sys-
tems that control the physical world via actuators can potentially lead to cata-
strophic losses of lives and/or property. Such systems are called safety-critical
systems and must be designed and certified to be highly safe. Safety is inde-
pendent of reliability. A classical example is that of a stalled car parked in an
area that is away from other traffic. It is fully unreliable but it is safe. Likewise,
a car being controlled by a small child can be very reliable but can also be very
unsafe.

e The system information regarding the state, input, output, or code can be
viewed by others: This is a security related attribute and corresponds to the
confidentiality and privacy dependability assurance properties of the system.
Methods such as data partitioning, code obfuscation, data encryption, etc., can
be used to prevent retrieval of confidential or private information by hackers
and other adversaries.

e System information regarding the state, input, output, or code can be
changed by others: This is a security and resilience related aspect correspond-
ing to integrity aspects of the system. Depending on the potential threats, as
well as the sources of these threats, various mechanisms can be used to protect
the integrity of the system. These include the use of redundancies, error detec-
tion codes, write-once memory devices, continuous monitoring, proof carrying
codes, etc.

e The system provides additional functionalities: This is also a security related
issue and corresponds to embedded malicious logic, "Trojan horses", and other
extra functions, i.e., functions that are in addition to the ones specified in the
requirements specification document. These are difficult to detect, especially if
embedded by insiders during the development process. The system can be veri-
fied to be logically correct and shown to meet all non-functional requirements,
but it may contain additional capabilities that could be exploited to subvert the
system. An example is an extra functionality in the system that causes it to

42 R. Paul et al.

transmit a lot of redundant data at critical occasions, thereby overloading the
network and other computers.

The integrated assessment of a system for a specific mission requires the fol-
lowing information:

e For each essential event, methods have to be used to determine the probability
of occurrence of that event. For example, consider the event, "The system is
available when needed." In this case, the corresponding probability that must
be determined is the probability that the system is available when needed. For
some of the events, formal methods, including verification and analysis tech-
niques, can be used to fully guarantee the occurrence of that event, in which
case the corresponding probability is 1.0.

e For each adverse event, various methods have to be used to determine the
probability of occurrence of that event. The probability of occurrence of an ad-
verse event depends not only on the intrinsic capabilities of the system and the
platform but also the likelihood of the sources of the corresponding threats. For
example, the probability that an unauthorized user will be able to access the
system is O if it can be guaranteed that there are no unauthorized users in the
environment. A specific example would be a system deployed in a highly se-
cure building that is protected by guards and locked doors.

e For each adverse event, determine the "criticality" of the event. The criticality
of an adverse event ranges from O to 1. It is O if the event is fully acceptable,
i.e., if the occurrence of the event has no consequence on the successful com-
pletion of the mission. It is 1 if the event is fully unacceptable, i.e., if the occur-
rence of the event will definitely lead to a failure of the system. The criticality
of each event is a fuzzy quantity and must be specified as part of the require-
ments for the mission.

The overall assurance level of the system for the specified mission is given by
the probability that the mission will be completed successfully after factoring in
all the possible essential and adverse events:

P{the specified mission will be completed successfully} =

Hinzl P(e;le; € E) *H'mzl {1 - O *P(ejlej € A)},

where o; is the criticality of adverse event ¢;, for 1 <j < m. ¢ ranges from 0 to 1
with 0 indicating that the occurrence of event ¢; will not have any adverse conse-
quences for the specified mission and 1 indicating that the occurrence of the event
will definitely lead to failure of the mission. The overall result is one number that
characterizes the overall effectiveness or assurance level of the system for accom-
plishing a given mission. This can be used to rank the potential candidates for im-
plementing the system to enable the selection of the best candidate, i.e., the one
that has the highest chance of success.

Often, it is necessary to be able to rank a collection of assets that are pre-
deployed with the goal of supporting a range of potential missions that may arise
in the future rather than any given specific mission. In this case, the integrated as-

2 Trustworthiness Assessment Framework for Net-Centric Systems 43

sessment is based on the expected (average) value of the capability of the asset to
support the specified set of possible missions. This yields,
P(the asset can support the set of specified missions) =

-1 P(mission k can be completed successfully using the asset)l(mission k
occurs).
The overall result can then be used to select between different candidate set of
assets, i.e., the one that is the most capable in supporting the specified set of mis-
sions.

5. Summary and Future Research Directions

We have introduced the concept of trustworthiness to include dependability and
a comprehensive set of other high assurance attributes. A trustworthiness ontology
is developed to capture the trustworthiness aspects and their correlations as well as
to model various classes of system entities and their integrations. The ontology
provides information to guide the trustworthiness analysis and data collection.
Based on the ontology, a trustworthiness assessment framework is developed. In
the framework, systematic steps are formulated to achieve trustworthiness assess-
ments. Techniques and tools to perform the assessments in each step are incorpo-
rated in the ontology to allow the actual analysis and derivation of assessment re-
sults.

We have also identified some missing links in assessments techniques and de-
veloped a holistic assessment technique to provide a single overall measure of the
trustworthiness of a system or a subsystem.

Future research includes two major directions. First, we plan to analyze the cur-
rent techniques and tools for each step of the trustworthiness assessment. Based on
the ontology, we will identify areas that require further research for new or better
analysis techniques. Second, we plan to develop integration based assessment
techniques to facilitate assessment of large-scale systems from trustworthiness
attributes of their individual subsystems with known trustworthiness assessment.
We also plan to develop assessment techniques with holistic views for different
levels of NCS systems.

References

1. Mark S. Ackerman, Lorrie Faith Cranor, Joseph Reagle, “Privacy in e-commerce: examining
user scenarios and privacy preferences,” Proceedings of the 1st ACM conference on Elec-
tronic commerce, Denver, Colorado, 1999, pp. 1-8.

2. T. Anderson, Resilient Computing Systems, John-Wiley, New York, 1985.

44 R. Paul et al.

3. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic concepts and taxonomy of
dependable and secure computing," IEEE Trans. on Dependable and Secure Computing, Vol.
1, No. 1, Jan.-Mar. 2004, pp. 11-33.

4. F. B. Bastani and A. Pasquini, “Assessment of a sampling method for measuring safety-
critical software reliability,” Proceedings of 5th International Symposium on Software Relia-
bility Engineering, November 1994, pp. 93-102.

5. AM.K. Cheng, Real-Time Systems: Scheduling, Analysis, and Verification, Wiley Inters-
cience, 2002.

6. Mike Chen, Emre Kiciman, Eugene Fratkin, Eric Brewer, and Armando Fox, ‘“Pinpoint:
Problem determination in large, dynamic Internet services,” Dependable Systems and Net-
works, 2002.

7. Julie E. Cohen, “DRM and privacy,” Communications of the ACM (Special issue on digital
rights management and fair use by design), Vol. 46, No. 4, April 2003, pp. 46-49

8. Riccardo Focardi, Fabio Martinelli, “A uniform approach for the definition of security prop-
erties,” World Congress on Formal Methods, 1999.

9. B.J. Fogg and H. Tseng, "The elements of computer credibility," Proc. 1999 SIGCHI Conf.
on Human Factors in Computing Systems, Pittsburgh, PA, 1999, pp. 80-87.

10.T.F. Lawrence, "The quality of service model and high assurance," Proc. 1997 IEEE High-
Assurance Systems Engineering Workshop, Washington, DC, Aug. 1997, pp. 38-39.

11.E. A. Lee and S. Edwards., “Precision Timed (PRET) Computation in Cyber-Physical Sys-
tem”, National Workshop on High Confidence Software Platforms for Cyber-Physical Sys-
tems: Research Needs and Roadmap, November, 2006.

12.N. Leveson, Software: System Safety and Computers, Addison Wesley, New York, 1995.

13.H.F. Lipson and D.A. Fisher, "Survivability - A new technical and business perspective on
security," Proc. 1999 workshop on New security Paradigms, Caledon Hills, Ontario, Canada,
1999, pp. 33-39.

14.B. Littlewood and L. Strigini, “Software reliability and dependability: A roadmap,” Proceed-
ings of the 22nd International Conference on Software Engineering, Limerick, Ireland, A.
Finkelstein (ed), June 2000, pp. 177-188.

15.J.W.S. Liu, Real-Time Systems, Prentice Hall, 2000.

16.J. McDermott, "Attack-potential-based survivability modeling for high-consequence sys-
tems," 2005. Proc. 3rd IEEE Intl. Work. on Information Assurance (IWIA'05), March 2005,
pp. 119-130.

17.R. A. Paul, “DoD towards software services,” Proceedings of the 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems, February 2005, pp. 3-6.

18.G. Vecellio and W. M. Thomas, "Issues in the assurance of component-based software,"
Proc. 2000 IEEE Intl. Work.on Component-Based Software Engineering, Limerick, Ireland,
Jun. 2000.

19.J. Voas, "Certifying software for high-assurance environments," IEEE Software, Vol. 16, No.
4, Jul./Aug. 1999, pp. 48-54.

Chapter 3

A Trust Monitoring Architecture for Service-
Based Software

Mohammad Gias Uddin* and Mohammad Zulkernine**

* Dept. of Electrical and Computer Engineering, Queen’s University,
Kingston, Canada K7L 3N6. Email: gias@cs.queensu.ca
** School of Computing, Queen's University,

Kingston, Canada K7L 3N6. Email: mzulker @cs.queensu.ca

Abstract. Service-based software can be misused by potentially untrustworthy
service requestors while providing services. A service-based system is usually dy-
namic due to mutual collaboration among stakeholders to achieve goals, perform
tasks and manage resources. However, it lacks the presence of a central authority
to monitor the trustworthiness of service users. In this chapter, we propose a trust
monitoring architecture, called TrAM (Trust Architecture for Monitoring) to
monitor the trustworthiness of service users at run-time, facilitating the analysis of
interactions from trust perspectives. Monitoring allows the enforcement of correc-
tive actions that may protect the software by mitigating major unwanted incidents.
The performance of the architecture has been evaluated by monitoring a prototype
file-sharing grid.

1. Introduction

In service-based software systems, stakeholders are scattered across different or-
ganizational domains, and they can join and leave the systems at any time. A ser-
vice-based system usually operates through spontaneous interactions with limited
reliance on a specific central control authority. This inherent nature of decentrali-
zation introduces security concerns as software may be exploited by potentially
untrustworthy stakeholders on whom the software has minimal or no control. Un-
certainty is prevalent due to its open nature, so it may not be always sufficient to
use ‘hard security’ mechanisms to protect services from malicious and unwanted
incidents. For example, illegal access to resources can be avoided using access
control mechanisms. However, a malicious user with access to system resources
from several administrative boundaries can still use different services that may

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_3, © Springer Science+Business Media, LLC 2009

46 M.G. Uddin and M. Zulkernine

provide that user with ample opportunities to break into the system. Given that, a
trust monitoring architecture is necessary for the run-time analysis of the services
based on the trustworthiness of the service requesters.

Trust is considered as ‘soft security’ and it is “a particular level of the subjec-
tive probability with which an agent assesses that another agent or group of agents
will perform a particular action” [1, 2]. Trust incorporates risk analysis to examine
potential risks or opportunities the interactions may invite to the total system. In
this chapter, we present a monitoring architecture for analyzing service interac-
tions from trust perspectives by identifying the contexts of trust concerns in trust
rules that are prevalent in such interactions. A trust rule snapshots system events
encapsulating a service outcome that is crucial to the target system from trust
perspectives [6]. The proposed architecture is called TrAM (Trust Architecture
for Monitoring), and it may reside in each service providing software. The archi-
tecture allows the analysis of the trustworthiness of users based on trust rules and
calculation schemes [6, 7]. A service requestor is penalized for the violation of
trust rules and rewarded for no such violations, which thus facilitates the quantifi-
cation of the trustworthiness of the corresponding entities. Collaborative decision
making is introduced by incorporating the recommendations from similar service
providers. The performance overhead of the architecture has been evaluated based
on the monitoring of a prototype trust-aware file-sharing grid.

g

InteractionInputs T InteractionOutputs
__| Interactionlnputs_ o

InteractionInputs = | ServiceDecision

Reps

Rout

_J

[_ Trust Monitor

Trust Model
or Trust Calculatio:

Trust Scenario I
Specifications

Calculated Trust
Trustworthiness Violation Report

Target System

Rin = Incoming Recommendation Requests
Rout = Outgoing Recommendation Requests
Reps = Recommendation Replies

Fig. 1. Working environment of the monitoring architecture

Fig. 1 presents an overview of the trust monitoring architecture, where the tar-
get system is any service provider. An interaction is initiated when a service user
requests a service. The events received from requestors by the Main Module of a
provider are called Interactionlnputs. The provider uses the Trust Monitor to ana-
lyze the interactions with the requestors which are forwarded to it by the Main
Module. For a service request, the Trust Monitor provides a decision (ServiceDe-

3 A Trust Monitoring Architecture for Service-Based Software 47

cision) on whether to grant the service or not. Upon the granting of services, the
monitor analyzes interaction events related to the corresponding session based on
trust scenario specifications represented as trust rules at run-time. Based on this
analysis, the trust monitor provides another ServiceDecision specifying whether
the interaction is successful or not. The Main Module sends replies in the form of
InteractionOutputs to the requestors according to the ServiceDecision. The reques-
tor is penalized with a distrust value if any trust rule is violated in one of the inte-
raction events, while it is awarded a trust value if no such violation occurs. The
Main Module receives incoming recommendation requests (Rin) from other ser-
vice providers and forwards those to the Trust Monitor which can send recom-
mendation requests to others through Rout. Moreover, the Trust Monitor receives
or sends recommendation replies through Reps. The calculated trust values are
stored in the repositories. Alert reports are generated and logged for any violation
of a trust rule.

The rest of the chapter is organized as follows. The monitoring architecture is
described in detail in Section 2. Section 3 provides the implementation and eval-
uation. In Section 4, the proposed architecture is compared and contrasted with the
related work. Section 5 identifies the limitations and future research directions.

2. TrAM: The Trust Architecture for Monitoring

TrAM (Trust Architecture for Monitoring) is composed of a number of modules to
analyze and calculate the trustworthiness of stakeholders and make trust-based
run-time decisions. The architecture is presented in Fig. 2, and the modules and
the related entities are described in detail in this section.

InteractionInputs are service request events (sRQ) or service session events
(sSN). Upon the granting of a service to a user by a provider, a service session is
initiated, during which the user and the provider exchange information related to
the granted service. The events related to the session are called service session
events (sSN). The Event Dispatcher of the Main Module receives the sRQ and the
sSN as primary inputs. A provider makes a recommendation request (rRQ) to oth-
er providers about the requestor and receives recommendation replies (rRP) from
other providers. The secondary inputs to the Event Dispatcher are the recommen-
dation requests from other service providers through Rin.

The sRQs are forwarded to the Trust Engine, and sSNs to the Trust State Ana-
lyzer of the Trust Monitor. The Rins are forwarded to the Recommendation En-
gine, from where rRQs are sent as Rout to other providers. The replies to recom-
mendat- ion requests (rRP) are received and sent by the Recommendation Engine
through Reps. The Trust Engine provides decisions to grant or reject service re-
quest (i.e., sRQs), while the Trust State Analyzer checks sSNs against possible
trust rules and provides decisions based on the state of the risk outcomes of the in-
teraction. The Trust Decision Notifier forwards decisions from the Trust Engine
and the Trust State Analyzer to the Trust Actions of the Main Module, from which

48 M.G. Uddin and M. Zulkernine

service replies are provided as sRPs through InteractionOutputs to requestors.
Every provider has a serviceDescriptor.xml file to describe provided services
and a serviceTrustContext.xml file to designate corresponding trust rules.

A snippet of serviceDescriptor.xml is provided in Fig. 3. The target system
is a provider with ID spl, offering file sharing services (i.e., file upload, search,
open, and download) to requestors. One of the provided services is UploadDoc-
File to upload documents to the server. The required parameters (i.e., service-
param) are fileName, fileSize, fileType and fileContents. spl employs constraints
on this service which users need to follow while uploading documents. The con-
straints are specified in the ServiceConstraints tag, such as fileSize.maxPOST
which limits the maximum file-size in the server, lest malicious users upload files
of very large size to waste server space, possibly making the upload service un-
available to other users. The trust rules follow the corresponding serviceCon-
straints in the corresponding risk state space construction.

Target System | Service Provider

Trust Monitor | Rin

ServiceDescriptor.xml Jation—query

(SevieTusComes o) o [e
‘ Trust Engine ‘ direct trust ’ﬁ trust
Main Module] \r—y‘ i
i notify recs Direct Trust
i e |
Dipsiche

- |

<<Repository>>
Recommendations
rec-acc

Trust State Analyzer
InteractionOutputs Trust Actions sSN Recom-Accuracy
trust rules <<Repository>>
notify, notify, Trust Rules

- = ‘ alert -
Trust Decision Notifier] < y>>

alert Alerts

ServiceDecision - . -
MonitorConfigurations.xml

Interactionlnp 14 > Reps

QUISUF UONEBPUIWIOIY

Rout

Reps = recommendation replies, recs = recommendation values
Rin = incoming recommendation requests, ~ Rout = outgoing recommendations requests
rec — acc = recommendation — accuracy, sRQ = service request event, sSN = service session event

Fig. 2. TrAM : Trust Architecture for Monitoring

<?xml version = "1.0" encoding = "UTF-8" 2>
<TargetSystem name = "FileServer" id = "spl">
<ProvidedServices:>
<Providedlervice
service-params = "fileMame, fileSize, fileType, fileContents'">UploadDocFile
</ProvidedService>

</ProvidedServices>
<ZerviceConstraintss
<@erviceConstraint filefize.waxPOST = "100MB">UploadDocFile«/ServiceConstraints

</ServiceConstraintsy>
</ Targetiystem:

Fig. 3. A snippet of ServiceDescriptor.xml

3 A Trust Monitoring Architecture for Service-Based Software 49

A snippet of ServiceTrustContext.xml is presented in Fig. 4. The interac-
tion- threshold is used to denote the minimum trust value necessary for a user
to be of fered the service; in this case, if the user has a previous total trust value
greater than or equal to 0.52, the UploadDocFile service will be granted to the us-
er. The trust rules to analyze the UploadDocFile service are “FileExcess”, “Fi-
leHarmful” and “UploadCompletion”. The class-ids in each of the trust rules
designate the corresponding module used to deploy the corresponding trust rule.
The FileExcess trust rule checks whether the uploaded file meets the server max-
imum file size constraint (i.e., fileSize.maxP0OST). A user may accidentally try to
upload such large file once or twice. However, if the user executes such attempts
beyond an acceptable limit, it surely is untrustworthy and should be considered
carefully before granting any further uploading service. If this rule is violated, the
requestor is penalized by a disbelief value of medium as denoted by category and
importance respectively. The accpetablerimit of such misbehavior is 3, i.e., the
user will be warned (action = “warNING~) for such misbehavior up to three
times, after which the service will not offered to the corresponding user anymore
for the particular interaction!. The “FileHarmful” trust rule examines the uploaded
file for any harmful contents (e.g., virus-infected file or the presence of any objec-
tionable contents in the fileContents) and has importance value set as high with
action as ferminate and AcceptableLimit as 1, interpreted as follows: the ser-
vice offering of uploading doc file will be terminated (action = “TERMINATE”) tO
the corresponding user as soon as (AcceptableLimit = “1) the uploaded file is
detected as harmful, and also the user will be penalized a disbelief value (catego-
ry = “disbelief”) of high for such misbehavior (importance = “high”). The
“UploadCompletion” trust rule checks for the successful completion of the ser-
vice. This trust rule is not violated if the user uploads files maintaining all the ser-
vice constraints; that is, if the FileExcess and the FileHarmful trust rules are not
violated. If this trust rule (i.e., UploadCompletion) is not violated, the requestor is
awarded a belief (category = “belief”) value of high (importance = “high”).
Moreover, the interaction with the user will be considered as trustworthy as soon
as (AcceptableLimit = “1) the user uploads legitimate doc file, and will be sent
a notification of successful interaction (action = “SUCCESSFUL”").

The Main Module has two parts: Event Dispatcher and Trust Actions. All the
incoming events are received by the Event Dispatcher and forwarded to the differ-
ent modules of the Trust Monitor. The incoming events to the Event Dispatcher
are of three types: service requests (sRQ), service sessions (sSN), and recommen-
dation requests (rRQ). Upon receipt of an event, the module delegates a sRQ to the
Trust Engine, sSN to the trust state analyzer, and rRQ to the Recommendation En-
gine of the Trust Monitor. The Trust Actions module provides service replies to
requestors by following the ServiceDecisions obtained from the Trust Decision
Notifier of the Trust Monitor. For example, based on a sRQ, the module can offer
or reject services, or based on an sSN, the module can terminate an unsatisfactory
interaction.

! The values of different attributes and constants will depend on the corresponding target system.

50 M.G. Uddin and M. Zulkernine

<?xml version = "1.0" encoding = "UTF-8" 2
<ServiceTrustContextss
<3ervice name = "UploadDocFile' interaction-threshold = "0.52">
<trust-rules:
<trust-rule class-id = "ChkFileExcess"

category = "dishbelief" importance = "MEDIUM"

Ahpeeptablelimit = "3" action = "WARWING':>FileExcess</trust-rule>
<trust-rule class-id = 'ChkFileHarmful'

category= "dishelief" importance = "HIGH"

beeeptablelinit = "1" action = "TERMIHATE'>FileHarmful«</trust-rules>
<trust-rule class-id = "SuccessfulDocUpload"

category= "belief" importance = "HIGH"

Aepeptablelinit = "1" action = "SUCCESSFUL'>UploadCompletion</trust-rules

</trust-ruless
<fZervieer

<fServiceTrustContextsy

Fig. 4. A snippet of ServiceTrustContext.xml

The Trust Monitor analyzes interactions, calculates the trustworthiness of the
interacting entities and makes decisions. It has four basic sub-modules: the Trust
State Analyzer, the Trust Engine, the Recommendation Engine, and the Trust De-
cision Notifier. The sub-modules are discussed in the following subsections. To
substantiate these discussions, we show three most prevalent scenarios using se-
quence diagrams: user requesting a service (Fig. 5), user violating a trust rule (Fig.
6), and user performing a trustworthy interaction (Fig. 7).

sd RequestForService(sr, s1, sp))

TrustMonitor

/3E . i te: TEngine @ @ @ tdn: TDnotifier || re: REngine . .
s Se‘rvicekeq sp: Ser‘uceProv — dl.DT‘rusl raRAcc rcRec —_— 2 rml: Recom || rm2: Recom

LreqService(sl) [
LregService(s) f

2.delReq(s1, sr)

3.req Quergl(ﬂl, sr)

4.queryDT(s1, s par]

6a.reqRec(s,sr)|

Tarec(sl, sr)

S‘rec{s(rml. rm2)

********* T

1 l.recs(nlnl. rm2)
e o2 e
1 i

2.queryAcc(rml, rm2)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
o

Legend: k
14.calcTotal Trust(s1, sr) serviceReq = Service Requestor
15.notify() ServiceProv = Service Provider
1B = TEngine = Trust Engine
M TotalTrust>= InteractionThreshold RAcc = Recom - Acc
16a.serviceDecision(s1, sr) == ACCEPT Rec = Recommendations
1 b REngine = Recommendation Engine
[else] 16b.serviceDecision(s, sr) = REJECT Recom = R d
— 17.reply(s1) -

Fig. 5. Sequence diagram for a service request

3 A Trust Monitoring Architecture for Service-Based Software

Kd ServiceRequest(sr.s1.sp)=ACCEPT

precondition ‘

sd Unsuccessfullnteraction(st, s1, sp)__J

TrustMonii

tor

— T

- :Sm:icckc erviceProv tsa: TSAnalyzer | TRules ar:Alerts dt:DTru

ist raRAce reRec | \dn: TDnotifier
raRAce _reiRec

I N
| LsendSSN(s1.p)
L SeNESS R LR |

2.delSSN(sr,s1, p)|

3.getRules(s1)

ks

iskAnalysis(s1
:RiskFound=TRU

7.calculateConf(sr,s1)
8.notifyTrustVal(sr,s1)

i
|
i
|
|
i
] . 9 queryDT(srs1)
! D,(,,,J ,,,,,,, b __10DTrustGsr.sly|
! S i - - - 11 UpdateDTrusi(s.s1) |
! Il 12 queryRAce(srsl)
| EL ,,,,,, [___13RAcc(stsl) .|
! i -
| i
1 i
1 = ;

17.notifyRisk(sr,s1) ! o

— 18 queryAlerts(sr, s1)

EL ,,,,,,,,, _19_countAlerts(sr, s1y|

[AC T countAttempt<N
20: icel on(s,s1

[else] 20b.ServiceDecision(sr,s1) = TERMINATE

21.reply(s1)
=

TDnotifier= Trust Decision Notifier, TRules = Trust—Rules

Legends
TSAnalyzer = Trust State Analyzer,
TEngine = Trust Engine, RAcc =

acy, Rec = R jons

ServiceProv = Service Provider, ServiceReq = Service Requestor, DTrust = Direct Trust

Fig. 6. Sequence diagram for a user violating a trust

sd ServiceRequest(sr,s1.sp)=ACCEPT

precondition ‘

rule

sd Successfullnteraction(sr, s1, sp) J

tsa: TSAnalyzer | TRules dtDTrust raRAcc re:Rec “‘1“1 TDnotifier
: :

TrustMonitor

‘ te: TEngine
Le: TEngine

sr: ServiceRe
T

;
7 7

|

' 1.sendSSN(s1,p) [| o i

e |
|

3.getRules(s1)
[EeRuestS)
4.TRules(s1) D

7
|
|
|
|
|
|
|
|
|
|

[!

RiskAnalysis(s1) |
|
|
|
|
|
|
|
|
|
|
|

2.delSSN(sr,s1, p)

:RiskFound=FALSE

s

.calculateConf{(sr,s1)
s1)

8. queryDT(sr,s1)

16.n0tifySuccess(sr,s 1)

9DTrust(sr.sD) =
JlLUpds’l‘LeD:Eru (sesl) |

--T
I
I

,,,,,, - _I2.RAcc(sr,s1) = |

I
' 14 Recs(srsl) -]

15 UpdateR Acc(sr,s1)
D 1

17.ServiceDecision(sr,s1) = SUCCESSFUL

I
|
|
|
i
|
|
|
i
|
|
|
i
|
|
|
i
|
|
:
| 7.notify TrustVal(s
i
|
|
|
i
|
|
|
i
|
|
|
|
|
|
i
|
|
|
i
|

]

Legends

TSAnalyzer = Trust State Analyzer, TDnotifier= Trust Decision Notifier, TRules = Trust—Rules
TEngine = Trust Engine, RAcc = Recommendation—Accuracy, Rec = Recommendations
ServiceProv = Service Provider, ServiceReq = Service Requestor, DTrust = Direct Trust

Fig. 7. Sequence diagram for a user performing trustworthy interactions

51

52 M.G. Uddin and M. Zulkernine

2.1 Trust State Analyzer

This module constructs trust-based risk state space to analyze service session
events (sSNs) using trust rules from the Trust Rules repository. Upon the arrival of
a service session event, this module checks the event outcome against all possible
trust rules. Based on the result of the check, the module notifies the Trust Engine
about the confidence (u) it has gained from the interaction. Whenever a trust rule
is violated, this module generates an alert in the alerts repository. An alert has
the form {sr, s, r, sID, t,.,.}, where sr is the requestor, s; is the requested service, r
is the trust rule that is being violated, sID is the ID of the session in which the vi-
olation was detected, and 7,,,, is the time when alert was generated based on the
identification of potential risks in the corresponding interactions.. If a trust rule is
violated the corresponding interaction is determined as unsatisfactory; otherwise,
it is considered as satisfactory. The Trust Decision Notifier is notified of this po-
tential risk-state info in the interaction status and makes decisions accordingly.
The Trust Engine is notified of a confidence value only when a potential risk state
is confirmed through the convergence to a confirmed untrustworthy state. Howev-
er, the user is warned each time a potential risk is found in the corresponding inte-
raction that is deemed as suspicious but requires further analysis. The Trust Deci-
sion Notifier is notified of any potential risk state information. In addition, the
Trust Decision Notifier is notified of any successful interaction with service users.
The total belief (1) (range [0, 1]) of provider E/ on requestor E2 for service s; at
time ¢ from interaction / (i.e., sRQ) is calculated using Eq. 1, where B(rn) contains
the belief value of the trust rule indexed as rn, and n, is the total number of trust
rule(s) related to belief outcome(s)?. Similarly, total disbelief 1, (range [0, 1]) is
calculated using Eq. 2, where D(rn) contains the disbelief value of the trust rule
indexed as rn, and n, is the total number of trust rules with disbelief outcome. The
confidence (u) (range [0, 1]) of EI on E2 about service s; is calculated using Eq. 3
(wp, (range [0, 1]) as the weight assigned to /,,.)

d(EL,E2,s,.t
I,(ELLE2,s, 1) =(’7S‘),where d(E1,E2,s,,1)= ZB(rn) (D
n, m=0
I,(ELE2,s,t) :M, where b(E1,E2,s,t)= Z B(rn) @)
nb m=0
U(EVLE2,s,,t) = w,I, (E1,E2,s,,0)+ (1= w,) I, (E1,E2,s,,1) (3)

2 For the sake of simplicity, we denote both the provider and the requestor as entities (E).

3 A Trust Monitoring Architecture for Service-Based Software 53

2.2 Trust Engine

This module performs two tasks. First, based on the feedback on confidence (u)
from the Trust State Analyzer, it calculates and updates direct trust and the corres-
ponding recommendation accuracies. Second, it calculates total trust using direct
trust, recommendations and recommendation accuracies that are used by the Trust
Decision Notifier to provide decisions on service requests (sRQ). Whenever the
Trust State Analyzer provides confidence from an interaction, direct trust is calcu-
lated, updated, and stored in the pirect Trust repository. The previous direct
trust value is retrieved from the repository, updated based on the new confidence
value and then stored into the repository. This new direct trust is the compared
against the previous recommendations from the Recommendations repository that
were used to make service granting decision to the corresponding service user.
The comparison facilitates the understanding of the provider on the accuracies of
the corresponding recommendations in its decision making phases. The recom-
mendation accuracies are stored in the Recom-Accuracy repository. If the meas-
ured accuracy falls below a pre-determined recommendation-accuracy accuracy
threshold, the corresponding recommendation is considered as unreliable for the
particular type of interactions. However, it should be noted that the measure of
recommendation accuracy is not used as determining the trustworthiness of the
corresponding recommenders; rather its purpose is to identify the reliability of
recommendations in a particular provider decision state space. In following the
context-awareness nature of trust [7] that “a recommender r/ may not be reliable
to a provider spl for a service s;, but it may still be considered as reliable for
another service s; (i#j)” and “based on the deployment of a recommendation ac-
curacy in different providers, a recommender r/ may considered as unreliable in
provider spl for service s;, but it may still be regarded as reliable in the provider
sp2 for the same service”. The direct trust T (range [0, 1]) of E1 on E2 for service
s; at time ¢ is calculated using Eq. (4), where o (range [0, 1]) is a weighting fac-
tor. The value of T thus changes after each interaction based on the outcome of
the interaction.

T, (ELE2,s,.t) =61, (EL,E2,s,t 1)+ (1—) u(EL, E2,s,.1) 4

The accuracy (A) (range [0, 1]) of a recommender E3 in providing a recom-
mendation to a provider E/ about requestor E2 regarding service s; is calculated
using Eq. 5, where AR(E3,E1,E2, s, t) calculates the difference between the pro-
vided recommendation and the calculated direct trust. The calculation of recom-
mendation-accuracy follows [8], but tailored to service attributes in TrAM.
R(E3,EL,E2, s; t) denotes the recommendation value provided by E3 to EI about
E2 regarding service s; at time ¢. Each provider keeps an accuracy table (A7) in the
Recom-Accuracy repository, where it updates the accuracy of every recommenda-
tion after the corresponding interaction. The accuracy of E3 to El about E2 re-
garding service s; at time ¢ in the AT is denoted by AT (E3, El, E2, s, t). The up-

54 M.G. Uddin and M. Zulkernine

date in the AT is performed using Eq. 6 by considering previous recommendation
accuracy (AT (E3, El, E2, s, t—1)) and new recommendation accuracy (A (E3, EI,
E2, s;, t)). { (Range [1, 0]) weights the importance of previous and current accu-

racies. Using Eq. 5, and 6, unreliable recommendations are detected. A recom-
mender is considered as most reliable with accuracy 1 and most unreliable with
accuracy 0.

A(E3,E1,E2,s,.1)=1-AR(E3,E1E2,5,.1), (5)
where, VR(E1,E2,s,,1)=| R(E3,E1,E2,s,,1)~T, (E1,E2,s,.1)|

AT(E3,E\, E2,si,t) = (AT(E3,E1,E2,s,,t = 1)+ (1- {)A(E3, E1, E2,5,,1) (6)

The calculation of total trust is a function of direct trust, recommendation and
recommendation-accuracy [7,8], and is used to make the trust-based service grant-
ing decision for an sRQ. The Trust Decision Notifier is informed of this trust val-
ue.

2.3 Recommendation Engine

This module provides a recommendation reply (rRP) in response to a recommen-
dation request (rRQ), receives recommendations from other providers, and stores
the recommendation values in the Recommendations repository. A recommenda-
tion value is at most equal to the corresponding direct trust value to avoid any
overstating about users in the system [8]. For example, if a provider has a direct
trust value of 0.8 on a user about a particular service, it should provide a recom-
mendation value no greater than 0.8.

2.4 Trust Decision Notifier

This module provides the Trust Actions module the ServiceDecicion it obtains
from the Trust Engine and Trust State Analyzer. A service request is granted if the
calculated total trust value from the Trust Engine is at least equal to the interaction
threshold of the requested service, otherwise the request is rejected. A ServiceDe-
cision is constructed as {sr, s;, Accept, t}, if the request for service s; from reques-
tor sr is accepted at time ¢, or as {sr, s,Reject, t} if it is rejected. Based on the no-
tification of any potential risk outcome in an interaction, such as the detection of
file uploading beyond the server allowed maximum file size using the FileExcess
trust rule, the Trust Decision Notifier queries the Alerts database to determine the
total number of such misbehavior from the corresponding user for the particular

3 A Trust Monitoring Architecture for Service-Based Software 55

service. This total number is then compared against sever allowed such maximum
attempts (i.e., AcceptableLimit) in ServiceTrustContext.xml (recall Fig. 4). If
the total number of such misbehavior falls below the acceptable limit, the Trust
Decision Notifier constructs a ServiceDecision as {sr, s;, Unsatisfactory, WARNTING,
FileExcess, sID, t} to give warning to the corresponding requestor sr of the unsa-
tisfactory interaction between them, but continues to offer the s; service to the user
(i.e., UploadDocFile). Here, sr is service- user; sID is the ID of the corresponding
session that was initiated between the provider and requestor for the service s;.
However, if the number of such attempts reaches the acceptable limit, the interac-
tion with the user for the particular service usage is terminated by providing a Ser-
viceDecision as {sr, s;, Unsatisfactory, TERMINATE, FileExcess, SID, t}. A Servi-
ceDecision is constructed as {sr, s, Satisfactory, sID, t} if the interaction was
successful without violating any trust rules.

<2?¥ml wersion = "1.0" encoding = "UTF-8" 23
<Configuration Version = "1.0":>
<RecommenderList>
<3ervice name = "UploadDocFile" last-modified = "2008-07-31":>

<Recomnender—idrsp2</Recomnender—id>
<Recommender—id:sp3</ Recomnender —ids
<Recommender—id>spd</Recomnender—id>
<fServicer
</RecomuenderLists>
cConstants>
<EguationConstants:>
<EquationConstant wh = "O.8" wd ="0.2">Confidence</EquationConstant>
<EgquationConstant delta "0.8">DirectTrust</EquationConstant>
<EquationConstant delta "0.8">DirectTrust</EquationConstant>
<EgquationConstant zeta = "0.8":>Recommendation-Accuracy</EquationConstants
</EquationConstantss>
</Constants>
</ Configuration:>

e

Fig. 8. A snippet of MonitorConfigurations.xml

The MonitorConfigurations.xml file denotes the list of recommenders and
the constant values used in the trust equations. A snippet of the MonitorConfigu-
rati ions.xml is provided in Fig. 8. The RecommenderList tag shows the list of
recommenders to whom sp/ asks for recommendations for a particular service,
such as UploadDocFile. The provider continuously refreshes its database to up-
date the list of such recommenders (as identified by 1ast-modified) and identifies
the recommenders by their IDs in the system, such as sp2, sp3 and sp4. The con-
stants tag includes the constant values used in the trust calculations. For exam-

ple, the value of W, in calculating confidence (Eq. 3) is 0.8.

3. Implementation and Experimental Evaluation

We develop a prototype file sharing grid [9] in Jade (Java Agent Development
Environment) [10], by focusing on three types of file sharing services: file upload,

56 M.G. Uddin and M. Zulkernine

open and search. The trust scenarios are modeled using UMLtrust [6] and con-
verted to trust rules. The Trust Rules repository is developed based on the differ-
ent trust scenarios [6] (see Table 1). The other repositories (i.e., Direct Trust,
Recommendations, Recom-Accuracy, and Alerts) are developed as database tables
in MySQL 5.0 [11]. The providers and requestors are implemented as Jade agents.
Events are generated by employing the acLMessage (Agent Communication Lan-
guage Message), with the different modules of the architecture as ‘behaviours’ of
Jade. The summary of the implementation environment is provided as follows:

e System Configuration: Pentium 1.886 GHz Dell machine. 1| GB RAM.
e Development Languages: Java, XML, MySQL 5.0 [11].
e Development Platform: Jade 3.5 [10], Eclipse IDE 3.2.

The service providers employ the monitor to analyze interactions and decide
accordingly. Experimental results show that the proposed architecture can analyze
service-based interactions from trust perspectives, measure trustworthiness, and
make automatic decisions. The performance of the service provider is measured
while analyzing service session, service request, and recommendation requests
events. However, the monitor creates some performance overhead also. The over-
heads discussed in the next subsections are of three types, delay in providing a de-
cision on a service request event (sRQ), delay in analyzing a service session event
(sSN), and delay in a long recommendation chain.

Table 1. Elicited trust scenarios for a file sharing server

Trust Scenarios Description

File Excess Requestors may upload files beyond the limit of the server and thus make
the upload service unavailable for others.

File Spamming Requestors may upload illegal and insignificant files to waste storage space
on the server.

File Harmful Requestors may upload files containing malicious scripts which can harm

other users.

Illegal Access Attempt ~ Requestors may try to access others’ personal files in the resource database
by manipulating the file search service.

Remote File Inclusion ~ Requestors may manipulate the file open service to open malicious files re-
motely and to execute them on the server.

3.1 Delay in Providing Decision on a Service Request Event (sRQ)

A provider retrieves previous direct trust value with the requestor for the service
from the pirect Trust repository, and handles recommendations from other pro-
viders. The handling of recommendations includes the requests for recommenda-
tions and the receipt of the corresponding replies. In a service-based system with-
out the trust monitor, these two tasks would not be present. The delay is calculated
by taking the difference between the sending time of a service request event and
the receipt time of the corresponding decision in a service reply. In the experimen-

3 A Trust Monitoring Architecture for Service-Based Software 57

tal setup, we use one service provider (spl) to provide services, three providers
(sp2, sp3, and sp4) for recommendations. We vary the number of service requests
from 10 to 100 from a requestor sr/. We run the experiment for each setup 10
times and take the average to minimize errors. (see Fig. 9). The system without the
trust monitor just receives the sRQ event and provides sRP randomly (i.e., without
using any trust-based analysis), while the system with the trust monitor employs
trust-based analysis before providing sRP. The result shows that the trust-based
processing of a sRQ introduces some delay in providing the corresponding service
decision. However, the result is encouraging since the delay does not increase with
the increase of the number of service requests, i.e., scalability will not be an issue
as the number of requesters grow. The response from a provider without the trust
monitor requires almost constant time (in the range of 30-40 milliseconds), while
the response from a provider with the trust monitor also requires an almost static
time (in the range of 500—600 milliseconds). The reason for this is as follows. All
of the modules in our provider software are implemented as specific behaviors
(i.e., threads) in the Jade platform. With the arrival of each service request, the
provider creates new instance of different modules of the monitor. For example,
for 100 service requests at a time, the provider creates 100 instances of each work-
ing module. The creation times of these instances are almost constant, so the total
time required to create 100 instances of working modules is almost the same as the
time required to create 10 instances. Therefore, the execution is performed in pa-
rallel for each service request.

600 4

£
[
L= R
|

o
=)
F—

N W

-
[R
L= R =
—

service reply (millisecond)

Average delay in receiving a

o
|

0 20 40 €0 g0 100 120

Humber of service request events

——With trust monitor —s— without trust monitor

Fig. 9. The average delay in receiving a service reply for a service request

3.2 Delay in Analyzing a Service Session Event (sSN)

TrAM analyzes a service session (sSN) event in two steps: compare sSN against
trust rules, and update direct trust, recommendation, and recommendation accura-

58 M.G. Uddin and M. Zulkernine

cies. The delay is calculated by taking the difference between the sending time of
an sSN event and the corresponding reply time. To examine the overhead, we send
a number of sSNs to the sp/ varying from 10 to 100, where the requested service
is UploadDocFile. Fig.10 provides the results which show that the analysis of an
sSN introduces some delay; however, the delay remains almost constant with the
increase in events. The delay in providing a service reply without the trust monitor
remains almost constant in the range of 30-40 milliseconds, while the delay with
the trust monitor also remains almost constant in the range of 80-90 milliseconds.
The reason is the same as the processing of service request events discussed in the
previous subsection. However, the monitor does not need to send or receive rec-
ommendations to analyze an sSN. Therefore, the delay occurred is only due to the
analysis of trust rules and the accessing of the database for the retrieval and update
of trust values. Nevertheless, the slight increase in average delay with the increase
in service session events is due to the synchronized accessing of shared database
tables by individual instances. The combined analysis of Figs. 9 and 10 shows that
the average delay is in the range of 500—600 milliseconds for sRQ, while it is in
the range of 80-90 milliseconds for sSN, having the average difference as
420-520 milliseconds. The major difference in handling a sRQ and an sSN is the
handling of recommendations.

w
(=]

£ ——————————F
80
70 "If

/
°T

~— ——a
| 1 = s = = = —s——

/
[/

Average delay in receiving a
seqvice reply (millisecond)

0 20 40 B0 80 100 120
Humber of service session events

| —+—With trust monitor —s—Without trust m oritor

Fig. 10. The average delay in receiving a service reply for a service session

3.3 Delays in Long Recommendation Chains

Since recommendations are handled as sending of recommendation requests and
receiving of the corresponding replies, there is some delay in providing runtime
decisions on a sRQ. However, while analyzing the delay on a sRQ, we only consi-
dered direct recommendations (i.e, the recommendations from immediate neigh-
bors [7]). Since we allow both direct and indirect recommendations in our system,
we were interested to see the impact of handling recommendations with long

3 A Trust Monitoring Architecture for Service-Based Software 59

chain, i.e., when the path-length for indirect recommendations varies. To do this
experiment, we assumed a long chain from sp/ to spl0, where spl asks sp2 for
recommendation, sp2 to sp3, and so on. We further assumed that a provider can
ask for recommendations to only one another provider, i.e., sp/ only to sp2 and
sp2 only to sp3. We varied the number of recommenders from 1 to 9 (i.e., sp2 to
sp10), and send recommendation requests from sp/to calculate the difference be-
tween a recommendation request and the corresponding reply. Fig. 11 presents the
results which show that the delay in receiving a recommendation reply increases
almost linearly with the increase of path-length in a chain.

GO0

Delay in receiving a recommendation reply
(milliseconds)
(23
o
(=

T T T T T 1
o 2 4 5 8 10 12
Path length in a recommendation ¢chain

|+N0 of serdce providers I

Fig. 11. The average delay in receiving a recommendation reply.

3.4 Monitoring Overhead

The first experiment concludes that there is some delay in providing trust-based
service granting decision on service request events, although the average delay
remains almost constant with the increase in service requests. The second experi-
ment shows that the run-time monitoring and analysis of service-based interac-
tions does not create that much overhead. It should be noted that the purpose of
this measurement is to show that the performance overheads remain almost static,
which makes the architecture applicable for large-scale systems. Therefore, the fo-
cus of the first two experiments was not to show the differences between the two
response time delays that occur in the system with and without the monitor. The
third experiment confirms that a large recommendation chain is probably not a
good idea when there is a need for prompt reply to service request events.

60 M.G. Uddin and M. Zulkernine

4. Related Work

Many trust-based approaches are proposed by focusing on trust-based policy man-
agement [3-5, 24-32]. The monitoring of the trustworthiness of service requestors
has not been adequately addressed so far. English et al. [4] neither support any
trust rules to perform automatic trust monitoring of service-based software nor
they present any calculation schemes to quantify the trustworthiness of stakehold-
ers. Trust-based spam detection [24] and reputation-based social network systems
[25, 26] assume that the trust values are available, hence necessitating the incorpo-
ration of a monitor like ours in their systems. Since we establish dynamic trust re-
lationships between service providers and requestors based on the automatic moni-
toring of service usage, our architecture can be applicable in any social network-
based systems that require sharing of resources. Unlike our XML-based service
and trust monitor configuration, facts from past interactions are used in [27, 28].
Some other trust-based access control mechanisms [3, 5, 29-32] define the syntax
and semantics of the corresponding policy languages, and the deployment of the
policy languages in the target system requires language-based parsers and compi-
lers. We compare and contrast those work in Table 2.

Table 2. Trust-based monitoring approaches

Work Domain Trust Mechanism

TBRM [3] Information system Policy-based access control

SPM [4] Ubiquitous system Interaction-based system monitoring
TRBAC [5] Information system Policy-based access control
SureMsg [24] Email services Reputation-based email exchanging
EigenTrust [25] Peer-to-peer system Reputation-based trust negotiation
FuzzyTrust [26] Semantic web Social network-based trust formation
FuzzyWeb [27] Web services Rule-based service access

TAP [28] Service-based software Policy-based software access control
ICTM [29] Information system Policy-based access control

ATN [30] Open grid system Trust negotiation, access control
TBAC [31] Information system Policy-based access control
TrustBack [32] Information system Role-based access control

Our work Service-based software Interaction-based service monitoring

A number of monitoring architectures exist for service quality analysis and au-
tomatic service composition [12-23]. We quantify the trustworthiness of reques-
tors by monitoring their service usages, while the existing architectures monitor
service providers to improve service quality to end users. Table 3 summarizes
those research with respect to our work.

3 A Trust Monitoring Architecture for Service-Based Software 61

Table 3. Selected work on service monitoring

Work Monitored Attributes Monitored Entity Trust Quantification
FQoS [12] Service quality in user feedback Provider N
AMR [13] Service accountability in composition Provider N
SMC [14] Errors in service execution Provider N
MSLA [15] Service constraints for mutual safety — provider, user N
RM [16] Service quality using requirements Provider N
WSR [17] Exceptions in web service for quality Provider N
ZAS [18] Service timeliness, type checking Provider N
WSN [19] Errors in service execution Provider N
AGSM [20] Quality of service in grid Provider N
GSM [21] Quality of service for end users Provider N
SGR [22] Resource allocation status Provider N
IBS [23] Quality in service execution Provider N
Our work Service safety in trust concerns Requestor Y

5. Conclusions and Future Work

Due to the pervasiveness of software in our everyday activities, it is important to
monitor trust relationships between the users and the system to analyze the vulne-
rabilities and opportunities the relationships may invite to the system. In this chap-
ter, we present a trust monitoring architecture called TrAM, to automatically ana-
lyze service-based interactions from trust perspectives. TrAM employs trust rules
to analyze such interactions and uses trust calculation schemes to quantify the
trustworthiness of service users. TrAM not only makes run-time decision for ser-
vice provision but also employs dynamic decision on the risk status of the service
that may suggest the premature termination of an interaction to protect the corres-
ponding stakeholders. The proposed architecture is implemented in a trust-aware
file sharing grid and evaluated under different trust conditions and performance
overhead related concerns. Our future enhancements to the system will concen-
trate on addressing the following limitations. While specifying a trust scenario, we
assumed that the identity of a trustee is properly resolved. It was also assumed that
the network is secure from false recommenders. However, in real situations, this
might not be the case always.

Acknowledgments

This research is partially funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

62 M.G. Uddin and M. Zulkernine

References

[1] Gambetta D (1988) Can we trust trust? In: Trust: Making and Breaking Cooperative Rela-
tions. Chapter 13. University of Oxford: 213-237.

[2] Yu B, Singh MP (2002) An evidential model of distributed reputation mechanism. In: Proc.
of the 1st Intl. Joint Conf. on Autonomous Agents and multi-agent systems. Italy. ACM
Press: 294-301.

[3] Lin C, Varadharajan V (2006) Trust based risk management for distributed system security -
a new approach. In: Proc. of the 1st International Conference on Availability, Reliability and
Security. Vienna, Austria. IEEE CS Press: 6-13.

[4] English C, Terzis S, Nixon P (2005) Towards self-protecting ubiquitous systems: monitoring
trust-based interactions. In: Personal and Ubiquitous Computing 10(1). Springer: 50-54.

[5] Dimmock N, Bacon J, Ingram D, Moody K (2005) Risk models for trust-based access control
(TBAC). In: Proc. of the 3rd Annual Conference on Trust Management (LNCS v3477).
France. Springer: 364-371.

[6] Uddin MG, Zulkernine M (2008) UMLtrust: Towards developing trust-aware software. In:
Proc. of the 23rd ACM Symposium on Applied Computing. Brazil. ACM Press: 831-836.

[7] Uddin MG, Zulkernine M, Ahamed SI (2008) CAT: A context-aware trust model for open
and dynamic systems. In: Proc. of the 23rd Annual ACM Symposium on Applied Computing.
Fortaleza, Brazil. ACM Press: 2024-2029.

[8] Azzedin F, Maheswaran M (2003) Trust modeling for peer-to-peer based computing systems.
In: Proc. of the International Symposium on Parallel and Distributed Processing. USA. IEEE
CS Press: 10pp.

[9] Deng Y, Wang F (2007) A heterogeneous storage grid enabled by grid service. In: ACM
SIGOPS Operating Systems Review 41(1). ACM Press: 7-13.

[10] Bellifemine F, Caire G, Poggi A, Rimassa G (2003) Jade: A white paper. In: EXP in Search
of Innovation 3(3): 14pp.

[11] MySQL 5.0 Reference Manual (2008). In: MySQL Enterprise Server.

[12] Jurca R, Faltings B, Binder W (2007) Reliable QoS monitoring based on client feedback. In:
Proc. of the 16th Intl. Conference on World Wide Web. Canada. ACM Press: 1003-1012.
[13] Zhang Y, Lin K, Hsu J (2007) Accountability monitoring and reasoning in service-oriented
architectures. In: Journal of Service Oriented Computing and Applications 1(1). Springer:

35-50.

[14] Baresi L, Ghezzi C, Guinea S (2004) Smart monitors for composed services. In: Proc. of the
2nd International Conference on Service-Oriented Computing. USA. ACM Press: 193-202.
[15] Skene J, Skene A, Crampton J, Emmerich W (2007) The monitorability of service-level
agreements for application-service provision. In: Proc. of the 6th International Workshop on

Software and Performance. Buenos Aires, Argentina. ACM Press: 3—14.

[16] Spanoudakis G, Mahbub K (2004) Requirements monitoring for service-based systems: to-
wards a framework based on event calculus. In: Proc. of the 19th International Conference on
Automated Software Engineering. Linz, Austria. IEEE CS Press: 379-384.

[17] Robinson WN (2003) Monitoring web service requirements. In: Proc. of the 11th IEEE In-
ternational Conference on Requirements Engineering. Japan. IEEE CS Press: 65-74.

[18] Letia T, Marginean A, Groza A (2007) Z-based agents for service-oriented computing. In:
Proc. of the Service-Oriented Computing: Agents, Semantics, and Engineering (LNCS
v4504). Honolulu, HI, USA. Springer: 160-174.

[19] Yan Y, Cordier MO, Pencole Y, Grastien A (2005) Monitoring Web service networks in a
model-based approach. In: Proc. of the 3rd European Conference on Web Services. Vaxj,
Sweden. IEEE CS Press: 192-203.

[20] Rochford K, Coghlan B, Walsh J (2006) An agent-based approach to grid service monitor-
ing. In: Proc. of the 5th Intl. Symposium on Parallel and Distributed Computing. Romania.
IEEE CS Press: 345-351.

3 A Trust Monitoring Architecture for Service-Based Software 63

[21] Peng L, Koh M, Song J, See S (2006) Grid service monitoring for grid market framework.
In: Proc. of the 14th IEEE International Conf. on Networks. Singapore. IEEE CS Press: 1-6.

[22] Mao H, Hunag L, Li M (2005) Service-based grid resource monitoring with common infor-
mation model. In: Proc. of the IFIP International Conf on Network and Parallel Computing
(LNCS v3779). Beijing, China. Springer: 80-83.

[23] Sahai A, Machiraju V, Wurster] K (2001) Monitoring and controlling internet-based e-
services. In: Proc. of 2nd Workshop on Internet Applications. USA. IEEE CS Press: 41-48.
[24] Zhang W, Bi J, Wu J, Qin Z (2007) An approach to optimize local trust algorithm for Su-
reMsg service. In: Proc. of the ECSIS Symposium on Bio-inspired, Learning, and Intelligent

Systems for Security. Edinburgh, UK. IEEE CS Press: 51-54.

[25] Kamvar SD, Schlosser MT, Molina-Garcia H (2003) The eigentrust algorithm for reputation
management in P2P networks. In: Proc. of the 12th International Conference on World Wide
Web. Budapest, Hungary. ACM Press: 640-651.

[26] Lesani M, Bagheri S (2006) Applying and inferring fuzzy trust in semantic web social net-
works, in Proc. of the Canadian Semantic Web. Quebec City, Canada. Springer: 23—43.

[27] Sherchan W, Loke S, Krishnaswamy S (2006) A fuzzy model for reasoning about reputation
in web services. In: Proc. of 21st Annual ACM Symposium on Applied Computing. Dijon,
France. ACM Press: 1886—1892.

[28] Rajbhandari S, Contes A, Rana OF, Deora V, Wootten I (2006) Trust assessment using
provenance in service oriented applications. In: Proc. of the 10th IEEE on Intl. Enterprise
Distributed Object Computing Conference Workshops. Hong Kong. IEEE CS Press: 65-72.

[29] Etalle S, Winsborough W (2005) Integrity constraints in trust management. In: Proc. of the
10th Symposium on Access Control Models and Technologies, Sweden. ACM Press: 1-10.

[30] Ryutov T, Zhou L, Neuman C, Foukia N, Leithead T, Seamons K (2005) Adaptive trust ne-
gotiation and access control for grids. In: Proc. of the 6th IEEE/ACM International Workshop
on Grid Computing. Washington, USA. IEEE CS Press: 55-62.

[31] Chakraborty S, Ray I (2006) TrustBAC: Integrating trust relationships into the RBAC mod-
el for access control in open systems. In: Proc. of the 11th ACM Symposium on Access Con-
trol Models and Technologies. California, USA. ACM Press: 49-58.

[32] Dimmock N, Belokosztolszki A, Eyers D, Bacon J, Ingram D, Moody K (2004) Using trust
and risk in role-based access control policies. In: Proc. of the 9th ACM Symposium on
Access Control Models and Technologies, New York, USA. ACM Press: 156-162.

Chapter 4

Human Interoperability Enterprise for High-
Assurance Systems

Raymond Paul*, Stefania Brown-VanHoozer*, and Arif Ghafoor**

*US Department of Defense
**Purdue University, West Lafayette, IN 47907

Abstract. Development of dependable high-assurance systems requires policies
and standards essential for improving human interoperability among collaborating
individuals and organizations. Such systems facilitate unfettered strategic commu-
nication flow to all the stakeholders, while supporting intelligent interfaces in a
manner that reinforces the collaboration through cooperative and coordinated cog-
nitive activities of the participants. In essence, these activities elucidate a group
sense making process that allows creation/recreation of distributed and similar
knowledge among group members through sharing and interpreting of informa-
tion. This chapter elaborates on key human interoperability enterprise policy chal-
lenges and the role of coordinated human behavior and human cognition for de-
veloping high-assurance systems. In addition, the chapter provides a roadmap for
developing an interoperability policy framework and engineering economically
viable high-assurance systems to support missions where people play a key role.

1. Introduction

Emerging mission critical and non-mission critical applications are exhibiting in-
creasing reliance on high-assurance systems which are trusted systems that per-
form their functions reliably and dependably [1]. These systems often operate in a
large-scale service-oriented network-enabled environment that connects geo-
graphically dispersed personnel, resources, and data. Examples of such applica-
tions abound in the domains of emergency response systems, banking, finance,
and airlines, as well as military and critical national infrastructures. These systems
are built based on traditional approaches drawn from the discipline of system en-
gineering. However, as advances in network-enabled environments are allowing

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_4, © Springer Science+Business Media, LLC 2009

66 R. Paul et al.

collaboration among diverse community of users, human interoperability enter-
prise (HIE) has become an emergent paradigm which is aimed to achieve high
quality value chain for the users of high assurance systems starting with data and
moving over to information, knowledge and services to awareness.

HIE poses a unique set of challenges that have been overlooked in the area of
traditional system engineering. The effectiveness of high-assurance systems needs
to be treated as a function of collaborative capacities for coordinating, communi-
cating and processing information that entail acquiring data, fusing and correlating
data streams with available knowledge, projecting outcomes, weighing alterna-
tives, deciding a course of action, enacting the decision, and coordinating the
process of enactment. As a result, progress in building high-assurance systems
will be driven by the development of optimum communications, decision making
and sharing of knowledge among humans and computers. The quality of shared
awareness in such a human-centric environment is explicitly placed in the cogni-
tive domain and critically depends on the human cognitive performance and de-
gree of trustworthiness among human operators and systems. These environments
are heavily dependent on the end users’ assessments of the value and integrity of
the information, trust, and the quality of decisions [2,3,4,5,29]. Human interac-
tions in these environments can include:

e Operating and maintaining complex cyber physical infrastructures, computer-
controlled combat systems, weapon systems, and command-and-control sys-
tems;

e Remotely controlling large number of sensors and actuators, such as unmanned
drones, or a swarm of robots, a group of autonomous air-
borne/underwater/space vehicles;

e Collaborating and visualizing current environment through the control of sen-
sors and information processing;

e Interacting with cyber interfaces on desktop or mobile handheld devices to in-
tegrate information, make command and control decisions, and provide coordi-
nation plans.

Failure to achieve seamless interoperation among systems and human operators
in a high assurance environment can have drastic consequences that can translate
directly to financial losses, loss of prestige, or endangerment of lives. For exam-
ple, the statistics collected over the last several decades have raveled that the hu-
man error is the major cause for airline accidents [6]. Aviation control is a
complex and dynamic system intended to provide a high assurance environment.
However, errors can occur in this environment on the part of any number of peo-
ple, including air traffic controllers, flight crew, and maintenance crew. An error
can entail a wrong decision or poor judgment in taking an appropriate action in an
emergency situation or a distraction that results in a flaw being overlooked. Lack
of training or fatigue can be the additional causes of poor human cognitive per-
formance.

4 Human Interoperability Enterprise for High-Assurance Systems 67

The challenge of human interoperability and human cognitive performance ex-
acerbates while developing high-assurance collaborative systems at the global lev-
el connecting coalition partners, organizations and nations. The goal of such glob-
al systems is to facilitate unfettered strategic communication flow to all the
stakeholders, while supporting intelligent interfaces in a manner that reinforces the
collaboration through cooperative and coordinated cognition activities. Such ac-
tivities elucidate a group sense making process that allows creation/recreation of
distributed and similar knowledge among group members through sharing, proc-
essing and interpreting of information [7,8]. These collaborations are generally
formed in a dynamic manner during missions and potentially conflicting interop-
erability policies among partners may require mediation to synergize operational
capabilities. Such synergy can be achieved through enhanced human cognitive
matching, trust building and improved collective intelligent of diverse team mem-
bers. However, assessment of human cognitive performance on the operational
capabilities of these systems poses daunting HIE challenges because interoperabil-
ity policies and methodologies for decision makers within and across organiza-
tional boundaries can be ad-hoc and the human/social behavior can vary drasti-
cally across national/racial boundaries.

A leading example of a global collaborative endeavor is the STAR-TIDE pro-
ject aimed at providing economic development, humanitarian assistance, disaster
relief, and post-war stabilization across the globe [9]. The goal of this project is to
empower decision-makers and other human operators in the field to carry out their
missions through “knowledge on demand”. Currently, the HIE challenges in this
project are being addressed using social networking and trust management
methodologies.

Another example of collaborative system is the Eagle-1 project by Microsoft
[10]. It is an extensive data-driven system being designed to support interactive
collaboration among various agencies for disaster management.

We view such projects and case studies as important stepping-stones on the
path to the development and management of high assurance systems. In essence, a
rigorous HIE framework is vital to the development and evolution of such sys-
tems. It is, therefore, imperative that issues dealing with an HIE framework should
be well understood and incorporated during all the phases of high assurance sys-
tem development lifecycle. In this chapter we addresses the key HIE policy chal-
lenges and highlight major steps that can lead to the development of a holistic in-
teroperability policy framework for engineering high-assurance systems. The
design philosophy of such systems is based on integrating core technology com-
ponents and methodologies drawn from the area of human cognitive engineering.
In addition, we elaborate on human performance criteria for high-assurance and
trustworthy systems. The goal is to highlight key HIE challenges and elicit solu-
tions from relevant technological areas including Human-Centered Computing
(HCC), Information, Knowledge and Intelligence Management (IKIM), service-
oriented architecture (SOA), and service and behavioral sciences [11,12].

68 R. Paul et al.

2. Human Interoperability Enterprise Challenges for High
Assurance Systems

HIE involves numerous dimensions including: human-machine interaction, hu-
man-human collaboration and cooperation, group dynamics, and integrated hu-
man-system engineering including human-system requirement engineering, com-
posable and re-composable system architecture, modeling and simulation,
dynamic system deployment, dynamic system monitoring, and dynamic policy en-
forcement. These dimensions need to be considered collectively for:

1. developing, operating and maintaining highly complex mission-critical auto-
nomous systems that are economically and operationally viable, and

2. ensuring a high degree of integration, interoperability, collaborative interaction,
integrity, interdependence and trustworthiness between the human opera-
tors/users and the network-enabled systems to achieve high quality of shared
awareness and decision making capabilities.

These challenges not only depend on technology; but also on many other fac-
tors at macro-level such as:

e Policy and doctrines controlling the degree of interoperation

e Complexity associated with the federation of distributed collaborative enter-
prises

Autonomy of such enterprises

Organizational structures of individual enterprise

Social networking

Formation of teams, and

Rank/skill parity of distributed enterprises

Less obvious but equally crucial are the micro-level factors representing the
underlying human interoperability processes related to [13]:

Trust and reputation

Behavior and cognitive capabilities of team members

Emotion during operation; and

Social technology that maps the skills and needs of users to share critical in-
formation across a variety of domains

These human factors strongly impact the overall effectiveness of high assur-
ance systems due to cultural and/or social disparity that may exist among the team
members. As a result, progress in innovation of new approaches to high assurance
environments will be driven by the development of optimum provenance based on
human communications and emergent “into” networks such as decision making,
sharing of Data, Information, Services and Knowledge (DISK) among humans and
the evolution of new types of networks and automated human-centric systems.

4 Human Interoperability Enterprise for High-Assurance Systems 69

2.1 DISK Interoperability

Any large organization with a mission to design and develop dependable high-
assurance systems needs a set of well-defined requirements for systems engineer-
ing and a process plan to deal with the challenges that arise from human-human,
human to organization, human to systems and human-machine and machine-
machine collaborative interactions. Human capabilities, skills, and needs must be
considered early in the design and development phases, and must be continuously
reviewed throughout the development lifecycle to maximize “cognitive match-
ing'”. Such inclusion of the human cognitive-behavioral aspects provides the in-
teroperability requirements for the development of high-assurance systems. These
requirements are formalized through an HIE policy framework which enables an
organization to reduce the lifecycle cost and increase the efficiency, effectiveness,
usability, trustworthiness, and quality of its high-assurance systems.

Figure 1 shows some of HIE tenets that affect the development of high-
assurance systems. This paradigm highlights the role played by these tenets in ser-
vice provision for applications and missions and supporting E2E sharing of DISK
across organizational boundaries. These tenets support the overall business and in-
teroperation process and policies; the underlying IT and networking infrastructure,
architectures and protocols for controlling quality of service and aligning human
cognitive/behavioral factors, such as situation assessment and judgment, with
DISK. All components of this paradigm need to be in harmony and aligned for in-
teroperation to remain effective and efficient in supporting high-assurance appli-
cations and services.

As shown in Figure 1, the HIE tenets are categorized along the following three
overlapping dimensions.

e End user experience and behavior
e Technology and architecture; and
e Organizational processes and policies such as Service-Level Agreement (SLA)

(U) End user experience and behavior: Tenets in this group describe how the
end users such as operators, warfighters, and decision makers collaborate, cooper-
ate and react while operating in a network-enabled environment.

(T) Technology and architecture: These tenets are related to the underlying
design and implementation technology, and deal with the technical issues such as
how the technological advances affect human operators and decision makers in
performing their missions.

(O) Organizational processes and policies: A complex system does not oper-
ate by individuals without an organization or a set of processes. Large organiza-
tions often have a disciplined process to ensure proper execution of their doctrines
and policies.

! The meaning of the communication elicited is the same as that intended.

70

R. Paul et al.

End User Experience
& Behavior

Context, Quality &

Cognition Schema

Presentation,
Data,

. User Profile
ISrlformatlon, (skill, culture, ..)

s ervices, =
Missions/ Knowledge HI inter- Organization
Workflow & Intra- Mission

Organizational
Policies
Enterprise Organizational
Technology, Stj:q”re & Processes and
Architecture & S Policies, SLAs
Publishing

Fig. 1. HIE Tenets for High-assurance Systems

These three dimensions overlap and interact with each other. For example,

presentations and user profiles are common to both (U) and (O) dimensions; DISK
is common to both (U) and (T) dimensions; and the enterprise structure and assets
are common to both (T) and (O) dimensions. HIE policies, which are shared by all
the dimensions, encompass the following sub-dimensions dictating the required
capabilities of a high-assurance system:

Provide integration protocols among many different, disparate and distributed
DISK sources belonging to autonomous enterprises;

Support automated discovery protocols of new DISK sources while allowing
both push and pull mode of sharing;

Facilitate integration and interoperation among enterprises in terms of configu-
ration, management and maintenance of their network-enabled DISK sources;
Facilitate sharing of DISK and provision of services to the end users and across
enterprise boundaries by incorporating environmental contexts and user's pref-
erences, and accordingly, streamline the coordinated cognition activities;
Enhance the end-user cognition capability for situation awareness, sharing of
information, sharing of behaviors in establishing trust to facilitate quality
judgment in decision-making and understanding of the messages being deliv-
ered through shared knowledge.

In essence, the HIE policy enunciates the rules and regulations that promote

and support efficient and effective human collaboration and cooperation for net-
work-centric systems. A clear requirements definition is needed elucidating: (a)

4 Human Interoperability Enterprise for High-Assurance Systems 71

the benefits of participating in HIE framework, (b) the limits on the inconven-
ience; and (c) a transformation plan for data stewardship in providing the incentive
for relevant users to participate. Moreover, interoperability among pre-existing
(legacy or ‘stove-pipe’) systems is by definition a post-hoc, i.e., post-
development, requirement imposed on each system. Since legacy systems are not
originally designed to fulfill the interoperability requirements, the high-assurance
performance of these systems with respect to the HIE requirements must be as-
sessed and analyzed. Any performance gaps must be identified and decision must
be made that whether or not these systems can evolve over time or should be elim-
inated.

Note, each participant in a network-enabled interoperability environment must
be considered as an autonomous federated participant in the sense of having a full
control on local DISK assets, policies and processes. Consequently, there should
be clearly defined tradeoffs between the benefits reaped from coordination efforts
and sacrificing of autonomy by each participant through mediation, if such need
arises. Subsequently, federation’s operational and mediation rules on how to over-
lay the participation must be established at the time of formation of the federation.

2.2 DISK Interoperability

DISK interoperability can be classified at the following levels:

Level 1: Communication or Protocol Interoperability: This type of interop-
erability implies that two parties can communicate with each other and exchange
messages using a common protocol such as SOAP that is understood by both par-
ties. This is the minimum level of interoperability.

Level 2: Data Integration: This interoperability entails that two parties not on-
ly can send message to each other, they can also understand the meaning of data in
the message. For example, if message are sent in XML format, and both parties
understand XML and can process XML schema, they should be able to understand
the meaning of the transmitted data.

Level 3: Application & Data Integration: This interoperability implies that
the two parties not only can exchange message with each other and understand the
meaning of data, they can also use the data for service calling, such as method
calls.

Level 4: Process & Service Integration: This type of interoperability implies
that two collaborating parties are acquainted with each other so well that they
know each other’s processes allowing them to establish collaboration protocols at
runtime. SoA DCP is one such example [14].

Level 5: Knowledge Sharing & Collaboration: Interoperability at this level
means two parties not only know each other’s processes, they also know the de-
tailed knowledge and expertise of each other. For example, when two physicians
communicate with each other, their interaction is carried out at a level that can be

72 R. Paul et al.

drastically different from the one when a physician interacts with a layman. Inter-
action between two physicians is based on their domain knowledge related to the
field of medicine.

Through DISK, we assess the current state of technology and the overall goals
that must be achieved by building high-assurance systems while incorporating the
HIE policy requirements. The overall intent of the HIE framework is to integrate
technology evolution with human cognitive engineering during the design phase
of high-assurance systems delineated in terms of the following HIE policy objec-
tives:

e Providing new network-enabled requirements definition about the integration
and co-evolution of social interchange and systems engineering, integration and
collaborative interaction, and in particular emphasize those collaborative areas
that have the potential to transform data to information, understanding, learn-
ing, discovery and enhance quality of capability, presentation, and knowledge
of human operators including decision makers;

¢ Increasing the knowledge base of understanding to enhance cognitive capabili-
ties of human while sharing of information across organizations and communi-
cating to machines to create, discover and reason with knowledge. Advancing
the interactive ability to represent, collect, store, organize, visualize, and com-
municate data and information is of paramount importance. At the same the re-
sulting growth and complexity of the overall system need to be managed.

e Advancing knowledge through coordinated cognition process elucidating the
process through which high-assurance systems perform tasks autonomously,
robustly, and flexibly while incorporating human interoperability; and

e Advancing the state of the practice and state of the art in the application of hu-
man interoperability and intelligent information system technologies, such as
human centered computing and information/knowledge management in specific
contexts.

3. HIE and the Role of Cognitive Engineering

Development of an HIE policy framework for high-assurance systems starts
with the specification of key performance parameters for sharing DISK among di-
verse set of operators (humans, organizations, groups) and identify issues in cog-
nitive-behavioral aspects of such sharing. In addition, performance of an HIE
framework should be assessed with respect to aforementioned HIE policy objec-
tives. Figure 2 delineates a view illustrating these objectives in terms of establish-
ing critical performance factors and assessing the effectiveness of an HIE policy
framework for high-assurance systems.

4 Human Interoperability Enterprise for High-Assurance Systems 73

(Awareness)

Situation
(Environment)

& Behavior

Context, Quality &
Cognition Schema

Services,
Knowledge Hlinter-
&lntra-
Organizationa
I'Policies

Missions/
Workflow

Enterprise
Structure &

Technology, et

Architecture
& Publishing

HIE 'Im_f

End User Experience

Presentation,
Data, User Profile
Information, (skill, culture, ..)

Organizational
Processes and
Policies, SLAs

_______________ » Obtainable

Correlation

(Awareness)

Predictability

Comprehension

Organization
Mission

Cues and
Interpretation

Coordinated Cognitive Metrics for Operators
(humans, systems, organizations)

Fig. 2. Role of HIE Tenets and Metrics-Based Cognitive Assessment Framework in High-
assurance System Development

Identify and quantify HIE
and high assurance
baseline performance
objectives

Phase 1a: Conceptualize baseline HIE and high assurance objectives
elucidating performance criteria, trustworthiness, human dynamics and
cognitive matching in terms of measurable capabilities of stakeholders
for decision making, situation awareness, environmental predictability

Specify HIE

and systems

requirements for high
assurance applications

Phase 2: Specify DISK interoperational and information flow
requirements for high assurance applications and systems

Phase 3: Assess capabilities of HIE technology
components for aligning high assurance applications,
procedures and functions with HIE tenets for enhanced

t\ Assess HIE technological role | cognitive matching. Analyze cost-performance trade-off

“/ for enhanced cognitive

J\ matching and trust, and
aligning high assurance

j/ objectives with HIE objectives

Human and social
behavior modeling, trust
management modeling
and model verification

Human interoperability
experimentation and
empirical data collection.
Data from social networks

Phase 4: Develop HIE Policy guidelines, meta-
policy, mediation procedures and standards

Develop HIE policy
guidelines, and
standards

Phase 5: Validation and
launching of HIE policy framework

Phase 1b: Develop and validate
human and social behavior models
through experimentation and
empirical data collection

Validation and
deployment of HIE
policy for high assurance
systems

Fig. 3. Roadmap for Integrated Development Framework for HIE-Based High-Assurance Sys-

tems

74 R. Paul et al.

According to this view, which is a major extension of the Brunswick lens
model and its generalization for situation awareness (SA) [15,16,17], various op-
erators as well as the HIE tenets can be viewed as constituents of a coordinated
cognitive system. The generalized lens model conceptualizes processes pertaining
to human judgment and decision making. Here cognition is the product con-
structed as a consequence of coordinated work elucidating the state of an individ-
ual’s engagement within the context of a task performed in an operational and
possibly a group-based environment. Cognition is an intermediate state in the de-
cision-making process of dynamic systems where an operator comprehends the
situation in order to make an appropriate decision for future actions. For the HIE
framework, we envision a major expansion of Brunswick model (or other relevant
models) that incorporates the distributed nature of cognition in a dynamic collabo-
rative environment where teamwork and non-individual-centered approach are es-
sential.

As cognition in an HIE environment is a dynamic construct rather than a szatic
feature, the vexing challenges are how cognition is distributed and coordinated
across various interfaces, e.g., cultural, infrastructure, policy, and doctrine, and
how coordinated cognition ultimately can provide a high degree of assurance for
systems used in SA, as depicted in Figure 2.

It is important to note that the individual is not abandoned but rather the indi-
viduals’ roles “provide the internal structures that are required to build the external
structures into co-ordination with another [18]”. Accordingly, several human-
centered cognitive performance metrics (discussed in Section 3.2) are needed to
assess the effectiveness and formation of the HIE policy framework. The role
played by the HIE tenets must be clearly understood and the dependence of the
cognition metrics on the underlying “invariants” of these tenets need to be ana-
lyzed.

In Figure 2, the correlation between the actual environmental and situation
conditions as comprehended by a human operator provides an assessment of the
effectiveness of HIE on the level of assurance provided by the DISK technology
deployed for the network-enabled system.

The following subsections elaborate the challenges of the view presented in
Figure 2 and outline an approach to address them.

3.1 Development Methodology for HIE Policy Framework for
High Assurance Systems

The development of a high assurance system incorporating an HIE policy frame-
work for distributed coordination and cognition, as depicted in Figure 2, requires a
rigorous methodological plan. The roadmap in Figure 3 outlines this plan. The
roadmap, comprising of multiple phases, captures the core processes pertaining to
requirement specifications, technology selection, human dimensions captured

4 Human Interoperability Enterprise for High-Assurance Systems 75

through experimentation and modeling, and HIE policy development process. De-
tails about the various phases of this roadmap are given below:

1. Phase la delineates the critical baseline HIE and high assurance system’s per-
formance objectives corresponding to the DISK and cognition metrics dis-
cussed in the following section. These metrics pertain to two major components
(represented by two circles) in Figure 2.

2. Phase 1b, which can be pursued concurrently with Phase la, describes the de-
velopment and validation processes for human and social behavior models.
This phase consists of two iterative activities consisting of empirical data col-
lection via experimentation and subsequent development and validation of ro-
bust behavior models. These models are subsequently used for developing high
assurance systems.

3. The second phase specifies the overall DISK sharing operational requirements
of high-assurance applications and their alignment with the HIE performance
objectives. This phase uses the baseline performance objectives and the behav-
ioral models developed in Phase 1a and Phase 1b, respectively.

4. During the third phase various HIE technologies, methodologies, and capabili-
ties are evaluated and the results can then be compared against the require-
ments established in Phase 2.

5. During Phase 4, a set of HIE policy guidelines and standards are produced and
deployed.

6. In Phase 5, the policies and guidelines developed are evaluated with respect to
the overall goals and requirements established for the HIE policy framework
and the applications supported by the DISK system.

The following subsections discuss these phases. Note that alternative HIE pol-
icy development processes can also be used.

3.2 ldentifying and Quantifying HIE Baseline Performance
Criteria

Phase 1a, as shown in Figure 3, consists of identifying the key DISK tenets be-
longing to various levels of interoperability, as summarized in Section 2.2, and es-
tablishing the baseline performance criteria for high-assurance systems while in-
corporating the HIE policy framework. The baseline criteria elucidate numerous
human dynamics due to human-to-human, human-to-groups, human-to-systems,
and system-to-system interoperations. The criteria can be expressed in terms of
both qualitative and quantitative cognition capability metrics that capture compre-
hension of information and knowledge, use of this knowledge to assess emerging
scenarios and situation awareness, environmental predictability, and exhibiting
quality of judgment under various contexts by human operators. The overall met-
rics can be broadly classified into the following two categories:

76 R. Paul et al.

e The first category comprises of technology-driven metrics specific to DISK.
e The second category of metrics quantifies coordinated cognition capabilities of
operators as shown in Figure 2.

These two categories of metrics are described below.

DISK and technical performance metrics for HIE: These metrics specifi-
cally deal with the qualitative aspects of the technology deployed for high assur-
ance systems. Some relevant system-centric metrics that fall in this category are
the traditional high assurance metrics that include the following:

e Readiness: Meeting the needs of mission-oriented requirements for all users
under various contexts;

e Timeliness: Deliverance of DISK to all participating users in a timely manner
under all circumstances;

e Trustworthiness: Ensuring a high degree of trustworthiness for all DISK
sources;

e Usability: Ensuring information and knowledge for various modes of interop-
erability that are user-centric and facilitate ready comprehension, added per-
spective, and immediate usage. Also, ensuring that system interoperability is
compatible with the user capabilities for receiving, manipulating, comprehend-
ing and storing the information;

e Relevance: Ensuring information and knowledge are meeting the end-user re-
quirements, with potential consequences and significance of the information
made explicit to the user’s context.

Coordinated cognition metrics for HIE: These metrics are specific to cogni-
tion domain and are related to operator’s enhanced capability as a result of coordi-
nated cognition based on the elicitation of knowledge by individuals participating
in a team. The main metrics in this category, as depicted in Figure 2, include:

o Interpretability and comprehensiveness of shared knowledge
e Degree of quality of judgment, and
e Environmental predictability

The aforementioned metrics of both the categories are context specific and are
generally statistical in nature [19]. For example, the team knowledge and the re-
sulting coordinated cognition can vary due to the changing dynamics of a fleeting
situation. Note, the metrics in the second category are highly dependent upon the
DISK and technology-based performance metrics belonging to the first category.
Identifying and analyzing such dependency poses an important challenge for de-
veloping a viable high assurance system that incorporates an HIE policy frame-
work.

The two sets of metrics collectively define the degree of assurance for a net-
work-enabled high assurance system.

The consistency and the correlation of the resulting degree of situation aware-
ness with respect to the ideal awareness can vary drastically with respect to the

4 Human Interoperability Enterprise for High-Assurance Systems 77

key common “invariants” of the overall HIE tenets (technology and human cogni-
tion components in Figure 2). An important challenge here is to identify these
common “invariants” on which the aforementioned metrics might depend. An ex-
ample of a possible invariant is the plausibility of the mission’s domain knowl-
edge as such knowledge can directly or indirectly affects most of the aforemen-
tioned metrics. Another possible invariant is the skill level and the experience of
human operators. A related challenge is to analyze dependency of metrics on such
invariants.

3.3 Human-Social Behavior and Trust Management Modeling

The objective of Phase 1b is to develop and validate human and social behavior
models within the context of HIE. This phase consists of two iterative activities
focused on collecting empirical data through experimentation designed to study
human behavior under various scenarios and subsequently develop and validate
robust behavior models. In essence, through modeling we need to understand and
capture the processes by which individuals, groups and organizations establish
rapport to form a basis of trusted environment to share information and exhibit
behavior to allow prudent problem solving and decision making capabilities.
These processes should represent the actual and highly complex human cognitive
activities which are heavily influenced by prevailing contexts and the state by
which the individuals operate in those contexts to establish the trust required for
sharing information among the group members, the collaborative partners and sys-
tems. Most of the existing human and social behavior models are agent-based and
cooperative behavior models, respectively. From HIE and high assurance system’s
perspective both human and group behaviors need to be driven based on well
formed outcomes.

The key challenge in human modeling for high assurance environment is to
capture the role of the aforementioned DISK and human cognitive metrics, includ-
ing operational context, in a comprehensive manner. As human behavior may
range from deterministic to holistic with respect to specific context, it is impera-
tive that human behavior models must be stochastic and adaptive in nature to rep-
resent variations in behavior in diverse operational environment. Agent-based
modeling is one of the leading paradigms to capture human behavior. However,
these models lack advanced cognition features such as learning, perceptual com-
puting, and pattern matching.

In a collaborative environment involving groups and services, trust plays sig-
nificant role [20] which can directly impact the collective cognitive performance
of the all the participants. Reasons can emerge that can hinder an individual’s will-
ingness to voluntarily share sensitive information and knowledge which can result
in dwindling trust among partners and can eventually lead to the failure of mis-
sions [21]. Computational trust management models to predict trustworthiness pa-

78 R. Paul et al.

rameter still need to be developed to understand and train the processes for coop-
erative behaviors in social networks. Existing approaches for trust management
and trust propagation [22,23] in social networking can be extended towards the
HIE framework.

A primary challenge is the validation of human and social models for their
plausibility using a wide range of empirical data. Once the models are accepted,
the training of these models is necessary for individuals, groups and organizations
to establish trust in contexts requiring reliable and compatible social networks.

Experimentation, collection of empirical data and behavior modeling should be
well-formed activities. These activities must include the following steps:

1. Identify the behavioral and consequential data to be collected and based on the
results, establish data collection procedures. Some basic data to be collected in-
clude the characteristics of the users, the characteristics of the network-enabled
systems that require human interactions, and the effect of the interoperations.

2. Develop repositories to facilitate the storage, categorization, management, and
privacy-preserving sharing of the collected data.

3. Apply data mining and analysis techniques on the data collected across multi-
ple applications and multiple systems. Establish models for statistically predict-
ing human behaviors and impact of human interoperations.

4. Validate the accuracy of the prediction models. Examine the effectiveness of
the collected data on behavioral predictions. Identify the missing factors. Based
on the analysis, recalibrate the data collection procedures of Step 1.

5. Perform trustworthiness analysis. Based on the data collected and the predic-
tion models established, the next step is to carry out trustworthiness analysis of
individual human entities as well as the overall system, as discussed below:

— One technique for trustworthiness analysis is to simulate human entities in
the network-enabled workflows. The simulation model should be built
upon the collected data and established behavioral prediction models.
Through simulation it is relatively easier to analyze large scale systems
and measure the impact and risk factors.

— Trustworthiness analysis results can be used to (a) determine human entity
requirements and human interoperation policies to achieve the maximal
mission success probability, (b) understand the impact of end users on the
overall system, including the potential risks and pitfalls that may occur due
to end-user problems, (c) help with the system design to facilitate a hu-
man-error-resistant environment.

4 Human Interoperability Enterprise for High-Assurance Systems 79

3.4 Technologies for HIE and High Assurance System

Central to the roadmap of Figure 3 is Phase 3 aimed at analyzing the potential role
played by core technology, the underlying scientific methodologies and the
emerging interoperability standards. The key technologies and methodologies to
be considered include:

Human-Centered Computing (HCC)

Information, Knowledge and Intelligence Management (IKIM) and
Service-oriented Architecture (SoA)

Social and Behavior Sciences (discussed in Phase 1b)

HCC encompasses themes of software engineering, computer science, and in-
formation technology, all of which are united by a common thread that human be-
ings, whether as individual, teams, or organizations, assume participatory and in-
tegral roles for carrying out their missions. HCC technology can enhance human
insight and creativity through highly interactive visual interfaces coupled with in-
teroperability tools and techniques that enable people to synthesize information, to
derive insight from massive, dynamic, and often conflicting data, information and
knowledge, to detect the expected and discover the unexpected. The HIE frame-
work heavily depends on this technology whereby human operators and decision
makers can work collaboratively across collaborative heterogeneous enterprises.

The IKIM technology deals with the transformation of contents from disparate
DISK sources into cognitive capabilities through collaboration. Such collaboration
subsequently provides intelligent perception, communication and reasoning ca-
pacities that are not constrained to address a single problem in isolation or in one
particular context. This technology can allow integration of heterogeneous knowl-
edge and reasoning methodologies in complementary as well as supplementary
ways.

3.4.1 Service-Oriented Architecture

SoA technology plays a vital role for supporting interoperability across multiple
organizations and provides the backbone infrastructure for distributed services [1].
In the following sections, we provide an assessment of SoA in terms of its poten-
tial role in developing high-assurance systems that explicitly incorporate HIE re-
quirements.

Recently, many US government agencies including the Department of Defense
have adopted SoA and Service-Oriented Computing (SoC) for its mission-critical
systems to address the first HIE challenge mentioned in Section 2 [1, 24]. New
software applications are offered as services for network-enabled environments
that meet the high assurance standards entailing security, dependability, trustwor-
thiness of the hardware and software, and scalability. In this regard, each service

80 R. Paul et al.

publishes its “definite range of behavior” as to what it can and cannot perform
[25].

SoA not only affects systems and technology, but can also influence numerous
other entities and factors listed below:

e Human operators/actors: Human operators may need to discover new ser-
vices, compose them into applications, and deploy the newly orchestrated ap-
plications for execution. Thus, SoA system operators need to be system design-
ers and analysts in addition to being operators.

e Decision makers: SoA offers decisions makers the choice of re-designing the
system to meet the new environmental and operational requirements at runtime.
While such new capabilities offer significant advantages over conventional ri-
gid systems due to their adaptability and reconfigurability, these new capabili-
ties also may need decision makers to examine more choices and options in real
time to make optimal decisions.

e Policies: As SoA offers dynamic service discovery and capability for system
composition, operators and decision makers can have more options and choic-
es. While such flexibility offers significant advantages, it is necessary to have
more rigorous policies to regulate the kind of actions that can be performed
through SoA systems at runtime.

e Doctrines: Operational doctrines often depend on the technology that can be
used. For example, the warfighting doctrines used in World War II were sig-
nificantly different from the warfighting doctrines of World War I as mechani-
cal devices such as tanks and high-speed airplanes were available in the former
case. With dynamic service discovery and system composition, SoA offers a
greater flexibility for selecting assets and resources.

e Management: SoA development practices follow a model-driven approach
consisting of multiple phases such as modeling, assembling, deployment, and
management. They are distinct from the conventional system development me-
thodologies commonly practiced by the US Department of Defense for many
years. To support the new kind of SoA system development that incorporates
the desired HIE requirements, new system development infrastructures need to
be developed, such as sample infrastructure that includes repositories of reli-
able and dependable services that can be reused for application development,
and repositories of SoA modeling, design, code generation, and testing tech-
niques.

e Decision processes: Network-enabled high assurance system users such as de-
cision makers and operators need to consider many factors and issues during
the decision making process pertaining to operations.

The SoA paradigm is still evolving and numerous issues still remain open.
While interoperability has been a key concept behind this paradigm, such interop-
erability has different meaning. The current state of the SoA technology allows
DISK interoperability only at Level 3 of application and data integration, dis-

4 Human Interoperability Enterprise for High-Assurance Systems 81

cussed in Section 2.2. It is expected that this technology will take at least five or
more years to reach the next level.

3.4.2 Human Interoperability in SoA

The HIE challenge arises at Level 4 and beyond of DISK interoperability (Section
2.2) that specifically deal with human-computer interaction, human-computer in-
terface, human-human interaction, cognition, and organization process and proto-
cols which can be modeled and incorporated as an integral part of a high assurance
system. Note, all the key components of an SoA architecture can be changed si-
multaneously. For example, on the system side, an existing service can be re-
placed by a new service, an existing workflow can be updated, and the overall sys-
tem architecture can be changed at runtime to meet any runtime requirement. On
the other hand, operators can be replaced in case the original operator is unavail-
able, or new commanders employ a new tactical warfighting plan and decide to
change both the personnel and the system at the same time, or a new policy from
senior decision makers is issued requiring a change in the operational plan.

When a group of autonomous operators (humans, systems, organizations) par-
ticipate in a SoA-based collaborative effort, there is a need to assess that a service
is being provided to the level agreed upon, and ensure that the service continues to
be provided at the agreed level. The following concepts are important to handle
these two high-assurance issues:

e Quality of Service (QoS): Numerous QoS metrics for measuring the perform-
ance of services, at the negotiated level of service must be specified. Some of
the DISK related metrics, discussed in Section 3.2, also fall in this category.

e Service-Level Agreements (SLA) or ‘contracts’ provide a formal mechanism
governing the collaboration among various autonomous enterprises providing
services. SLAs constitute a core component of an HIE policy and mediation
framework.

These two concepts are part of the HIE tenets (Figure 1) and any formulation of
data interoperability policy needs to consider these two concepts.

3.4.3 Existing HIE and DISK Technology Approaches

HCC, IKI and SoA technologies as well as methodologies for modeling human
and social behavior and trust management can enable users at different levels of
an organization to take full advantage of the benefits of these technologies. These
technologies are designed to empower human operators to participate fully in the
pervasive information world and establish and maintain social relationships while
keeping their autonomy.

82 R. Paul et al.

Several public and private enterprises have adopted SoA design philosophy for
the network-enabled environment. Noted among them are the DISA’s Net Enter-
prise Command Capability (NECC) and Marine Corps Enterprise Information
Technology Services (MCEITS) [26]. In addition, numerous programs in human
interoperability management and traditional human factor engineering have been
pursued by several agencies. These include the NASA’s Space Human Factors
Engineering (SHFE) project [27] and Air Force’s Cognitive Engineering effort for
information dominance [28]. These efforts provide examples of how human factor
engineering, and human systems integration can significantly improve the human
interoperability effectiveness of mission-oriented high-assurance systems under
various constraints. However, these projects do not address the broad set of chal-
lenges related to system complexity and human interoperability for developing
network-enabled high assurance cyber infrastructure. For example, the SHFE pro-
ject has been primarily focused on individualistic cognitive models for human-
system interaction used for situation awareness and decision making under uncer-
tainty of individual or organizational responses. Similarly, the traditional cognitive
engineering effort by the Air Force does not address the interoperability aspects
for group or organizational based collaboration dealing with situation awareness.

Application-Driven Workflow S pecification and
Scenario Generators for S ervice Orchestration

— _1_ —— Situation Awareness,
— ™~ K
I_ Trustworthiness,
Dynamic Distributed and Cognitive
Simulation

Verified Real-time
Services
Repository &
Profile Database

Network-E nabled N— —

Performance Monitoring
(simulation output)

Objectives:
*Model Verification (Empirical Data)
*V&V HIE Policies

—
I
I
I
I
—DI and Procedures
I
I

Data, Information
and Knowledge
Bases

N—

|
|
I HIE Experimentation
|
|
|

Social and Human
Behavior Model
Generator

| and Mediation Modeling

HIE Policy and Process I
Meta-Models

Policy Mediation

I
| | Inter-Organization | I
I

Fig. 4. Simulation-based Validation of HIE Policy Framework for High Assurance System
(Phase 5)

4 Human Interoperability Enterprise for High-Assurance Systems 83

3.5 HIE Evaluation and Validation

As described in Section 2, an effective HIE policy framework for developing high
assurance systems must consider various dimensions, including technology, or-
ganization and process, and end-user issues. Further, the approach for developing
such a framework must inherently be iterative and incremental in nature, with
stakeholder’s feedback built into the process. Phase 5 of Figure 3 is focused on
analyzing the effectiveness of such a framework for high assurance systems and
validating it through an extensive modeling and simulation environment which is
depicted in Figure 4. This environment comprises of two main components pro-
viding modeling and simulation functionalities. These components are discussed
below.

1. Modeling of all the HIE entities and includes the following steps:

— Incorporating social and human behavioral models (from Phase 1b), in-
cluding trust management and propagation in a group-based collaboration.

— Meta-models for interoperability policies and processes governing interac-
tion with network-enabled DISK assets within organizational structures
and across organization boundaries (Phases la, 2, 3). This component
should also include modeling of mediation techniques for merging hetero-
geneous interoperability policies belonging to autonomous organizations
and agencies.

— Models for SoA, that include any real-time and QoS-based requirements,
for specification and orchestration of end-to-end application workflows
and scenario generators for high assurance systems

2. Dynamic Distributed Simulation component. This component is driven by the
aforementioned models and the end-to-end workflow-based scenarios gener-
ated from the high level application requirements. The distributed nature of the
simulation is essential to correctly model network-enabled services. Goal of the
simulation is to provide an understanding of dynamics and interaction exhibited
by the endogenous building blocks of the HIE policy framework on the face of
complexity associated with network-centric systems. It will facilitate identify-
ing recurring patterns within alternate configurations that seem to perform well
over an ensemble of plausible scenarios.

In particular, the simulation and validation phase entails performing a broad
range of measurements and analyses that include:

e Performing a comparative assessment of various behavioral models within and
across organizational interactions for high assurance systems and analyzing the
impact of collaboration on high assurance applications. In particular, the impli-
cations that arise from the evolutionary nature (calling for a dynamic response

84 R. Paul et al.

measure) and emergence (non-monotonic behavior, implies that the “whole is
greater than the sum of the parts”) should be analyzed.

e Measuring the effectiveness of various policies, processes and alternative
“network-enabled system views” on the cognitive performance of team mem-
bers in terms of the quality of their decision-making capabilities, predictability
and appropriateness of response in diverse and dynamic environments. The ob-
jective is to streamline policies and processes in a manner that maximizes hu-
man cognitive performance both at the individual level as well in a collabora-
tive environment.

e Measuring various HIE-oriented related metrics (identified in Phase 1a of Fig-
ure 3)

e Performing trustworthiness analysis of the overall system, as elaborated in Step
5 of Section 3.3.

e Evaluating the impact of emerging DISK and workflow technologies on the
overall performance of high assurance systems.

4. Summary of HIE Challenges for High-Assurance Systems

The overarching objective of an HIE policy framework is to establish a foundation
for effective human networks that are cost effective and provide robust environ-
ment for policy, legal, cultural, infrastructure and technological solutions. Tradi-
tionally, the discipline of system engineering for developing high-assurance net-
work-enabled systems has ignored the role of human interoperability and its
impact on the design, maintenance and complexity of these systems. Undoubtedly,
the complexity of system design increases tremendously as the role of HIE is in-
corporated in the development lifecycle.

In this chapter we have highlighted numerous challenges related to developing
an HIE policy framework. In addition, a roadmap for developing high-assurance
systems that expands the traditional system engineering design paradigm by inte-
grating the role of the HIE policy framework has been presented. Within the con-
text of HIE and high-assurance system development, several challenges have been
identified which are listed below:

e How can intelligent interfaces and user behavioral models be incorporated dur-
ing the high-assurance system’s development lifecycle?

e What should be the design of collaborative architectures that control and coor-
dinate actions and solve complex problems in network-enabled environments in
a wide variety of domains? Such architectures should enable knowledge-
intensive and dynamic interactions for innovation and knowledge generation
across organizational boundaries.

4 Human Interoperability Enterprise for High-Assurance Systems 85

e How can we develop viable models for effective computer-mediated human-
human interaction under a variety of constraints, (e.g., video conferencing, col-
laboration across high vs. low bandwidth networks)?

e What should be the design requirements for interoperability and information in-
tegration methodologies and processes for heterogeneous and autonomous
DISK sources? In addition, methodologies for personalizing, organizing, navi-
gating, searching, interpreting, and presenting information of different types,
using various modalities are needed which can enhance cognitive performance
of human operators.

e What types of efficient computational models of human cognition, perception,
and communication for commonsense or specialized domains and tasks, includ-
ing acquisition and representation of ingredient knowledge would be needed?

e How can we deal with the complexity and scalability issues in managing and
sharing cognitive knowledge and interoperability policies?

e An important related challenge is to analyze the tradeoff between the impact of
the technological solution of the aforementioned issues on the performance and
effectiveness of the HIE policy framework and the cost of its deployment.

The aforementioned challenges are the foremost representative requirements
that need to be researched for the development of high-assurance systems while
incorporating the role played by human operators into the design, development
and maintenance of such systems. A simulation-based evaluation, discussed in
Section 3.5, can provide some insight and preliminary answers to these challenges.

5. Conclusions

In this chapter we have elaborated several HIE policy challenges for developing
high-assurance systems. Given the growing complexity of network-enabled sys-
tems, the role of human vis-a-vis interoperability with systems, groups and across
organization boundaries is crucial for achieving a high degree of assurance for
network-enabled applications and missions. We have presented two broad catego-
ries of high assurance metrics that are technology-driven and are related to the in-
teroperability aspects of human operators. The role of numerous technologies in-
cluded HCC, IKIM and SoA as well as methodologies from the disciplines of
human and social behavioral sciences for developing HIE framework have been
elaborated. Finally, key steps for developing an HIE policy framework for engi-
neering economically viable high assurance systems have been outlined.

86 R. Paul et al.

References

[1] C. Atkinson, D. Brenner, G. Falcone, and M. Juhasz, “Specifying High Assurance Services,”
IEEE Computer, August 2008, pp: 64-71

[2] G.A. Boy, “Perceived Complexity and Cognitive Stability in Human-Centered Design,” D.
Harris (Ed.): Engineering Psychology and Cognitive Ergonomics, HCII 2007, LNAI 4562,
pp. 10-21, Springer-Verlag Berlin Heidelberg 2007

[3] H.A. Handley and R.J. Smillie, “Architecture Framework Human View: The NATO Ap-
proach,” Systems Engineering, 2008, pp: 156-164, Wiley Periodicals.

[4] M. Kasunic and W. Anderson, “Measuring Systems Interoperability: Challenges and Oppor-
tunities,” Technical Note, CMU/SEI-2004-TN-003, April 2004

[5] L. Warne, A. Ali, D. Bopping, D. Hart, and C. Pascoe, “The Network Centric Warrior: The
Human Dimension of Network Centric Warfare,” Tech. Report DSTO-CR-0373, Defense
System Analysis Division, Edinburgh, Australia, July 2004.

[6] http://www.planecrashinfo.com/cause.htm

[7]1 J. Nosek, "Exploring Group Cognition as a Basis for Supporting Group Knowledge Creation
and Sharing" Proceedings of AMCIS 1998, Paper 164.

[8] B.M. Toaszewski and A.M. MacEachren, “A distributed Spatiotemporal Cognition Approach
to Visualization in Support of Coordinated Group Activity,” Proceedings of the 3" Interna-
tional ISCRAM Conference, May 2006, Newark, NJ, pp:1-5.

[9] http://www.star-tides.net/

[10] http://www.networkworld.com/news/2008/120108-10-microsoft-research-projects.html?pag
e=2

[11] A. Pentland and A. Liu, “Modeling and Prediction of Human Behavior’” Neural Computa-
tion, Vol. 11, 1999, pp: 229-242

[12] R.E. Wray, and J.E. Laird, “Variability in Human Behavior Modeling for Military Simula-
tions,” Proceedings of the 12" Conference on Behavior Representation in Modeling and Si-
mulation, May 2003.

[13] E. Salas, C. Prince, D.P. Baker, and L. Shrestha, “Situation Awareness in Team Perform-
ance: Implications for Measurement and Training,” Human Factors, 37, pp: 123-136.

[14] W.T. Tasil, Q. Huang, B. Xiao, Y. Chen, and X. Zhou, “Collaboration Policy Generation in
Dynamic Collaborative SOA.” Proceedings of the 8" International Symposium on Autono-
mous Decentralized Systems, March 2007, Page(s):33 - 42

[15] E. Brunswik, “Perception and the Representative Design of Psychological Experiments,”
University of California Press, Berkeley, 1956 CA.

[16] R.W. Cooksey and P. Freebody, ‘Generalized Multivariate Lens Model Analysis for Com-
plex Human Interface Tasks,” Jour. Of Organizational Behavior and Human Decision Proc-
esses, Vol. 35, 1985, pp: 46-72.

[17] M.R. Endsley, “Direct Measurement of Situation Awareness: Validity and Use of SAGAT,”
In: Endsley, M.R., Garland, D.J. (Eds.), Situation Awareness Analysis and Measurement.
2000, Erlbaum, Mahwah, NJ, pp. 147-174.

[18] E. Hutchins, “The Technology of Team Navigation,” in J. Galegher, R. E. Kraut & C. Egido
(Eds.) Intellectual Teamwork - Social and Technological Foundations of Cooperative Work.
1990, pp:22-51, Hillsdale, NJ

[19] B. Fischhoff, “Debiasing,” In Kahneman, D., Slovic, P. and Tversky, A. (eds), Judgment
under Uncertainty: Heuristics and biases, New York: Cambridge University Press, 1982.

[20] R. Bhatti, E. Bertino, A. Ghafoor, “A Trust-based Context-Aware Access Control Model for
Web Services,” International Distributed and Parallel Databases Journal, Special Issue on
Web Services, Vol. 18, No. 1, July 2005, pp: 83-105

[21] R.M. Kramer, “Trust and Distrust in Organizations: Emerging Perspectives, Enduring Ques-
tions’” Annual Review of Psychology, Vol. 50, 1999, pp: 569-598

4 Human Interoperability Enterprise for High-Assurance Systems 87

[22] J.A. Golbeck, “Computing and Applying Trust in Web-based Social Networks,” Ph.D. Dis-
sertation, Dept. of Computer Science. University of Maryland, 2005.
[23] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of Trust and Distrust,”
Proceeding of the Thirteen International World Wide Web Conference, 2004, pp: 403-412.
[24]J. Dong, R.A. Paul, and L-J. Zhang, “High Assurance Service-Oriented Architecture”, IEEE
Computer, August 2008, pp: 27-28

[25] M.I. Carey, “SOA What,” IEEE Computer, No. 3 March 2008, pp; 92-94

[26] www.mceits.usmc.mil

[27] www.shfe.jsc.nasa.gov

[28] R. D. Whitaker and G. C. Kuperman, ‘Cognitive Engineering for Information Dominance:
A Human Factors Perspective,” AL/CF-TR-1996-0159, Wright-Patterson AFB, OH 45433-
7022

[29] B. Best, and C. Lebiere, “Spatial Plans, Communication, and Teamwork in Synthetic
MOUT Agents,” Proceedings of the 12" Conference on Behavior Representation in Modeling
and Simulation, May 2003

Chapter 5

Service Composition Quality Evaluation in
SPICE Platform

Paolo Falcarin

Politecnico di Torino, Dipartimento di Automatica e Informatica (DAUIN)

C. Duca degli Abruzzi 24, 1-10129, Torino (Italy), Paolo.Falcarin @polito.it

Abstract. The goal of the SPICE project is to develop an extendable overlay ar-
chitecture and framework to support easy and quick creation, and deployment of
Telecommunication and Information Services. The SPICE Service Creation Envi-
ronment (SCE) is used by developers to create both basic services and complex
service compositions, which are then deployed in the SPICE Service Execution
Environment (SEE), which hide the complexity of the communication environ-
ment. Along with its functional interface, each service exposes its own non-
functional properties (like Response Time, Cost, Availability, etc...) by means of
the SPATEL service description language. These properties are defined in an on-
tology and this chapter will discuss how the SCE helps developers in evaluating a
service composition by calculating the aggregated values of such properties.

1. Introduction

Telecommunication services and network features are often tightly coupled, sepa-
rate, and vertically integrated. This vertical approach has an extremely weakening
effect on service provider’s ability to develop more complex services that could
span over heterogeneous telecom networks and IT services [1].

The common vision for implementing services is now the realization of a hori-
zontal service platform, based on shared services and network enablers, which can
be easily deployed in a distributed SEE (Service Execution Environment) and that
can be used as basic blocks in a service composition which may cover different
operators domains. Under such assumptions, the composition of communication
services, content-based services, Internet-like services, and messaging services,
which may span over different service providers, can affect the quality of service
perceived by users. In fact, system administrators working in an operator domain

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_5, © Springer Science+Business Media, LLC 2009

90 P. Falcarin

can apply quality enhancements on services running in their own SEE but they
cannot access to a third-party SEE hosting services involved in a service composi-
tion.

Innovative model engineering techniques, like Model Driven Architecture
(MDA) approach [2], tend to be used to abstract commonality between different
execution platforms and to facilitate the development of systems that can target
different execution environments. The exploitation of these techniques in the con-
text of service engineering and, more specifically, in the telecommunication do-
main [3] is perceived as an opportunity for exporting on service interface non-
functional properties.

A Service Creation Environment (SCE) is then needed to facilitate the compo-
sition of existing services and the semi-automatic configuration and deployment of
IT-Telecom services [4]. The benefits of service composition stem from the possi-
bility of reusing the effort invested in developing services, thereby enabling faster
time-to-market and lower costs in the service development process. Under such
assumptions, the SPICE project has designed and implemented an example of
SOA in the telecommunication domain [5] in order to fulfill these requirements.

One of the goals of the SPICE platform is to provide high assurance composed
services, even if they are made of services running on different application serv-
ers, in different domains.

In the following section the architecture of SPICE SEE is described, followed
by a description of the SPICE SCE which helps service developer in evaluating
the quality of an orchestration of telecom-IT services taking into account non
functional properties; the usage of such properties is then discussed in an overview
section about SPATEL language [6]; finally the aggregation of both static and dy-
namic non-functional properties is discussed with an example, before drawing
conclusions.

2. SPICE Project

One of the goals of the SPICE Service Creation Environment is to facilitate the
composition of existing services, to build new services. The benefits of service
composition stem from the possibility of reusing the effort invested in developing
services, thereby enabling faster time-to-market and lower costs in the service de-
velopment process. This leads to direct and indirect benefits to service developers,
platform operators and service providers.

The SPICE SCE provides facilities for designers to perform service composi-
tion, with a higher degree of automation than is provided in a traditional graphical
service designer tool.

SPICE project has developed a SCE and a SEE to respectively compose and
execute both IT and telecom services. The SCE allows developers to build their
own service and to annotate its SPATEL representation with non-functional prop-
erties; moreover SCE allows developers to compose such services in a workflow

5 Service Composition Quality Evaluation in SPICE Platform 91

of SPATEL services, and to get an estimation of the aggregated values of non-
functional properties depending on the service composition workflow.

The SPATEL service description is published in a service repository and its
functional part is translated to WSDL [19]. In case of SPATEL service composi-
tions a BPEL script is automatically generated by the SCE and then deployed in
the Service Execution Environment for orchestrating different web services run-
ning on multiple execution platforms. An overview of the main components of the
SPICE architecture is sketched in figure 1.

ervice SEE
repository JBOSS
.s\AG BPEL .ﬁ
)
-.«:*‘%’ ‘?9 %, engine
5 ;]
) L]
» 3
S CE = Service
Deploy lifecycle
activate manager
a deactivate .NET
ACE]

Monitor
Manager
=l

AGGREGATOR JBOSS

Fig. 1. Main Elements of SPICE Architecture.

The Service Creation Environment (SCE) is used by professional developers
for designing arbitrarily complex services by using the SPATEL formalism for
high-level design, in combination with general purpose languages for completing
the non generated parts of the code of the service. In particular the tool will be
used to specify composite services orchestrating other services, which could pre-
exist or be developed from scratch.

The SCE provides different pluggable transformers that supports the translation
of the SPATEL specification in the interface code for a target execution platform
(such as JAIN-SLEE [8], J2EE [9], BPEL [16]). Within the SCE, two components
are particularly relevant: the Automatic Service Composition Engine (ACE) and
the Deployer.

Deployer is used to package and deploy a SPICE component and/or a SPICE
service composition in the target SEE, sending packaged code, WSDL and
SPATEL descriptions to the Service Lifecycle Manager which performs the actual
service deployment on one of the selected platforms and publish the SPATEL ser-
vice description on the public service repository.

92 P. Falcarin

Service Repository is queried by the SCE to fetch SPATEL descriptions of
available services, and these can be used by developer to build a service composi-
tion.

For example, the developer specifies in the SCE a service request in terms of its
inputs, outputs, preconditions, effects, and some non-functional properties.

This service request is passed to the ACE component which calculates automat-
ically service compositions based on such request: the ACE analyzes SPATEL de-
scriptions of services published in the repository and provides different possible
service compositions which may satisfy the desired goal.

Then the developer can evaluate such compositions to see if they actually
match the service request (goal), and select one which can be deployed in the SEE
as a BPEL script.

In case different compositions match the goal the developer may want to select
the one offering the best quality of service: thus SCE can query the Aggregator
service to calculate the aggregated values of non-functional properties like re-
sponse time. This process is sketched in figure 2.

1. GOAL
=
&
=
a
CE
2. calculate
aggregated 3. NF properties
NF properties values
AGGREGATOR

Fig. 2. Service Composition Process.

There has been a lot of interest in defining and working out mechanisms and
frameworks for service composition in the industry and the academia [11]. Many
approaches use semantic web services, i.e. web services interfaces annotated with
semantic tags like WSDL-S [26], or other service description languages [14] [22]
are used to more precisely describe information like: provider details, service goal,
service parameters’ types, service’s quality attributes. Annotations follow formal
terminologies, which are defined in an ontology, and they are machine-
understandable and then usable for being processed by specific tools.

5 Service Composition Quality Evaluation in SPICE Platform 93

The services can be assembled together by using an automated process based
on semantic tags. From this assembly, a “business process”, expressing the logic
of the calls to “elementary services”, is generated. The new composite service is
generated from the business process and later deployed. Goal-based approaches
intend to provide a composite service from a request expressed in certain format.
The request reflects the goals to be reached by the composite service.

For example, Fuji et al. [13] use “semantic graphs” derived from natural lan-
guage descriptions, while in [28] semantic interfaces are annotated with service
goals are used to compose services. A web services composition methodology is
achieved by stitching together semantically-annotated web service components in
a BPEL flow [27], while a composition of services as a directed graph where
nodes refer to web services was presented in [10].

Aggregation of non-functional service properties then becomes a key decision
factor for discriminating among a set of suitable service compositions.

In SPICE SCE service compositions are evaluated for their aggregated non-
functional properties, selected and ranked; in this case, generation of alternative
valid compositions is a process different from aggregation. Moreover, SCE focus-
es on checking if a service composition matches certain non-functional properties
specified in a required service specification and it allows ranking of viable service
compositions based on such properties: examples of non-functional properties that
can be considered are cost, response time and reliability.

Yu et al. [30] proposed an approach that selects service components that, com-
posed together, have a desired QoS: as input the request is parameterized with a
process (e.g. a BPEL process) that identifies service component types rather than
running service components.

This approach is also limited to processes that call service components in se-
quence, without considering choice nodes and loops in a process. Optimal selec-
tion of service components is a key issue for creating a service composition [31],
but service description must provide more information that can be used to drive
the developer during the composition design.

Jaeger et al. [15] proposed a mechanism to determine the overall Quality-of-
Service (QoS) of a composition by aggregating the quality attributes of the indi-
vidual services: they identify abstract composition patterns, which represent basic
structural elements of a composition like a sequence, a loop, or a parallel execu-
tion and they define aggregation functions for each quality attribute: this theoreti-
cal approach is used and partially implemented in this work to calculate aggregate
values of some non-functional properties, as described in section 5.

For more details on automatic service composition issues see [13] [23].

In following sections we will see how SPATEL language allows defining and
exposing non-functional properties.

94 P. Falcarin

3. SPATEL Language

The SPICE project has defined a high-level and executable language for describ-
ing composite telecommunication services. This formalism, named SPATEL [6],
meaning SPICE Advanced language for Telecommunication services, can essen-
tially, be seen as a customization of the UML language for expressing the defini-
tion of service interfaces and service composition logic more suitable for the tele-
com domain. In contrast with most IT web services, telecom services are generally
transactional, asynchronous, stateful and sometimes long-running processes, thus
it is important to define constraints on the service interface such as the ordering of
operation invocations.

SPATEL can be used both to define a single semantic-annotated service inter-
face and to describe an orchestration of components through state machines which
are more suitable for integrating "voice-based" dialogs in a service specification,
since state machines are the most used paradigm for expressing the complexity
that can be found in human-machine voice conversations.

We should note however that the scope of SPATEL is much broader than the
scope of traditional voice services since we have to deal with remote synchronous
and asynchronous invocations, parallel threads of execution and it provides means
to represent typical voice-based interactions, inheriting from previous research
work in the field of voice service modeling [3].

The SPATEL formalism aggregates well-know constructs coming from differ-
ent sources (VoiceXML [18], ITU-SDL [19], SA-WSDL [21]) in order to provide
the needed subset that is needed for a high-level and executable formalism usable
in telecom context.

SPATEL formalism has been defined by an EMOF metamodel [25] and it
comes with a UML2 profile defining the conventions for using the UML graphical
notation, used to build service orchestrations.

The service interface description typically publishes the signature of each oper-
ation (its input parameters, result and message types), like in WSDL [19] the well-
known standard for web services.

Service developer with SPICE SCE can use such additional information to
compose a new service made up of an orchestration of different services, typically
running in different service providers’ domains.

In SPICE platform each service is described by means of the SPATEL lan-
guage which allows enriching service interface with semantic annotations and
non-functional properties which represents instances of concepts defined in a
common ontology defined in the SPICE project [7].

Indeed, without a shared understanding (both of semantics and syntax) between
applications, the communication is not feasible, or it has to be obtained with ma-
nual integration. In this case an ontology is useful, as it is a formal specification of
concepts, axioms and definitions stated in a description logic, that enable comput-
ers to understand process its content.

5 Service Composition Quality Evaluation in SPICE Platform 95

For example, the Ontology Web Language (OWL) [24] describes in XML the
concepts and their relationships, with different levels of formality, in a particular
domain. By establishing a common vocabulary among services, the ontology files
support the sharing and reuse of formally represented knowledge.

An important feature of SPATEL is the ability to annotate the elements of the
interface (like the operations and the parameters) with semantics tags and non
functional properties to enable better service discovery and automated composi-
tion.

Non-functional properties are partitioned on the basis of categories like quality
of service (QoS), charging, internationalization, etc... The annotation mechanism
is similar to the SAWSDL approach [21], as it relies on pointers to concepts de-
fined in external ontologies.

$

| —
[nitialisation
M, subscribeToMessage(msgfilter, this listener)
=Waits =
fork g
AlarmEvent{userid,rkind)
MessageEvent{userid, dest,src, body) 4
b —
{Preparation
rkind = RI.getkind(body} \L

ploc = PLOC. locateduserid);

[rkind=="FindRestaurant"]
[rkind=="Contactflestaurant"]

CD tinfo = TLOC EF hTt loc. latitud, I [kud
restauid = RI,getRestaurantId(body) ES HHELRE DW\l’ﬂ(D o SR Pl chgltuide):

list = ¥P. al (g1 b 14 k", Eirifs EirFe o
agendith = RTpraparadiarmlined reslist = P.getInterest("res aqujn | tinfo.name, tnfo. sipcode)
—
PCC.activateCallfuserid, restavid) body = RI.prepareResult{reslist)
PA. addEvent{sgendainfo, this.listener i

M. sendMessage{userid, this.sipaddress, body, this.listener, false)

O

Fig. 3. An example of service composition with SPATEL graphical notation

SPATEL language follows an approach to semantically annotate the different
aspects of the service, like types, operations and service goal. The following list
contains the different kinds of semantic annotations that are present in SPATEL:

e Annotations on IO parameters of the service.

96 P. Falcarin

e Annotations on goals that describe the overall objective of a service or the ob-
jective of a single operation exposed by the service.

e Annotations on the effects of a given operation that describe the outcomes of its
execution in terms of state achieved by the service or action performed.

e Annotations on the preconditions of a given operation describe the conditions
that have to be satisfied in order to allow its execution.

e Annotations on non-functional properties to describe aspects related to the
quality of service, charging or resource usage.

In figure 3, an example of SPATEL notation for a composed service is shown,
and more details on the graphical notation are described in [6].

4. Ontology for non-functional properties

In commercial communication services a very important aspect is non functional
properties or quality attributes of services. They are important to provide and
guarantee good usability and a good user experience for the service consumer, and
they are important for monitoring and control purposes for the service provider. In
SPICE project different categories and attributes have been considered and struc-
tured into an ontology of non-functional properties (see figure 4).

In contrast to functional attributes, the number of non-functional attributes can
be virtually unlimited, and many research works have already been performed to
classify them [12]. A similar initiative to categorize non-functional properties is
the Web Services Modeling Ontology (WSMO) that attempts to provide a frame-
work to be used for describing web services and their non-functional properties
[29]. The framework offers an outline of the type of non-functional properties that
are required: error rate, network quality of service, reliability, robustness, scalabil-
ity, security, transactions and trust. In SPICE many features and concepts of tele-
com domain has been described which may partially overlap the WSMO: more
details on SPICE ontology are available in [7].

The non-functional categories below are the one considered in SPICE, among
all those defined in the ontology:

1. Charging: A function whereby information related to chargeable events is for-
matted, stored, and transferred, correlated, rated and charging accounts are ad-
justed accordingly. This is necessary in order to make it possible to determine
usage for which the charged party may be billed.

2. QoS properties considered are:

— Response Time: the time a service operation takes to provide a result
whenever it is invoked; average, minimum, and maximum response times
are considered.

— Auvailability: the percentage of time on which a service is operable and
ready to provide its capabilities:

5 Service Composition Quality Evaluation in SPICE Platform 97

3. Security: Encryption types. Security aspects are usually handled separately in a
platform. However, some services provide sensitive information that one does
not want to pass unencrypted through the network or to other services. From
the service composer viewpoint it is important to evaluate which one of the
services in a service orchestration does not encrypt data sent on the network, in
order to possibly replace it with another similar service offering such security
features.

4. Internationalization: in case of information services (like Yellow Pages) it is
important to know in which languages the results can be expressed.

The non-functional properties can be divided into two main groups: static and dy-
namic properties. For example, charging rates, language support are relatively
fixed attributes. Even though the total cost will vary, you know exactly in ad-
vanced how it will vary. The values are defined manually, so what you read is
what you get. Other attributes like response time will only be an average time pro-
vided by the Monitor Manager of the SEE in which the service is deployed.

MemorUsage

(CPUuzage)
= VL =
ServiceProvigeiResourceUsags < EnactmentCosts

T SetupCosts

‘Encryptiensuppen

el OfTrust

/ — o, — _— .
Seouity it ———{ Authentication

T Eneiyption D
T “AbseluteGost T wotume

_{ ProfitMargin { PostPaia)

P
(chaming

2 o o
ChargingMadel =] PicPaid

4 Availabitity OptimisticResponseTime

ety AverageResponzeTima

MaximumResponseTime

it) T S P o

TimeZones)

X =4 < ReputationRating

T PreferedPartner

 Preferradvendar

Fioven@os)

T uniTested

Fig. 4. High-Level View of Ontology for Non-Functional Service Properties

98 P. Falcarin

5. Aggregation of Non Functional Properties

The Aggregator defines a pluggable architecture for aggregation of non-functional
service properties. Each attribute or attribute category can be addressed in differ-
ent specific aggregator services which are added to the framework. This allows
extensibility of the framework with additional non-functional properties, and
enables the reuse of functionality intended to analyze the SPATEL specification
which represents the service composition.

The Aggregator assumes that services in a composition do not depend on each
other. This assumption states that the result or the execution of one service does
not change the quality of other services. Moreover non-functional properties refer
to the same definition in the above-mentioned Non-Functional Properties ontolo-
gy, where their unit of measure is defined along with transformations among dif-
ferent units of measure.

Given a SPATEL representation of a service composition, the Aggregator iden-
tifies abstract composition patterns (as defined in the previous work of Jaeger et
al. [15]), which represent basic structural elements of a composition, like a se-
quence, a loop, or a parallel execution.

The aggregation of non-functional properties is based on an algorithm which
recognizes composition patterns occurring in workflow and orchestration languag-
es (like BPEL), it applies existing aggregation functions [15], and invokes the spe-
cific aggregator components to obtain aggregated values for these patterns.

In case of a decision point where the control flow splits in different separate
branches or in the parallel fork case, it is assumed that all branches have the same
probability.

For example, three kinds of aggregator components have been implemented for
the following non-functional properties:

e Execution Time: in a sequence, the time is determined by the sum of the val-
ues of each involved service. The definitions for minimum and maximum ex-
ecution times are in a sequential case the same. In case of parallel execution of
services the minimum value for execution time is the largest value of all in-
volved services.

e Cost: the cost of a service is a measure for the resources consumed by a service
execution. Different from the execution time, all services that were used must
be taken into account, regardless whether they are relevant for the synchroniz-
ing join or not.

e Encryption Level: in this case it is assumed that the encryption level is equiva-
lent with the kind of algorithm and related key’s length used for signing or en-
cryption, enumerated in a series of discrete values. For the aggregation of the
encryption level in a sequential pattern, only the weakest key is significant.

In the example of figure 5, there is a graph representing a service composition
obtained from a SPATEL diagram depicted in figure 3, where each node
represents a service and an edge between two nodes represents a temporal se-

5 Service Composition Quality Evaluation in SPICE Platform 99

quence in the control flow of the service orchestration. In particular, this figure
shows the values of non-functional properties.

Security - Encryption: 3
Charging - Cost: 1
Q6S - ExecutionTime 1

Security - Encryption: 2
Charging - Cost: 2
oS - ExecutionTime 1

fork

Security - Encryption: 2
Charging - Cost: 2

20S - ExecutionTime 3 Security - Encryption: 3
Charging - Cost: 1

QoS - ExecutionTime 1

Security - Encryption: 2
Charging - Cost: 1
205 - ExecutionTime 1

Security - Encryption: 3
Charging - Cost: 2
@aS - ExecutionTime 1

Security - Encryption: 3
Charging - Cost: 1
@05 - ExecutionTime 2

Security - Encryption: 1

Security - Encryption: 3
Charging - Cost: 2 Charging - Cost: 1
@05 - ExecutionTime 4 Q0S5 - ExecutionTime 1

Security - Encryition: 1
Charging - Cost: 5
@05 - ExecutionTime 2 Security - Encryption: 2
Charging - Cost: 2
Security - Encryption: 1 @0S - ExecutionTime 2

Charging - Cost: 2
QoS - ExecutionTime 5
ecurity - Encryption: 1
Charging - Cost: 6

03 - ExecutionTime 1

Security - Encryption: 3
Charging - Cost: 3
@0S - ExecutionTime 3

Fig. 5. Initial graph of the service orchestration

The Aggregator can extract this graph from the SPATEL composition and it col-
lapses the nodes in a each sequential path, calculating the aggregated values of the
non-functional properties, using the above-mentioned aggregation functions [15].
After a first transformation where all sequential paths are collapsed it is time to
collapse parallel nodes in a single one, then the graph is transformed in the one in
figure 6; then the algorithm restarts collapsing sequential paths followed by paral-
lel ones. Applying continuously the collapsing of nodes, the graph is reduced to a
single node exposing its aggregated non-functional properties.

100 P. Falcarin

Security - Encryption: 2
Charging - Cost: 3
205 - ExecutionTime 2

Security - Encryption: 2
Charging - Cost: 3
QoS - ExecutionTime 4

choice
Security - Encryption: 2
Charging - Cost: 10

205 - ExecutionTime 10

Security - Encryption: 1
Charging - Cost: 4
QO - ExecutionTime 9

Security - Encryption: 1
Charging - Cost: 11
Q05 - ExecutionTime 3

Fig. 6. Service orchestration graph after first aggregation

One of the goals of the SPICE platform is to provide high assurance composed
services, even if they are made of services running on different application serv-
ers, in different domains, but sharing a common management API to be used by
system administrators for monitoring purposes.

The Monitor Manager invokes the management API of each application server
in the SPICE SEE, in order to get statistics on response time of each operation of
each service deployed in the application server, and it stores these values in its lo-
cal database. Whenever a system administrator or the Aggregator invoke the Mon-
itor Manager interface, it calculates and returns the requested performance indica-
tors of each service, like values minimum, maximum and average response time.
This information can be used by the aggregator which takes information about the
non-functional properties of various services and use these values to return an ag-
gregate of non-functional properties’ values.

In SPATEL each non-functional property can be set as static or dynamic. If the
non-functional property is static, then its value has been set by the service provider
before deployment and cannot always be trusted, while if the property is dynamic,
it means that its value is calculated at run-time querying the appropriate service in
the SEE.

The developer can thus choose a determinate service composition, depending
either on static properties (like cost or security level) or on dynamic ones calcu-
lated on actual values observed by the Monitor Manager in the SEE.

5 Service Composition Quality Evaluation in SPICE Platform 101

6. Conclusions

SPICE project has developed a SCE and a SEE to respectively compose and ex-
ecute both IT and telecom services. The SCE allows developers to build their own
service and to annotate its SPATEL representation with non-functional properties;
moreover SCE allows developers to compose such services in a workflow of
SPATEL services, and to get an estimation of the aggregated values of non-
functional properties depending on the service composition workflow.

This chapter described how the SPICE project manages the non-functional ser-
vice properties at design-time, and how the Aggregator service calculates the
overall aggregated non-functional properties of a service composition designed by
the SCE developer, relying also on the Monitor manager which provides live val-
ues of dynamic non-functional properties such as Response Time.

This kind of evaluation of service composition quality attributes is useful for
service developer to carefully select services to be bound in a service composition,
which will be deployed and executed as a BPEL orchestration script in the SEE.

Future work is devoted to measure the performance and scalability of this ap-
proach on large service repositories and more complex service composition
workflow structures.

Acknowledgments

This work has been performed in the framework of the IST project IST-2005-027617 SPICE,
which was partly funded by the European Union. Special thanks to all project partners, and in
particular to Mariano Belaunde (Orange Labs), Federico Mura, Alessio Bosca (Politecnico di To-
rino), Mazen Malek Shiaa (NTNU Trondheim), and Anne Marte Hjemas (Telenor).

References

[1] S. Tarkoma, B. Bharat, E. Kovacs, H. van Kranenburg, E. Postmann, R. Seidl, A. Zhdanova,
“SPICE: A Service Platform for Future Mobile IMS Services,” in Proceedings of IEEE In-
ternational Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM
2007), June 2007, pp: 1-8, ISBN: 978-1-4244-0993-8.

[2] OMG, "Model Driven Architecture". Web link: http://www.omg.org/mda/

[3] M. Belaunde, J.M. Presso, Vision for an industrial application of MDD in the Telecommuni-
cations Industry, ECMDA'05 Conference, Springer July 2005.

[4] P. Falcarin, C. Venezia: “Communication Web Services and JAIN-SLEE Integration Chal-
lenges”. In Journal of Web Services Research (JWSR), Vol. 5(4), IGI-Global, 2008, ISSN
1545-7362.

[5] SPICE (Service Platform for Innovative Communication Environment) project homepage.
On-line at http://www.ist-spice.org/

[6] M. Belaunde, P. Falcarin, “Realizing an MDA and SOA marriage for the development of
Mobile Services”, European Conference On Model Driven Architecture, June 2008, Springer.

[7] C. Villalonga, M. Strohbach, N. Snoeck, M. Sutterer, M. Belaunde, E. Kovacs, A.V. Zhdano-
va, L.W. Goix, O. Droegehorn, “Mobile Ontology: Towards a Standardized Semantic Model

102 P. Falcarin

for the Mobile Domain,” in Telecom Service Oriented Architectures Workshop (TSOA-
2007), September 2007, to appear on Springer LNCS.

[8] JAIN-SLEE API Specification. Java Community Process website:
http://jcp.org/aboutJava/communityprocess/final/jsr022/index.html

[9] Java 2 Enterprise Edition. http://java.sun.com/javaee/

[10] Zhang, R., Arpinar, 1.B., Aleman-Meza, B.: Automatic composition of semantic web servic-
es. In IEEE ICWS. (2003), pp 38-41.

[11] M.P. Papazoglou, D. Georgakopoulos, “Service-Oriented Computing,” Communications of
the ACM, October 2003, Vol. 46, n. 10, pp. 25-28.

[12] J. O'Sullivan, D. Edmond, A.H.M. ter Hofstede, “What's in a service? Towards accurate de-
scription of non-functional service properties”, Distributed and Parallel Databases, 2002, pp.
117-133, Kluwer ed.

[13] K. Fujii, T. Suda, “Semantics-Based Dynamic Service Composition,” IEEE Journal on Se-
lected Areas of Communications, v. 23(12), December 2005, pp. 2361-2372.

[14] Web Ontology Language specification. On-line at http://www.w3.0rg/2004/OWL/

[15] M.C. Jaeger, G. Rojec-Goldmann, G. Muhl, "QoS Aggregation in Web Service Composi-
tions", IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE'05), 2005, pp. 181-185.

[16] BPEL, Business Process Execution Language for Web Services. On-line at
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

[17] OMG, "MOF 2.0 Query/Views and Transformations", http://www.omg.org/spec/QVT/1.0/

[18] W3C/VoiceXML Forum: Voice Extensible Markup Language, www.voicexml.org

[19] W3C, Web Service Definition Language (WSDL), www.w3.org/TR/wsdl

[20] ITU-T, Specification Definition Language (SDL). Web link: www.itu.int/ITU-T

[21] W3C: Semantic Annotations for WSDL and XML Schema, W3C Recommendation, 28 Au-
gust 2007. Web link www.w3.0rg/2002/ws/sawsdl/

[22] OMG, Uml Profile And Metamodel for Services RFP,
http://www.omg.org/cgibin/doc?s0a/06-09-09, September 2009

[23] A. Bosca, G. Valetto, R. Maglione, F. Corno; “Specifying Web Service Compositions on
the Basis of Natural Language Requests”; ICSOC’05 3rd International Conference on Service
Oriented Computing, Amsterdam, December 2005

4] Semantic Markup for Web Services (OWL-S), http://www.w3.org/Submission/OWL-S/

5] OMG, "Meta Object Facility V2.0", http://www.omg.org/spec/MOF/2.0

6] Web Service Semantics (WSDL-S), www.w3.org/Submission/WSDL-S/

7] Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., and Srivastava, B.
A service creation environment based on end to end composition of Web services. In Pro-
ceedings of the 14th international Conference on World Wide Web (2005). ACM Press, New
York, NY, 128-137.

[28] Philippe Larvet, “Automatic Orchestration of Web Services Through Semantic Annota-
tions”, ICEIS 2007, 9th International Conference on Enterprise Information Systems, June
2007.

[29] Jos de Bruijn, Christoph Bussler, Dieter Fensel, Michael Kifer, Jacek Kopecky, Rubn Lara,
Eyal Oren, Axel Polleres, and Michael Stollberg. Web Services Modeling Ontology
(WSMO). http://www.wsmo.org/

[30] Yu, T., Kwei-Jay, L.: Service Selection Algorithms for Web-Services with End-to-End QoS
Constraints. Information Systems and E-Business Management 3(2): 103-126 (2005)

[31] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality Driven Web
Services Composition. In Proceedings of the 12th International Conference on the World
Wide Web (WWW), Budapest, Hungary, May 2003. ACM Press.

[2
[2
[2
[2

Chapter 6
High-Assurance Service Systems

Jay Bayne

Milwaukee Institute, 411 E. Wisconsin Ave, Suite 1280, Milwaukee, WI 53092
jbayne @mkei.org

Abstract. High-assurance systems (HAS) are information systems designed and
implemented to achieve a degree of predictable behavior, with predictability ex-
pressed in terms of their reliability, availability, safety, security and timeliness
(RASST) properties. High-assurance service systems (HASS) are a special class
of HAS providing interactive, network-accessible and dynamically bound services
to clients typically unknown at design time. Cyberphysical systems (CS) are, in
turn, a special class of HASS responsible for automation and control services go-
verning a wide range of physical processes. A service, in this context, results
from transactional exchanges of information of specified value between service
providers (servers) and their customers (clients) on behalf of certain application-
level objectives. These application-oriented transactions, carried out through dis-
coverable service interface protocols, are governed by service level agreements
(SLA) expressing performance-related assurances that servers agree, a priori, to
provide to their clients. In dynamically bound service environments, specification
of assurances depends on existence of a published set of performance indices and
associated measurement processes for RASST and related properties. Conse-
quently, high-assurance service systems require a performance measurement
framework (PMF) competent to express service-oriented value propositions and
their RASST dependencies. This chapter introduces a CS PMF, with a focus on
three key elements. First, we introduce a cyberspatial reference model (CRM) for
establishing the identity and location of distributed HASS servers and clients.
Second, we define a set of service performance indices to measure RASST proper-
ties. Third, we develop an application neutral, yet operational definition of value
useful in high assurance service systems for defining their respective value propo-
sitions.

1. Introduction

The design and implementation of service systems represent an important re-
search area within systems science, engineering and enterprise management dis-
ciplines [30]. Achieving measurable degrees of assured (predictable) behavior in

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_6, © Springer Science+Business Media, LLC 2009

104 J. Bayne

service systems requires that their performance scale upward with increasing re-
sources and downward when failures occur or capacity saturates—while striving
for non-stop operation. Under extreme conditions or catastrophic failures, service
systems are expected to stop in a “safe” state, with a reasonable expectation of a
subsequent reliable restart.

Cyberphysical systems (CS) are a class of high-assurance service systems re-
sponsible for the automation and control of a wide range of physical processes.
CS have a long tradition of adhering to RASST requirements, albeit in typically
special-purpose and isolated applications. They are high-consequence systems due
to their responsibility for monitoring and controlling safety-critical infrastructure,
including dams, airports, trains, automobiles, commercial buildings, power pro-
duction and distribution systems, refineries, refrigeration systems, hospitals and
weapons systems. The majority of today’s CS are legacy systems. They are eve-
rywhere and increasingly they interconnect through standardized communications
protocols to form ad hoc, loosely coupled federated systems. While their individ-
ual service levels may be subject to strict assurances (e.g., via specific V&V tech-
niques); their ensemble behaviors are typically unknown and unpredictable, for
generally they were not designed for assured levels of interoperation, let alone
performance as modern online (interactive and dynamically bound) service-
oriented systems!. While especially true of legacy systems, even in new distri-
buted systems, management (i.e., HASS administration) remains a significant en-
gineering challenge for emerging software-as-a-service (SaaS) architectures [10,
15, 30].

There are several reasons for this situation. First, contemporary software engi-
neering practices do not in general require coherent models of service system op-
erating environments. Second, there are generally no accepted models of how to
administer CS systems, operating alone or in concert. Third, there exist no stan-
dardized metrics for continuously monitoring and evaluating service systems, op-
erating individually or as federations. Fourth, there are no general methods deal-
ing with end-to-end timelines in distributed service systems under real-time
constraints. Finally, there are no common semantics allowing two or more service
systems to articulate their individual value propositions in a manner that supports
establishment of their mutual assurances under dynamic discovery and binding.
CS, when interconnected and supporting predictable levels of assured operation,
require a common cyberspatial reference model (CRM).

! Service-oriented architectures (SOA) define application software design patterns appropriate
for implementing network-accessible services [10, 15, 30].

6 High-Assurance Service Systems 105

2. Cyberspatial Reference Model>

The behavior of service systems, independent of their expressed assurance le-
vels, unfolds in cyberspace, the environment (reference frame, context or domain)
in which human and synthetic actors engage and establish communities of mutual
interest (partnerships, federations, alliances, or coalitions). Their interactions are
ostensibly for growth and survival, for achieving their stated goals and objectives,
and for maintaining dynamic equilibrium (homeostasis) required for sustaining
their individual and collective viability as sovereign (self-regulating) entities. In
cyberspace, service systems create and exchange services deemed valuable by
other service systems. They form collaborations (federations, joint ventures or al-
liances), and often referred to as socio-economic networks or value webs. Indi-
vidual and mutual value propositions governing federations establish the high-
assurance requirements for individual and collective operation.

S

meaaa}t'geg L@
o~ :

P i messages
n A L
e
/

v
l ¥ Cyberspace, C
Fig. 1. Interacting Cyberspatial Objects

Entities operating in cyberspace are simultaneously physical (tangible, real) and
present in geospace (G), informational (logical, virtual) and present in infospace
(I), and social (organizational, governmental) and present in sociospace (S).
Within cyberspace, a high-assurance service system creates value through one or
more rational agents [33], or cyberspatial objects (CO). In a CS environment,
messages are the means for one CO to exert forces on another. Messages flow
through infospace to affect decisions at rational sociospatial endpoints that govern
the states and behaviors of geophysical processes. In Fig. 1, two CO processes
operating on behalf of (i.e., subordinate to) CS, and labeled Pni and Pnj , interact

in a region of cyberspace. They affect each other’s behavior through sending and
responding to messages. Each CO occupies a specific location {G,1,S} at a point
in time. Each has a unique identity and sustains itself by offering services
characterized by quantifiable and discoverable value propositions.

2 Some material in this section, without reference to HASS, appeared in the June 2008 issue of
the IEEE Transactions on Systems, Man and Cybernetics, Part B (SMCB) under the title Cybers-
patial Mechanics.

106 J. Bayne

Relationships among cooperating CO are established either statically at design
time (a priori) or dynamically at run time (a posteriori), as required. Dynamic
binding is accomplished via trading protocols [28] through which consumers
(clients) ask for services and producers (suppliers) respond with bids. The
consumer subsequently accepts a bid that satisfies the value proposition
underwriting its service request. Following acceptance the producer completes the
request by delivering to the client a result satisfying the ask. The value of the
result to the client is defined in the price’ element of the accept order. The
marginal value to the producer is the difference between that price and its cost of
producing a result. Negotiation (i.e., iterative ask-bid cycles) may take place prior
to an accept. In high-assurance systems, trading (binding) protocols must be
reliable and transparent (i.e., auditable) and conclude in predictable time within a
defined region of cyberspace.

2.1 Service Systems

Describing the behavior of individual service-oriented CO and their HASS
containers implies existence of a formal governance process (operations model)
and an associated set of operational performance metrics. Comparing behaviors of
interacting CO requires that the model and metrics be generalized and scalable,
applicable to a potentially wide range of service systems and underlying value
propositions. Relative performance (e.g., throughput yield, transaction response
time) depends both on structural (organizational) and functional (process)
considerations.

Fig. 2 diagrams the internal governance structure of CS, and its K,, subordinate
CO services. This cybernetics* model was derived from consideration of the
structure and function of the human neuroanatomical system. It was introduced
by Beer [8] as the viable systems model (VSM), mechanizing his theory of man-
agement cybernetics. Subsequently, this author refined the model and applied it to
a broad class of military and manufacturing enterprise governance systems (EGS),
also called enterprise command and control (EC2) systems [5]. EC2 theory [6]
considers a CS a sovereign enterprise, governed by one or more rational actors
(i.e., its management team or flight crew)?, organized in a collaborative command
structure as shown. Governance structures may vary according to regional, eco-

3 Price (cost) may be denominated in currency, energy or mass consumed or in other application-
specific figures of merit.

4 Cybernetics is a systems science of long standing focused on the relation between automation
and control in natural and synthetic systems.

3> Depending on the size and complexity of an enterprise system, one actor (e.g., a pilot) may

serve the combined E5, E4 and E3 function or several actors may serve in a team for each indi-
vidual function.

6 High-Assurance Service Systems 107

nomic, political and social norms, but if viable (i.e., interactive, sustainable, ac-
countable) they share key operational characteristics [2, 4, 8, 11, 19].

As diagrammed in Fig. 2, CS are composed of potentially many (embedded,
encapsulated, subordinate) CO, labeled EO0,'...E0,", each offering through a given
business or manufacturing process (P,*) a specific service. In high-assurance sys-
tems, CO (both their platforms and application processes) are typically redundant
(either duplicate or triplicate) and distributed to provide failover and fault toler-
ance protections.

In the face of dynamic and probabilistic demand, achieving a degree of optimal
(e.g., cost effective) performance requires that each CS be governed by some form
of command structure accountable for its behavior. It is customary, logical and
intuitive to define governance structures in terms of roles and responsibilities of
three primary actors [7, 19, 23, 31], here labeled echelon ES5, E4 and E3. ES5 (ex-
ecutive) providing decision making at the highest level of authority (accountabili-
ty), E4 (navigator) providing strategy, analysis and planning, and E3 (operator) at-
tending to tactical execution activities.

Service
Access
Points

Fig. 2. CS Governance Structure

Agile and adaptive cyberphysical systems are necessarily both proactive and
reactive. They maintain their dynamic stability (balance, homeostasis) through
supervisory controls. As in natural systems, homeostatic control [4, 6, 7, 31] is
achieved through two juxtaposed and counter-balancing feedback loops, expressed
in Fig. 2 as the sympathetic (E3-E1-E2-E3) and parasympathetic (E3-E3*-E0-E1-
E3) circuits. Furthermore, if autonomous, CO are governed through tactical regu-

108 J. Bayne

latory feedback control loops (EO-E2-E1-E0). In a recursive fashion, each E1 ac-
tor (CO Director) represents the command function accountable for the next lower
level of value production. Consequently, E1 at level n in the management com-
mand hierarchy represents ES-E4-E3 at level n-1. In this self-consistent model,
command chains may nest to arbitrary levels.

Each E0' actor (CO production process) encapsulates a specific unit or quantum
of value production, described by process P!, i=1...K,. Service-oriented CO are

accessible through specific service access points (SAP). CO within a CS may be
stationary or mobile in each of three cyberspatial dimensions, independently or in
unison. If mobile, their velocities and accelerations may also vary in each dimen-
sion.

In our construction, cyberspace has nine dimensions. With the inclusion of
time, our cyberspace-time model provides cyberspatial objects with 10 degrees of
freedom. This definition integrates three historically and semantically distinct
coordinate systems. To allow them to form a proper hyperspace {G,I,S} supported
by a rationalized distance metric, we require a common unit of distance measure.

Our solution makes two key assumptions: 1) in each dimension, a coordinate
may be interpreted is an abstract address object and 2) the three primary and three
subordinate dimensions are orthogonal. At both indexing levels, address objects
are 3-tuples: {G,LS}={{xy.z}.{gs,a},{f,p,c}}. This approach rationalizes ad-
dresses by converting each 3-tuple to a standard integer format augmented with
domain-specific metadata, the details of which are the subject of a future paper.
Each cyberspatial address component (e.g., the infospatial Service Point index,
“a” in {g,s,a}) is defined as a 64-bit integer. Consequently, each 3-tuple defines
three components of a 192-bit address object on which uniform address arithmetic
(supporting intra- and inter-space distance metrics) may be computed.

In the geospatial dimension (e.g., latitude, “x” in {x,y,z}) we have employed in-
dexing relative to traditional geocentric (spherical) coordinates. Alternatively, we
could have utilized indexing related to a digital earth reference model (DERM)
[16] where {x,y,z} refers to the location of a hexagonal region defined by a tessel-
lation on the earth’s surface. Goals motivating our work include design and im-
plementation of a DERM-compliant CO directory service to be used for identify-
ing and tracking CO and their interdependencies.

Cyberspace is assumed Euclidean (orthogonal) and compact. In our formula-
tion, orthogonality has two complementary and equally important meanings. The
first derives from traditional mathematical concepts where orthogonal Euclidean
3-space vectors produce zero dot products. The second is a software design prin-
ciple resulting from the desire to isolate system behaviors in order to realize com-
pact (small, efficient) functional designs.

From the service software design perspective, orthogonality is one of the most
important properties in making complex designs more concise (compact). In a
purely orthogonal design, operations have specific and limited consequences; each
action (process step), whether implemented with a service or a macro invocation
or a language or protocol operation, changes a single object (e.g., a parameter) per

6 High-Assurance Service Systems 109

invocation without affecting others, thus producing minimal and controlled side
effects. There is one and only one way to change a property of whatever object is
being controlled.

The cyberspatial position of an object is diagrammed in Fig. 4. The
cyberspatial position of CO; at time # is P(t,) ={G;,I;,S;}(z,) . The cyberspatial

distance between objects CO; and CO; is then
<)= \/dfj)’ +d! @) +d’ (1)

where dfj(tk), for ye {G,1,S} are distance metrics for each of the three

subordinate dimensions®.

=

4
Sj(tk)“\\
) g Fi(%

Pt) Gt =
| -
) A
&)
[Cyberspace, C
Fig. 3. Cyberspatial Coordinates
S
4
d® : ™ ‘ Pk}
-~ J k
F | e
7 dC
o A
P(t W LA <N
L0 g -G
S

Fig. 4. Relative Cyberspatial Position

6<{...}” represents a list or vector of items and “{...}(t)” denotes a list whose elements are func-
tions of time.

110 J. Bayne

2.2 Geospatial Dimension

Geospace provides an earth-centered reference frame for specifying the
physical location of an object. f;.G (rk)= {xl., yl.,zl.}(tk) is the geospatial location of

cyberspatial object CO; at time f#,. This representation presumes that time is
measured uniformly along each axis. We postponse discussion of relativistic
effects (e.g., Lorentz transformations) in situations when velocities of geospatial
objects (G;) approach vacuum light speed. While this phenomenon is unlikely in
geospace and sociospace, it is possible in infospace.

As in standard practice, the geospatial distance between CO; and CO; at time #;
is given by

dfj) :\/dx(tk)z +d (1) +d (1)
d ()=, = 1)
dy(tk): yi(tk)_yj(tk)
d() = 2,102, (0,

We note for both practical and historical reasons that geospatial objects also
have geo-referenced service access points (SAP), referred to as postal addresses
and land-line voice and video circuit (aka, last mile) addresses. Through these
physical addresses real mail, video and voice are sent and received. Increasingly
non-tangible service traffic is carried via infospatial circuits in the form of digital
voice, video and data (e.g., web content and email). We include postal addresses
and analog communications circuits as geospatial addresses since we can map
{x,y,z} coordinate references to these more traditional forms of physical address.

2.3 Infospatial Dimension

Expanding on work sponsored, in part, by the Air Force Research Laboratory
[14], infospace provides a framework in which to specify the locations of an
object’s service access points, communications ports on the object through which
it interacts with other objects about their respective states, goods and services
(value propositions). Following the reference model defned in the Internet
Protocol version 6 (IPv6) standard [27], we define a generalized infospatial

service port address for service P; as the 3-tuple ril ={g;,s;,4;}, where g

designates the global network address (nominally 48 bits), s designates the sub-
network address (16 bits) and a designates the sub-network’s particular service
access point (64 bits).

6 High-Assurance Service Systems 111
Let Bf” (1) =1g;.s;.a. (1) be the infospatial location of CO;’s n™ SAP at time

t.. We define the infospatial distance between access point n on CO; and access
point m on COj at time #;, as

a0 = \/d;"”’(zk Y dl))

dg" o) =gl)-8 1)
(i) = xf)~ x;.")

di") =a) =a @)

2.4 Sociospatial Dimension

Sociospace is a framework for specifying the location of an object with respect
to its operational role within one or more federations. As with the intra-CS
governance structure of Fig. 2, the inter-CS operational structure shown in Fig. 5
is based on an enterprise model developed in [6]. Sociospatial value webs are 3D,
with index f designating a specific federation, p designating the enterprise’s
position along that federation’s horizontal production axis and ¢ designating the
enterprise’s position along the federation’s vertical command (accountability)
axis. In Fig. 5, CS;, . belongs to at least one “root” or “home” federation (i.e.,
f=1). At its creation and until altered, the root context of a CS is that of its parent
(superior).

Command
Level (¢)

Federation (f)

i Production

Stage (p)

Fig. 5. Sociospatial Service System Structure

112 J. Bayne

Vertically in a given federated service system, CS; . is a subordinate (child) to,
and therefore dependent upon (accountable to) , a single superior (parent) CS;j 4
and is superior to (a parent of) and therefore responsible (accountable) for its sub-
ordinates (children) CS¢, ;. Horizontally, CS¢, is a supplier to (producer for) its
clients (consumers) CSg,,; . and a consumer (client) of its suppliers (producers)
CS¢p1c. The vertical axis defines a federation’s chain of authority (command); the
horizontal axis defines its logistics (supply) chain. As diagrammed in Fig. 5, each
enterprise typically holds membership concurrently in several (f > 1) federations,
requiring its governance system to maintain situation awareness and sufficient
agility to context switch among its multiple federations.

Operationally, this technical definition requires the enterprise governance sys-
tem to treat enterprises and their activities in much the same way multipro-
grammed computer operating systems (specifically their kernels) treat running
processes. Essentially, each service (CO) is assigned to a virtual machine (i.e.,
particular governance structure) that is allocated by scheduling policy sufficient
resources (e.g., CPU, memory, time) to allow its tasks to run to time-bounded
completion. Our enterprise governance system (Fig. 2) provides the function of an
OS kernel, implementing an enterprise operating system (EOS) that maintains in-
tegrity among multiple contexts while running the supply and command axis tasks
(CO) for each federation in which it is a participant.

RS”'m (t) = (£ p, }(#) 1s the sociospatial position of enterprise object CO;

,n’ci,m
at time #;. Within any single federation f, a given member typically interacts with
multiple concurrent service providers (producers), clients (consumers) and
subordinates enterprises. The n and m indices identify the location and role of a
particular neighbor, (n) on the producer-consumer axis and () on the superior-
subordinate axes. For practical and philosophical reasons, as noted in the figure,
our model assumes a single superior within each federation. To simplify notation
we omit the 7 and m indices in the following discussion.
We define the sociospatial distance between CO; and CO; at time #; as

a3 i) :\/df(tk)z +d, ()2 +d.(1)?
dy(ty) = f;() - fj(fk)

d,t)=p;(1;) - pj(tk)
doi) = i) = ()

3. Timeliness in High-Assurance Service Systems

Synchronized logical and physical clocks are necessary [21] but not sufficient
for guaranteeing that cyberspatial systems can provide services that are, in a
measurable sense, timely with respect to service-level commitments expected of
their federation (sociospatial) partners. Quality clocks do assist in providing
accurate timestamps and for supporting high resolution scheduling of local

6 High-Assurance Service Systems 113

resources, but in collaborative arrangements among distributed agents, group (i.e.,
end-to-end or transnode) timeliness requires additional facilities.

There is today no generally accepted (let alone, standardized) mechanism to
achieve end-to-end timeliness in distributed systems, especially remote method
invocations (RMI) allowing two or more distributed CO processes to rendezvous
in cyberspace-time. There is, however, a significant body of contemporary work
addressing the subject [17], including a thread scheduling paradigm realized in
Real-Time CORBA V1.2 [25] and compliant ACE/TAO [1] open source
middleware, the non-distributed Real-Time Specification for Java (RTSJ) [18] and
its distributable thread (DT) successor introduced in the Distributed Real-Time
Specification for Java (DRTSJ) [12].

The paradigm essentially states that when CO; commits to certain application-
level timeliness properties, and subseqeuntly in the course of its execution requires
the services of a remote COj, it must transmit its expected completion-time
requirements (time constraints) along with its service invocation request as part of
a distributable thread. In accepting this thread invocation request, CO; agrees to
make best effort to adjust its local scheduling policies (e.g., priorities and resource
commitments) to meet CO;’s completion time requirements, or to reject the
request. COy’s mechanism for scheduling threads must therefore involve
optimality conditions that balance the multitude of typically conflicting
completion-time requests. To do so, [D]JRTSJ utilizes “pluggable” application-
level scheduling policies (e.g., a utility accrual scheduling mechanism, as
described in [22]).

The DT paradigm depends on 1) the transmission of end-to-end timeliness spe-
cifications along with service invocation requests and 2) a means of adhering to
these specifications by recipients. These parameterized specifications effectively
define an expected application-level quality of service (AQoS) explicitly or impli-
citly associated with the service level agreement (SLA) defined in a CO server’s
published (discoverable) service profile.

The means adopted for describing completion-time requirements for remote
service invocations involves CO; providing CO; with a service deadline in the
form of a specification such as a time-utility function (TUF) [20]. A TUF is a
parameterized expression describing the value of completing the service request as
a function of time, or in the reverse direction, the time value of information
returned from the service request. TUF specifications are therefore useful for de-
scribing liveliness properties of data contained in a message, whether invocation
orders or results. Message contents thus take on a “valid-while” predicate within a
TUF-specified window. This is particularly useful in real-time applications where
information quality may deteriorate as a function of time or distance or both.

Completion-time specifications may be described by an infinite number of
possible time-value functions. For example, Fig. 6 (a) describes a service request
whose completion time value is maximum at #; (i.e., “immediately”), deteriorates
linearly until #,, then goes to zero thereafter. Fig. 6 (f) describes a service request
where as time progresses the completion time requirements are described by a
sequence of increasingly narrower and higher value TUF specifications—

114 J. Bayne

indicative of phased and increasingly critical processes. Fig. 6 (d) represents the
simplist to specify and easiest to implement TUF specification—a step function or
sequence of step functions.

Let u(t) = {tuf (t),{r""",t"*}} be a utility function specification carried along
a DT (i.e., within an RMI message payload) specifying completion-time require-
ments for a given service. u(t) thus defines a specific quantum of service.

u(t) = tuf (t) for " < <
=0 otherwise

Here tuf(t) is a piecewise continuously differentiable function in the specified
interval. A deadline (i.e., critical completion-time requirement) is defined as

umax (@ tcritical) — Ma.x[tuf(t), {tsturt , tend }]

In summary, a service is deemed timely (i.e., real-time) to the degree it is able
to respond to client specified completion-time requirements, requirements carried
along distributable threads in the form of time-utility functions. Given the above
temporal considerations, we are now in a position to reason about the dynamics of
objects whose behaviors unfold in cyberspace-time.

Us
b)
(a) (d)
U I > Ui >
o t2 ts
N
b
(b) (¢
to tz tyg ty to tg iy tg
Uy
b T s £
b () \ ()
Y \ > Y — >
ta ty tp tg tgts tg

Fig. 6. Time-Utility Functions (TUF)

6 High-Assurance Service Systems 115

4. Messages

In addition to the relative motion of cyberspatial objects, we are interested in
their communication patterns and, in particular, the forces exerted by information
in the form of messages flowing among them. The notion of infospatial force
derives from the meaning (semantics) of a message, defined here relative to the
capabilities of a recipient and the message’s ability to act as selector of behavior
(goal-directed activity) from among a CQO’s states of conditional readiness [33].
For cyberphysical systems in particular, messages flow through infospace to affect
decisions at rational endpoints in sociospace that are accountable for governing
states of geospatial processes.

Let mi,j(lk)z{i’ Jsnpot be a message containing a payload p with n =1

service selectors sent from CO; to CO; at time f,. Timestamp # is the time of a
“message sent” event in the sender CO,. The message payload
p ={{or,qr,tr,ur}}, forr=1.n contains one or more 4-tuples, each comprising

an order o, , a measure of the quality g, of that order’, a timestamp ¢, identifying

when the order was issued and a completion-time or data liveliness specifications
u,.
o, is an order (possibly including metadata describing goals, objectives, plans
and constraints) that acts as a selector of one of the recipient’s available services.
The meaning (semantics) of an order is determined by sender and receiver in
advance of the message being sent. Typically, a service provider publishes its
services and their invocation orders and parameters in its Service Directory.

q, is an indicator of the quality of an order o,. Orders and their respective

paramters may suffer from a number of quality concerns, including lack of
precision, accuracy, pedigree (authenticity), liveliness (age and history) and source
(originator and route). These uncertainties, when quantified in a quality
indication, provide recipients with a means of invoking due diligence or risk
management activities prior to utilizing information in the order field.

t, is a timestamp declaring the time at which the order and its associated quality
metric were issued. In addition to providing its age, the timestamp establishes
partial ordering (sequencing) of message payload elements. 7, is the timestamp of
the “message sent” event, the time when a client CO first isued the order to the
server CO.

u, , as previously defined, contains the completion-time specifications (e.g., in

the form of a time-utility function) for the invocation request contained in o,. The
timeliness parameters contained in u, establish the service’s expected time-

dependent contribution to the requestor’s value proposition.

7 We include a quality metric expressly for situations where pedigree, validity, precision or accu-
racy of orders (selectors) may be in question (e.g., a measurement provided by a sensor in need
of calibration or one whose identity has not been verified.)

116 J. Bayne

5. Performance Metrics

A HASS is a sovereign and rational free-market (Keynesian) entity whose so-
ciospatial interactions expect services predicated on assured and quantifiable value
propositions. Specific assurances underwrite operating policies that, when proper-
ly formed and executed, are sufficient to sustain its existence, establishing and
nurturing associated operational ecosystems (i.e., marketplaces) supporting ex-
change of goods and services. Achievement of individual and group values re-
quires monitoring of self and group sociospatial, geospatial and infospatial opera-
tions by each member. Furthermore, competitiveness in a given ecosystem
demands continuous improvement in effectiveness (e.g., energy efficiency, capaci-
ty) of value production processes, individually within and collectively among
cooperating CS. Such monitoring necessarily requires a set of shared, normalized
and domain (federation) neutral assurance metrics—presumably defined and re-
fined by the equivalent of a cyberspatial (i.e., federated) bureau of standards.

We offer the following six assurance indices, described in [6]: three primaries
and three secondaries derived from the primaries, for each service offered by a
given CO:

Actuality al.s (t) : a measure of throughput yield (mps) actually achieved by
service s in CO; given its current level of resources

Capability le (t) : a measure of throughput yield (mps) of service s in CO;
possible given its current level of resources

Potential 72'lfY (t) : a measure of throughput yield (mps) of service s in CO;
possible given its maximum (design) level of resources

Latency /11.5 (t)= ;(l.s)/ 72'lfY (#) : a measure (%) of the capacity latent in the
potential of service s in CO;

Productivity yls = Otl.s)/ ;(l.s (1) : a measure (%) of utilization of the current
capability of service s in CO;

Performance l//l.s BE ais)/ 7rls (1) = ﬂis (1)* yls (1) : a measure (%) of utilization
of the potential of service s in CO;

The three primaries satisfy o' (¢) < ;' (1) < 7/ (t) mps.

For an example that ignores scripting and normalizes the design potential of a
given service to 7 =1 (100%), suppose a service’s current capability is y(r) =.5

mps (50%) and its measured actuality is o(t) =.35 mps (35%). The result is a prod-
uctivity index of y(r) =.35/.5=.7 (70%), a latency index of A(r)=.5/1=.5 (50%)
and an overall performance index of w(r) = (.35)/(1.0) = (.7)(.5) = .35 (35%).

6 High-Assurance Service Systems 117

Armed with these six AQoS assurance metrics, we are in a position to discuss
various dynamic properties of CO and their services.

6. Service Dynamics

As stated in the introduction, we require each HCO to be viable (i.e., self-
sustaining). The viability of a high-assurance server results from its ability to pro-
vide one or more services deemed valuable to members of its operational ecosys-
tem. As discussed, we assume each cyberspatial HASS object offers its services
through an infospatial service access point (aka, portal). A CO may also have
“brick and mortar” service portals located in geospace. Services are invoked
through messages addressed to service portals, as diagrammed in Fig. 7Fig. 7. .

24ap,
a’apz

'6 gl = -
hY i
O=—"—+5ap, {Qk‘ T T KJJ‘T’

i mji
N a0
sap,
CO; service 5, Cojclient
code segment code segment
At, [m, At, i, Atd
ST e disvrbted bhreng e |
Aty | Qdsp, Bl
i R <t S l"‘
Aty [m) Aty m,| Ate l

Fig. 7. CO Service Model

Let r’r'zf ;O and 171; i(® be messages carrying service orders (demands) from
and responses to, respectively, clients CO; of service s in server CO; at time ¢. It
follows that drm; ;(1)/dt and dm; (1)/dt are the corresponding messaging rates, in

messages per second (mps), into and out of service s.® For lossless channels,
}ﬁi_j @)= n}ﬁi(z) and }ﬁj_i @)= n?lvyj(z) .

The bidirectional partial and total message volume of service s in CO; at time ¢
is the sum of all inbound requests and outbound responses®, respectively.

8 To simplify the notation without loss of generality, we subsequently drop the subscript “k” dis-
tinguishing a particular service sy .

® We do not distinguish between meaningful and meaningless (i.e., spam) messages, since both
require some degree of processing. If we did, spam would represent a noise source.

118 J. Bayne
4 () =mj j(t) +mj (1)
H @0 =3 il j(O1 =X jlm @)+ mj ()]

The corresponding message rates, in mps, through service s in CO; at time ¢ are,
respectively,

yifj(t) = d/lf;j(t)/dt = dﬁzij(t)/dt+dﬁ¢;;j(t)/dt
(0 =d (1) di =3 jldi (1) di +dim (1) di]

Symmetry and lossless channels require that!®

dzﬁ,{j(t)/dt = dﬁ}i(t)/dt

dn?,{j(t)/dt = dzﬁ},-(t)/dt
During the period [#, #] the number of messages processed by service s is

N} ltg 1= [[4 ()t = ! 3 il () + ()Mt

0 0

Over the same period, the number of messages processed at the two end-points
is

s _q s _ 5 T =5
N ltg,11= jto 4 (Hdt = [, 7. (Ot + jto dm; ;(t)dt

s _q 8 _qt =s T 3—s
N lt.t1= Ito u; i (dt = jto m’ (t)dt + Ito dm;; ; (t)dt

We define the actuality metric (actual throughput, in mps) for service s in CO;
as the message processing (i.e., service completion) rate in mps measured at its as-
sociated service access point

o; (1) = 1} (1)

Similarly, the partial actuality metric (partial throughput, in mps) for services s
in CO; with respect to requests from CO; is defined as

aiv,j(f) :,Uiv,j(f)

Definitions of capability and potential are somewhat less intuitive. A given
cyberspatial server!! (i.e., a platform or host) may be capable of supporting mul-
tiple services. That server’s resources are assigned to services according to poli-
cies concerned with marginal utility, mean service time, server load, criticality of
service request (e.g., TUF parameters), hardware platform capacity, availability,
return on capital investment, etc.

10 An infospatial form of Kirchhoff’s Electrical Current Law

1A cyberspatial server may be a small embedded or stand-alone computational device, a net-
work of such devices, a business unit, corporate, civil or military agency, etc.

6 High-Assurance Service Systems 119

Over its lifetime, a server’s capacity may evolve through installation of a pro-
gressively larger fraction, within design limits, of its total physical resources (pro-
cessor, memory, disk, network adapters, personnel, capital, etc) '2. Services al-
lowed to run on that server will share its current capacity (i.e., its increasing
potential), a full hardware complement representing the server’s full capacity. If
that capacity were assigned to a single service, the service would achieve its full
potential (relative to that server, at least). If, on the other hand, the server’s full
potential were allocated (by some allocation policy) to all executable services,
then each would have some measurable capability, but still not achieve its indi-
vidual full potential on that server.

Let I be a HASS server’s maximum potential measured in instructions per
second (ips)'* when configured with its full complement of hardware resources.
Let al be the server’s capability (in ips) when operating at a fraction (0 < w<1)
of its maximum potential. With reference to the service model depicted in Fig.
7Fig. 7. , let 7, (t) be the maximum (potential) service rate in messages per

second (mps) for service s, at access point sap, when running alone on the full
potential (i.e., dedicated) server. Let k; be the number of instructions per mes-
sage (ipm) required by service s, to react to a given message, with ¥ = 1/nzl"/q

the average number of instructions per message for all n concurrent services. The
server is thus capable of an average of wl'/x messages per second (mps).
Let o (t) be the fraction of server capacity available to service s; (by policy)

when the server is shared and running with all other services, such that

ZiO'i =1, o; (t) 20 and ZiO'(t)l.ﬁi (t)l(l. =l

Given that the server’s maximum potential I" is achieved at @ =1, it follows
that service s; achieves its maximum potential of 7z, (t) = @l'/ 0, (t)x, mps when

running alone on a dedicated server, with @ = o, (r)=1. When running with the
other n-1 services, g, 's capability is
7O =0 O (1)
= iw-1 o) ()7 0+ 2 o) (Om (1)
Let 7z(z) = Max(ﬂ'l. (t),i =1..n) be the potential of the service having the greatest

capability and 2= (z,/7)<1,Vi be the resulting normalized potential of each

service.
Then the normalized capability index for a service is

12 Equivalently, imagine servers replaced periodically with higher performance servers.

13 Typically, measures of ips are specified in terms of performance against “SPECint,”
“SPECfp,” etc. test suites.

120 J. Bayne
%' @0 = 07} (1)

=TI e (DA O+ X 6 Ox 0
Again, for clarity and generality we drop the subscript k.
The normalized productivity index for service s is

) = (01 7, (1) = 1 (D] 5, (D (1)
The normalized latency index for service s is
B 0)=201% @0 =0 OB/ 7 (1) =0 (1)
The normalized performance index for service s is
v () =a (017 (1) = 1 (O] 7 (1)

By definition, these six performance indices are independent of an object’s cy-
berspatial location. They are applicable, intentionally, to any object (agent
process, service) regardless its sociospatial role {parent, child, producer, consum-
er in Fig. 5}. Consequently, the indices provide a scale-free means (along both
horizontal production and vertical command axes) of comparing the performance
of two or more collaborating (or competing) enterprise objects.

7. HASS Value Propositions

We conclude our introduction of cyberspatial considerations with a discussion
of the value of a unit or quantum of service. Value, introduced in [5], is an intrin-
sically sociospatial notion, typically associated with the idea that the viability of
an autonomous system depends on the degree its factories (CO) are profitable—
able to produce products and services predicated on marketable value proposi-
tions. Value propositions are predicates (cost-benefit constraints) governing how
factories convert payloads (orders), the raw material in messages, into results that
are of utility to clients. Value is in the proverbial “eye of the consumer.”

Cleary there are aspects of cost, especially capital assets, which are derived
from a CS’ geospatial and infospatial structure. These are typically platform or
hosting (factory) costs, distinct from the value derived of services running on the
platform and costs typically depreciated over very long periods with respect to
length of service invocations.

6 High-Assurance Service Systems 121

|
|
o
>
-
o

\

h

\ /

\

\ T

Jaunsuon
ST

\
/

i

L8 /A
Producer

|
/
I
I
\ J
-
»
(o]
T
{
(
\J

\ec3
\ /
Subordinat e
// % \\
\j |
Fig. 8. CS; Service Interfaces

Within a given federated ecosystem, a high-assurance system offers one or
more assured services. Recalling our discussion related to Fig. 5, a CS communi-
cates with neighbors in its ecosystem through service access points. Each CS has
at least four, one for each of the four principal operational roles it plays. As
shown in Fig. 8, it may operate as 1) a superior to other subordinate CS, 2) a pro-
ducer (supplier) to other consumer CS, 3) a client (consumer) of other producer
CS or 4) a subordinate to other superior CS. A CS typically plays a given role in
one federation while concurrently performing a different role in another federa-
tion. Notions of assured value are thus partially dependent on the role it is playing
at any given time (i.e., its time-dependent operational context).

Operational roles are defined through a set of services and associated protocols
present at each CS APL

Superior APIL:

a; assetsin....... demand orders and accompanying assets issued by a superior to
its subordinate CO

r, returns out...results returned by a subordinate CO to its superior in response
to demand orders and asset allocations

Subordinate API:
a, assets out.....demand orders and accompanying assets issued by a CO to its
subordinates

r; returns inresults returned by subordinates related to CO demand orders
and asset allocations

Consumer API:

d; demand in.... supply demand orders issued by clients of a CO

122 J. Bayne
S, supply out....supplies issued to clients of CO in response to their demand or-

ders

Producer API:
d, demand out..supply orders issued by a CO to its suppliers

s; supplyin...... supplies issued by producers in response to CO supply orders

Let C;(o,,t) be the expected cost in server CO; for execution of order o, is-
sued at time ¢,
C'(o.,0)=kVv(o)+L, for t <"
t r s r (tslarl _ t)
Where k; is a unitless pricing (k, >1) or discount (0 <k <1) strategy and k,
(in dollar-seconds) is a penalty for clients issuing orders with short lead times
(Allmd — tsmrl —t)'

Let CA'f (o,,t) be the cost in the server for achieving the client’s maximum utili-

ty v(o,) of an order issued at time ¢ .
C:(0,.1)2C:(0,,1)
=C'(0,,t)(1+M: (1))

Where M (t) be the margin (fee) charged by the server for completing an or-
der issued at time ¢ .
v(o,,t)=v(0,)
v(0,)

L 2Oy 00T
T (1) v(o,)

As previously defined, one or more actionable orders are carried within the
payload of a message, with each order acting as a selector of one of possibly many
behaviors enabled by a recepient’s (server’s) state of conditional readiness. The
value of an order is defined in terms of a sender’s (client’s) expected benefits from
a resulting service invocation. The client is therefore responsible for encoding its
assurance requirements (i.e., value proposition) in the TUF parameters
accompanying the order.

In our cybernetic model, CS governance (ref. Fig. 9) is implemented through
two complementary and concurrent services, one (CO;*) dedicated to providing as-
sured governance services to superiors and subordinates along its vertical asset
(command) chain, and one (CO") dedicated to serving consumers and producers
along its horizontal production (supply) chain. The performance of CO;" is cha-

racterized by { &'),y (1), 7' (t) } and COP by { &’), x" @),z (t) }. These CO

are necessarily coupled to achieve balance (homeostasis) among competing de-
mands flowing horizontally and vertically through the CS. Their coupling is both

M} (t)=k, A& 1)+k,

6 High-Assurance Service Systems 123

direct (CO;* to CO), as diagrammed, and indirect through the CS’ supervisory
control structure (E5-E4-E3-E1).

cS
E 5i Executive

E4, co
Navigator

N I / %

‘\x ;/‘ \‘ i :“/ \"‘. @Opﬂﬁitﬂr

Q

&'(8). ¢ (8), 7 (5)

{ J

consumer (d/s_) -a—.. , &
\

superior (a,/r,) -—-._ _r/ ¥ -
= cos b cor
- ry AN Director
subordinate (a_/r) e—T" P S
/T S

LN

COP g SOF "
irector
producer (d, /) - \\
|

a'(t).x (t), ()

Fig. 9. CS; Governance Structure

8. HASS Value Metrics

The effectiveness of CS governance is measured by externally and internally
visible metrics. Externally (ref. Fig. 8), clients can see the level of service they

receive by measuring their partial actuality o 0= uw ;@) . Unless they all get
together and compare their partial actualities, they cannot discern CS;’s total actu-
ality o' (r) = 17 (¢) nor assess its internal capability, potential, latency, productivi-

ty and performance indices unless CS; chooses to publish its performance indices
to its federation affiliates.
We defined v(o,,t) =tuf, (¢) to be the value of an order at time ¢, as defined by

the client’s TUF specifications.
Let v(o,) be the mean value (utility) of an order,

1

tend

[nf, (0)dr

start

v(o,)=

(en(l start)

r r

124 J. Bayne
Le

—

v(0,) be the maximum value of an order,
$(0,) = Max{tuf. (t),{t"" <t <t"™}]
Let V(o,,t) be the actual value achieved by a server in completing an order at

time t.

—

t

[t @z, 7 <p <™

(t=1"")

k, is the weight given to maintaining sufficient latent potential (service capaci-

v(o,,t)=

ty) to execute new orders and k, is the weight given to the server’s success in rea-
lizing the client’s maximum utility. In this model, the cost to the client is based on
the mean valuev(o,), while the marginal incentive in the server is to exceed the
mean value. Achieving less than the mean results in the margin being negative
and, therefore, reduces the cost to the client.
The client’s cost (i.e., the server’s bid price) Cj‘ (o,,t) for execution of order o,
issued at time ¢ is, therefore,
C:(0,,1)=C; (0, ,)1+ M (1))

=(kv(o,)+ tmf’ t)(l +M; (1))

g A0,y oD =Tlo,),

(1) v(o,)

Above the mean, HASS servers gain additional revenue. Below the mean,
clients get a discount. In the case where a server is faced with executing several
orders whose maxima are all clustered around the same deadline, the margin cal-
culation provides a strong bias. HASS server CO;’s goal, simply stated, is to max-
imize the productivity (y; (t)) of its assets and its margin (M (¢)) while minimiz-

start

=(kv(o,)+ k)1+
et —t

ing the cost (C; (o,,t)) of its service.
Fig. 10 summarizes the HASS governance system by showing the supervisory

and regulatory control loops (distributed threads) as they implement a service’s
self-adaptive (autonomic) behavior.

9. Conclusions

Cyberphysical systems (CS) are a class of high assurance service systems (HASS)
responsible for the states and behaviors of physical processes operating under fe-
derated governance schemes. The performance of such systems requires assur-
ances involving interdependent measures of reliability, availability, safety, securi-
ty and timeliness. Such assured operation requires specification of HASS
operating contexts and metrics capable of describing the “value” of services they
provide. This chapter introduces a framework for describing HASS operating

6 High-Assurance Service Systems 125

contexts, referred to a cyberspatial reference model (CRM). Additionally, the
chapter introduced a performance measurement framework (PMF) comprising a
set of time-value metrics.

€=}
E5i Executive
B gé
_E4i s
Navigator

)

cs
Operator
20
<§

ﬁT‘ cos

IL) Director

cor
Director

producer (d /5] 3_7— 2

-_ e @o

Fig. 10. CS; Supervisory Control

References

[11 ACE/TAO, http://www.cs.wustl.edu/~schmidt/TAO.html

[2] J. Albus, “Outline for a Theory of Intelligence,” IEEE Trans System, Man and Cybernetics,
Vol 21, No 3, June 1991

[3] J.S. Anderson and E.D. Jensen, “Distributed Real-Time Specification of Java (DRTSJ)—A
Status Report (Digest),” JTRES 06, October 11-13, 2006 Paris, France

[4] R. Ashby, Introduction to Cybernetics, Chapman Hall, 1957

[5] J.S. Bayne, “A Software Architecture for Control of Value Production in Federated Sys-
tems,” World Multi-Conference on Systemics, Cybernetics & Informatics, Orlando, July
28th, published in the Journal of Systemics, Cybernetics & Informatics, Vol. 1, No. 8, Au-
gust 2003

[6] J.S. Bayne, Creating Rational Organizations—Theory of Enterprise Command and Con-
trol, Café Press, September 2006, 260 pages, www.cafepress.com/mcsi

[71 S. Beer, The Brain of the Firm, Wiley, 1994

[8] S. Beer, Decision and Control, Wiley, 1988

126 J. Bayne

[9] R.C. Conant, “Laws of Information Which Govern Systems,” IEEE Trans of Systems, Man
and Cybernetics, Vol 6, No 4, 1976

[10] T. Erl, Service-Oriented Architecture, Prentice-Hall, 2005

[11] J. Forrester, Collected Papers, Pegasus Communications, 1975 and
http://www.systemdynamics.org/

[12] http://jcp.org/en/jst/detail 7id=50

[13] http://uk.encarta.msn.com/encyclopedia_761577951/Homeostasis.html

[14] http://www.infospherics.org

[15] http://www/oasis-open.org

[16] http://www.pyxisinnovation.com/pyxwiki/ index.php?title=Handbook

[17] http://www.real-time.org

[18] http://www.rtsj.org/

[19] E. Jaques, Requisite Organization, Cason Hall, 1992

[20] E.E. Jensen, “Utility Functions: A General Scalable Technology for Software Execution
Timeliness as a Quality of Service,” Proc. Software Technology Conf., Utah State Univ.,
April 2000

[21] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” CACM
Vol. 21 No. 7, July 1978, pp 558-565

[22] P. Li, “Utility Accrual Real-Time Scheduling: Models and Algorithms,” PhD Thesis, Vir-
ginia Polytechnic & State University, 2004

[23] K. Merchant and W. Van der Stede,, Management Control Systems, Prentice Hall, 2003

[24] D.L. Mills, “Internet Time Synchronization: the Network Time Protocol,” IEEE Transac-
tions on Communications, 39, 10 (October 1991), 1482-1493

[25] Object Management Group (OMG), “Real-Time CORBA Specification,” V1.2,
http://www.omg.org/cgi-bin/doc?formal/05-01-04

[26] RFC1305, NTP Standard, www.ietf.org/rfc/rfc1305.txt

[27] RFC2460, IPv6 Standard, www.ietf.org/rfc/rfc2460.txt

[28] RFC 2801, IOTP Standard, www.ietf.org/rfc/rfc2801.txt

[29] RFC4330, SNTP Standard, www.ietf.org/rfc/rfc4330.txt

[30] J. Spohrer, and D. Riecken, “Special Issue: Services Science,” Comm. ACM, July 2006

[31] L. Whitman and B. Huff, “The Living Enterprise Model,” Automation and Robotics Re-
search Institute, U Texas at Arlington, 2000

[32] N. Wiener, Cybernetics, MIT Press, 1948

[33] M. Wooldridge, Reasoning About Rational Agents, MIT Press, 2000

Chapter 7

A Graph Grammar Approach to Behavior
Verification of Web Services

Chunying Zhao, Kang Zhang

Department of Computer Science

The University of Texas at Dallas

Abstract Recently, service-oriented architecture (SOA) gains great interest in the
software engineering community. SOA allows enterprise applications to be built
on loosely-coupled existing services, which are autonomous and platform inde-
pendent. The ad-hoc property of service-oriented systems challenges the verifica-
tion and validation of an application’s behavior due to the dynamic composition of
Web services. This chapter reviews current verification and validation approaches
to the composition of Web services, and analyzes techniques for conventional be-
havior checking that can be migrated to service-oriented systems. It then presents
a visual language approach to behavior verification for composite Web services
aiming at quality assurance.

1. Introduction

Service-Oriented Architecture (SOA) is a software architecture essentially incor-
porating a group of loosely-coupled services that communicate with each other
through message-exchanging protocols [24]. SOA allows applications to be built
using available services on the distributed network independent of underlying im-
plementation platforms. Each service is a unit of work created by a service pro-
vider to achieve a certain task for a service consumer/client. Enterprise application
developers can take advantage of the available services, and aggregate them for a
new e-business application.

Services are composed dynamically, and work collaboratively. Therefore ana-
lyzing a service-oriented system becomes challenging due to its nature of loose
coupling and dynamic composition. It is even hard to deal with for a high assur-
ance service-oriented system to be deployed in safety-related applications. A high

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_7, © Springer Science+Business Media, LLC 2009

128 C. Zhao and K. Zhang

assurance system requires both functional and nonfunctional correctness before its
deployment.

There are mainly two categories of sources causing erroneous behaviors of a
composite service: errors from individual services, and errors due to the incorrect
composition process. As each application is built based on the independently-
developed services in a bottom up fashion, the reliability of the service is not
guaranteed. In most cases, a service requester chooses a service only based on the
service description in the interface. It is possible that the service does not meet its
specification. Even if services meet their specifications, they may not meet their
service level agreements (SLA). Other sources of erroneous behaviors may come
from the composition procedure. Services aggregated in an e-business application
may not work coordinately, and thus do not meet their specifications due to infor-
mation inconsistency. For instance, security is a challenging issue in a composite
Web service. A security policy for a service may not be enforced after the service
is aggregated into an application. Similarly, even if service compositions meet
their specifications, they may not meet their service level agreements. The compo-
sition logic may violate certain service protocols.

Conventionally, a feasible solution for a non-SOA based system is to check the
behavior of the program and verify if the observed behavior fulfills the expected
specifications. It is the same case in a service-oriented system, although the char-
acteristics of SOA differentiate the verification techniques from those for conven-
tional systems.

To verify an application’s behavior, researchers have successfully developed
many formal modeling and verification techniques in order to eliminate errors as
early in the development cycle as possible. Model checking is one of such tech-
niques, and has been widely used to examine software’s functional and nonfunc-
tional properties at design level. Model checking techniques can be adapted to ver-
ify service-oriented systems [14]. Because the specifications of services are
described in standards, such as BPEL4WS and OWL-S, the description languages
do not support a formal model checking directly. A mapping from the standard
language to a formal model can help to check the correctness of the workflow log-
ic process resulting from service composition. Given a detailed and sound design,
however, it is possible that the actual behavior of the system does not faithfully
fulfill the specification representing system requirements possibly due to the mis-
understanding of design documentations. Therefore, analyzing the actual execu-
tion of an application and verifying the observed behavior against the expected
behavior can complement the shortcoming of model checking. To capture a real
behavior, interaction events, i.e. message exchanges between services, need to be
intercepted and analyzed.

This chapter first briefly introduces the concepts of service-oriented architec-
ture and Web services. It then discusses the current issues related to behavior veri-
fication, and reviews existing verification and analysis techniques for net-centric
service computing. Finally, the chapter presents a graph grammar based approach
for verifying the behavior of service-oriented systems.

7 A Graph Grammar Approach to Behavior Verification of Web Services 129

Essentially, the graph grammar is a rule-based approach which could be used to
verify the functional aspect of a system. It casts the behavior verification problem
to a visual language parsing problem, i.e. parsing the graphical representation of
an actual behavior with user-specified rule-based constraints/properties expressed
as a graph grammar. The approach allows developers to check the acceptable se-
quence of message exchanges between services corresponding to some require-
ments/specifications. A parsing result indicates whether the observed behavior sat-
isfies its requirements or not.

Using visual language approaches, developers can take advantage of the graph-
ical representation of service behaviors, since graphs have been extensively used
for program representations, such as UML diagrams, flowcharts and call graphs,
etc. Moreover, it will be more expressive than text-based approaches by visually
specifying program properties as a graph grammar and parsing the given graph.
Another advantage of the visual languages approach is that graph grammar is
adaptive in specifying the composition of components upon user’s requirement,
which supports the dynamism in services composition.

The graph grammar verification approach is supported by a visual language en-
vironment called VEGGIE [2], an integrated graph-grammar induction and pars-
ing system. The system has a friendly interface that allows users to visually dis-
play service behaviors in graphs, and define specifications by grammar rules. The
parsing function of VEGGIE is built based on a context-sensitive graph grammar
formalism, the Spatial Graph Grammar (SGG) [9]. The polynomial time parser of
SGG ensures an efficient behavior verification process by taking the user-
specified grammar as input, and then automatically parsing the given graph repre-
senting a service behavior.

2. Service-Oriented Architecture and Web Service

Service-oriented architecture eases the development of e-business applications.
It encompasses a collection of loosely-coupled services. The services are available
on the network, and can be aggregated to accomplish a task. The service in a SOA
is self-described and independent of IT infrastructures so that application develop-
ers can easily create their own applications using the services. In a service-
oriented architecture in Fig.1 [24], when a consumer identifies a desirable service,
the service consumer will send a request to the service provider via commonly-
agreed protocols. Then the service provider responses to the consumer, and pro-
vides the service.

ﬂ

Senice Senice

provider . consumer
service request

service response

Fig. 1. SOA [24]

130 C. Zhao and K. Zhang

Web services defined by W3C [25] represents a promising application for the
SOA-based technology. It supports interoperable application-to-application inter-
actions over a network based on a set of XML standards [22][24]. Existing SOA-
applications are mostly based on Web services, in which services are communi-
cated via a distributed network. W3C has developed many standards and protocols
to describe and coordinate services. The core description and specification lan-
guages include WSDL (Web service Description Language) and SOAP [24]. Ad-
ditional extended specifications released by OASIS include WS-Security and WS-
Reliable [26], which are used to secure message exchanges and ensure message
reliability between two services.

3. Verification Techniques for Web Service

3.1 Issues in SOA Verification

The functionalities of SOA are logically separated into three levels [22]: service
foundation, service composition, and service management and monitoring.

The service foundation is a repository of existing services independent of the
underlying infrastructures. The available services across the network are the build-
ing blocks for developing e-business applications. Each service fulfills a separate
task. Application developers can discover and select services they need for the ap-
plication. The requester and the provider exchange messages via the network
through standard protocols. A service transition generally assumes that the pro-
vided service is correct, i.e. the actual characteristics of the services are consistent
with the description in the interface. Sometimes the assumption may mislead the
application developer who only relies on a service description.

Verifying the properties of a service is the prerequisite of verifying the charac-
teristic of a composite service. The characteristics of each service refer to service
properties, either functional or nonfunctional. Functional properties require the
service to fulfill a task as expected, while nonfunctional properties include secu-
rity, real-time and performance issues. At the service foundation level, the service
verification should be conducted by services providers. Service requesters also
need to check the properties of services with respect to their requirements. To ad-
dress this, existing traditional computer-based approaches can be migrated to ver-
ify services.

Verification of a service is the necessary but not the sufficient condition for the
correctness of a SOA-based application. Since a service-oriented system is built
on existing services in a bottom-up fashion, services can be aggregated into one
composite service. Similarly, composite services can be further aggregated and
become another composite service. Issues arise due to the service composition,

7 A Graph Grammar Approach to Behavior Verification of Web Services 131

such as the discovery of desirable services, the compatibility of services, the secu-
rity policy enforcement, and the automation of the above procedures, etc.

Service composition is the core component of the service-oriented architecture.
Automatic discovery of desirable services could aid service composition and veri-
fication. Developers have proposed different approaches to modeling Web ser-
vices to ease service composition [10][11][25], e.g. BPEL and OWL-S. Services
themselves shall be adaptive for different requests so as to participate in the com-
position for more business applications. On the other hand, service discovery algo-
rithms shall have the ability to mine and identify the services they need. In both
areas we have witnessed a flourish of publications and real applications in recent
years.

To coordinate services in an application, many service interaction protocols
have been developed. The coordination and collaboration are called “orchestra-
tion” and “choreography”. The difference between orchestration and choreograph
is that the former, realized via BPEL (Business Process Execution Language for
Web service), describes the message-level interactions within a single private
business process, while the latter, realized via WS-CDL (Web service Choreo-
graph Description Language), involves the public message exchanges and rules
among multiple-process [16]. They both aim at coordinating message-exchanging
among multiple-services/processes. Since each existing service is initially devel-
oped independently, the data type and requirement may be different, i.e. the mes-
sage type of each service may be different, security requirements. Therefore, the
aggregation of multiple services may cause discrepancy.

3.2 Classification of Verification and Validation Techniques

Developers normally use the term “service conformance” [1] to describe property
verification of services in a SOA-based application, i.e. whether the composite
services behave properly in the application as expected. The expectation refers to
the requirements of the application from the client. A service requester generally
chooses a service if the service description (i.e. the specifications about its syntax
and behaviors) meets its request, and may assume that the service will not derivate
from their specifications under operation. It, however, may not always be the case.
The service may not follow its specifications described in the service interface due
to incorrect implementation or inconsistency of composition when the service is
under operation; then the service requester could be misled by a wrong or mal-
functioned service. Such errors may cause unexpected behaviors in the applica-
tion, and are difficult to detect.

Validating the specification of composite services before deployment in real
world applications can help to eliminate early design errors because an implemen-
tation based on an incorrect specification could result in a waste of money and
time. To address the problem in service-oriented systems, many conventional
model checking techniques can be adapted. So far, there have been a lot of work

132 C. Zhao and K. Zhang

using different techniques to verify the composite Web service behavior
[BI[41[51[6]1[71[13][18][19][20]. Currently the research on Web service functional
verification can be roughly classified into two categories:

1. Formal method and model checking of business applications;
2. Conformance checking of service behavior using event logs or test cases.

Apart from the verification techniques for functional properties, we classify the
verification of services’ nonfunctional properties in one category.

3.2.1 Formal Methods and Model Checking

To verify the composite services, researchers have used different formal models,
e.g. finite state machine [7], algebra, calculus [6][18][19], Petri nets [13], and var-
ious mapping techniques. The major issues addressed in this category include:

o A formal model that can describe a service’s syntax and semantics for verifica-
tion;
¢ A mapping between the service description language and the formal model.

Foster et al. [7] proposed a model-based approach to early design verification.
In their work, the specification described via BPEL for composite Web services
was represented using UML in the form of message sequence charts correspond-
ing to the workflow scenarios, and then transformed into a finite state process
(FSP). The comparison between the FSP representations of design and implemen-
tation could be used to detect the difference.

Ferrara [6] developed a design and verification framework for composite Web
services using process algebras. The framework translates the BPEL specification
into LOTOS, a type of process calculus that was originally used for specifying
temporal properties. Basic behaviors and properties, such as data definition and
fault handling, are mapped to the process calculus.

Rouached and Godart [18][19] proposed a formal approach to modeling and
analyzing the behavior of composite services using event calculus, the principle of
which is similar to that of Ferrara [6]. Their work enables developers to detect er-
roneous behaviors and formally verify service properties. The behavior properties
including the invocations of events, effects on state variables, i.e. assignment of
values, and conditions on variable’s state change, are extracted from the BPEL
specifications, and then transformed into event calculus. Then an algebraic speci-
fication is built from the event calculus specification. The mapping from BPEL to
event calculus enables the formal verification of composite Web service.

7 A Graph Grammar Approach to Behavior Verification of Web Services 133

3.2.2 Conformance Checking

The second category of work aims at verifying an observed behavior against its
expected behavior [1][12][19][20]. The behavior verification of Web services is
similar to that of traditional dynamic analysis approaches.

The major issues related to the verification of real behaviors of SOA-based ap-
plications include:

e The instrumentation and trace collection techniques.

e The extraction and ordering of events.

e A formal model that can represent the specification language describing ser-
vices.

e The range of conformance checking, i.e. the interactions related to single (mul-
tiple) service(s) or single (multiple) process (es).

Aalst ef al. [1][19][20] proposed to check the conformance of service real be-
havior with respect to service specifications. In their recent work [1][20], the ex-
pected behaviors are specified as an abstract BPEL process. The BPEL specifica-
tions are then translated into Petri nets so that traditional model checking
techniques using Petri nets can be applied to check service conformance. In this
approach, SOAP messages enabling the interaction between services in a business
application are intercepted and logged. Event messages are extracted from the
SOAP messages. Following the transition of the Petri nets, the events in the log
can be replayed. Comparing the events that had actually occurred with the events
in the Petri nets, missing or extra tokens in the Petri nets provide the clue to the
possible errors existed in the service.

Heckel and Mariani [8] developed an automatic service discovery and testing
methodology to verify services. A discovery service automatically generates con-
formance test cases from the service description. A provided service is not al-
lowed to participate in a composition unless it has successfully passed the test,
which ensures that the service’s implementation is consistent with its description.

3.2.3 Non-functional Checking

Apart from the verification techniques for functional properties, we classify the
verification of services’ nonfunctional properties in one category. Nonfunctional
properties, such as security, real-time, and performance, etc, are also important in
service-oriented systems. To address this, the OASIS [26] has released a series of
communication protocols, such as WS-Security (Web service Security), WS-
Policy, and WS-Reliable, aiming at enforcing security in services interaction and
composition. In addition to the standard protocols, there have been techniques
[3][4][15][21] addressing different security issues [17], e.g. access control. They
enforced security properties in different ways.

Access control is a challenging security issue in composite Web services. Sri-
vatsa et al. [21] developed an access control model and a policy specification lan-

134 C. Zhao and K. Zhang

guage for this model for enforcing access control policies on Web service compo-
sition. The model uses the notion of composite roles/principles to abstract proper-
ties related to access control, i.e. ordering the sequence of services and entities
participating in a transaction of an application. The language is based on pure-past
linear temporal logic (PPLTL). The service container is instrumented with a tem-
porally ordered list of entities and services participating in a service invocation.
The order can enforce the access policy in that transaction after a service is in-
voked.

Ono ef al. [15] developed a method to verify the consistency of security poli-
cies using abstraction. Their work aimed at resolving the inconsistency of a ser-
vice security before and after service composition. Since compositions follow a
bottom-up methodology, the security policy with each service may not be properly
enforced after the service is aggregated into an application. To address this, the
authors translated the service’s security policy into a corresponding security quali-
fier consisting of a security type and a security level. The security qualifier was at-
tached to the service participating in the composition. The set of security qualifiers
in an application form a lattice. The security in the application is verified by using
an information flow analysis technique on the process flow extracted from the
BPEL description.

The development of aspect-oriented programming provides an efficient way to
weave security properties represented as aspects into specifications. Charfi and
Mezini [3][4] employed the crosscutting concerns of aspect-oriented program-
ming, and defined an aspect-oriented extension to BPEL, named AO4BPEL, for
describing service security properties. The successful integration of AOP and
SOA paradigms makes the enforcement of nonfunctional concerns on composite
Web service applicable and efficient.

To summarize, the existing verification and validation approaches have used
different models or logics based on various formalisms to check the correctness of
composite services in the business process. A common disadvantage of current
methods is that they do not interpret the verification process from a visual per-
spective. Understanding the verification process without domain knowledge is not
easy using existing approaches. Visual languages, however, could help to bridge
the gap of complex verification process and human’s comprehension.

4. A Graph Grammar Approach to Web Service Verification

This section presents a graph grammar approach to verifying the behavior of Web
services [23]. The semi-automatic graph grammar based reverse engineering
framework allows developers to specify rule-based constraints or properties as a
context-sensitive graph grammar. The graph grammar is adaptive to dynamically
bounded services by defining grammatical rules upon different composite ser-
vices. Then the service behavior represented as a graph is automatically parsed

7 A Graph Grammar Approach to Behavior Verification of Web Services 135

with the specified grammar. We will describe the behavior representation in graph
grammar and the approach to verification.

In visual languages, designers have the privilege to use graphical elements, e.g.
diagrams, lines and arrows, to represent symbols in the graph grammar definition
and parsing. Graph grammar formalism, with a solid theoretical foundation, can be
used to describe the structural properties of the desirable service composition, and
be used to verify the functional aspect of a system. The behavior verification prob-
lem is translated to a visual language parsing problem, i.e. parsing the graphical
representation of an actual behavior with user-specified rule-based con-
straints/properties expressed as a graph grammar. The approach allows developers
to check the acceptable sequence of message exchanges between services corre-
sponding to some requirements/specifications. A parsing result indicates whether
the observed behavior satisfies its requirements or not.

Using visual language approaches, developers can take advantage of the graph-
ical representation of service behaviors, since graphs have been extensively used
for program representations, such as UML diagrams, flowcharts and call graphs,
etc. Moreover, it will be more expressive than text-based approaches by visually
specifying program properties as a graph grammar and parsing the given graph.
Another advantage of using visual languages is that graph grammar can be speci-
fied to be adaptive in the composition of components upon user’s requirement,
which supports the dynamism in services composition.

4.1 Graph Grammar Specifications

We encode service specifications using a context-sensitive grammar formalism,
the Spatial Graph Grammar (SGG) [9]. The service verification process is sup-
ported by the SGG parsing subsystem of VEGGIE. VEGGIE essentially consists
of two parts: visual editors and a parser. The visual editors include a type editor, a
grammar editor and a graph editor, which allow developers to specify the syntax
and semantics of the behavioral properties using graphical elements. The parsing
subsystem can parse the given graph representing the service interaction and gen-
erate a parse tree for a valid parsing.

In SGG, the graphical elements in the grammar include nodes and edges. A
node is denoted as a rectangle with a name in the center, and has one or more ver-
tices embedded as connecting ports to other nodes. Edges connecting nodes could
be directed or undirected according to the user’s definitions. Edges connect nodes
via vertices to maintain the syntactic connections between the nodes. Fig.2 (b) is a
typical node in SGG, where a node E is represented as a rectangle and has two
embedded vertices D and N. Following this format, developers can draw both ter-
minal and non-terminal symbols. Attributes, e.g. names and types, can be anno-
tated in a node. In general, nodes can represent modules of any granularity in a
program. In this chapter, nodes represent events; and edges are used to connect

136 C. Zhao and K. Zhang

events denoting the method invocations within one service or message communi-
cations between services.

Each grammar consists of a set of graph rewriting rules also called productions.
A production has a left graph and a right graph. The context-sensitivity allows the
left graph of each production to have more than one node. Also, to guarantee the
termination condition, the left graph always has less number of nodes or edges
than that of the right graph. We use productions to represent the message ex-
changes corresponding to a behavior specification. For instance, Fig.3 (b) is a
graph grammar production. Its left graph is a new non-terminal node, and its right
graph represents the call graph in Fig.3 (a). The composition of service into “me-
ta” service could be represented recursively by the LHS and RHS of the produc-
tions. A subgraph representing the composition of several services (i.e. each ser-
vice is a node in the subgraph) could be the RHS of a production, and its LHS
could be a single node representing a composite service recursively.

@ % E EN Vertex

(a) An event (b) A SGG node

Fig. 2. Node representation

=
T

(a)Event invocation (b) A Production

Fig. 3. Production representation

VEGGIE provides a visual interface for the user to define grammars. The graph
grammars are used to specify all the acceptable method invocations or messages
exchange patterns. Prohibited method invocations can also be specified with nega-
tive productions. Each production is associated with the predefined semantics us-
ing action code, i.e. a piece of Java code executed when the right graph of the
production is applied. Applying a production to a given application graph can be
called as an L-application or R-application. A visual language, defined by a graph
grammar, can be derived using L-applications from an initial null graph, usually
represented by a special symbol 4. On the other hand, R-applications are used to
verify the membership of a graph, i.e. grammar parsing. If a given application
graph, typically called a host graph, is eventually transformed into A, the parsing
process is successful and the graph is considered to represent the type of design

7 A Graph Grammar Approach to Behavior Verification of Web Services 137

with the structural properties specified by the graph grammar. A parsing process
when applied to behavior verification can check both the syntax and semantics of
the given service. The integer annotated within a vertex servers as a marker to pre-
serve the context, i.e. the connections with the surrounding elements in the parsed
graph during subgraph replacement.

The verification process via graph grammar parsing is shown in Fig.4. The ob-
served behavior is represented as a call graph to be parsed in the verification sys-
tem. The specifications in the BPEL and properties for the service behavior are
translated into productions and semantic actions to be performed when the produc-
tions are applied.

R .
Event log ! Call '
Collected by |=> Graph |

phs
Monitor : SGG based |y Verification
! Parser || Result

. . 1| Productions !
Specifications | = . !
. .| ¥ & Semantic '
& Properties inf ! Acti .
BPEL ! ctions :
1 1
1

VEGGIE

Fig. 4. Architecture of the verification system

More formally, a host graphisatuple G=<N, V,E, L, s, t, { >:

N is the set of nodes.

V is the set of vertices in V.

E is the set of edges.

L is the set of labels of the nodes, vertices and edges.

s: E—V and t: E—V are two functions that specify the source and target points
of an edge, respectively.

f: EOUVIUN—L is a function assigning labels to nodes, vertices and edges.

The context-sensitive grammar representing service behavioral properties is de-
fined as a tuple G=<T, N, E, P>:

e P is a finite set of productions specifying the behavior properties, e.g. the ac-
ceptable sequence of event invocations satisfying a certain constraint.

e Tis a finite set of terminal nodes in P, representing the events occurring in the
scenario.

e N is a finite set of non-terminal nodes in P.

e F is a finite set of edges in P, connecting the senders and receivers of mes-
sages.

We can perform two types of behavior verification: (1) verifying the acceptable
call/message sequences in a scenario; (2) detecting illegal behaviors or security re-
lated activities. Suppose in a application, service 4 does not have the authority to
exchange message with service C, but can only indirectly exchange message with

138 C. Zhao and K. Zhang

C via service B. Fig.5 describes such a scenario, in which the solid lines depict the
correct scenario while the dotted line illustrates an illegal scenario. Both the cor-
rect and the illegal behaviors can be verified using predefined constraints. Like-
wise, other types of behaviors such as a missing connection in a causal link or a
cycled causal link can also be identified.

Service A Service B Service C

~__-"><‘-

------ >
Fig. 5. An example message-exchange scenario

Fig.5 shows a legal scenario depicted in solid lines and an illegal scenario de-
picted in dotted lines. The legal scenario serves as the acceptable calling se-
quences/message exchanging we intend to verify, and the illegal scenario is the
call sequence/message exchanging not allowed in the service behavior.

. BE-BEHEE
1:D Nl = |ip|le B_ﬂ 64E

P2 SZ‘ :I 3

-

- BO- BOHE

(a) A legal call sequence with corresponding productions

PI’ SllZ:E = E|61’EX ﬂez’E

(b) An illegal call with a negative production

Fig. 6. Example productions

7 A Graph Grammar Approach to Behavior Verification of Web Services 139

Fig.6 (a) shows the corresponding productions (P1, P2 and P3) for the legal be-
havior. Users can use this set of productions as a specification to automatically
parse the given services’ call graph, i.e. the interaction graph. If the parser pro-
duces a valid result, the service is proven to behave as expected. Otherwise, the
service does not satisfy the specification defined by the grammar. Fig.6 (b) shows
an illegal behavior with its production P1°. A valid parsing result for such a nega-
tive production indicates that the service violates certain constraints.

4.2 Interface of VEGGIE

VEGGIE (Version 1.0)
File Help

Types | Grammar | Graph | egative Graph |

f:_‘) Types ~
) Modes

Syskem Attributes

Type MName Yalue
ATTRIBEOOL [Terminal frue

File Calc Help

| Types || Grammarl Graph | Megative Graph |

(b) Graph editor

B VEGGIE [Version 1.0)
File Help

irTypas‘ Grammar | Graph | Megative Granﬁi
Iiﬁ Production Rules LHS

® Pl

@ P3

>
2
o
i
>

a

[<
<

< s s s

Action Code | Spatial Specification |

L ——
(¢) Grammar editor

Fig. 7. The User-Interface of VEGG

140 C. Zhao and K. Zhang

Fig.7 shows the interface of VEGGIE, including the type editor (Fig.7 (a)), the
graph editor (Fig.7 (b)) and the grammar editor (Fig.7 (c)). It illustrates the visual
appearance of productions in Fig.6 (a). The type editor displays the properties of
events that occurred in the service behavior. The grammar editor is used for defin-
ing graph grammar productions corresponding to an expected behavior or other
nonfunctional requirements, e.g. security. The graph editor can import and display
the extracted behavior from execution logs corresponding to the interaction be-
tween services.

4.3 An Example

Fig.8 (a) depicts the process flow of a simplified abstract scenario for an example
order service [1]. Fig.8 (b) lists the corresponding graph grammar representing the
expected behavior of the scenario. The terminal nodes in the productions can be
message/method invocations. The graph grammar specifies the sequence of
events, and forms a hierarchical relationship between the system states. A valid
parsing of the grammar indicates that the observed behavior meets the require-
ments.

P1 1| = | start
.
+ P2 S2 |-~

invoke
“orderCheck”

v

|Whi1e pendingOrderltem > 0 |
gOrderltem < 0
Yy Ny —

|SIHS2|—|S3||| SIHSZHS3’|
_|S4|—|end|

receive “order” |—| invoke “orderCheck”

P3 s3 | = | while pendin{ | invoke “orderResponse”
gOrderltem > 0

P3’ s3| = | while pendin{ | invoke “orderCancel”

invoke invoke P4 S4

“orderResponse’] [‘orderCancel’

P5

N
I

end

(a) An abstract view of an order process (b) Productions

Fig. 8. An order process and its graph grammar

7 A Graph Grammar Approach to Behavior Verification of Web Services 141

5. Conclusions

Service-oriented architecture is characterized by dynamical composition of ser-
vices available over the network. This chapter has reviewed the state-of-art of
verification techniques and discussed related issues in service-oriented systems for
quality assurance. Existing work in the literature on Web service verification gen-
erally adapts the conventionally formal verification and security checking ap-
proaches, and applies them in the context of Web services.

To improve the previous methods on the visual aspects, we have presented a
graph grammar based approach for verifying behavioral properties of Web ser-
vices using a visual language and parsing technique. The acceptable or prohibited
unsafe interactions between services can be represented as a graph grammar,
which is used to automatically parse and verify the observed service behavior. The
graph grammar could be partially generated by VEGGIE’s grammar induction
subsystem, and be further modified by users if needed.

Our future work will focus on combining the developer’s domain knowledge
with the graph grammar syntax so that productions automatically induced by the
induction subsystem of VEGGIE could represent service specifications without
human’s intervention. The graph grammar approach may also be improved to sup-
port the verification of other non-functional properties of high assurance systems.
One possible way to achieve this is to take advantage of semantic actions included
in productions by defining various constraints of events performed in the parsing
procedure to define the constraints of events. Aspect-oriented programming could
also be integrated into the framework to specify nonfunctional properties.

Reference

[11 W.M. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek, “Conformance
Checking of Service Behavior”, ACM Transactions on Internet Technology, Vol. 8, No. 3,
Article 13, 2008, pp. 13:1-13:30.

[2] K. Ates, J.P. Kukluk, L.B. Holder, D.J. Cook, K. Zhang, “Graph Grammar Induction on
Structural Data for Visual Programming”, Proc. 18th IEEE International Conference on
Tools with Artificial Intelligence(ICTAI/06), Washington D.C. USA, 13-15 November
20006, pp. 232-242.

[3] A. Charfi and M. Mezini, “Aspect-Oriented Web Service Composition with AO4BPEL”,
Proc. 2" IEEE Europe Conference on Web Services(ECOWS'04), Erfurt, Germany, 27-30
September 2004, pp. 168-182.

[4] A. Charfi and M. Mezini, “Using Aspects for Security Engineering of Web Services Com-
positions”, Proc. 2005 IEEE International Conference on Web Services (ICWS’05), Or-
lando, Florida, USA, 11-15 July 2005, pp. 59-66.

[5] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F. Morar, “Web Service Navi-
gator: Visualizing the Execution of Web Services”, IBM System Journal, Vol. 44, No. 4,
2005, pp. 821-845.

142
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

C. Zhao and K. Zhang

A. Ferrara, “Web Service: A Process Algebra Approach”, Proc. 2" International Confer-
ence on Service Oriented Computing (ICSOC’04), New York City, NY, USA, 15-18 No-
vember 2004, pp. 242-251.

H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based Verification of Web Service
Composition”, Proc. 18th IEEE International Conference on Automated Software Engi-
neering (ASE’03), Montreal, Canada, 6-10 October 2003, pp. 152-163.

R. Heckel and L. Mariani, “Automatic Conformance Testing of Web Services”, Proc. 8"
International Conference on Fundamental Approaches to Software Engineering
(FASE’05), Edinburgh, Scotland, 2-10 April 2005, pp. 34-48.

J. Kong, K. Zhang, and X. Q. Zeng, “Spatial Graph Grammars for Graphical User Inter-
faces”, ACM Transactions on Computer-Human Interaction, Vol.13, No.2, 2006, pp. 268-
307.

M. Koshkina and F. van Breugel, “Modeling and Verification of Web Service Orchestra-
tion by Means of the Concurrent Workbench”, ACM SIGSOFT Software Engineering
Note, Vol. 29, No. 5, 2004, pp. 1-10.

Z. Liu, A. Ranganathan, and A. Riabov, “Modeling Web Services Using Semantic Graph
Transformation to Aid Automatic Composition”, Proc. 2007 IEEE International Confer-
ence on Web Services (ICWS’07), Salt Lake City, Utah, USA, 9-13 July 2007, pp. 78-85.
K. Mahbub and G. Spanoudakis, “Run-time Monitoring of Requirements for System
Composed of Web-Services: Initial Implementation and Evaluation Experience”, Proc.
2005 IEEE International Conference on Web Services (ICWS’05), Orlando, Florida, USA,
11-15 July 2005, pp. 257-265.

A. Martens, “Analysis and Re-Engineering of Web Services”, Enterprise Information Sys-
tem VI, Springer Press, 2006, pp. 169-176.

S. Nakajima, “Verification of Web Service Flows with Model-Checking Techniques”,
Proc. Ist International Symposium on Cyber World: Theories and Practice, Tokyo, Japan,
6-8 November 2002, pp. 378-385.

K. Ono, Y. Nakamura, and T. Tateishi, “Verifying the Consistency of Security Policies by
Abstracting into Security Types”, Proc. 2007 IEEE International Conference on Web Ser-
vices (ICWS’07), Salt Lake City, Utah, USA, 9-13 July 2007, pp. 497-504.

M.P. Papazoqlou, P. Traverso, S. Dustdar, and F. Leymann, “Service-Oriented Computing:
State of the Art and Research Challenges”, IEEE Computer, Vol. 40, No.11, 2007, pp. 38-
45.

C.K. Patrick, C.K. Fung, “Web Services Security and Privacy”, Proc. of 2007 IEEE Inter-
national Conference on Web Services (ICWS’07), Salt Lake City, Utah, USA, 9-13 July
2007, pp. xxxii-xxxiii.

M. Rouached and C. Godart, “Requirement-Driven Verification of WSBPEL Process”,
Proc. 2007 IEEE International Conference on Web Services (ICWS’07), Salt Lake City,
Utah, USA, 9-13 July 2007, pp. 354-363.

M. Rouached, W. Gaaloul, W.M.P. van der Aalst, S. Bhiri, and C. Godart, “Web Service
Mining and Verification of Properties: An Approach Based on Event Calculus”, Proc.
2006 International Conference on Cooperative Information Systems (CooplS’06), LNCS
4275 Springer, Montpellier, France, October 29 - November 3, 2006, pp. 408-425.

A. Rozinat and W.M. P. van der Aalst, “Conformance Checking of Process based on Mon-
itoring Real Behavior”, Information Systems, Vol. 22, No. 1, 2008, pp. 64-95.

M. Srivatsa, A. Iyengar, T. Mikalsen, I. Rouvellow, and J. Yin, “An Access Control Sys-
tem for Web Service Compositions”, Proc. 2007 IEEE International Conference on Web
Services (ICWS’07), Salt Lake City, Utah, USA, 9-13 July 2007, pp. 1-8.

V. Terziyan and O. Komonenko, “Semantic Web Enabled Web Services: State-Of-Art and
Industrial Challenges”, Proc. I"' IEEE Europe Conference on Web Services (ECOWS’04),
LNCS 2853, Erfurt, Germany, September 23-24, 2003, pp. 183-197.

C. Zhao and K. Zhang, “A Grammar-Based Reverse Engineering Framework for Behavior
Verification”, Accepted in Proc. of 11" IEEE High Assurance Systems Engineering Sym-
posium (HASE 08), Nanjing, China, 3-5 December 2008.

7 A Graph Grammar Approach to Behavior Verification of Web Services 143

[24] http://www.service-architecture.com/web-services/articles/service-
oriented architecture soa_definition.html

[25] http://www.w3.org/Submission/OWL-S/

[26] http://www.oasis-open.org/home/index.php

Chapter 8

A Formal Framework for Developing High
Assurance Event Driven Service-Oriented
Systems

Manuel Peralta®, Supratik Mukhpadhyay', and Ramesh Bharadwaj""

“1Utah State University, Logan, UT 84322-4205, USA
{m.peralta, supratik. mukhopadhyay } @usu.edu
“Naval Research Laboratory, Washington DC 20375-5337, USA

ramesh@itd.nrl.navy.mil

Abstract We present a formal framework for developing distributed service-
oriented systems in an event-driven secure synchronous programming environ-
ment. More precisely, our framework is built on the top of a synchronous pro-
gramming language called SOL (Secure Operations Language) that has (i) capa-
bilities of handling service invocations asynchronously, (ii) strong typing to
ensure enforcement of information flow and security policies, and (iii) the ability
to deal with failures of components. Applications written in our framework can be
verified using formal static checking techniques like theorem proving. The
framework runs on top of the SINS (Secure Infrastructure for Networked Systems)
infrastructure developed by at the Naval Research Laboratory.

1. Introduction

Service-oriented architectures (SOAs) (Newcomer 2002) are becoming more and
more common as platforms for implementing large scale distributed applications.
In an SOA, applications are built by combining services, which are platform inde-
pendent components running on different hosts of a network. SOAs are now being
deployed in mission-critical applications in domains that include space, health-

! Supported in part by the National Science Foundation under grant number CCF-0702600.
Any opinions, findings, conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation or United
States Government

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_8, © Springer Science+Business Media, LLC 2009

146 M. Peralta et al.

care, electronic commerce, and military. Client requests are met by on-demand
discovery of a set of suitable services which, when appropriately composed, will
satisfy the client’s service requirements. Delivery of services to clients is governed
by service level agreements (SLAs) which additionally specify the quality of ser-
vice (QoS) that the service provider needs to guarantee and the appropriate penal-
ties for their violation. QoS constraints that a service provider guarantees may in-
clude security, timeliness, and availability. Such guarantees are difficult to satisfy
when services are spatially distributed over a network which is subject to active
attacks, network congestion, and link delays. Such attacks and failures pose a for-
midable challenge in delivering services that meet the SLAs.

In this chapter, we present a distributed service-oriented asynchronous frame-
work in an event-driven (Luckham 2005) formal synchronous programming (Ben-
veniste, Caspi et al. 2003) environment (a’ la> LUSTRE (Halbwachs 1993), SCR
(Bharadwaj and Heitmeyer 1999), and Esterel (Berry and Gonthier 1992)). More
precisely, we present a model-driven approach (OMG) based on a synchronous
programming language SOL (Secure Operations Language) that has capabilities of
handling service invocations asynchronously, provides strong typing to ensure en-
forcement of information flow and security policies, and has the ability to deal
with failures of components. Our approach allows rapid development and dep-
loyment of formally verified service-oriented systems that provide guarantees that
clients' requirements will be met and SLAs will be respected.

The inspiration behind our approach are the Kahn synchronous process net-
works (Kahn 1974) developed by Kahn in the 1970's. Like the ‘“computing
stations" in (Kahn 1974), workflows in our framework are ~“synchronous" conti-
nuous functions that are triggered by events in the environment. However, unlike
the “computing stations" which are as expressive as Turing machines, workflows,
in our framework, correspond to (finite) state-machines. In the synchronous pro-
gramming paradigm, the programmer is provided with an abstraction that respects
the synchrony hypothesis, i.e., one may assume that an external event is processed
completely by the system before the arrival of the next event. One might wonder
how a synchronous programming paradigm can be effective for dealing with
widely distributed systems where there is inherent asynchrony. The answer may
seem surprising to some, but perfectly reasonable to others: We have shown else-
where (Bharadwaj and S.Mukhopadhyay 2008) that under certain sufficient condi-
tions (which are preserved in our case) the synchronous semantics of a SOL appli-
cation are preserved when it is deployed on an asynchronous, distributed
infrastructure. The individual modules follow a “publish-subscribe” pattern of in-
teraction while asynchronous service invocations are provided using continuation-
passing (Appel 1992). The design of SOL was heavily influenced by the design of
SAL (the SCR Abstract Language), a specification language based on the SCR
Formal Model (Heitmeyer, Jeffords et al. 1996). Applications written in our
framework can be verified using formal static checking techniques like theorem
proving. We provide a static type system to ensure respectively (1) static type
soundness, and (2) to prevent runtime errors in the presence of third party (possi-

8 Developing High Assurance Event Driven Service-Oriented Systems 147

bly COTS) component services that may undergo reconfigurations at runtime due
to network faults or malicious attacks. The framework runs on the top of the SINS
(Secure Infrastructure for Networked Systems) (Bharadwaj 2002) infrastructure
developed at the Naval Research Laboratory. SINS is built on the top of the
Spread toolkit (Amir and Stanton 1998) which provides a high performance vir-
tual synchrony messaging service that is resilient to network faults. A typical
SINS system comprises SINS Virtual Machines (SVMs), running on multiple dis-
parate hosts, each of which is responsible for managing a set of modules on that
host. SVMs on a host communicate with SVMs on other hosts using the secure
group communication infrastructure of Spread. SINS provides the required degree
of trust for the modules, in addition to ensuring compliance of modules with a set
of requirements, including security policies.

The rest of the chapter is organized as follows. Section 2 presents related work.
Section 3 provides a brief description of the SOL language along with several il-
luminating examples. Section 4 provides a brief description of the SINS platform.
A static type system enforcing secure information flow in SOL programs is pre-
sented in Section 5. Section 6 describes our experiences in developing high-
assurance service-oriented systems using our framework. Section 7 provides some
concluding remarks.

2. Related Work

Service-based systems (some times identified with web services even though the
scope of service-based systems is much broader) have traditionally adopted docu-
ment-oriented SOAP-based (Newcomer 2002) messaging for communicating
XML data across a network. SOAP, by default, is bound to the HTTP (Birman
2005) transport layer. SOAP over HTTP provides a basic one-way synchronous
communication framework on the top of which other protocols like re-
quest/response type RPC (Birman 2005) can be implemented. The protocol
adopted by a particular application needs to be supported by the underlying run-
time infrastructure. SOAP does not support interaction patterns like re-
quest/callback, publish/subscribe or asynchronous store and forward messaging.
The definition of SOAP can be extended to provide such interaction patterns; such
extensions require providing new semantics to an existing system.

In contrast, our framework is based on the synchronous programming language
SOL. In SOL, the message passing between modules (henceforth we will use the
term agent for module instances) is based on a (push) publish-subscribe. A module
listens to those “controlled variables” of another module that it “subscribes to” by
including them as its “monitored variables”. A module receives the values of its
monitored variables as input and computes a function whose output can change
the values of its controlled variables. Service invocations (both synchronous and
asynchronous) needed to compute the function are dealt uniformly using continua-

148 M. Peralta et al.

tion passing. SOL agents run on the SINS platform which is built on the top of the
Spread toolkit that provides guaranteed message delivery and resilience to net-
work faults. Dynamic reconfiguration the system in response to failures can be ob-
tained using a “hierarchical plumbing” as in (Yau, Mukhopadhyay et al. 2005).
The event-driven publish-subscribe-based interaction between the individual
modules make SOL ideal for programming service-based systems that are dep-
loyed in networks involving sensors and other physical devices having complex
dynamical behavior.

In (Talpin, Guernic et al. 2003), the authors use a synchronous framework for
globally asynchronous designs. However, their framework is more suited to a
hardware design environment rather than a large scale distributed computing one.
The nesC (Gay, Levis et al. 2003) programming language at U.C. Berkeley has
been designed for programming networked embedded systems. It supports asyn-
chronous calls to components using events to signify the completion of a call. In
the polyphonic C# (N. Benton 2005) programming language, asynchronous me-
thod calls are supported using queues. A set of methods at the server end defines a
“chord”. A method call is delayed until all methods in the corresponding chord are
invoked. The asynchronous service invocation framework in our approach is re-
miniscent of the “programming with futures” paradigm adopted in languages like
E (http://www.erights.org), even though E adheres to the capability-based compu-
ting paradigm rather than synchronous programming.

The communicating concurrent processes, the dominant paradigm for distri-
buted application development, have remained unchallenged for almost 40 years.
Not only is this model difficult to use for the average developer, but in addition it
fails as a paradigm for designing applications that must satisfy critical require-
ments such as real-time guarantees (Lee 2005). Therefore, applications developed
using conventional programming models are vulnerable to deadlocks, livelocks,
starvation, and synchronization errors. Moreover, such applications are vulnerable
to catastrophic failures in the event of hardware or network malfunctions. Here we
present an alternative approach. We embed an asynchronous framework in an
event-driven synchronous programming environment (like LUSTRE (Halbwachs
1993), SIGNAL, SCR (Bharadwaj and Heitmeyer 1999), and Esterel (Berry and
Gonthier 1992)). As opposed to other synchronous programming languages like
ESTEREL, LUSTRE and SIGNAL, SOL is a synchronous programming language
for distributed applications. Compared to Rapide and other event triggered archi-
tectures (Luckham 2005), (Chandy 2004), our framework is service-oriented. We
guarantee that the distributed asynchronous implementation faithfully refines the
synchronous specification. Also we can deal with asynchronous service invoca-
tions using a continuation passing approach. The SOL language integrated with
formal verification tools ensures the development of applications free from errors
like deadlock, starvation, etc.

We presented a preliminary version of our work at COMPSAC 2008 (Bharad-
waj 2008). The current chapter extends (Bharadwaj 2008) by providing continua-
tion-passing-based semantics of asynchronous service invocation, program trans-

8 Developing High Assurance Event Driven Service-Oriented Systems 149

formations for handling failures, and a static type system for the SOL language for
enforcing secure flow of information.

3. SOL: The Secure Operations Language

A module is the unit of specification in SOL and comprises of type definitions,
flow control rules, unit declarations, unit conversion rules, variable declarations,
service declarations, assumptions and guarantees, and definitions. A module in
SOL may include one or more attributes. The attribute deterministic dec-
lares the module as being free of nondeterminism (which is checked by the SOL
compiler). Attribute reactive declares that the module will not cause a state
change or invoke a method unless its (visible) environment initiates an event by
changing state or invoking a method (service); moreover, the module’s response to
an environmental event will be immediate; i.e., in the next immediate step. The
attribute continuation declares that the module will serve as a continuation
for some (external) service invocation. Each (asynchronous) external service invo-
cation is managed by a continuation module that receives the response for the in-
vocation and informs the module invoking the service about it. An agent is a
module instance. In the sequel, we will use the terms module and agent interchan-
geably.

The definition of a SOL module comprises a sequence of sections, all of them
optional, each beginning with one or more keywords. Built in data types as well as
user-defined types as well as enumerated types can be defined in the type defini-
tions section.

Besides, this section allows the user to declare “secrecy” types (e.g., secret,
classified, unclassified etc.) in order to enforce information flow policies and pre-
vent unwanted downgrading of sensitive information from “secret” variables to
“public” variables. The flow control rules section provides rules that govern the
downgrading/flow of information between variables of different “secrecy” types
(e.g., the rule unclassified => classified, signifies that a variable of type unclassi-
fied can be assigned to a variable of type classified, i.e., information flow from an
unclassified to a classified variable is allowed). The flow control rules can be used
to compute the secrecy types of expressions from those of its constituent variables.
If not specified in the flow control section, information flow between va-
riables/expressions with different secrecy types is allowed only in the presence of
explicit coercion provided by the programmer. These policies are enforced stati-
cally by a type system. The unit declaration section declares units for the physical
quantities that the module monitors and manipulates (e.g., Ib, kg, centigrade etc.).
This section provides conversion (coercion) rules between the different units (e.g.,
kg=2.2 1b). Units of expressions can be computed from the units of their constitu-
ent subexpressions. The variable declaration section for reactive/deterministic
modules is subdivided into five subsections (see Section 5 for details of how these

150 M. Peralta et al.

types and units are managed). The continuation variable declaration subsection de-
fines continuation variables that will be used for service invocations. There will be
one continuation variable for each service invocation in a module. The type “con-
tinuation” before a variable designates it as a continuation variable (e.g., continua-
tion cont;). Corresponding to each node in a distributed system, there will be a
continuation module handling the service invocation associated with all agents on
that node; they transfer the results of service invocations to invoking agents
through continuation variables. The other four subsections declare the “moni-
tored” variables in the environment that an agent monitors, the “controlled” va-
riables in the environment that the agent controls, “service” variables that only ex-
ternal service invocations can update, and “internal” variables introduced to make
the description of the agent concise. The monitored variables section can include
failure variables that are boolean variables indicating the failure of other modules
(e.g., the declaration failure boolean I; declares a boolean variable I
that will become true if a module named I in the environment fails; see Section
3.4 for details). A variable declaration can specify the unit (declared in the unit
declaration section) of the physical quantity that it is supposed to assume values
for (e.g., int weight unit 1b;). Assignment of a variable/expression with a unit U to
a variable with unit V is allowed only if it is specified in the unit conversion rules
section. In that case, the value of the variable/expression is converted to the unit V
using the corresponding conversion rule before being assigned to a variable with
unit V . The declaration of a monitored variable can be optionally accompanied by
failure handling information that may specify it being substituted in all computa-
tions by another monitored variable in case the module publishing it fails (e.g., the
declaration integer x on I vy specifies that the monitored variable y
should replace the variable x if the failure variable I corresponding to the mod-
ule named I in the environment is true). The service declarations section declares
the methods that are invoked within a module along with the services providing
them. It also describes for each method the preconditions that are to be met before
invoking the method as well as the post conditions that the return value(s) from
the method is/are supposed to respect. The preconditions and postconditions con-
sist of conjunctions of arithmetic constraints as well as type expressions. A type
expression is a set of atomic type judgments of the form x :: T where x is a varia-
ble and T is a type. These conditions are enforced dynamically under a runtime
environment.

The assumptions section includes assumptions upon which correct opera-
tion of the agent depends. Execution aborts when any of these assumptions are vi-
olated by the environment resulting in the failure variable corresponding to that
agent to be set to true. The required safety properties of the agent are specified in
the guarantees section. Variable definitions, provided as functions or more
generally relations in the definitions section, specify values of internal and
controlled variables. A SOL module specifies the required relation between moni-
tored variables, variables in the environment that the agent monitors, and con-
trolled variables, variables in the environment that the agent controls. Additional
internal variables are often introduced to make the description of the agent con-

8 Developing High Assurance Event Driven Service-Oriented Systems 151

cise. In this chapter, we often distinguish between monitored variables, i.e., va-
riables whose values are specified by the environment, and dependent variables,
i.e., variables whose values are computed by a SOL module using the values of
the monitored variables as well as those returned by the external service invoca-
tions. Dependent variables of a SOL module include the controlled variables, ser-
vice variables, and internal variables.

3.1 Events

SOL borrows from SCR the notion of events (Heitmeyer, Jeffords et al. 1996). In-
formally, an SCR event denotes a change of state, i.e., an event is said to occur
when a state variable changes value. SCR systems are event-driven and the SCR
model includes a special notation for denoting them. The following are the nota-
tions for events that can trigger reactive/deterministic modules. The notation
@T (c) denotes the event “condition ¢ became true”, @F (c¢) denotes “condition
¢ became false”, @Comp (cont) denotes that “the result of the service invoca-
tion associated with the continuation variable cont is available”, and @C (x)
the event “the value of expression x has changed”. These constructs are ex-
plained below. In the sequel, PREV (x) denotes the value of expression x in the
previous state.

@Ti{cl ¥~ PRE}
@F(c) & PREV (c) A~ ¢
@C{cy & PREVIicY =

Events may be triggered predicated upon a condition by including a “when”
clause. Informally, the expression following the keyword when is “aged” (i.e.,
evaluated in the previous state) and the event occurs only when this expression has
valuated to true. Formally, a conditioned event, defined as

ke
BE
by
o

@T(c) whend & ~PREVID Ae

denotes the event “condition c became true when condition d was true in the
previous state”. Conditioned events involving the @F and @C constructs are de-
fined along similar lines. The event @Comp (cont) is triggered by the environ-
ment in which the agent is running and is received as an event by the agent when-
ever the result of a service invocation is received by the continuation module
associated with the module. We will define the event @Comp in terms of asso-
ciated continuation modules in Section 3.5.

152 M. Peralta et al.

Each controlled and internal variable of a module has one and only one defini-
tion which determines when and how the variable gets updated. All definitions of
a module m implicitly specify a dependency relation. Note that variable a may de-
pend on the previous values of other variables (including itself) which has no ef-
fect on the dependency relation. A dependency graph may be inferred from the
dependency relation in a standard way. It is required that the dependency graph of
each module is acyclic.

Intuitively, the execution of a SOL program proceeds as a sequence of steps,
each initiated by an event (known as the triggering event). Each step of a SOL
module comprises a set of variable updates and service invocations that are consis-
tent with the dependency relation Dm of that module. Computation of each step of
a module proceeds as follows: the module or its environment nondeterministically
initiates a triggering event; each module in the system responds to this event by
updating all its dependent (i.e., internal, service, and controlled) variables. In the
programmer’s view all updates and service invocations of the system are assumed
to be synchronous (similar to the Synchrony Hypothesis of languages such as Es-
terel, LUSTRE, etc.) — it is assumed that the response to a triggering event is com-
pleted in one step, i.e., all updates to dependent variables and all method calls are
performed by the modules of the system before the next triggering event. Moreo-
ver, all updates are performed in an order that is consistent with the partial order
imposed by the dependency graph.

3.2 An Automated Therapeutic Drug Monitoring System in SOL

In this subsection, we present a (part of a) skeleton in SOL of a distributed auto-
mated therapeutic drug monitoring system in a hospital. We will use this as a run-
ning example later in this chapter. A scenario of the operation of the system is de-
picted in Figure 1. A sensor (can be a nurse sitting at a terminal) at a patient’s bed
in the hospital monitors the patient’s vital data (e.g., saturation, heartbeat, blood
pressure etc.). As soon as the vital data indicate that the patient’s condition is criti-
cal, the sensor reports the vital data to the central hospital server along with a re-
port on the patient’s condition (critical). The central hospital server contacts the
patient’s doctor (e.g., by sending a message to her palm pilot) with the patient’s
vital data and the report (critical) from the sensor. The doctor can look up a drug
appropriate for the patient’s condition and invoke a service provided by the phar-
maceutical company (producing the drug),with the vital data of the patient, that
computes the correct dosage corresponding to the patient’s current state. Further,
if the patient’s saturation is below a certain threshold, the doctor can order her to
be put on oxygen. The doctor communicates her response (dosage, oxygen) to the
central hospital server which in turn communicates it to the nurse (patient sensor
and actuator) that attends the patient by administering the required dosage of the
drug or by putting her on oxygen. The patient sensor (or the nurse) reports to the

8 Developing High Assurance Event Driven Service-Oriented Systems 153

hospital service whenever the state of the patient changes (e.g., turns from critical
to noncritical) which in turn reports to the doctor for appropriate action. Due to
space limitations, we show here only the SOL module running on the doctor’s
palm pilot in Figure 2. The complete therapeutic drug monitoring system consists
of SOL modules for the “doctor”, the “hospital server”, and the “nurse/patient sen-
sor and actuator”. The modules translate directly into Java and run unmodified on
the SINS middleware.

Pafient Sensor Hospital Server Doctor Controller Pharmaceutical
|1 | 1 Serice |
Crifical Critical ical
- -
Oxypen
Oxygen | Dosage: L
/_._——-—/—._4—._ ‘—_______/—-—_—._
b Dosage
. -
Dosage
| Dosage
Crifical § Niot Critical Critical / Not Critical
Critical § Mot Cnilical
Increase f Decrease Mﬂ%——'
Increase f Decrease .
.nc///’l T Cheange § I:J::)mmmm i
o Chisamege § No Dosage Dosage T
T Mo Dosage T T

Fig. 1. Automated therapeutic drug monitoring scenario

The doctor module is implemented as a deterministic reactive module. We
identify four monitored variables — heartrate, pressure (unit lb/sqinch),
saturation and patient condition -corresponding to the vital data
heart rate, blood pressure and saturation of the patient as well as the condition of
the patient (critical or noncritical) that the module obtains from the hospital server.
We also identify a service variable ¢ dosage (unit mg) that is defined by in-
voking the pharmaceutical service, a continuation variable cont that is passed as
a continuation while invoking the service, and two controlled variables output
dosage (unit cc) and oxygen that correspond respectively to the dosage and
the decision whether to put the patient on oxygen sent back to the hospital server.
The hospital server listens to these two controlled variables (among others).We al-
so identify a service pharmserv:compute dosage that provides the com-
pute dosage method exported by the pharmaceutical company named (and
addressed) pharmserv. It is invoked with the vital data of the patient as argu-
ments and with the variable cont being passed as a continuation. The service in-
vocation is used to obtain the required dosage of the patient and defines the ser-
vice variable ¢ dosage. The preconditions for invoking the service provided in

154 M. Peralta et al.

the services section specify that the types of all the three formal parameters x,
y and z should be Integer while the postcondition always holds true. The return
value from the service invocation should be of type dosage. The unit conversion
rules section defines a cc to be equal to 0.887 times an mg so that the value of
the variable ¢ dosage is to be multiplied by 0.887 (by the runtime environ-

ment) before being assigned to the controlled variable output dosage.

The module doctor responds to a triggering event4 by updating its dependent

variables in compliance with the dependency (partial) order.
deterministic reactive module doctor {
type definitions
dosage = Integer;
condition={critical,not_critical};
units
1b_per_sqginch, mg, cc;

unit conversion rules
cc=0.887 mg;

services
dosage pharmserv:compute_dosage(x,y,z),
pre= x::Integer, y::Integer, z:: Integer
-- post=true;

continuation variables
continuation cont;

monitored variables
Integer heartrate;
Integer pressure unit 1lb_per_ sqginch;
Integer saturation;
condition patient_cond;
service variables
dosage c_dosage unit mg;

controlled variables
dosage output_dosage unit cc;
Boolean oxygen;
Definitions
// definitions of controlled and service variables
c_dosage = initially null then
if{

[] @eC(patient_cond) && @C(heartrate)
&& @C(pressure)

-> pharmserv:
com-

pute_dosage (heartrate,pressure, saturation

“cont;
}// service invocation
output_dosage= initially null then
if{
[] @Comp(cont)-> c_dosage;
} //update of controlled variable
oxygen= initially false then
if{
[] @T(saturation<65) -> true;
[1 @r(saturation>90) -> false;

}
Fig. 2. Doctor Module in SOL

8 Developing High Assurance Event Driven Service-Oriented Systems 155

3.3 SOL Definitions

The definitions section is at the heart of a SOL module. This section deter-
mines how each internal, service, and controlled variable of the module is updated
in response to events (i.e., state changes) generated either internally or by the
module’s environment. A variable definition is of the formx = initially
init then expr (where expr is an expression), and requires the initial
value of x to equal expression init; the value of x in each subsequent state is
determined in terms of the values of variables in that state as well as the previous
state (specified using operator PREV or by a when clause). A conditional ex-
pression, consisting of a sequence of branches “[] guard— expression”, is intro-
duced by the keyword “if” and enclosed in braces (" {"and "}"). A guard is a
boolean expression. The informal semantics of the conditional expression if

Fllgt = exwril]g: = exwri. is defined along the lines of Dijkstra’s
guarded commands (Dijkstra 1976) — in a given state, its value is equivalent to
expression expri whose associated guard gi is true. If more than one guard is true,
the expression is nondeterministic. It is an error if none of the guards evaluates to
true, and execution aborts setting the failure variable corresponding to that
module to true. The conditional expression may optionally have an otherwise
clause with the obvious meaning.

3.4 Failure Handling

Benign failures in the environment are handled by program transformations incor-
porated in the SOL compiler that automatically transform a SOL module based on
the failure handling information provided in the monitored variable declaration
section. Given the declaration failure Boolean I in the monitored variable
section of a failure variable signifying the (benign) failure of a module I in the
environment and the declaration Integer x on I y of a monitored variable
x (y is also a monitored variable), the SOL compiler transforms each definition
z=initially null then expr, where z is a dependent variable and
expr is an expression in which x occurs, to

z= initially null then
1f{
[1 T -> exprly/x];
}

where expr [y/x] is the expression obtained by replacing each occurrence of
the variable x by the variable y.

156 M. Peralta et al.

3.5 Service Invocation

We consider two modalities in the SOL language: service invocation expressions
and ordinary expressions. A service variable is defined by a definition in terms of
a service invocation expression. A service invocation expression is of the form
A:B(varlist) “cont where the identifier A is the name/URL of the service,
B is the name of the method invoked, varlist is the list of variables passed as
formal arguments to the method, and cont is the passed continuation variable. In
this case, the service variable depends on the variables in varlist. For each ser-
vice invocation in a module, a distinct continuation variable is used. Internally,
each service invocation is handled by a continuation module that uses the continu-
ation variable to transfer the value to the invoking module. Corresponding to each
node in a distributed system is a continuation module that handles the service in-
vocations for all modules running on that node. A continuation module has the
same structure as the reactive/deterministic ones except that it can have an addi-
tional subsection in the variable declaration section: channel variables. Channel
variables receive completion signals from external services. In addition, it can
have another section called triggers that lists actions in the environment that the
module can trigger. Actions in the trigger section can be defined in the same way
as variables. The variable Chan below is a channel variable that receives a com-
pletion signal from an external service. A continuation module for a node in a dis-
tributed system is generated automatically by the SOL compiler from the SOL de-
finitions of the modules running on the node and is kept away from the view of the
programmer. For example, the continuation module handling the service invoca-
tion in Figure 2, is given below (for simplicity of understanding we only show a
part of the continuation module).

continuation module Handler{
channel variables
String Chan;

triggers
Boolean @Comp (cont) ;

definitions
@Comp (cont) =
if{
[1@C (Chan) -> true;
}

When the agent doctor defining the service variable ¢ dosage is executed,
the agent environment invokes the service by sending it a message. The prepara-
tion of this message involves marshaling the arguments as well as the continua-
tion, which includes information about the channel Chan on which the comple-
tion of the service invocation is to be signaled. Once the service signals the
completion on Chan, the guard @C (Chan) in the continuation module handling
the service invocation becomes true. The variable @Comp (cont) in the envi-

8 Developing High Assurance Event Driven Service-Oriented Systems 157

ronment gets set to true. In module doctor, this in turn sets the value of the ser-
vice variable ¢ dosage to the value received as the response from the service.
The triggering of the event @Comp (cont) in the doctor module results in
the controlled variable output dosage being assigned the value of ¢ do-
sage which at that point is the value returned as a response to the service invo-
cation. Note that the invocation of the service can be asynchronous, i.e., the re-
sponse from the service may not arrive instantaneously. The @Comp (cont)
variable above is a monad (Wadler 1994) that represents incomplete service ex-
ecution. Computations that do not depend on the response received from the ser-
vice invocation (i.e., definitions of dependent variables that do not depend on the
service variable receiving the response from the service invocation) are not
blocked waiting for the response from the service. For example, in Figure 2, the
decision whether to put the patient on oxygen can be made without waiting for the
pharmaceutical service to return the required dosage. Hence the definition of the
variable oxygen can be executed while waiting for the response from the phar-
maceutical service, if one of the events @T(saturation<65)or
@T (saturation>90) is triggered. Computations dependent on the result of
the service invocation must be guarded by the monad @Comp (cont), where
cont is the variable passed as continuation in the service invocation, so that they
wait until the result of the service invocation is available (signaled by the trigger-
ing of the @Comp (cont) event).

3.6 Assumptions and Guarantees

The assumptions of a module, which are typically assumptions about the environ-
ment of the subsystem being defined, are included in the assumptions section.
It is up to the user to make sure that the set of assumptions is not inconsistent. Us-
ers specify the module invariants in the guarantees section, which are auto-
matically verified by a theorem prover such as Salsa (Bharadwaj and Sims 2000).

4. SINS

SOL agents execute on a distributed run-time infrastructure called SINS. A typical
SINS implementation comprises one or more SINS Virtual Machines (SVMs),
each of which is responsible for a set of agents on a given host. SVMs on dispa-
rate hosts communicate peer-to-peer using the Agent Control Protocol (ACP)
(Tressler 2002) for exchanging agent and control information. An ancillary proto-
col, termed the Module Transfer Protocol (MTP) manages all aspects of code dis-
tribution including digital signatures, authentication, and code integrity. Agents
are allowed access to local resources of each host in compliance with locally en-
forced security policies. An inductive theorem prover is used to statically verify

158 M. Peralta et al.

compliance of an agent with certain local security policies. Other safety properties
and security requirements are enforced by observer agents (termed “security
agents”) that monitor the execution of application-specific agents and take re-
medial action when a violation is detected.

5. A Static Type System for Enforcing Information Flow Policies
in SOL

In this section, we present a static type system that enforces the information flow
policies ensuring safe downgrading of information.

Let S denote a typing environment, X range over the variables of a module,
expr over the set of expressions in the module, t over the set of types defined in
the type definitions section of the module, and u over the set of units defined in
the unit declaration section of the module. A typing environment S is defined as

S:=@1 SuU { x> tunitu}

where x — t unit u denotes that x is of type t and unit u. Here the unit qualifier is
optional. Let us define S(x) =tif x > tunitue S,orx > te S and Syu(X) = u
if x — t unit u € S. We will write S |- d if the definition d is well-typed under the
typing environment S. We will write expr :: t to denote that the expression expr
has type t and expr#u to denote that expression expr has unit u. The significant
typing rules for the static type system for SOL are given in Figure 3. The judg-
ments [type] and [unit] are obvious. The judgment [expr] infers the secrecy type
of an expression from those of its subexpressions (op is a binary operator/relation
symbol). If under the typing environment S, the secrecy types of the expressions
expr; and expr;, are t and t’ respectively, and t = t’ is a flow conversion rule (i.e.,
belongs to FlowRules), then the secrecy type of the expression expr; op expr; is
t’. Informally, the rule states that, if binary operation/relation is applied on ex-
pressions, one of which is classified and the other unclassified, then the secrecy
type of the result is still classified. In the judgment [if], if(expr, expri, expr2) de-
notes the if expression if []Jexpr -> expri otherwise -> expr2. The
judgment [expru] states that if under the typing environment S, the expressions
expri1 and expr2 have units u and v respectively, then a binary operation can be
applied on the expressions if there exists a conversion rule from the unit u to the
unit v (or vice versa) declared in the unit conversion rules section of the module
(here e(v) is an expression containing v). In case u is defined in terms of v, the
unit of the resultant expression will be v. The judgments [odeft] and [odefu] pro-
vide the type and unit checking rules for definition. We explain [odeft]; [odefu] is
similar. Intuitively the rule [odeft] states that the value of an unclassified expres-
sion can be assigned to a variable declared as classified. More formally, under the
typing environment S, the value of an expression of type t’” can be assigned to a

8 Developing High Assurance Event Driven Service-Oriented Systems 159

variable of type t only if it is permitted by a rule in the flow conversion section.
Finally, the judgments [onecast] states that an assignment of an expression of type
t”” to a variable of type t is allowed if explicitly coerced by the programmer. A
module m typechecks if every definition in the module type checks relative to the
declarations, flow rules, and unit conversion rules. A module m is secure if it
typechecks.

[typel] if Sx)=t
S l-x::t
[unit] if Sunie(x) =t
S |- x#t
[expr] S |- expr;::t S |- expry::

t = t’ € FlowRules

S |- expr; op expr; :: t’

[expru] S |- expr;#u S |- expr,i#tv
u=e(v) € UnitRules

S |- expr; op expr; #v

[if] S |- expry::t S |- expr;::t’
t = t’ € FlowRules

S I- if (expr, exprj, expr;)::t’

[odeft] S - x::t S |- expry::t’
t = t’ € FlowRules

S |- defn (x, expr)

[odefu] S |- x#u S |- expr#tv
u=e(v) € UnitRules

S |- defn(x, expr)

[onecast] Sl-x::t

S |- defn (x, (t) expr)
Fig. 3. A Static Type System for SOL
6. Experiences

Our approach has been used for developing significantly large mission-critical
service-oriented applications. These include a torpedo tube control protocol

160 M. Peralta et al.

(TTCP) at the Naval Research Laboratory, an automated therapeutic monitoring
system (a simplified version of which was presented above, a sensor network-
based distributed system for soil and water management, and a distributed control
system for intelligent management of an electric power grid. Graduate students as
well as professional programmers were involved in these projects. The applica-
tions written in SOL were first verified using theorem provers for functional cor-
rectness before submitting to the SOL compiler for type checking and compila-
tion.

One of the facts that we observed was the reluctance of professional program-
mers in using SOL due to its unusual syntax (compared to C++, Java). In order to
gain industrial acceptance, we are currently trying to embed SOL as a domain-
specific extension of Java. The resulting embedding (called SOLJ) (Bharadwaj
2007) has a Java-like syntax, with extensions that can again be compiled to Java.

7. Concluding Remarks

SOL is based on ideas introduced in the Software Cost Reduction (SCR) (Heit-
meyer, Jeffords et al. 1996) project of the Naval Research Laboratory which dates
back to the late seventies. The design of SOL was directly influenced by the
sound software engineering principles in the design of SAL (the SCR Abstract
Language), a specification language based on the SCR Formal Model (Heninger,
Parnas et al. 1978).

The goal of SINS is to provide an infrastructure for deploying and protecting
time- and mission-critical applications on a distributed computing platform, espe-
cially in a hostile computing environment, such as the Internet. The criterion on
which this technology should be judged is that critical information is conveyed to
principals in a manner that is secure, safe, timely, and reliable.

References

[1] Amir, Y. and J. Stanton (1998). The Spread Wide Area Group Communication System. Bal-
timore, MD, The Johns Hopkins University.

[2] Appel, A. W. (1992). Compiling with Continuations, Cambridge University Press.

[3] Benveniste, A., P. Caspi, et al. (2003). "The synchronous languages 12 years later." Proceed-
ings of the IEEE 91(1): 64-83.

[4] Berry, G. and G. Gonthier (1992). "The Esterel synchronous programming language: Design,
semantics, implementation." Sci. of Computer Prog. 19.

[5] Bharadwaj, R. (2002). "Verifiable Middleware for Secure Agent Interoperability." Procl
Second Goddard IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS
1D.

[6] Bharadwaj, R. and C. Heitmeyer (1999). "Model Checking Complete Requirements Specifi-
cations using abstraction.” Automated Softw. Engg. 6(1).

8 Developing High Assurance Event Driven Service-Oriented Systems 161

[7] Bharadwaj, R., S. Mukhopadhyay (2007). SOLj: A Domain-Specific Language (DSL) for
Secure Service-based Systems. IEEE International Workshop on Future Trends in Distributed
Computing Systems. Sedona, AZ, IEEE Computer Society: 173--180.

[8] Bharadwaj, R., S. Mukhopadhyay (2008). A Formal Approach for Developing High-
Assurance Event-driven Service-Oriented Systems. COMPSAC 2004, Turku, Finland, IEEE
Computer Society.

[9] Bharadwaj, R. and S.Mukhopadhyay (2008). From synchrony to SINS, Utah State Universi-
ty.

[10] Bharadwaj, R. and S. Sims (2000). "Salsa: Combining Constraint Solvers with BDDs for
Automatic Invariant Checking." Proc. 6™ International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS'2000), ETAPS 2000.

[11] Birman, K. P. (2005). Reliable Distributed Systems, Springer.

[12] Chandy, K. M. (2004). Event Servers for Crisis Management. HIPC.

[13] Dijkstra, E. W. (1976). A Discipline of Programming, Prentice-Hall.

[14] Gay, D., P. Levis, et al. (2003). The nesC language: A holistic approach to networked em-
bedded systems. PLDI: 1-11.

[15] Halbwachs, N. (1993). "Delay Analysis in Synchronous Programs." the International Confe-
rence on Computer-Aided-Verification 697: 333-346.

[16] Halbwachs, N. (1993). Delay Analysis in Synchronous Programs. the International Confe-
rence on Computer-Aided- Verification, Springer-Verlag. 697: 333-346.

[17] Heitmeyer, C. L., R. D. Jeffords, et al. (1996). "Automated Consistency Checking of Re-
quirements Specifications." ACM Transactions on Software Engineering and Methodology
5(3): 231-261.

[18] Kahn, G. (1974). The Semantics of a Simple Language for Parallel Programming. IFIP
Congress.

[19] Lee, E. A. (2005). "Absolutely Positively on Time: What Would It Take?" Computer 38(7):
85-87.

[20] Luckham, D. (2005). The Power of Events, Addison Wesley.

[21] N. Benton, L. C., and C. Fournet (2005). "Modern Concurrency Abstractions for C#." ACM
TOPLAS 26(5): 769--804.

[22] Newcomer, E. (2002). Understanding Web Services, Addison Wesley.

[23] OMG. Retrieved 31st October, 2008, from http://www.omg.org/mda/.

[24] Talpin, J.-P., P. L. Guernic, et al. (2003). Polychrony for Formal Refinement-Checking in a
System-Level Design Methodology. ACSD: 9-19.

[25] Tressler, E. (2002). Inter-Agent Protocol for Distributed SOL Processing. Washington, DC,
Naval Research Laboratory.

[26] Wadler, P. (1994). "Monads and Composable Continuations." Lisp and Symbolic Computa-
tion 7(1): 39-56.

[27] Yau, S. S., S. Mukhopadhyay, et al. (2005). Specification, Analysis, and Implementation of
Architectural Patterns for Dependable Software Systems. IEEE WORDS.

Chapter 9

Towards A Dependable Software Paradigm for
Service-Oriented Computing

Xiaoxing Ma'%, S.C. Cheungz, Chun Cao', Feng Xu', Jian Lu'

'State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.
E-mail: {xxm, caochun, xf, lj} @nju.edu.cn

*Department of Computer Science and Engineering, Hong Kong University of Science and
Technology, Kowloon, Hong Kong. Email: {csxxm, scc}@cse.ust.hk

Abstract: Service-Oriented Computing (SOC) is an emerging computational pa-
radigm that achieves business goals through dynamic service integration over the
Internet. It provides interesting features such as flexible service coordination, dy-
namic system evolution, and service access control. While these features increase
the power and flexibility of computation, they brings along new challenges. This
chapter reviews the various challenges of supporting SOC and discusses the issues
of addressing them using adaptive service coordination architecture. The architec-
ture is motivated by the principle of solving complex problems through concern
separation. For example, our architecture separates the concerns of (a) coordina-
tion logic from service entities, (b) service evolution from service interaction, and
(c) user-centric trust management from dependability analysis. The concern sepa-
ration is achieved by four artifacts: a service coordination and evolution model,
environment-driven self-adaptation support, a coordination-aware access control
mechanism and a trust management framework. The architecture provides a flexi-
ble infrastructure by which SOC can be seamlessly supported.

1. Introduction

Service-Oriented Computing (SOC) advocates the unanimous use of services, in
particular, for applications spanning across multiple geographical locations or or-
ganizational boundaries. Services encapsulate business capabilities and are acces-
sible through network in a platform-independent way. Services are used as funda-
mental elements in an SOC application. SOC is a promising approach to resource
sharing and business integration over the Internet. Despite its vagueness and
hypes, the major challenges of SOC arise from its fundamental change of how in-
formation systems are constructed and used. The change triggers us to migrate
from an information web to a soffware web. Like the information web, the

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_9, © Springer Science+Business Media, LLC 2009

164 X. Ma et al.

strength of software web comes from the tremendous amount and variety of re-
sources over the Internet, and more importantly the network effects of the inter-
connection of these resources. Unlike the information web which is mainly pre-
sented for human browsing, the software web facilitates the dynamic federation of
independent services to solve specific application problems effectively and de-
pendably, much in the same line as Open Resource Coalition [36] and Internet-
ware [21]. SOC brings forth a new software paradigm with challenges different
from its traditional counterparts.

Software systems often run under some environment where necessary resources
and services are provided. Conventional software systems based on standalone
computers, local area networks, or intranets are typically developed on the as-
sumption of invariant environment resources such as available CPUs, memories,
underlying system calls, network bandwidth, and functionalities provided by other
software systems. Such assumption can no longer be made by SOC systems that
rely on dynamic service integration over the Internet. SOC systems themselves are
often published as services, and serving users with changing requirements. As a
consequence, SOC systems are expected to be dynamically adaptive, i.e., they
should be able to change their structure and behavior at runtime to cope with
changing environment and requirements. For example, they need to switch to an
alternative service when the primary one is unavailable or not preferred anymore.
They may also integrate new services to provide users with additional features. In
other words, they must be capable to reconfigure themselves to adapt to changes
in their environments and requirements.

Dependability of SOC systems therefore requires attentions different from
those of conventional systems. While the dependability of conventional software
systems is derived from their precise specification and stable implementation, the
dependability of SOC systems relies on their resilience to the change of environ-
ment/requirement and their capability of dynamic system adaptation, or even self-
adaptation [37]. As defined by Avizienis et al. [2], dependability refers to “the
ability to deliver service that can justifiably be trusted”, or “the ability of a system
to avoid service failure that are more severe than is acceptable”. It is generally
understood as a global concept that encompasses system attributes including reli-
ability, availability, safety, integrity, security, timeliness, etc. The open and dy-
namic nature of the Internet environment and the changing requirement makes it
impractical and unnecessary to give a precise and complete specification that con-
ventional verification and validation are based on. As a consequence, the depend-
ability of SOC applications in such an environment is generally not in a hard
sense but in a soff sense. That is to say, rather than pursuing the absolute high-
assurance such as those of life-critical systems, the temporary derivation from
normal behavior is allowed for a SOC system but a degree of confidence that the
system would sustain sufficient level of service quality will achieved by a combi-
nation of a priori validation and dynamic monitoring and adaptation [36]. What
complicates things even further is that services used in the Internet environment
are autonomous, which means not only that they are developed, deployed and ma-
naged independently, but also that they have their own interests and behavior ra-

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 165

tionales. To build a trustable system out of such autonomous services, extra me-
chanism beyond conventional verification and validation must be provided to en-
sure the trustworthiness of the system.

These distinguishing features require a set of new software models and ena-
bling techniques that would make SOC a new software paradigm. As a step to-
wards this new paradigm, this chapter presents a coordination model for the con-
struction of dynamically adaptive service oriented systems based on the concept of
built-in runtime software architecture [23]. Under this model each service of a
service-oriented system is situated in and coordinated by an active architectural
context, which mediates the interactions among the services. The architectural
context is explicitly implemented using a distributed shared object, on which dy-
namic adaptation behaviors are specified. With an intrinsic reflective computation
[24] mechanism the adaptation behavior specified at the architectural level can be
automatically carried out. Moreover, an architecture for self-adaptive service ori-
ented applications is also introduced. To close the loop of control for self-
adaptation, the architecture bridges the gaps between environment, system and ap-
plication goals with an ontology-based approach.

In addition to the adaptive coordination model, an access control model is pro-
posed for services to carry out the fine-grained access control rules which are in
accord with the coordination logic, i.e., software architecture in our approach, so
that the coordination can proceed successfully while the services are secured. At
the same time, the services can still keep their autonomy discretionarily with a
new decentralized authorization mechanism.

Even further, to address the complex trust issues of services and the independ-
ent subjects behind them in the open Internet environment, three classes of trust
relationships are first identified, and a trust management framework is then de-
signed to help the understanding and assurance of the trustworthiness of SOC ap-
plications.

By explicitly addressing the issues that were hidden and entangled in conven-
tional software paradigms, the proposed model facilitates the decoupling of coor-
dination logic from service entities, of system evolution from service interaction
and of user-centric trust management from the artificial-based dependability anal-
ysis, in addition to the well-known decoupling of service providers from service
consumers. This further separation of concerns is useful to the management of
complexity of the development of dependable service-oriented system under the
Internet environment.

This chapter identifies the imminent challenges of SOC, and presents our
framework to address these challenges in a major national research project. Since
the project is still at its early stage, some of the ideas have not been fully articu-
lated. Yet, the framework should provide a useful stepping stone to help develop
effective solutions to address the SOC challenges. This chapter is outlined as fol-
lows. Section 2 presents the background, motivation and overview of our frame-
work. Sections 3 and 4 describe an adaptive coordination model and a self-
adaptive architecture, respectively. Section 5 gives an account of a coordination-

166 X.Maetal.

aware access control mechanism, which is followed by a trust management
framework in Section 6. Section 7 concludes this chapter.

2. Motivation and approach

Service oriented computing is attracting much attention from both academy and
industry. But there is little consensus on how it should be like as a software engi-
neering paradigm, despite of the increasing number of WS-* standards and pro-
posals. In this section, we limit our discussion to the new challenges that SOC
brings to Web Services. A comprehensive survey on the current status and re-
search challenges of SOC can be found in existing literature, e.g. in [31].

2.1 Web Services and new challenges

Papazoglou and Georgakopoulos [30] divide SOC tasks into three layers. The bot-
tom layer consists of basic service operations and their description. The middle
layer (a.k.a. composition layer) concerns about service composition, which in-
volves issues such as service coordination, conformance ensuring and QoS con-
siderations. The upper layer (a.k.a. management layer) manages service-oriented
applications based on specified business goals and rules, such as measuring, moni-
toring and dynamic (re)configuration. Let us review the major challenges of each
layer and the inadequacy of existing solutions.

At the bottom layer, Web Services provide an adequate solution. Web Ser-
vices define a common interaction protocol and a description language for ser-
vices in terms of SOAP and WSDL. This enables service providers and consumers
to interact using their own favorite platforms and programming languages. UDDI
further allows service providers and consumers to advertise and look up their ser-
vices dynamically through a public registry. Though widely accepted, Web Ser-
vices defines no guidelines at the application level on how a service-oriented sys-
tem can be constructed.

At the composition layer, the limitation becomes apparent. Under the para-
digm of SOC, web services are subject to composition rather than direct human in-
teraction. Milanovic and Malek [28] describe four essential requirements for Web
Service composition.

e service connectivity, which means there must be some mechanism to glue up
the services by directing messages between services’ ports;

o non-functional properties, which can be addressed explicitly;

e composition correctness, which requires verification of some critical properties
of the composite;

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 167

e composition scalability, which means the mechanism should scale with the
number of service involved.

There are two additional requirements for the support of a full fledge service
composition over the Internet:

e programmable coordination mechanism should be provided to federate auto-
nomous services to satisfy particular demands, in a flexible but disciplined
way. This requirement can be viewed as an enhancement to service connec-
tivity. Beyond providing the communication channel between services and
adapting their interfaces, the mechanism should also support the explicit man-
agement of the interaction between the services, according to the application
logic.

o dynamic adaptation should be supported to make the system survival from ev-
er-evolving environment and user requirement. There are three classes of adap-
tations. First, particular services used in the system would be dynamically dis-
covered, bound, used and replaced. Second, the architectural configuration of
the system would be changed at runtime. Third, there may be some situations
beyond the expectation of the system developers, and ideally the system should
evolve online to include in new knowledge and capability to cope with the new
situations.

The central task of this layer is to find a flexible composition model that
matches these requirements. Service orchestration and choreograph languages
such as BPEL and WSCDL have been proposed to composite web services. BPEL
is essentially a process oriented approach to service programming, which imple-
ments business processes by invoke other services. Besides its limitations on sup-
port for non-functional properties and correctness verification [28], its orchestra-
tion viewpoint does not suit for coordination need, since they just treat other
services as subordinates like procedures in structured programming and objects in
0O programming. This viewpoint also makes the dynamic adaptation very diffi-
cult -- although dynamic service binding can be used, the architectural reconfigu-
ration is hardly supported because there is no explicit architecture. WSCDL-style
service choreograph does concentrate on service coordination, but they are essen-
tially specification and generally not directly executable.

OWL-S [26] provides an ontology to facilitate automatic discovering, invoca-
tion, composition, and monitoring of Web services. While theoretically this ap-
proach is interesting the efficient of the logic reasoning would be a problem be-
cause the amount and variety of services. Other approaches such as the Service
Component Architecture of IBM address mainly the interoperability between Web
Services, but rarely the problem of service composition.

At the management layer, more work is needed for service oriented systems.
There is already some work addressing the management web services such as
IBM’s WS-Manageability and OASIS’s WSDM. A related survey can be found in
[32]. They refine existing network management and distributed system manage-
ment framework with standard Web Services interfaces. At the same time, they

168 X.Maetal.

use the framework to management web service resources. However, they focus
more on services than service oriented systems. For example, to serve the business
goal better in the open and dynamic environment, the problem of dynamic (self-)
adaption must be considered seriously [31]. In addition, to ensure the dependabil-
ity of service-oriented systems, the trust relationships among related subjects must
be identified, evaluated and managed. While these issues involve many non-
technical business factors, technical facilities are needed to manage the mappings
between these factors to the structure and behavior of service-oriented systems.

2.2 Paradigmatic considerations

Web services may be built on top of multiple programming models, such as Visual
Basic, Java and C#. Under these models, a remote service is treated as a remote
object. Recent programming environments often provide useful facilities to encap-
sulate objects into web services and generate proxy objects for web services.
However, conventional software paradigms such as structured programming, ob-
ject-oriented programming and component-based paradigms cater mainly for stan-
dalone systems and LAN/intranet environments, which are originally designed for
collaboration within a small community as compared with the Internet. Conven-
tional paradigms are inadequate for SOC in the following ways.

1. They emphasize on computation rather than coordination [29] (the coordination
logic is often hidden in the computation logic) while the latter is often the cen-
tral task of service-oriented application systems.

2. They are originally designed for stable structures while service-oriented sys-
tems embrace dynamic evolution.

3. They assume full control and tight coupling of building blocks of a system
while services can be highly autonomous in service-oriented applications.

Efforts have been made to standardize various kinds of issues involved in the
development of dependable service oriented applications, such as reliability,
transactions, security, trust, management, to name a few. But the lack of a suitable
coherent programming model makes them more an application of conventional
techniques for the web services in an ad hoc way than a systematic approach for a
new dependable paradigm for SOC.

2.3 A coordination-centric approach

We propose a coordination-centric approach to SOC, as shown in Fig. 1. A pro-
gramming model based on the concept of built-in runtime software architecture
[23] is adopted for explicit description and manipulation of coordination logic.

9 Towards A Dependable Software Paradigm for Service-Oriented Computing

169

Based on this coordination model, a set of techniques are proposed to help the
constitution of a dependable software paradigm for SOC.

User Goals of Service Oriented Application

"""""""" L Directs pBTSen T T

Iy e
u[rr(,mv

Ma:arus;l) Service Coordination Logic A dase::ti K
Sement - rhced in L
Framework = o . Use ﬁ Decision
ynamic

r@Dueatsoﬁgf

Software

Recon, ‘?guresﬁ, m—
Architecture A{\ UPPOrts

Coordination- \ A ..
7, o e _#Use l?> Explicit
Aw(ajl(;cﬂﬁ‘f:ess fredin Application
Intrinsic Reflection Context &
Protects C i Arawith Environment
4 = k3 Modeling |

‘Web Services Resources

Dl oo
Troneaby T

Open, Dynamic and Non-deterministic Internet Environment E

Fig. 1. A Coordination-centric approach to SOC.

Software architecture as a service coordination model. Software architecture,
which “involves the description of elements from which systems are built, interac-
tions among those elements, patterns that guide their composition, and constraints
on these patterns” [38], provides the following benefits in modeling service coor-
dination.

o Explicit and programmable coordination. Software architecture treats connec-
tors as first class programming concepts. This allows connectors to be recon-
figured dynamically to reflect coordination changes.

o Support for non-functional properties. One of the motivating benefits of soft-
ware architecture is its support for the early analysis of system properties, esp.
non-functional ones.

e Verifiable correctness. There are various formal models and verification tools
proposed to help the ensuring of architectural correctness.

e Dynamic adaptation. Software architecture embodies essential information that
should be held by the implementation to support and regulate future adaptation
and evolution [1, 14].

In our approach, runtime software architecture models are used as the kernel of
the coordination logic, and they are also used to provide up-to-date information
for related facilities including adaptation decision, access control, trustworthy
analysis, etc.

An intrinsic reflection mechanism is designed to support the implementation
and the dynamic adaptation of software architecture. Software architecture
must be faithfully implemented to take effect. Different from traditional ap-
proaches where software architecture is just used as abstract specifications and be-
come implicit in implementation, we explicitly keep it at runtime. Unlike most
runtime software architecture approaches [8, 14] where the consistency between

170 X.Maetal.

architecture and system is maintained extrinsically, we propose an intrinsic
mechanism of building the architecture using the object-oriented computing
model. The intrinsic mechanism facilitates the seamless support of both planned
and unplanned dynamic architectural reconfigurations.

To enhance the dependability of service oriented applications constructed using
this coordination model, three important issues, viz. self-adaptation, access control
and trust management are addressed with following techniques.

A self-adaptation architecture is proposed. The architecture supports automatic
adaptation based on closed-loop control to help the service oriented system sur-
vive from the evolving environment and changing user requirements. It also in-
cludes explicit facilities for environment probing, modeling and management, and
as well an ontology based reasoning and adaptation driven mechanism.

A coordination-aware access control mechanism is designed. While traditional
access control strategy always makes conservative decisions to ensure protection,
the explicit coordination model provides valuable information to allow maxim
flexibility of the participation in coordination but without compromising of the au-
tonomy and security of the services.

A trust management framework is proposed. Under the SOC paradigm, ser-
vices are generally developed, deployed, tested, and used by different parties with
different interests while traditional dependability analysis and assurance often im-
plicitly assume unconditional trust relationship between these parties. Trust man-
agement is an effective approach to dealing with the complexity. With the infor-
mation provided by the explicit coordination model, the trust management
framework can be used to enhance the dependability of SOC systems in the selec-
tion of candidate services, evaluating the trustworthiness of systems, and directing
the access control strategies.

2.4 A running example

Throughout the rest of this chapter, a hypothetic SOC system, which is a value-
adding web service based on existing web services, will be used as an illustrative
example. Suppose the business of the system is to provide a comprehensive ticket
booking service for travelers. The system would help the travelers to plan and
manage their trips and delegate all physical transportation to other existing ser-
vices such as airlines, trains, coach buses, etc.

Although very simple, such a SOC system would involve a serial of technical
issues, among which we will address:

1. How to construct the system flexibly so that it can be dynamically adapted
when necessary? And how to let the system adapt itself with little or even no
human interaction?

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 171

2. How to protect the autonomous services from being abused while they are con-
tributing themselves to the system? How such protection mechanisms can fit in
the dynamic scenario of the system?

3. How to help the users to justify their confidence on the service and dealing
with the complex trustworthy issues between the users, service providers?

3. Dynamic adaptive coordination model

As discussed, software architecture is used as the central abstraction of our coor-
dination model. There are two difficulties to overcome in this approach. First, the
architecture specification must be mapped into implementation to make the coor-
dination logic executable. Second, the dynamic architecture specified at the archi-
tectural level must be carried out smoothly at the implementation level.

A considerable amount of research efforts have been made to bridge the gap
between architecture specification and implementation [27], but software architec-
tures were mainly treated as design specifications rather than materialized and op-
erational/functional entities in the final running systems. Although software archi-
tecture specifications can help the development and management of dynamic
system adaptations [17, 19, 8], as the upper part of Fig. 1 shows, maintaining the
consistency between a software architecture specification and the working system
implementation can be tedious.

To further ease the understanding, expressing and realization of dynamic adap-
tation at implementation level, the software architecture should be directly imple-
mented at this level. Encoding the architecture specification into a data structure is
not enough — it requires continual synchronization with the system’s current con-
figuration. But if this synchronization was carried out by an external party, each
service must publish special handlers that allow the external party to control syn-
chronization and monitor the relevant internal state. The provision of such han-
dlers also leads to complex security and privacy issues. As such, our reified soft-
ware architecture adopts an intrinsic mechanism [24].

3.1 Intrinsic approach

An intrinsic mechanism should fully integrate service coordination into the pro-
gramming model. As discussed above, the coordination mechanism of the object-
oriented programming model (in the form “target.method(...)”) is inadequate for
SOC over the Internet. During the process of determining the target object the sys-
tem coordination structure is gradually consolidated with a loss of organizational
and architectural information. Let us illustrate this using an example where a
company evolves its management structure. Suppose that all employees of Bill’s
company report to Bill initially. This can be realized by having a link going from

172 X. Ma et al.

each employee object to the Bill object. Bill is therefore the “target” of the link.
Now, the company has recruited a new manager, Tom, to offload Bill’s work. To
reflect the change, the “target” should then be redirected to Tom. But in the origi-
nal architecture decision the person who is responsible for hearing report is neither
Bill nor Tom, not even the boss role or the project manager role, but the current
role in charge of project development according to the current organization or ar-
chitecture of the company. In the two scenarios, the reference is eventually bound
to a specific value and the underlying architecture information is lost.

Architecture

Specification/ Reconfiguration

uogéﬂue;sw
uoissiposau|
]

Evolution

aptation

—.:’;Ruilt-in Software
3 Arb;‘hitecture Object

>

Fig. 2. Software architecture reification.

With these considerations, a dynamic software architecture-based programming
model (illustrated by the lower part of Fig. 2) is proposed in [23], which features:

e Built-in runtime software architecture object The software architecture con-
cerns are separated from interacting component objects, and expressed explic-
itly as a first class object in the final implementation. The cross-component ref-
erences are dynamically interpreted according to this architecture object. In
other words, the references are “functions” over the current software architec-
ture configuration. In this way the change of the architecture object will imme-
diately affects the interaction between the components. Naturally anticipated
dynamic reconfigurations are implemented as the behavior of the architecture
object.

o Unanticipated dynamic reconfiguration support Once the software architecture
is reified as an object, inheritance and typing mechanisms of object oriented
programming model can be applied to architectural evolutions of the system. In
addition to the planned reconfiguration just mentioned, some unanticipated re-
configuration can be implemented as new behavior of an architecture object
whose class inherits the original’s. With the help of dynamic class loading and
object instantiation, the system’s architecture object can be polymorphically
replaced with the new one, and then the new reconfiguration behavior eventu-
ally carried out.

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 173

Distributed shared object implementation The above discussion assumes a cen-
tralized architecture object, which is convenient for the developer to express
the coordination logic. However, the underlying implementation in the open
network environment must be distributed flexibly. We adopt a distributed
shared object mechanism: the dynamic architecture object is co-implemented
with a group of coordinated sub-objects located at every node involved. Each
sub-object provides a logically unified architectural context for the local com-
ponent.

3.2 The programming model

A service in our model is an instance of a service type with a network access ad-
dress. A service type consists of four components:

1.

2.

w

Provided interfaces. Functionalities provided by the service. They are typically
WSDL portTypes in Web Services platform.

Required interfaces. Functionalities that are required for current service to work
properly. Explicit specification of required interfaces facilitates the direct mod-
eling of value-adding/composite services. It also brings symmetry to service
composition.

. Protocol. Temporal constrains on the operations in the interfaces.
. QoS specifications. The service can guarantee what level of service quality

provided certain QoS of the services on which it depends is ensured.

Then a SOC application system is a closed service. A closed service is a ser-

vice with no required interface or each of its required interfaces is either statically
bounded to a closed service or subject to dynamically binding.

At the programming level, a service-oriented application consists of following
elements:

Component objects. A component delegates business functionality to natively
implemented functionalities' or other web service(s). It serves via its provided
interfaces in condition that it is served via its required interfaces. Note that a
component object is not a service but a broker between the service and the ar-
chitecture context of the application. This additional layer of indirection pro-
vides room for compensation of architectural mismatch [13] and facilitates dy-
namic replacing of services.

Connector objects. Connectors focus on non-functional aspects such as com-
munication, security, reliability, logging, etc. Connectors are implemented as

' A purist would also require that native implemented functionalities should al-

so be encapsulated as web services.

174 X. Ma et al.

interceptors syntactically transparent to the components and do not affect the
business logic of the application.

o Architecture Object. The architecture object implements the application’s struc-
tural organization and related behavior constraints. It is this object through
which the components are finally connected together. It is also the locus where
dynamic adaptation capabilities are realized.

o Mappings. Component objects must be mapped to the component roles in the
architecture object to get the necessary architectural context. Each required in-
terface is fulfilled indirectly by a provided interface or interfaces (a multiplexer
connector may be employed) of other components under the management of
the architecture object. In practice the mapping can be defined with a graphical
tool. Syntactical type checking and even behavioral compliance checking can
be included here.

The behavior of an architecture object is defined by its class. Architecture classes
reify the concept of software architecture styles. All architecture classes must in-
herit from a system class RTArchitecture directly or indirectly. RTArchitecture
provides some basic functions for the development of specific architecture class,
including: 1) basic architecture topology, which is merely a canonical program-
ming-level representation of software architecture specification in ACME [15]; 2)
redirection of the cross-component reference according to current architecture to-
pology; 3) supports for the distributed implementation of the architecture object.
Here some consistency assurance mechanisms from basic synchronization to two-
phase commit protocol are needed. 4) basic reconfiguration activities, including
addition/deletion of component roles and links between them, replacement of the
component for a role.

An architecture class library can be provided by the development environment
to support the reuse of common architectural styles. Developers derive their own
architecture class from an existing class to best fit their application on hand.

For example, suppose our value-adding ticket-booking system is to be con-
structed with a locally implemented value-adding service and a set of transporta-
tion services discovered from the Internet. The value-adding service provides
comprehensive tick-booking service via its provided interface, and requires trans-
portation services via its required interface. These services are coordinated with a
simple Master/Slave architecture. The value-adding service will be use in the Mas-
ter component object, and the transportation services will be used in Slaves.

A class of simple Master/Slave style can be readily declared as follows:

public class MSArch extends RTArchitecture implements ISlave, IMaster {
//methods declared in ISlave
/ffor slaves to pull jobs from the master
public Object invokeOnMaster(Method m, Object[] params)
throws Exception{...};
//methods declared in IMaster -- omitted

//implementations for dynamic reconfiguration

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 175

public void addSlave(SLAVE T){...};
public void removeSlave(SLAVE TX...};
//Constructors

public MSArch(ArchConfig ac){...};

The architecture class provides each of its players with an interface. The map-
ping tool will generate dynamic proxies with the method defined in this interface
to fulfill the required interfaces of the associated component object. In this exam-
ple a weakly typed method invokeOnMaster is provided to redirect calls from
slaves to master to the proper component mapped to the master. Here we assume
the slaves pull jobs from the master. If the master needs to push jobs to slaves,
then invokeOnSlaves should be defined for IMaster. A multiplexer connector
should also be used to resolve the mismatching during the mapping process.

For our example, an architecture object will be instantiated from the MSArch
class with concrete architectural configuration. The required interface of the val-
ue-adding service will be finally fulfilled by the provided interfaces of the trans-
portation services, with the broking and managing of the component objects and
the architecture object.

3.3 Support for dynamic reconfigurations

It is natural to implement dynamic reconfigurations as the behavior of the archi-
tecture object. In our example, more transportation services could be discovered at
runtime and need to be included in to make the service of the system more com-
prehensive. Uncompetitive transportation services also should be dropped out.
Thus the Master/Slave architecture should support the online insertion and re-
moval of Slaves. Since the object defines the architecture, dynamic reconfigura-
tions are treated as the object’s behavior. They are implemented as modification
methods of the class. In MSArch, insertion and removal of Slaves are defined
with methods addSlave() and removeSlave(). The implementation of these
methods is mainly changing the topology with the facilities provided in RTArchi-
tecture. Remember the object implementation can be physically distributed, thus
it often has to use the two-phase commitment support to ensure atomicity.

There could be some reconfiguration requirements gradually discovered after
the system was put into operation. Common solutions for these unanticipated re-
configurations require a system restart. However, the stop of service could bring a
high cost in some circumstance, esp. when there were valuable data not persis-
tently stored. Our approach also provides a reasonable support for unanticipated
dynamic reconfigurations. A new subclass of the original architecture class shall
be defined to implement new reconfiguration behavior. For our example, suppose

176 X.Maetal.

that with more and more transportation service included in and the increasing
popularity of our comprehensive ticket-booking service, the Master itself would
be overloaded, which falls into a situation beyond the anticipation of the original
system architect. Now the architecture should be evolved to a new style of Extend
Master/Slave which also supports multiple Masters to share the workload. There-
fore a new architecture class EMSArch is defined, in which new Masters can be
added, and related interactions are adjusted accordingly:

public class EMSArch extends MSArch implements IEMaster
{

//New reconfiguration behavior

public void addMaster(MASTER MY...};

public void removeMaster(MASTER M){...};

//Redefined behavior. Some load balancing can be implemented here.
public Object invokeOnMaster(Method m, Object[] params)
throws Exception{...};

//methods in IEMaster to support coordination among masters -- omitted

Prior to reconfiguration, a new architecture object is instantiated from the class
EMSArch. This new object is programmed to enact the semantics of the new ar-
chitecture, and can be used to replace the original architecture object. After the
new architecture object is initialized with the same state as the original architec-
ture object, required reconfigurations (i.e. insertion of new Masers) are then car-
ried out.

Note that, while the upgrading of architecture object is transparent to existing
component objects (and thus the services they use), it can be visible to the new
services added in henceforward. This means, gradually, with more and more new
services added in and old services dropped out, the agreement between the appli-
cation and the services can be upgraded. This is an approach to implement online
co-evolution.

We have developed a prototype system to support the programming model. The
kernel of the system is to build and maintain a distributed shared architecture ob-
ject according to the architecture class and the architecture configuration specified
by developers with a graphical editing framework. The system will use the archi-
tecture object to build the active coordination context for each services involved.
Architecture configuration and reconfiguration are given in a formalism based on
graph grammars. With a Graph Transformation tool, the reconfiguration behavior
of the architecture object is checked at runtime to ensure the architectural integ-
rity. Details about the supporting system can be found in [23, 22]. Further work on
behavior compatibility checking and QoS assurance are currently undergoing.

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 177

4. Self-adaptive architecture

The above coordination model allows the SOC application system to be adapted at
runtime. But to make it se/f~adaptive to the changing environment and user re-
quirements, additional facilities dealing with environment probing and user goal
interpreting must be included, and finally an architecture based on closed-loop
control with feed backs should be built.

From a software developer’s viewpoint, one of the fundamental difficulties is
to reconcile users’ goals, environment assumptions, and implementation limits.
The users’ goals are in the problem domain while the implementation is in the so-
lution domain. The data about the environment by themselves cannot be under-
stood and used to drive the system adaptation -- they must be interpreted with the
knowledge from the problem domain to be meaningful. In conventional software
development process, the users’ goals and environment assumptions are trans-
formed gradually down to the implementation with various decomposition and re-
finement techniques, which is not applicable because the three parts are to be rec-
onciled simultaneously at runtime.

Applicaiton
Goals =

C =

Q

9

A\
e

4
4

Neo)
(w N

-

Q,
@
. R
9, 2
@
2,

2

2

‘\:?y

Fig. 3. A self-adaptive architecture

Reconciliation is achieved in our approach through three tiers of interactions,
as depicted in Fig. 3. At the base tier (outermost in Fig. 3), just like any distributed
software systems, the application system makes use of the service resources in the
environment and acts upon the environment to do its current business. At the mid-
dle tier, the environment context is explicitly handled with corresponding facilities
and expressed as structured data; the basic system is reified as a built-in runtime
software architecture object to provide an abstract architecture view; and the user

178 X.Maetal.

goals are decomposed into tractable sub-goals. Finally at the top tier (innermost in
Fig. 3), based on the semantic framework defined by application goals and domain
knowledge, the runtime software architecture model interacts with the environ-
ment context model in a unified ontology space, which is driven by a set of adap-
tation rules or manual directions. The architecture covers three major parts:

Environment handling facilities To reconcile the differences between the scat-
tered environmental data and the abstract user requirements at runtime, an explicit
handling of the environment issues is needed, which consists of the following
three tiers. First, the primitive environmental data are probed and processed so that
related attributes of environment elements are measured. The effects of the system
are also reflected in these attributes and they will be used as feedbacks. Second,
the probed data are filtered and managed as the context of the system, and events
of interest of context changes are raised. Third, a context model is built with an
ontology that provides the conceptualization of a common understanding of the
domain. With this formal model of the environment context, the context informa-
tion is uniformly stored and well-managed, and some high-level processing such
as conflict resolving, context fusion and reasoning are carried out to enhance its
consistency, integrity and usability. At the same time, with the application goals
and domain knowledge that are also ontologically represented, the context infor-
mation is readily interpreted in the problem domain of the application. With these
facilities, a consistent, complete and easy-to-use context representation (context
ontology) and its interpretation under current application goals can be achieved,
which provides a basis for the decision of system adaptations.

Open coordination subsystem To reconcile the semantic differences between
user requirements and the target implementation of the system, the adaptive coor-
dination model presented in last section is firstly used. The abstract architectural
specification is reified as an explicit object, which is causally connected to the real
system. Thereby, the concrete system implementation and the abstract specifica-
tion in terms of software architecture are virtually connected. However, the gap
between software architecture and requirements still remains. For this purpose, an
ontological representation (architecture ontology) is further developed to describe
software architecture with respect to both the static configuration and the dynamic
evolution processes, and declare both its description and prescription. This onto-
logical representation is more problem-oriented, while what it describes essen-
tially coincides with what the runtime architecture object reflects, and the evolu-
tion described with ontology can delegate the runtime architecture object to put
into execution.

Here software architecture is used as an artifact to reconcile the problem do-
main and the solution domain. Also, it facilitates the abstract descriptions of sys-
tem status and behaviors needed in the specification of adapting policies.

Goal-driven adaptation logic With the above facilities, the description of both a
coordinated service oriented system and its environment is brought to an abstract
level closer to the problem domain. To complete the loop of self-adaptation, a se-

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 179

mantic framework is needed to express the adaptation logic, which specifies what
should be done on the executing system under what conditions of the environment
and the system itself to keep a goal satisfied. In addition to the above environment
ontology and architecture ontology, a requirement ontology is also adopted as the
conceptualization of the domain knowledge and application goals. The require-
ment ontology resembles some ideas of the goal-oriented requirement engineering
[18], which expresses user requirements in the form of a Goal Refinement Tree.
As there can still be conceptual and semantic gap between the three ontologies, a
set of transformation ontologies, which are somewhat like ontology mappings, is
further developed to glue them up. These ontologies constitute an ontology space,
which become the juncture of the three major part of a self-adaptive system.

In implementation, OWL/RDF is used as the ontology language in our ap-
proach. Ontology tuple instances are stored in a shared space. A collection of rea-
soning engines is deployed upon the space and turns it into a blackboard system.
The engines include standard OWL Description Logic reasoning engines, custom-
izable rule-based adaptation engines and interfaces for direct user manipulations.

With such a mechanism, the closed loop of control with feedbacks works as
follows: The system’s running would have affects on the environment. Related
low-level information is probed from environment, and then interpreted according
to application domain knowledge. Triggering events are raised when the inter-
preted information indicates some application goals are missed or to be missed.
Adaptation rules are evaluated and some operations over the system architecture
are derived. Eventually, the operation is carried out by the runtime architecture ob-
ject and the system is adapted on the fly. It’s the responsibility of adaptation rule
designer to ensure the stability, accuracy, settling time of the control suitable for
the application. More research is definitely necessary to fit these concepts and as-
sociated techniques from control theory in software intensive systems. Some work
and references can be found in [8].

With respect to the extensibility, the mechanism also facilitates the online in-
troduction of new domain knowledge, adaptation rules and reasoning engines into
the ontology space. Moreover, the cognizance of the environment and new recon-
figuration behaviors can also be injected by the expansion in ontology.

Let us exemplify the approach with our ticket booking system. Suppose one of
its goals is to keep responsive. This goal is refined as that the average response
time for a transaction should less than, say, five seconds. This information can be
expressed in GORE style as:

Name: Goal_Responsiveness

Des.: Response time is less than 5s
Def.. Vsys : TicketingSys,av_resp : Number. responseTime(sys, av_resp) —> lessThan(av_resp,5)

The goal is specified in the requirement ontology. Following is the corresponding
OWL specification.

180 X.Maetal.

<owl:Class rdf:ID="TicketingSystem">
<rdfs:subClassOf rdf:resource="#Goal"/>
<rdfs:subClassOf>
<owl:Restriction>
<rearon:lessThan rdf:datatype="http://www.w3.
org/2001/XMLSchema#int">5</rearon:lessThan>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="responseTime"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

From now on less formal but more readable forms instead of XML codes will
be used to present contents of ontologies.

Ontological representation of architecture style consists of three parts — Archi-
tecture Description Ontology (ADO), Architecture Manipulation Ontology
(AMO) and Architecture Control Ontology (ACO). ADO imitates ACME by de-
fining common concepts such as component, connector, configuration, system,
role, etc., as well the relationship between them. For specific architecture style
such as Master-Slave, refined concepts such as master component, slave compo-
nent, multiplexer connector, etc. are defined. AMO declares reconfiguration op-
erations on the architecture. For the Master-Slave style there are insertion and re-
moval of slaves, binding/unbinding of services to/from the components. For the
Extended Master-Slave style, there are also operations of insertion and removal of
masters. ACO specifies the rationale of the architecture and its reconfiguration. It
takes the form of “under what condition what operations are to be invoked to get
what consequence”. For our example, there would be ACO specifications such as

Condition: —satisfied(System.performance) * fullCapacity(Master)
Operation: UpgradeToEMS, addMaster
Consequence: ~fullCapacity(Master)

Here satisfied and fullCapacity are style-specific predicates. In implementation
these predicates can be coded as static methods of the architecture class discussed
in Section 3.

Putting all pieces together, the adaptation process works like this: first of all,
user experienced delay and network latency are probed and reported in the context
ontology regularly. With some ontology transformation, OnlineTicketSys-
tem.responseTime in the requirement ontology is then computed out. Once it

violates the restriction of the goal, a
~satisfied(TicketingSystem.responseTime) event is raised. With another on-
tology transformation, the event is translated to —satisf

ied(System.performance) in ACO. Finally according to the rules in ACO, the
actions UpgradeToEMS and addMaster defined in AMO is invoked. These actions

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 181

are implemented by the architecture object as discussed in Section 3. Contrasting
to hard-coded decision components for autonomic behavior, this mechanism en-
ables autonomy knowledge learned after system put into operation to be naturally
added in at runtime. Together with the unanticipated architecture reconfigurations
discussed earlier, it provides a reasonable support for online evolution of service
oriented systems.

Some preliminary implementation and experimentation of the ideas discussed
above have been carried out with positive initial results. More details are de-
scribed in [21].

5. Coordination-aware service access control

5.1 Motivation and challenges

Services must be shielded from illegal accesses or abuses to avoid the leakage of
the sensitive information/computing resources that they encapsulate. New chal-
lenges arise when applying exercise access control to real-life service-oriented
computing systems [10, 4, 3]. The overall access control for SOC is to secure the
autonomous services while they are in coordination with others to achieve a spe-
cific application goal over the Internet. The heuristic rule is to make service ac-
cesses as restrictive as possible; only those accesses that are necessary to the suc-
cess of the coordination are approved. To realize the heuristic rule, the access
control at service levels should consider the following features: 1) The interacting
services are autonomous entities rather than simple objects like files; 2) The ser-
vice access actions are being carried out in the context of the coordination and
their mutual relationships are established within that context; 3) The open and dy-
namic nature of the Internet complicates the relations between services.

In a conventional access control model, entities issuing the access requests are
called subjects while those being accessed are objects. Therefore, the fundamental
models take the picture of a unidirectional relation from a subject to an object
[35]. Reasonably, “what the subject can do” is the basis for the access control de-
cisions. However, with autonomous services interacting with each other in some
context of coordination, both of the service requestors and service providers have
their own points of interests. They contribute simultaneously to the execution of
the coordination. Besides the authorization status of the service requestors, the
way that a service serves also functions on the decision that access control system
produces. That is to say, from the perspective of access control, both “what the
subject can do” and “how the service serves” affect the decisions explicitly.
Therefore, the access control model for SOC should depict the bidirectional rela-
tion between the autonomous services and their requestors. The conventional re-
questor-restricting style of doing control against one party should be in a new style

182 X. Ma et al.

of harmonizing the both, which is considered a novel symmetrical view over the
access control for SOC paradigm.

Protecting services in the coordinating applications requires circumscribing the
accessing actions (i.e., service interactions) within the context of the coordination.
In this way, only those accesses necessary to the success of the coordination appli-
cation are considered legal. Therefore, the access control should take the coordina-
tion context into account. Whether the two parties of one instance of service inter-
action are harmonizable, i.e. whether the interaction should be approved depends
on the logic of the coordination. Beyond the trust relationships between the differ-
ent entities which are conventionally the basis for the access decision making, the
access control should additionally be aware of the runtime status of the coordinat-
ing system. The access control system needs to construct some projection from the
coordination logic to the access control rules for the services participating in the
coordination, and by this means, binds access control with coordination tightly to
realize a coordination-aware access control system.

Lastly, for the SOC paradigm, the open, dynamic and non-deterministic envi-
ronment affects more than the programming model and the supporting techniques.
On the whole, such an environment impacts the access control for systems running
within it in two aspects. First, the dynamism of the environment leads to the vary-
ing in the entities, which causes the predefined trust relationship and the access
control decisions to change. Second, the openness makes it almost impossible for
individual entities to have a complete knowledge about the entire environment and
thus baffle the access controller when no enough information is in hand to produce
a right decision. Consequently, in addition to the fundamental view upon the ac-
cess control for autonomous services as well as the coordination context to be
considered, the access control system to be built for the SOC paradigm needs to be
adaptive to changes and have mechanisms to figure out those locally unsolvable.

5.2 Access control for service computing

To meet the challenges discussed above, a set of work on the access control for the
service-oriented computing systems is proposed.

A base access control model is proposed for the description of the symmetrical
relation between the autonomous services and their requestors as well as the en-
forcement of the corresponding access control rules for service protection. In the
current work of our own, the classic widespread-adopted RBAC [12] model,
which defines the access rules in terms of user authorization, is adapted. To cap-
ture the service autonomy and depict the symmetrical interacting scene, as we
have argued above, a notion of service role is incorporated into RBAC to denote
additionally the serving status of the services while the original RBAC has only
the notion of user role for the essentially unilateral authorization status of the users
(subjects). The resulting model is called SRBAC. By this extension, a service re-
questor’s authorization can be computed with a function which enumerates the all

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 183

the services with a service role that is harmonizable with his user role when those
roles are all activated in user-side sessions and service-side ones respectively.

The SRBAC model facilitates the expressing of the relationships between in-
teracting services in coordination respecting the access control for them. The ac-
cess controller now can make decisions from both parties of the interactions by
checking the requestor’s and the service’s status synthetically. Thus, It is left to
the coordination context to specify whether the statuses of both sides are harmoni-
zable, which exactly makes the procedure of access control coordination-aware.
The point of enacting the specifications to secure services in coordination is to
generate access rules from the coordination logic cautiously without making any
illegal accesses possible nor failing the executing of coordination potentially. Fol-
lowing this idea, an approach of projecting the coordination logic, which is the
software architecture information in our manner of coordination, onto access con-
trol rules is attempted. The component-connector view of architecture is translated
into a symmetrical service-coordination view of access control, which are a set of
generated rules under a coordination-level authorization model. By such a transla-
tion, how a service (usually an abstract service as the logical and physical are de-
coupled, as discussed in the previous section) is participating in the coordination is
described from the in perspective of access control within the coordination-scope.
And with that, the relationship between two interacting services, and further
whether that interaction is necessary with respect to the coordination can be fur-
ther deduced for the final access control decisions. By locally enforcing the coor-
dination-scope rules, access control systems for individual services can identify
and approve the necessary interaction with respect to the coordinating application,
which ensures that the participating services are contributing exactly to the suc-
cess of the application and thus the security policy for the service-oriented com-
puting applications is correctly enforced.

As the coordination-scope rules in accord with the coordination logic actually
present the security concerns of the application, the respect for autonomy of the
services is embodied by offering the discretion for services to take it or not. A ser-
vice connection mechanism is thus proposed for services to denote its policy of
taking other service’s access rules as its own, which mean anyone that can be
proven a legal service requestor of that other service will be allowed to access the
original service too. So by establishing a service connection from itself to an ab-
stract one defined in the coordination domain, the local service stats its participa-
tion in the coordination and acceptance of the coordination-scope rules, which can
be freely revoked on seceding from that coordination. This mechanism also gener-
ally serves as a technique of the decentralized access control and be a complement
to conventional solutions, such as RT [20]. The symmetry view over access con-
trol requires spontaneously an additional delegating mechanism in terms of the
services being protected besides the requestors to be the controlled in those tradi-
tional schemes. The proposed concept of service connection realizes explicitly to
state one service’s dependency on another respecting the serving policy. Such a
mechanism gives a direct and convenient way to declare the delegation while the

184 X. Ma et al.

conventional approach needs to translate it into connections between service re-
questors in terms of authorization.

The left requirement of dynamic access control is considered at both the base
level as well as the coordination level. As for the base level, some conventional
dynamic access control techniques [16, 42] are introduced onto SRBAC model
with enhancements. Concretely, the original predefined relations bridging the ser-
vices and their requestors in SRBAC, through the notion service roles as well as
user roles, are applied activating conditions. More expressive than the existing
work about the dynamic access control techniques, the one on SRBAC takes ad-
vantages of the base model where the services are assigned with a role too to cap-
ture the serving status. The dynamic changes in the service side have directly ef-
fects upon the access control thereout. Besides varying in the raw access control
rules, the argued dynamism in coordination is also seriously considered in the de-
sign of the expressing of coordination-scope access rules, with which the service-
service relationship is denoted as a conjunction that spans all the involved sub-
relationships. As such, a circumstance that happens during the coordination and
affects the system security would result in the changes in access rules. For exam-
ple, system security can be affected by component replacing, architecture adjust-
ing or any variation in trust relationship among the participators. With the coordi-
nation logic and the access rules fully synchronized, the dynamism in coordination
is reflected in the access control system on the fly.

5.3 Access control for the ticketing system

Let us revisit the example of our ticket booking system. We show how the access
rules are developed as the coordinating system are built up and how those rules are
enforced at the administration domains of participating services.

As discussed earlier, a Master-Slave architecture is firstly selected, from which
the ticketing system is about to be built up. According to the architecture, the sys-
tem consists of three components, i.e. one master and two slaves. Concerning the
access control problem here, the end users of the system are also included. The
connectors in the architecture tell about how the components interact, that is, users
can call the master component and the master component further request services
from the slaves. The relation of invokes thus defines the access rules in the scope
of the architecture. For this illustrative example, the ticketing system needs a val-
ue-adder to be the master, two transporters to be slaves and some members as end
users. So with respect to the access control, the logical design process for the sys-
tem specifies “what kind of services can be coordinated as a component in the ar-
chitecture”. This is done by defining the rules in the logical-system scope, which
includes engineering roles for the service candidates, namely Value-adder,
Transporter and Member, as the service qualification as well as declaring the re-
lation of fulfilling. When the ticket booking system is going to be instantiated and
put into production, the practical services are bound. For the qualified services to

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 185

be incorporated into the system, the physical-system-scope rules are specified by
entitling the services with corresponding roles. See Figure 4.

-

Physical-system-scope rules

’ i Em’tle?/' B "4 Architecture-scope rules
e] 3 Member = rg}f —.Entitles
N v i Eam / </ - |/ N AlrTicketing
. / e _ e v L W Iransporter \ i
g S VB \ | N Service
Fulfills ' 9 4
/ Y1 Fulfills Undertakes
Entitles = - _ Entitles——
Value-added N Valies | re = . ! 4~ TrainTicketin
i — />. Value-adder | > \¥ 5 Itansporter <7 J e g
L y \ L/ \[1]
Undertakes " Fulfills 4 Fulfills ~ Undertakes |

Logical-system-scope rules

e

Fig. 4. Coordination-level Authorization

Three relations Entitles, Fulfills, Invokes are specified to govern the entities at
the scopes of architecture, logical-system and physical-system respectively. For
example, as the system entitles Value-addedService as a Value-adder which
fulfills a Master, and AirTicketTingService is entitled with a role of Trans-
porter that fulfills a Slave, the former service can invokes the latter one because
the Master can invoke the Slave in the architecture. Such a design enables the ac-
cess rules be dynamically synchronized with the system. Any changes in the sys-
tem architecture (components or connectors), the logical design (qualification dec-
laration for system components) or the physical status (service binding) can
directly affects the access rules and, finally, the access control decisions.

The above finishes the development and management of the access rules at the
side of the coordinating system. On the other side of the service administration,
the service provider should take explicit actions to join the coordination and ac-
cept the access policy defined at the coordination system, as the autonomy should
be totally reserved. The service connection works here as a delegation mechanism.
For an AirTicktingService from SuperAirline to take part in the coordination,
which means any requestor can access its AirTicktingService as long as it is au-
thorized with the Transporter role by the administration domain of the coordinat-
ing system of TicketingSystem:

TicketingSystem.Transporter <= SuperAirline.AirTicketingService

Let us retrospect doing access control for the service coordination again. When
SuperAirline is about to contribute his AirTicketingService service to the Tick-
etingSystem, it establishes a service connection as shown above. When a request
that has no local policy to grant (or deny) arrives, it consults the TicketingSystem
for the decision. TicketingSystem checks according to the rules generated from
the system state to see whether the requestor plays a role in the coordination which
does has the right to access AirTicketingService. If a positive answer is returned,

186 X.Maetal.

SuperAirline grants the request. Please be noted that the work for coordination-
aware access control is quite simplified in this example to make it easier to under-
stand. And some techniques involved are omitted, such as implanting some ses-
sion identification into the requests when the Value-addedService calls AirTick-
etingService in the context of the coordination. Also, dynamic access control
techniques and the details of the SRBAC model are not made directly tangible in
this example. Please refer to [7] for the details of our work introduced above.

5.4 Summary

To sum up, the introduced work on access control is a step toward the goal of en-
suring the service security in the dependable SOC software paradigm. We try to
build an efficient access control system for SOC from the base access control
modeling to the coordination-scope access control enforcing. To meet the peculiar
protection requirements in coordinating the autonomous services in an open, dy-
namic and non-deterministic environment of Internet, a symmetrical view over the
access control leads to the adapting, enriching and innovating on the conventional
access control models, techniques and mechanisms. With the base model, its ad-
vanced enhancements and lastly the coordination-aware techniques integrated, it
finally shapes a technical framework of the coordination-aware access control ap-
proach. And this work attests to a preliminarily technical scheme to feasibly bridg-
ing the gap between the software system itself and the assurance of its dependabil-
ity that we keep pursuing.

6. Trust management for SOC

The dependability of service-oriented application systems involves much more is-
sues than of traditional systems because they work in a truly decentralized envi-
ronment. Even worse is that generally the information available is incomplete and
inaccurate, which make it very difficult, if possible, to evaluate the services and
system objectively and accurately in the same way as used before.

Firstly, the relationships among the principals involved in the development and
operation of service oriented systems are very complicated. Traditionally, users
specify requirements and developers build system accordingly. There is a straight
forward one-to-one but tightly coupled trust relationship between them. And this
trust is ensured by reliable means of verification and validation. Similar simple
trust relationships exist between developers of different parts of the system and
between developers at different development stages. The software quality control
and assurance in this situation is thus well-defined, mainly concerning about how
well software is designed (quality of design), and how well the software conforms
to that design (quality of conformance) [33]. But in the situation of SOC, in order

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 187

to provide the flexibility required by the open environment, system users, devel-
opers and service providers are greatly decoupled, and new principles such as ser-
vice integrators, brokers, are introduced in. The relationships among them appear
in a many-to-many manner, and may change all the time. In addition, these rela-
tionships are not subject to any centralized management. This complexity, dyna-
mism and autonomy make conventional methods on software dependable analysis
not directly applicable anymore.

Furthermore, with independent interests, preferences and knowledge, different
principles involved in a service oriented system may have difference view of the
system, and thus different view of its dependability. This lack of consensus also
makes the traditional approach, where developers play a leading role in system
construction and dependability assurance, and dependability is mainly measured
by a common set of objective metrics, not appropriate. Instead, a user-centric as-
sessment of the dependability must be adopted, with more subjective and person-
alized metrics.

Take the scenario of our ticket booking service for example. A user, Tom, is
going to use our service. But how can he be confident that our service will satisfy
his needs? Obviously, testing and inspection are not generally feasible here. Sim-
ple answers would be that he frusts the principal (i.e. the company) behind the
service, or indirectly he trusts the recommendation of some independent assess-
ment agency. But what if Tom wants to justify this trust with considerations that
in fact other unfamiliar transportation services are used, and, his personal prefer-
ence can be different from others, e.g., he prefers train to airplane and hates to be
delayed?

With these considerations, a trust management framework is proposed for
SOC. The framework explicitly distinguishes three kinds of trust related relation-
ships, and helps to assess them in a personalized and subjective way.

Classification of trust relationships As shown in the bottom of Fig. 5, there are
three different kinds of direct relationships in SOC.

o Trust relationships between principals. It describes whether or to what extent a
principle trusts another principle. For instance, the user Tom trusts an inde-
pendent service assessment agency as a recommender.

o Confidence relationships between principals and services. It describes how
confident a principal is about a service would satisfy his purpose. For instance,
the company needs to be confident about the service before publish it.

o Dependence relationships between services. It describes how a service is af-
fected by other services under certain coordination logic. For instance, the de-
pendability of our ticket booking service would depend on other transportation
services, and also our architecture would provide certain degree of fault-
tolerance if multiple transportation services of each kind are used.

Indirect relationships can be described with combinations of these three kinds
of relationships. For example Tom’s confidence about an unfamiliar service may

188 X.Maetal.

come from his trust to a recommender and the recommender’s confidence about
the service.

The dependence relationships between services are generally objective, and are
often subject to V&V methods, such as architecture-based software reliability [40,
34] prediction. But the former two kinds of relationships are less tractable, and are
often implicitly assumed in conventional software development. Fortunately, there
are some trust management [6, 5] models originally designed for the authorization
across different security domains, which can help us to solve the similar problems
in the dependability assessment of SOC systems.

)]

. dependence analysis

-

trust analysis i)

“; 7 confidence analysis d%b

© tf

lixtract Z N\ ' 1 Ik Lrae
\ Ny >O >, Lxtract
S0C Trust Model
A !
@ orincipal . "‘“i““ SOC linvi ronment
@D servico ~ - >Q‘se
service — ® ..

- Lrust .‘/./
——»= conlidence N 4@
t"@

. ®
~-» dependence X \

Fig. 5. Trust management framework.

As shown in the upper part of Fig 5, the goal of our dependability assessment is
to derive the confidence relationship between principals and services. But gener-
ally this relationship is co-determined by many other relationships of the three
kinds.

Evaluation of trust between principals A fundamental different character of the
Internet from traditional computing environment is the independency of princi-
pals. The risks of incorporating undependable resources, e.g. low quality services
provided by unprofessional even malicious providers, false information from dis-
honest recommenders, must be reduced as much as possible. How to determine the
trustworthiness of principals is critical to assess a service since its dependability is
computed on the basis of information provided by them. A trustworthiness evalua-
tion model is proposed in [39], which can be used to evaluate trust relationships
among principals dynamically based on direct subjective interaction experiences
and indirect experiences with recommendations. It provides a general approach to
the quantification of trust with a feed-back process that converges as the experi-
ence accumulating. It also reflects the evolution of trust relationships and is im-
mune to non-systematic misleading recommendations.

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 189

Assessment of confidence of principals on services The problem of deciding the
confidence of a principle on a service is twofold. First, the principle may have no
priori knowledge or experience on the service. It is necessary to use the recom-
mendations of other principles. Second, while traditionally a common set of crite-
ria with objective metrics are often used in the dependability analysis, SOC sys-
tem users often have their customized criteria with subjective metrics. Thus the
recommended information, even from a trusted principle, is not fully reliable be-
cause it may be under a different set of criteria. We address this problem as fol-
lows. An ontology-based framework is designed to describe and differentiate cus-
tomized evaluation criteria. Trust recommendation information can be collected
through user’s social network with trust credential chains. Then the information is
synthesized with considerations of recommenders’ trustworthiness and the seman-
tic distance between the evaluation criteria.

Analysis of dependence relationships between services A (composite) service is
commonly built on top of other services. The dependability of the composite ser-
vice depends on dependability of participating services and the coordination logic
among the services. While conventional reliability analysis techniques can be
used, there are still two additional issues to address. First, existing methods usu-
ally require thorough analysis and are thus time consuming, which may not be ac-
ceptable for the quick construction and online evolution of service-oriented sys-
tems. Second, there is a need to find critical service whose dependability is most
important to the dependability of the whole system. Addressing these issues, an
architecture-based approach is developed. With the explicit architectural informa-
tion provided by the coordination model, the approach efficiently computes the
dependence values between the composite service and the participating services.
The confidence on the composite service can be improved effectively by replace
the highly depended services with better ones. More details of this approach can
be found in [41].

7. Conclusion

Service oriented computing is widely recognized for its great potential. But cur-
rently, SOC is still at its early stage. Its maturity depends on the mutual prompting
between economical and technical innovations. Economically there must be viable
business models so that there could be a large number and variety of services,
which is the prerequisite of senseful SOC. Technically, systematic software engi-
neering methods, techniques and supporting platforms are need to meet unprece-
dented challenges including:

e Full fledge self-adaptation support that enable services and service oriented
systems to survive under the open, dynamic and non-deterministic environment
of the Internet.

190 X.Maetal.

o Seclf-management of services and service oriented systems, which helps to mi-
nimize human interactions in administrating the tremendous amount of service.

e Understandable and practical QoS assurance for complex service-oriented sys-
tem in the open and dynamic environment.

In this chapter, we have presented our view on how to build a dependable ser-
vice-oriented system that dynamically adapts to the changing environment and us-
er requirement, and introduced our efforts on the adaptive service coordination
model, the self-adaptive system architecture, the coordination-aware access con-
trol mechanism and the trust management framework, as a step towards a depend-
able software paradigm for SOC.

The approach to self-adaptation taken in this chapter requires a system, which
coordinates a set of services with a logically centralized control, to explicitly
maintain a model of itself and the goals to achieve. The system shall assess its
own behavior and reconfigure itself to adapt to the evolving environment and re-
quirements. Another approach is self-organization, which is often inspired by
some biological and social system, relies on the emergent behavior resulted from
local interactions of a large number of components under simple rules. Self-
organizing systems are truly decentralized and do not have explicit representations
of the system properties or goals [9]. Although some cases exists [25], software
engineering based on self-organization is far from viable because it is generally
very difficult to infer global system properties from the properties of the compo-
nents.

Acknowledgement

The work is supported by the NSFC grant under no. 60736015, 60721002, 60603034, the 973
Program of China under no. 2009CB320702 and the 863 Program of China under no.
2007AA01Z178.

References

[1] Aldrich J (2003) Using Types to Enforce Architectural Structure. PhD thesis, University of
Washington, August 2003.

[2] Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of de-
pendable and secure computing. /[EEE Transactions on Dependable and Secure Computing.
1(1):11-32

[3] Bhatti R, Bertino E, Ghafoor A (2005) A Trust-based Context-Aware Access Control Model
for Web Services. International Distributed and Parallel Databases Journal 18(1): 83-105

[4] Bhatti R, Joshi JBD, Bertino E, Ghafoor A (2004) XML-based RBAC Policy Specification
for Secure Web-Services. IEEE Computer 37(4):41-49

[5] Blaze M, Feigenbaum J, Lacy J (1996) Decentralized trust management. In: Proc. 17th Sym-
posium on Security and Privacy. 164-173

9 Towards A Dependable Software Paradigm for Service-Oriented Computing 191

[6] Blaze M, Feighenbaum J, Keromytis, AD (1999) Keynote: trust management for public-key
infrastructures. In: Christianson B, Crispo B, William S, et al., eds. Cambridge 1998 Security
Protocols International Workshop. Berlin: Springer-Verglag, 59-63

[7] Cao C (2007) On Access Control in Service Computing. PhD thesis, Nanjing University,
2007.

[8] Cheng SW (2008) Rainbow: Cost-effective software architecture-based self-adaptation.
Ph.D. thesis. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

[9] Cheng BHC, de Lemos R, Giese H, et al. (2008) Software engineering for self-adaptive sys-
tems: A research road map. In: Dagstuhl Seminar Proceedings 08031.

[10] Sirer EG, Wang K (2002) An access control language for web services. In: Proceedings of
the Seventh ACM Symposium on Access Control Models and Technologies ACM, New York,
NY, 23-30. doi:10.1145/507711.507715

[11] Ferguson DF, Stockton ML (2005) Service-oriented architecture: Programming model and
product architecture. IBM SYSTEMS JOURNAL 44(4):753-780

[12] Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R. (2001) Proposed NIST
standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3): 224-274

[13] Garlan D, Allen R, Ockerbloom J (1995) Architectural mismatch or why it's hard to build
systems out of existing parts. In: Proceedings of the 17th international Conference on Soft-
ware Engineering 179-185.

[14] Garlan D, Cheng SW, Huang AC, Schmerl B, Steenkiste P. (2004) Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Computer, 37(10):46-54

[15] Garlan D, Monroe RT, Wile D (2000) Acme: Architectural description of component-based
systems. In: Leavens GT, Sitaraman M, eds. Foundations of Component-Based Systems,
Cambridge University Press. 47-68

[16] Hulsebosch RJ, Salden AH, Bargh MS, Ebben PW, Reitsma J (2005) Context sensitive ac-
cess control. In: Proceedings of the Tenth ACM Symposium on Access Control Models and
Technologies (Stockholm, Sweden, June 01 - 03, 2005). SACMAT '05. ACM, New York,
NY, 111-119

[17] Krammer J, Magee J (1998) Analysing dynamic change in distributed software architec-
tures. IEE Proceedings-Software, 145(5):146-154

[18] Lamsweerde AV. (2000) Goal-oriented requirements engineering: a guided tour. In: Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering. Toronto:
IEEE Computer Society, 249—262

[19] Le Metayer D (1998) Describing software architecture styles using graph grammars. [EEE
Transactions on Software Engineering 24(7):521-533

[20] Li N, Mitchell JC, Winsborough WH (2002) Design of a Role-Based Trust-Management
Framework. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy (May 12 -
15, 2002). SP. IEEE Computer Society, Washington, DC, 114.

[21] Lu J, Ma X, Tao X, Cao C, Huang Y, Yu P (2008) On environment-driven software model
for Internetware, Science in China, Series F: Information Science, 51(6):683-721

[22] Ma X, Cao C, Yu P, Zhou Y (2008). A supporting environment based on graph grammar for
dynamic software architectures. Journal of Sofiware, 19(8):1881—-1892.

[23] Ma X, Zhou Y, Pan J, Yu P, Lu J (2007) Constructing Self-Adaptive Systems with Poly-
morphic Software Architecture. In: Proceedings of the 19" International Conference on
Software Engineering and Knowledge Engineering 2-8

[24] Maes P (1987) Concepts and experiments in computational reflection. SIGPLAN Not.
22(12):147-155

[25] Mamei M, Menezes R, Tolksdorf R, and Zambonelli F (2006) Case studies for self-
organization in computer science. Journal of Systems Architecture 52(2):440-460

[26] Martin D, Paolucci M, Mcllraith S, et al. (2005) Bringing Semantics to Web Services: The
OWL-S Approach. In: Cardoso J, Sheth A eds. SWSWPC 2004. LNCS 3387:26 — 42

[27] Medvidovic N, Taylor RN (2000) A classification and comparison framework for software
architecture description languages. IEEE Transaction on Software Engineering, 26(1):70-93

192 X. Ma et al.

[28] Milanovic N, Malek M (2004) Current solutions for Web Service composition. /EEE Inter-
net Computing. November/December 2004:51-59

[29] Papadopoulos GA, Arbab F (1998) Coordination Models and Languages, Advances in Com-
puters 46:330-401

[30] Papazoglou MP, Georgakopoulos D (2003) Service-oriented computing: Introduction.
Commun. ACM 46(10):24-28. doi:10.1145/944217.944233

[31] Papazoglou MP, Traverso P, Dustdar S, Leymann F, Kramer BJ (2006) Service-Oriented
Computing: A Research Roadmap. In: Service Oriented Computing, Dagstuhl Seminar Pro-
ceedings.

[32] Papazoglou MP, van den Heuvel WJ (2005) Web services management: a survey. /EEE In-
ternet Computing 9(6):58 — 64

[33] Pressman S (2005) Sofiware Engineering: A Practitioner's Approach. Sixth Edition.
McGraw-Hill Education

[34] Reussner R, Schmidt H, Poernomo 1 (2003) Reliability prediction for component-based
software architectures, Journal of Systems and Software 66(3):241-252

[35] Samarati P, de Vimercati SC (2001) Access Control: Policies, Models, and Mechanisms. In:
Focardi R, Gorrieri R eds. Revised Versions of Lectures Given During the IFIP WG 1.7 in-
ternational School on Foundations of Security Analysis and Design on Foundations of Secu-
rity Analysis and Design: Tutorial Lectures Lecture Notes In Computer Science, vol. 2171.
Springer-Verlag, London. 137-196

[36] Shaw M (2000) Sufficient correctness and homeostasis in open resource coalitions: How
much can you trust your software system. In: Proceedings of the Fourth International Sofi-
ware Architecture Workshop, IEEE Computer Society, 2000. 46~50.

[37] Shaw M (2002) Self-Healing": Softening Precision to Avoid Brittleness. Position paper for
Workshop on Self-Healing Systems.

[38] Shaw M, Garlan D (1996) Software Architecture: Perspective on an emerging discipline.
Prentice Hall.

[39] Wang Y, Lu J, Xu F, Zhang L. (2006) A trust measurement and evolution model for Inter-
netwares. Journal of Sofiware 17(4):682-690 (in Chinese with English abstract).

[40] Wang W, Wu Y, Chen M (1999) An architecture-based software reliability model. In: Proc.
Of Pacific Rim International Symp. On Dependable Computing

[41] Xu F, PanJ and Lu W. (2008) A Trust-based Approach to Estimating the Confidence of the
Software System in Open Environments. Technical Report. Institute of Computer Software,
Nanjing University

[42] Zhang G, Parashar M (2003) Dynamic Context-aware Access Control for Grid Applications.
In: Proceedings of the 4th international Workshop on Grid Computing 1EEE Computer So-
ciety, Washington, DC.

Chapter 10

Developing Dependable Systems by Maximizing
Component Diversity

Jeff Tian!, Suku Nair, LiGuo Huang, Nasser Alaeddine and Michael F. Siok

Southern Methodist University, Dallas, Texas, USA

Abstract In this chapter, we maximize component diversity as a means to
achieve the goal of system dependability. Component diversity is examined from
four different perspectives: 1) environmental perspective that emphasizes a com-
ponent’s strengths and weaknesses under diverse operational environments, 2) tar-
get perspective that examines different dependability attributes, such as reliability,
safety, security, fault tolerance, and resiliency, for a component, 3) internal pers-
pective that focuses on internal characteristics that can be linked logically or em-
pirically to external dependability attributes, and 4) value-based perspective that
focuses on a stakeholder’s value assessment of different dependability attributes.
Based on this examination, we develop an evaluation framework that quantifies
component diversity into a matrix, and use a mathematical optimization technique
called data envelopment analysis (DEA) to select the optimal set of components to
ensure system dependability. Illustrative examples are included to demonstrate the
viability of our approach.

1. Introduction

The concept of software quality is generally associated with good user experience
characterized by the absence of observable problems and satisfaction of user ex-
pectations, which can also be related to some internal characteristics of the soft-
ware product and its development process (Pfleeger et al., 2002; Tian, 2005). A
quantitative measure of quality meaningful to both the users and the developers is
product reliability, which is defined as the probability of failure-free operations for

1 For correspondence, contact Dr. Jeff Tian, Computer Science & Engineering Dept., Southern
Methodist University, Dallas, Texas 75275, USA. Phone: +1-214-768-2861; fax: +1-214-768-
3085; e-mail: tian@engr.smu.edu.

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0 10, © Springer Science+Business Media, LLC 2009

194 J. Tian et al.

a specific time period or input set under a specific environment (Musa, 1998;
Thayer et al., 1978). Dependability is a broader concept that encompasses relia-
bility, availability, safety, security, etc. as its attributes (Avizienis et al., 2004; Ba-
sili et al., 2004; Laprie, 1992)

Most modern software systems and software-intensive systems, including ser-
vice-oriented systems, are made up of many components or services. Several fac-
tors contribute to overall system dependability, including the dependability of in-
dividual components or services, their collective strengths and weaknesses, the
overall system architecture that may either be static or dynamically composed, the
application environment that may be dynamically evolving and subject to external
disturbances and/or threats, interactions within and beyond system boundary, etc.
It has been recognized that diversity is a critical asset for a system to be dependa-
ble and fault tolerant (Gashi et al., 2007; Lyu and Avizienis, 1992).

In this chapter, we develop a generalized framework where diversity can be
evaluated and maximized for general component-based systems. In doing so, we
focus on the diversity of individual components in terms of their evaluated depen-
dability attributes under diverse operational conditions. We also map internal as-
sessments of these components to external dependability attributes by assessing
their linkage empirically or logically. For a specific set of stakeholders, their val-
ues and preferences can also be used to assess the relative importance and trade-
off among dependability attributes. With this evaluation framework in hand, we
also develop an overall methodology that maximizes system diversity using a ma-
thematical optimization technique called DEA (data envelopment analysis). By
doing so, we hope to achieve our goal of ensuring system dependability via diver-
sity maximization that combines collective strengths of individual components
while avoid, complement, or tolerate individual flaws or weaknesses.

In subsequent sections, we first review basic concepts of dependability and its
context in Section 2. We then present our framework for environment characteri-
zation in Section 3, followed by direct evaluation of component dependability and
diversity maximization in Section 4. We focus on internal attributes as contribu-
tors to dependability and develop an approach to evaluate such internal contribu-
tors directly or map them to external dependability attributes in Section 5. Stake-
holder’s value perspective on dependability and trade-off among dependability
attributes is described in Section 6. Finally, we provide a summary and discuss fu-
ture work in Section 7.

2. Basic Concepts and Context

The International Federation for Information Processing Working Group 10.4
(IFIP WG10.4, see www.dependability.org) defines dependability as “the trust-
worthiness of a computing system which allows reliance to be justifiably placed
on the services it delivers”. It further states that dependability includes as special
cases such attributes as reliability, availability, safety, and security. Others have

10 Developing Dependable Systems by Maximizing Component Diversity 195

also included additional attributes, such as integrity and maintainability as
attributes for dependability, and availability, confidentiality, and integrity as
attributes for security (Avizienis et al., 2004). The concepts of failures and faults
play a very important role in identifying, characterizing, and analyzing the threats
to dependability, with their standard definitions (IEEE, 1990) given below:

e Failure: The inability of a system or component to perform its required func-
tions within specified performance requirements. It is an observable behavioral
deviation from the user requirement or product specification.

e Fault: An incorrect step, process, or data definition in a computer program,
which can cause certain failures.

In the literature, an additional term error is used to denote either a deviation of
the system’s total state as an intermediary between internal faults and external
failures (Avizienis et al., 2004; Laprie, 1992) or as a missing or incorrect human
action that causes the injection of faults (IEEE, 1990; Tian, 2005). Since there is a
general agreement of the definitions of faults and failures, and most means to
achieve dependability can be adequately characterized by related activities tar-
geted at faults and/or failures, such as fault prevention, fault tolerance, fault re-
moval, failure containment, and failure impact reduction, we focus on failures and
faults only in this chapter while leaving out errors to avoid possible confusion.

As stated earlier, this chapter focuses on component diversity and its positive
impact on overall system dependability. Therefore, we will focus on failures
caused by individual and collective components, and faults that can be traced to
those components, either as faults at individual components, or inconsistency (and
by extension, lack of diversity) faults across multiple components. Explicitly ex-
cluded in this chapter are component integration issues that form another major
category of root causes of system failures (Mili et al., 2007; Yacoub et al., 2004).

Different stakeholders will focus on different dependability attributes and dif-
ferent levels of expectations, which requires that dependability being captured in a
specific context (Basili et al., 2004). The events that lead to dependability issues
can be identified and characterized, specific failure types, scope, and impact can
be characterized and analyzed with the help of some concrete measures defined on
observation data, and reactions, such as impact mitigation, recovery, and occur-
rence reduction, can be guided by measurable goals. For example, reliability is
defined for a specific environment (Musa, 1998; Thayer et al., 1978). Similarly,
security can be captured by observable, verifiable attributes related to the context
rather than their hypothesized causes in terms of vulnerabilities, counter measures
and mitigation measures (Mili et al., 2007). Therefore, the context characteriza-
tion would include event characterization and failure characterization that can be
used to characterize observable system behavior and unexpected deviations. In
this chapter, we use the operational profiles commonly used to guide usage based
statistical testing as a concrete and quantitative way for event characterization, as
described in Section 3. Failure characterization can be handled directly with de-
pendability attribute assessment because different types of failures can be mapped

196 J. Tian et al.

to problems associated with different dependability attributes by their failure type,
scope, and impact, as we will elaborate in Section 4.

3. Operational Profiles to Capture Environmental Diversity

The information related to usage scenarios, patterns, and related usage frequencies
by target customers and users of a system can be collected, analyzed and orga-
nized into some models, commonly referred to as operational profiles (OPs). An
OP is a quantitative characterization of the way a software system is or will be
used in field (Musa, 1993; Tian, 2005). Environmental diversity of a software
component can be captured by the OPs it has been or will be subjected to. By
doing so, we can avoid the negative consequences, such as reduced system relia-
bility (Weyuker, 1998), of improper reuse due to different OPs.

3.1 Operational profiles

There are two commonly used types of OPs: Musa’s flat OP (Musa, 1993), a list
of disjoint set of operations and their associated probabilities of occurrence, and
Markov OP (Mills, 1972; Whittaker and Thomason, 1994), a finite state machine
(FSM) with probabilistic, history-independent state transitions.

Figure 1 gives an example Musa OP for the web site www . seas.smu.edu,
listing the number of requests for different types of files by web users and the re-
lated probabilities (Tian and Ma, 2006). This particular OP can also be viewed as
a specialized access report, where individual web pages are grouped by file types
to form individual service units in ranking order.

© .
=1

0.5

0.4

0.3

0.2

0.1

0.0

.gif .htmldirectory .jpg .pdf .class .ps .ppt .css .txt .doc .c .ico

Fig. 1. An operational profile (OP) of requested file types for the SMU/SEAS web site

10 Developing Dependable Systems by Maximizing Component Diversity 197

Figure 2 (left) is a sample Markov OP (Tian and Ma, 2006), with probabilistic
state transitions. For large systems, a collection of Markov chains might be used
as the system OP, organized into a hierarchical framework called unified Markov
models (UMMs) (Kallepalli and Tian, 2001). Various sub-operations may be as-
sociated with each individual state in the top-level Markov chain, and could be
modeled by more detailed Markov chains, such as the one in Figure 2 (right) for
expanded state E. Recognizing the heterogeneous nature of many systems and
their components, functions, and behavior, we extended our UMMs to include
other possible usage models in a hierarchical structure (Tian and Ma, 2006).

Mobile
Station
Initialization

Mobile Station
Control on
Traffic Channel

unable to
receive
paging
channel

Waiting for

Mobile Station

Mobile
Station

Idle ArcT_o

finished
other
tasks

paging
channel
message

Mobile Station
Control on
Traffic Channel

System
Access

making a call

Fig. 2. An example Markov chain (left) and the expanded Markov chain for state E (right)

3.2 Operational profile construction

There are three generic methods for information gathering and OP construction, in
decreasing accuracy: actual measurement of usage at customer installations, sur-
vey of target customers, and usage estimation based on expert opinions. Fortunate-
ly, the availability of existing system logs or traces offers us the opportunity to
collect usage information for OP construction without incurring much additional
cost (Tian and Ma, 2006). TAR (top-access report) and CPR (call-pair report) can
be extracted from such system logs or traces and serve as the basis for our OP
construction. TAR lists frequently used top-level operations and associated proba-
bilities. CPR lists call-pairs (transition from one individual state to another) and
the associated frequencies. For new systems or applications, similar information

198 J. Tian et al.

about the “intended” customer usage can be obtained by surveying potential cus-
tomers or from experts.

For Musa OP, there are two standard procedures for OP construction. The first
one follows a stepwise refinement to construct a series of increasingly detailed
profiles: customer profile, user profile, operational mode profile, functional profile,
and operational profile (Musa, 1993). The second one identifies operation initia-
tors, chooses tabular or graphical representation, comes up with operations list,
measures occurrence frequencies, and obtains occurrence probabilities (Musa,
1998). For Markov OP, we can follow the standard procedure for constructing the
underlying FSM first, and then obtain probability information for the state transi-
tions. For our hierarchical OP, TAR can be directly used as our top level flat OP.
We can traverse through CPR for strong connections among TAR entries, and
construct an UMM for each of these connected groups. This strategy have been
successfully applied, including: flat OP for cartridge support software from Lock-
heed-Martin used by fighter pilot and support personnel, and hierarchical usage
modeling for mobile communications and for web-based applications (Kallepalli
and Tian, 2001; Tian, 2005; Tian and Ma, 2006).

3.3 Use of OP to capture environmental diversity

The different types of operational environments a component has been subjected
to during product development and in prior operations can be used to characterize
the environmental diversity for this component. There are several types of opera-
tional environments: static, transient, recurrent, and dynamic environments, which
may affect our choice of appropriate OPs to capture environmental diversity.

In a static environment, each operation has a fixed probability of being in-
voked, and the overall operational sequence can be specified similarly. These
probabilities are time invariant. For this type of environment, a single OP, typical-
ly in the form of a Musa OP, would be sufficient for our component and system
dependability evaluation. However, because each component may only provide a
limited number of functions or services, this system level OP may need to be cus-
tomized or projected to the operations list for a specific component.

A transient environment can be specified by a single Markov OP or a single set
of UMMs, with one or more sources and one or more sinks. One starts from a
source state, goes through a sequence of states with pre-determined probabilities,
and will eventually end up in a sink state. Many non-recurrent executions or ser-
vices consisting of multiple stages would be suitable for modeling using such tran-
sient Markov chains.

A recurrent environment is one with recurrent or perpetual state transitions,
which can also be specified by a single Markov OP or a single set of UMMSs. As
an important subset of recurrent environment, in a stationary environment, an
equilibrium can be reached in a Markov chain (Karlin and Taylor, 1975), with the
probability of leaving a system state balanced by the probability of entering the

10 Developing Dependable Systems by Maximizing Component Diversity 199

state from other states collectively. The stationary probability &; for being in state i
can be obtained by solving the following set of equations:
;= Ziﬂ?ipi/‘, > 0, and Zini = 1,

where p;is the transition probability from state i to state j. The stationary probabil-
ity m; indicates the relative frequency of visits to a specific state i after the Markov
chain reaches this equilibrium. In this case, the stationary behavior of the system
can be reduced to a distribution similar to those used in Musa OPs. Another im-
portant subclass of recurrent Markov chains is periodic chains, where instead of
converging to a unique set of values for { m; }, the values might be varying with a
fixed periodicity to form a periodic chain.

A truly dynamic environment would not only involve system state changes but
also probability changes, coupled with many possible unanticipated changes or
disturbances, which may also include dynamically created or destroyed system
states. In this case, a single Markov OP or a single set of UMMs will not be ade-
quate to model the environmental diversity. Instead, some mega-models or mega-
chains are called for. However, a practical solution to diversity assessment would
favor solutions based on proven models. Therefore, we use a sequence of snap-
shots to model the environmental diversity for this situation while balancing the
needs for accurate characterization of system changes with the overhead of han-
dling large numbers of snapshots. Each snapshot will be a Musa OP, a Markov
OP, or a set of UMM s.

For each OP, we can perform a specific dependability evaluation for each com-
ponent under this specific environmental context. The evaluation results would
reflect the component dependability as well as environmental diversity of the
specific components. If a single OP is defined for a system, a single set of depen-
dability evaluation results can be obtained for each candidate component and
compared to others for component selection and system dependability maximiza-
tion. For a dynamic environment, OP-dependability pairs will be used as input to
evaluate component diversity to maximize overall system dependability. These
topics will be discussed next.

4. Assessing Dependability Attributes and Maximizing Diversity

Once the environmental context is defined for a component, we can then proceed
with direct assessment of the different attributes of dependability for a given com-
ponent. This assessment will yield results that can be further analyzed to maxim-
ize overall system diversity and dependability using a mathematical optimization
technique called data envelopment analysis (DEA).

200 J. Tian et al.

4.1 Identifying dependability attributes

As stated in Section 2, dependability attributes may include reliability, availabili-
ty, safety, security, integrity, maintainability, confidentiality, fault tolerance, resi-
lience, etc. In addition, different stakeholders will focus on different attributes and
different levels of expectations. The dependability issues can be identified and
characterized by analyzing the system events and failures. Since our operational
profiles (OPs) described in the previous section will be used as a concrete and
quantitative way for event characterization, we now turn to failure characterization
and the related dependability assessment for individual dependability attributes.

The identification of dependability issues and related failures will be carried out
with direct involvement of customers, users, or domain experts. This effort will
yield a list of dependability attributes that would be meaningful to specific cus-
tomers under a specific market environment. For example, for web-based applica-
tions, reliability, usability, and security were identified as the primary quality
attributes, and availability, scalability, maintainability, and time to market were
identified as additional important quality attributes (Offutt, 2002). Among these
attributes, the majority can also be identified as relevant dependability attributes
for this context, including reliability, security, availability, and maintainability.

4.2 Assessing individual dependability attributes

Once such dependability attributes are identified, they can be measured or eva-
luated based on system logs, execution traces, or other data sources recorded or
measured during normal operational use or during product development and test-
ing. Since dependability needs to reflect the context of customer usage, usage-
based statistical testing guided by the operational profiles would be assumed if we
are evaluating dependability using data from software development and testing
(Musa, 1998; Tian, 2005). For example, product reliability can be directly meas-
ured for in-field operations and summarized in the measure MTBF (mean-time-
between-failures). During OP-guided software testing, the failure observations
over time or over different input states can be fitted to time-domain software relia-
bility growth models (SRGMs), input-domain reliability models (IDRMs), or tree-
based reliability models (TBRMs) to obtain such measures as failure rate or inten-
sity, expected number of cumulative failures, MTBF, etc. (Musa, 1998; Thayer et
al., 1978; Tian, 2005).

Similarly, other dependability attributes can be measured and obtained accor-
dingly. For example, MTTR, or mean-time-to-repair, can be a summary measure
of maintainability; and availability can be defined and measured by
MTBF/(MTBF+MTTR). For some dependability attributes, such as safety and se-
curity, a direct quantification may be difficult. However, at least some rating in
terms of levels using an ordinal scale is possible. As a general rule, all these indi-

10 Developing Dependable Systems by Maximizing Component Diversity 201

vidual dependability attributes can be assessed by analyzing the corresponding
failures and their corresponding scope and impact. Therefore, for each component
under each OP, this step would yield a dependability vector whose individual ele-
ments are the corresponding values of assessment results for specific dependability
attributes. For both component diversity evaluation and its extension to service di-
versity evaluation, this vector would represent independent interests of services or
desirable properties for components. This vector is directly analyzed using DEA
below. In the case conflicting interests or desirable characteristics exist, a value
assessment based on stakeholders’ interests, priorities, and trade-offs can be per-
formed, as we will present in Section 6.

4.3 Diversity maximization via DEA (data envelopment analysis)

Data Envelopment Analysis (DEA) is a non-parametric analysis method used to
establish a multivariate frontier in a dataset, a best practice frontier. It uses linear
programming techniques to measure the efficiency of Decision Making Units
(DMUs) using a comparison of a weighted sum of process outputs to a weighted
sum of inputs (Charnes et al., 1994), which is supported by software tools includ-
ing Pioneer II used in the example below (Barr, 2004). Recently, it has been ap-
plied to evaluate technical efficiency and performance for software projects (Her-
rero and Salmeron, 2005; Siok, 2008).

The DEA method requires the use of a production efficiency model, as illu-
strated in Figure 3. This is a conceptual model of the production system that iden-
tifies the inputs to and outputs from the software production process under study.
Process inputs, those items needed to effect the design and development of the
software, are identified on the left side of the model. Process outputs, the results
or products produced as a result of executing the software process, are listed on
the right. When executed, the DEA model will attempt to minimize inputs and
maximize outputs. So, model inputs and outputs were selected such that these are
desirable consequences for these model variables.

Inputs Outputs
Software Total Size
Software Change Size
Software Development Ho
Software Test Hours
Software Schedule

Software Reliability At Release
Defect Density!
Defects Removed

Efficiency
Output / Input

Fig. 3. DEA and Production Efficiency Model

Figure 4 is an illustrative example using only two output variables, component
reliability captured by the measure MTBF and component security ratings for in-
dividual components A, B, C, D, and E. In this case, we would like to maximize
both reliability and security, but without a specified tradeoff between the two.
DEA would yield components A, C, and E on the efficiency frontier, and the other

202 J. Tian et al.

components B, and D not on the frontier. As we can see, B is dominated by C, i.e.,
C is better than B in both reliability and security. On the other hand, D is dominat-
ed by a linear combination of C and E, although C and E individually would not
dominate D. So, in this example, components A, C, and E would receive the max-
imal score of 1, and will be provided as premier choices for system composition to
maximize system dependability.

Security

Reliability

Fig. 4. DEA analysis of two dependability attributes reliability and security

4.4 A comprehensive DEA example

Thirty-nine completed avionics software development projects were studied earli-
er (Siok, 2008) and thirteen of them are included in the following DEA example.
All software is implemented as embedded, real-time scheduled operations with
hard and soft real-time tasks as well as some background processing. The metrics
used in the DEA example include three inputs and two outputs. The inputs include
1) the change size that counts the effective lines of code changed from the pre-
vious version of software, 2) total labor measured in labor-hours spent in all de-
velopment activities, and 3) software schedule measured in actual calendar months
used to develop and release the software. All of the software projects in this study
developed new software products derived from previous versions of the same,
therefore change size is more meaningful than total size. The outputs include 1)
total defects discovered during peer reviews, walkthroughs, inspections and test-
ing activities, and 2) software reliability metric mean-time-to-failure (MTTF) at
release computed by fitting the defects data to some SRGMs.

Figure 5 illustrates the results when running the 3-input, 2-output production
efficiency DEA model on the 13 project dataset. Software Project Identifier (ID)
(i.e., the DMU number) and efficiency score are provided. The software projects
with a score of 1 (i.e., DMUs 13, 15, 22 and 34) were best at minimizing Total
Labor, Software Schedule, and Change Size Code in favor of maximizing Soft-
ware Reliability at Release (measured as MTTF) and total defect removed during
product development. These projects are on the best practice frontier for this data-

10 Developing Dependable Systems by Maximizing Component Diversity 203

set. The other projects were not efficient in comparison. All these projects can al-
so be sorted in rank order in tabular form.

DEA Software Project Efficiency
— CI Projects, AR-I-V Maodel -

L]

1 P &
* e *

Software Project ID

Fig. 5. CI Projects DEA Efficiency

4.5 Other considerations for diversity maximization

In the above application of DEA, diversity is maximized due to the underlying as-
sumption that each attribute constitutes an output variable, who’s values are to be
maximized in coordination with other input and output variables. To enhance the
preference for diverse components, we could also introduce an explicit diversity
attribute, which can be independently evaluated. For example, a baseline can be
defined ahead of time, and each component’s diversity score can be assessed with
respect to this baseline. Let b; be the baseline score for dependability attribute i,
then a component ¢ with corresponding dependability attribute scores {c;} can then
be calculated as Y (|c; — b; |). Alternatively, {b; } can be calculated from the mov-
ing average of the current components that have already been selected or eva-
luated.

For an environment that can be modeled by a single OP or a single set of Mar-
kov chains, DEA as described above can be directly used to maximize component
diversity and the DEA score can be consulted as a primary input for component
choice decisions. However, as stated in Section 3, a dynamic environment might
require us to use a series of OPs as snapshots in a sequence to capture the envi-
ronmental context. There are essentially two ways we can extend the above DEA
analysis approach for this environment:

e If dynamic substitution and re-assembly of components is supported in the
composite system, we can then treat each snapshot OP separately and make the

204 J. Tian et al.

optimal choices locally. This would resemble re-evaluation of all the compo-
nents for their dependability attributes for each OP, and then making a series of
selections of the optimal components for system composition for that specific
OP to achieve optimal diversity.

e If the composite system should remain stable, i.e., same components chosen
will be used throughout the dynamic evolution of the system, we still need to
re-evaluate all the components for each OP, but the selection will be a global
decision based on the overall performance of individual components. Essential-
ly, the whole matrix with the Cartesian product of dependability attributes and
OPs will be flattened out, with each entry as an output variable in the global
DEA. For each OP, the selection might be sub-optimal instead of optimal.

In practical applications, the balance between the desire for optimality and re-
duced re-assembly cost might also play a role in which strategy above will be
used, or using a mixed strategy that combines elements of the two. In addition, the
computationally intensive optimization with DEA should also be taken into con-
sideration, particularly for runtime evaluation of candidate components or services
before dynamic binding. Simplified models with simpler production efficiency
functions using fewer input/output variables or approximate solutions should be
considered to achieve a balance between desired accuracy, reduced overhead, and
timeliness of decisions.

5. Diversity: Internal Perspective

Under many circumstances, direct measurement and assessment of component de-
pendability outlined above might not be available, feasible, or cost-effective. For
example, during the development process, we do not have a finished system or its
components yet. Sometimes, tight performance constraints or environmental sensi-
tivity due to the critical or confidential nature of the application might also prevent
the direct in-field measurement of component dependability. Under such cir-
cumstances, indirect assessment via internal contributors is needed.

5.1 Internal diversity as contributors to system dependability

As described in Section 4, direct dependability assessment typically takes the form
of analyzing failures and their corresponding type, scope, and impact. Since there
is a general causal relationship between faults and failures, indirect system depen-
dability assessment can be carried out by assessing the faults and their characteris-
tics. In fact, the assumption of fault diversity has been the cornerstone for software
fault tolerance, particularly in the generic technique called N-Version Program-
ming (NVP) (Lyu, 1995). By ensuring fault diversity, not every version or every

10 Developing Dependable Systems by Maximizing Component Diversity 205

component fail on the same input under the same operational environment, thus
resulting in improved system dependability.

Researchers have work on increasing the product and process diversity in the
hope of improved fault tolerance. For example, the use of independent teams, di-
verse specification and implementation methods, and management controls pro-
duces diversity of faults for improved reliability and dependability (Lyu, 1995;
Lyu and Avizienis, 1992). As a concrete example, execution diversity, design di-
versity, data diversity, and configuration diversity have been shown to greatly im-
prove fault tolerance of database management system constructed using several
commercial-off-the-shelf SQL database servers (Gashi et al., 2007). When securi-
ty is concerned, the fault concept needs to be expanded to include general vulne-
rabilities, and security-based testing is critical to ensure that counter measures and
mitigation measures can address those vulnerabilities (Mili et al., 2007).

On the other hand, software faults can be caused by many factors, some more
controllable than others. Much of the research in software measurement and quali-
ty improvement has focused on establishing the predictive relationship between
software faults and various measures of software products and processes (Basili
and Perricone, 1984; Fenton and Pfleeger, 1996). For example, much of the work
on software complexity strives to establish the positive correlation between fault
count or fault density and complexity. Much of the software quality improvement
research has focused on identifying high risk or fault-prone areas for focused and
cost-effective remedial actions (Munson and Khoshgoftaar, 1992; Tian, 2005).

Based on the above discussion, we next develop two generic ways to analyze
internal diversity in our overall framework:

e Fault-failure mapping for dependability diversity assessment: When fault in-
formation is available, a straightforward fault-failure mapping can be employed
to map the faults into failures under a specific environment characterized by
our operational profile. Thereafter, the same evaluation technique based on
failure analysis and dependability maximization using DEA on individual de-
pendability attributes described in Section 4 can be applied.

e [Internal diversity assessment. When fault information is unavailable, we can
consider using various other software measurement data to perform an indirect
assessment of component and system diversity and dependability.

One requirement of this approach, as with all internal assessment, is the availa-
bility of such internal information as internal faults and other internal measure-
ment data. This requirement might limit the use of such assessments, particularly
for service computing where services are independently developed, deployed, and
maintained without allowing us to access internal characteristics.

206 J. Tian et al.

5.2 Analysis of internal diversity and fault diversity

In the indirect dependability diversity assessment via internal diversity analysis,
measurement data could include component internal characteristics, such as size,
complexity, etc., as well as process, people, technology, and other characteristics.
These measurement data are usually more readily available during product devel-
opment and composition. We can use such measures and related diversity scores
instead of component dependability scores as input data matrix for use with our
diversity maximization using DEA described in Section 4. Notice here there are
some complications involved because some of the measurement are simply no-
minal or categorical instead of ordinal or quantitative, such as the labeling of dif-
ferent processes, design methodologies, and implementation technologies used. A
diversity score comparing them to some baseline, either a static baseline or a run-
ning average type of baseline need to be defined before DEA can be applied. On
the other hand, software product metrics, such as size and complexity, are quantit-
ative, and can be used directly as input to DEA.

One drawback of this indirect diversity maximization is the generally weak and
sometimes complicated empirical relationship between such diversity and system
dependability. Therefore, if fault data are available, we should try our best to map
them to failures, and then use direct diversity assessment and maximization tech-
nique described in Section 4. Even if this mapping is not possible for lack of oper-
ational profile or other alternative contextual information that substantiates the
causal relationship between faults and failures, direct fault diversity maximization
is still preferred to internal diversity maximization above. In this case, some fault
classification and analysis scheme, such as orthogonal defect classification and its
recent development (Chillarege et al., 1992; Ma and Tian, 2007), can be used to
provide input data to be directly analyzed by DEA. Again, we might involve some
categorical information such as fault type. A fault diversity scoring scheme similar
to that for internal diversity needs to be developed for this purpose.

5.3 Fault-failure mapping for dependability diversity assessment

Many defect-tracking tools and associated defect repository are used in industry
during product development and maintenance to help track and manage defects in
an effective way. If we evaluate their potential impact based on defect severity and
likely usage scenarios, it would give us corresponding failure data, which can then
be evaluated for dependability as we described in Section 4. Besides the raw de-
fect data, the operational profile and the defect priority list need to be constructed
to help us assess fault exposure and severity.

This mapping was applied to a deployed web application product “A”, an on-
line ordering application from the telecommunications industry that processes a
couple of million requests a day (Alaeddine and Tian, 2007). It consists of hun-

10 Developing Dependable Systems by Maximizing Component Diversity 207

dreds of thousands of lines of code and utilizes IIS 6.0 (Microsoft Internet Infor-
mation Server) and was developed using Microsoft technologies such as ASP, VB
scripts, and C++. It provides a wide range of services, including: browse available
telecom services, view accounts information, submit inquiries, order new services,
change existing services, view order status, and request repair. The web anomalies
are divided into categories based on the severity, and weights assigned to each of
these categories by domain expert in Table 1.The list below details the individual
steps involved in this fault-failure mapping procedure:

Table 1. Anomaly priority list

Impact Description Weight
Showstopper Prevents the completion of a central requirements 100%
High Affects a central requirement and there is a workaround 70%
Medium Affects non-central requirement and there is no workaround 50%
Low Affects non-central requirement for which there is a workaround 20%
Exception Affects non-conformity to a standard 5%

1. Classify the faults that are extracted from anomaly repository and find the top
classes of faults. Figure 6 shows the Pareto chart for these anomaly classes. The
top three categories represent 76.50% of the total defects.

2. Based on the data from web access logs, find the number of hits per server per
day and calculate the total number of transactions. For product “A”, the number
of hits was 235,142 per server per day with an estimated 40 hits per transaction
on average. Therefore, the number of transactions per day per server is
235142/40 = 5880.

35%
30% A
25% 1

©
s 20% 1
F 15% A —
S 10% — —
s o H H T —
° 0% T T T T . ——
: o @) @
AN S
5\ & o N &) S}
EXP N QR
N & N N W
906 \\{’J \6\ @ @
2 =
\(\\
C,@Q Fault class

Fig. 6. Pareto chart for fault classes

208 J. Tian et al.

3. Use the defined operational profile and the number of transactions calculated
above to determine the number of transactions processed every day for each
operation using the following formulas:

Number of Operational Transactions (operation)

= Total Transactions * Operational probability (operation)
The operational profile is given by the operation probability column for each
operation in Table 2 based on customer usage data for “A”. We then calculated
the number of transactions for each operation in Table 2.

Table 2. Operational profile and number of operational transactions

Operation Operation Probability # of Operational Transactions
New order 0.1 588
Change order 0.35 2058
Move order 0.1 588
Order Status 0.45 2646

4. Use the defined priority list with the data from steps 1 and 3 to calculate the
failure frequency of the faults’ impact per each operation within the operational
profile using following formula:

Failure frequency (operation, priority)
= # Operational Transactions (operation) * priority list _weight (priority)

Table 3 shows the failure view of the order status for product “A”. This means any
order status showstopper produces 2646 failures per day per server for product
“A”. Similar tables can be calculated for other operations to build the complete
failure view of the anomalies.

Table 3. Failure view of order status

Application Operation Impact # Operational Transactions Failure Frequency
Order status Showstopper 2646 2646
Order status High 2646 1852
Order status Medium 2646 1323
Order status Low 2646 529
Order status Exception 2646 132

These steps map individual faults into potential failure instances, effectively
providing an assessment of fault exposure under this usage environment defined
by the operational profile. We also found that defect data repository and web
server log recorded failures have insignificant overlap, leading to our decision to
use both for effective reliability improvement. When we prioritized the testing by
focusing on risk areas, we first fixed faults based on the given priority queue rank,

10 Developing Dependable Systems by Maximizing Component Diversity 209

so we could achieve better cost-efficiency in reliability improvement. By fixing
the top 6.8% faults, the total failures were reduced by about 57%. The correspond-
ing reliability improved from 0.9356 to 0.9723. Similarly, related failure characte-
rization and analysis described in Section 4 can be carried out for evaluating other
dependability attributes. Therefore, this fault-failure mapping allows us to eva-
luate component dependability and to use the evaluation results as input to max-
imized component diversity for overall system dependability maximization.

6. Diversity: Value Perspective

Direct measurement and assessment of system/software dependability might not
capture what project success-critical stakeholders truly care about. The universal
one-size-fits-all software dependability metrics are unachievable in most project
situations. Value dependencies vary significantly by stakeholders and situations,
making statements such as “Your system has a software reliability rating of 0.613”
usually meaningless. Occasionally, a very stable organization can develop and
manage to an organization-specific software reliability metric whose change from
0.604 to 0.613 or from 0.621 to 0.613 will be highly meaningful. But in most situ-
ations, stakeholder and situation differences make such single software dependa-
bility metrics infeasible.

6.1 Stakeholder value dependencies on dependability attributes

Mapping dependability attributes to value-based perspective becomes more mea-
ningful to target success-critical stakeholders. Table 4 provides a top-level sum-
mary of the relative strengths of dependency on information system dependability
attributes, for classes of information system stakeholders exhibiting different pat-
terns of strengths of dependency (Huang, 2006). Its initial portions were obtained
from empirical analysis of different classes of information system stakeholders’
primary concerns during win-win requirements negotiations. The dependency rat-
ings refer only to direct dependencies. For example, system developers, acquirers,
and administrators are concerned with safety or security only to the extent that a
system’s information suppliers, users, and dependents are concerned with them.
And information suppliers and system dependents are only concerned with relia-
bility and availability to the extent that these help provide their direct concerns
with security and safety. Value-based dependability analysis explicitly considers
cost and schedule as dependability attributes.

210 J. Tian et al.

Table 4. Information system top-level stakeholder value dependencies on dependability
attributes

Stakeholder Classes
Info.
o] Consumers | ~ 2 Z
Dependability (& |& o | S w g £ 5 >
. = P X E.
Attributes = E|ES S) Mission £% | & =4 E =
=o|lec|(d S S e S =R a 5
e |2 EB(= <] =B 5 =] = e
= 2F1% 2§ B |5 S| s g | 5
73 g2 |25 | 4 Iz 7 g @
= |8 % S
0 1= w
=
Protection
Safety ol ok ok
Security * ok ok i ok
Privacy *% w3k * ®
Robustness
Reliability #* * ok o m =
Availability * * ok oK * *
Survivability * * ok ok * *
Quality of
Service
Performance B ok * *x ¥ ¥
Accu(acy& . s oo " s .
Consistency
Usability * * ok ok ek m
Evolvability * *¥ * * = * o
Interoperability Hok * ok
Correctness * P
Cost * oS
Schedule * % * * e oy
Reusability ok * ¥
Critical * Significant () Insignificant or indirect

6.2 Quantitative model for value-based dependability ROI analysis

The Value-Based Software Dependability ROI analysis model (Boehm et al. 2004;
Huang, 2006) integrates the cost estimating relationships (CER’s) from the Con-
structive Cost Model COCOMO 1I (Boehm et al., 2000); the software quality
attribute estimating relationships (QER’s) from the Constructive Quality Model
COQUALMO (Steese et al., 2002); and the value estimating relationships
(VER’s) supplied by the system’s stakeholders.

A typical value-versus-availability relationship can appear as a production
function as shown in Figure 7. Below a certain level of investment, the gains in
availability don’t avoid bankruptcy like Ashton-Tate DBase-4. Beyond this level,
there is a high returns segment, but at some point, incremental gains in availability
don’t affect users’ frustration levels, resulting in a diminishing-returns segment.

10 Developing Dependable Systems by Maximizing Component Diversity 211

The initial availability VERs involve simple relationships such as the operational
cost savings per delivered defect avoided, or the loss in sales per percent of the
system downtime, shown as the linear approximation of a particular segment of
production function in Figure 7. Many organizations providing e-services also use
such relationships to measure loss of revenue due to system downtime. For exam-
ple, on the higher side, Intel estimates its loss of revenue as $275K ($US) for
every hour of order processing-system downtime; other companies estimate
$167K (Cisco), $83K (Dell), $27K (Amazon), $8K (E*Trade), and $3K (Ebay).

+ Full Value

Lingar oo
Approximation

Value ($)

Revenue loss per hour system downtime:
[Demillo 2001]
Intel: $275K
Cisco: $167K
Dell: $83K
Amazon.com: $27K
E*Trade: $8K
Ashton-Tate DBase< ebay: $3K
I
} 4
Investment High-Retums Diminishing Returns 1.0

Fig. 7. Typical value estimating relationships (VERs) of availability

Based on such value-based quantitative model, dependability ROI analysis can
be performed for different types of software systems. Figure 8 compares the avail-
ability ROI analysis results of two different types of software systems: the normal
business Sierra Mountainbikes Order Processing System and mission-critical
NASA Planetary Rover (Huang, 2006). The trend of the Order Processing System
is in a dashed line and that of the Planetary Rover is in a solid line. Thus we see
that different mission situations lead to different diminishing returns points for the
business application, whose ROI goes negative in going from a High to a Very
High RELY rating; and for the planetary rover application, whose positive ROI is
sustained through Very High, but not through Extra High.

VBSQM ROI Analysis Results On Increasing Availability Investment Levels
(starting from the baseline investment level: Nominal)

1 Q32
. L2

N->H “H->VH VH->XH
At -0.72% 7 === - T2y0.98

-1.0
27 Availability Investment Levels (RELY)

* 7'~ *Sierra Order Processing
b * Planetary Rover

Fig. 8. Comparing the availability ROI analysis results of Sierra Mountainbikes Order
Processing System and NASA Planetary Rover

212 J. Tian et al.

Dependability ROI analysis can also be performed on different operational sce-
narios within the same software system. Multiple stakeholder negotiation of
NASA/USC Inspector Scrover (ISCR) system goals involves a mix of collabora-
tive win-win option exploration with prototyping and analysis of candidate op-
tions. Here, the value-based quantitative dependability model can be used to help
the stakeholders determine how much availability is enough for the three primary
classes of ISCR scenarios. For instance, there are 15 KSLOC of software for mis-
sion-critical scenarios such as Target Sensing and Target Rendezvous. Its cost per
instruction of a Nominal COCOMO II Required Reliability level is $6.24/LOC (at
graduate-student labor rates), leading to a nominal cost of $93.6K. A failure in the
mission-critical software is likely to cause complete contamination and replace-
ment of the robot and the lab, with an impact equal to the $2.5M of an entire lab.
A failure and loss of availability of the online-operational ISCR scenarios (i.e.,
display continuous video images and sensor data to operator) would require repair
and rerun of the mission, possibly losing $200K of lab equipment. A failure of
post-mission data analysis would require debugging, fixing, and regression testing
the software, typically costing about $14K. Figure 9 summarizes the Availability
ROI analysis results for the ISCR system (Huang, 2006). From a pure calculated
ROI standpoint, one could achieve some potential savings by interpolating to find
the availability-requirement levels at which the ROI goes from positive to nega-
tive, but it is best to be conservative in a safety-related situation. Or one can iden-
tify desired and acceptable availability levels to create a tradeoff space for balanc-
ing availability with other dependability attributes.

729 488 [
1t Online- Mission- Critical
Operational
ROI
15
0 -.03
Post-Mission
Data Analysis
-.81
| | -.98 N
-1 i ‘ | >
RELY Increase Nom — H H—->VH VH - XH
Cost Increase 0.10 0.15 0.24
Availability 0.993 0.9998 0.99993

Fig. 9. Summary of VBSQM ROI analysis of ISCR Increment 3 availability goals

6.3 Tradeoff analysis among dependability attributes

Stakeholder value dependencies on software dependability attributes are often in
conflict and require negotiated solutions. Furthermore, multi-criterion decision so-

10 Developing Dependable Systems by Maximizing Component Diversity 213

Iutions are complicated by tradeoff relations among dependability attributes. Many
dependability attributes reinforce each other. An unreliable system will not be
very secure; a poorly-performing system will not be very usable. On the other
hand, many conflicts arise in trying to satisfy multiple quality criteria. Complex
security defenses slow down performance and hamper usability. Fault tolerance
solutions spread information around and complicate security defenses, along with
adding performance overhead. Tightly-coupled performance optimizations com-
plicate the achievement of evolvability and reusability, as well as aspects of secu-
rity and fault tolerance. All of the above add to project costs and schedules. These
tradeoff relations complicate the ability to find solutions that satisfy a combination
of dependability attribute levels.

Figure 10 presents the COCOMO II tradeoff analysis of three dependability
attributes “cost, schedule, and reliability” for a software project with 100 KSLOC.
It clearly shows the “cost, schedule, quality: pick any two” effect (Huang and
Boehm, 2005). For example, suppose that the project wants a High RELY level
(10K-hours MTBF) and a 20-month delivery schedule within a budget of $5.5M.
Unfortunately, a High RELY level and a 20-month schedule require a budget of
$7.33M. For a cost of $5.5M, the project can get a High RELY level and a deli-
very schedule of 23.5 months, or a 20-month delivery schedule but a Low RELY
level. The three circles in Figure 10 represent the three resulting “pick any two”
points. On the other hand, the project can apply the Schedule-Cost-Quality as In-
dependent Variable (SCQAIV) strategy to determine a “pick all three” solution
(Boehm et al., 2002). This is done by prioritizing the product features and deter-
mining what quantity of top-priority features can be developed as an Initial Opera-
tional Capability (IOC) satisfying the desired schedule, cost, and MTBF goals. Us-
ing the COCOMO II Most Likely and Pessimistic estimates, this can be done with
50% confidence for a 90-KSLOC IO0C or 90% confidence for a 77-KSLOC IOC.

\%

For 100-KSLOC set of features:
can “pick all three” with 77-KSLOC set of features

Cost ($M)
D = N W A D~ @ w0

0 5 10 15 20 25 30 35 40 45 50
Development Time (Months)
(RELY. MTBF (hours))

——(VL, 1)
= 10) O - Cost/Schedule/RELY:
pick any two™ points
—a&— (N, 300)

—3¢—(H, 10K)
—%— (VH, 300K)

Fig. 10. COCOMO 1II Cost/SCED/RELY tradeoff analysis (100-KSLOC Project)

214 J. Tian et al.

7. Conclusions and Future Work

In this chapter, we developed a generalized and comprehensive framework where
component diversity can be evaluated for general component-based systems and
system dependability can be maximized. We then employed a mathematical opti-
mization technique called data envelopment analysis (DEA) to select the optimal
set of components that maximizes component diversity based on their individual
dependability and diversity evaluation results. Illustrative examples were included
to demonstrate the viability of our approach. Component diversity is examined
and maximized from four different perspectives:

e Environmental perspective that emphasizes a component’s strengths and weak-
nesses under different operational environments. We examined different types
of operational environments, ranging from static, transient, recurrent, to dy-
namic environments and used different types of operational profiles (OPs)
ranging from Musa’s flat OPs, Markov OPs, Unified Markov Models, and their
combination in a time series to capture this environmental diversity and provide
the operational context for dependability evaluation.

e Target perspective that examines different dependability attributes, such as re-
liability, safety, security, fault tolerance, and resiliency, for a component under
a specific OP. We developed an evaluation framework based on analysis of
failure type, scope and impact, which quantifies component dependability
attributes into a vector for a specific OP or a matrix for a set of OPs
representing snapshots of a dynamically changing environment. We then em-
ployed DEA to select the optimal set of components to ensure system dependa-
bility by maximizing component dependability diversity.

e [nternal perspective that focuses on internal contributors to dependability when
component dependability is not directly measurable or not yet available. We
developed two generic methods to handle internal diversity: 1) direct use of in-
ternal diversity evaluation results for component selection using DEA, and 2)
mapping of internal faults to external failures for related dependability evalua-
tion and diversity maximization through the use of OPs and domain expert
judgment about fault exposure and impact.

e Value-based perspective that focuses on a stakeholder’s value assessment of
different dependability attributes under specific OPs. For a specific set of
stakeholders, their values and preferences were used to assess the relative im-
portance and trade-off among the dependability attributes. Compared to diver-
sity maximization via DEA directly on the dependability vector, value-based
perspective customizes the production efficiency function in DEA to a specific
stakeholder’s quantified preferences among multiple dependability attributes so
that an optimal choice of components can be made.

The first three of the above perspectives resemble the classification of quality
in use, external and internal metrics of software product quality defined in
ISO/IEC standard 9126 (ISO, 2001). Our perspectives were customized for de-

10 Developing Dependable Systems by Maximizing Component Diversity 215

pendability attributes and their evaluation and analysis for components and sys-
tems, with an emphasis on the overall environment and addition of stakeholder’s
value perspective.

As with any quantitative analysis, such as our use of DEA on component de-
pendability vectors, noise in the data can lead to inaccuracies of analysis results
and sometimes wrong conclusions. However, our multi-perspective framework
would make this less of a problem due to the intrinsic diversity due to the different
measurement data and analyses performed for those different perspectives.

We plan to carry our future work to address other important issues for system
dependability maximization and experimental validation of our approach. Other
factors contribute to overall composite system dependability, including overall
system architecture, dynamic system composition and evolution, interactions with-
in and beyond system boundary, etc., will be examined. We will explore the inte-
gration of our multi-dimensional approach with existing work on compositional
approaches that assess system reliability, performance, and other dependability
attributes based on that of individual components, system architecture, and dy-
namic interactions (Wu et al., 2003; Yacoub et al., 2004). For experimental evalu-
ation and validation of our approach, we plan to construct a testbed under the
guidance of our OPs to focus on likely problems and system behavior under in-
jected or simulated problems. In addition, injection of unanticipated (and unlikely)
problems and system behavior will be handled by systematic application of di-
verse ideas such as program mutation, exception handling, and boundary exten-
sions. When integrated with our work on diversity maximization, all these will
lead to improved dependability of composite systems used in a wide variety of ap-
plication domains.

Acknowledgments

The work reported in this chapter was supported in part by NSF Grant IIP-0733937. We thank
the anonymous reviewers for their constructive comments.

References

[1] Avizienis, A. A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and
taxonomy of dependable and secure computing. /IEEE Trans. on Dependable and Secure
Computing, 1(1):11-33.

[2] Barr, R. (2004). DEA software tools and technology: A state-of-the-art survey. In Cooper,
W., Seiford, L. M., and Zhu, J., editors, Handbook on Data Envelopment Analysis, pages
539-566. Kluwer Academic Publishers, Boston, MA.

[3] Basili, V. R., Donzelli, P., and Asgari, S. (2004). A unified model of dependability: Captur-
ing dependability in context. IEEE Software, 21(6):19-25.

[4] Basili, V. R. and Perricone, B. T. (1984). Software errors and complexity: An empirical in-
vestigation. Communications of the ACM, 27(1):42-52.

216 J. Tian et al.

[5] Boehm B., Port D., Huang L., and Brown A.W. (2002). Using the Spiral Model and MBASE
to Generate New Acquisition Process Models: SAIV, CAIV, and SCQAIV. CrossTalk, Janu-
ary, pp. 20-25.

[6] Boehm B., Abts C., Brown A.W., Chulani S., Clark B., Horowitz E., Madachy R., Riefer D.,
and Steece B. (2000). Software Cost Estimation with COCOMO 11, Prentice Hall.

[7] Boehm B., Huang L., Jain A., Madachy R. (2004) “The ROI of software dependability: The
iDAVE model”, IEEE Software, vol. 21, no. 3, pp. 54-61.

[8] Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. M., editors (1994). Data Enve-
lopment Analysis: Theory, Methodology, and Applications. Kluwer Academic Publishers,
Boston, MA.

[9] Chillarege, R., Bhandari, 1., Chaar, J., Halliday, M., Moebus, D., Ray, B., and Wong, M.-Y.
(1992). Orthogonal defect classification — a concept for in-process measurements. /EEE
Trans. on Software Engineering, 18(11):943-956.

[10] Fenton, N. and Pfleeger, S. L. (1996). Software Metrics: A Rigorous and Practical Ap-
proach, 2nd Edition. PWS Publishing, Boston, MA.

[11] Gashi, 1., Popov, P., and Strigini, L. (2007). Fault tolerance via diversity for off-the-shelf
products: A study with SQL database servers. IEEE Trans. on Dependable and Secure Com-
puting, 4(4):280-294.

[12] Herrero, I. and Salmeron, J. L. (2005). Using the DEA methodology to rank software tech-
nical efficiency. Communications of the ACM, 48(1):101-105.

[13] Huang L. (2006). “‘Software Quality Analysis: A Value-Based Approach”. Ph.D. Disserta-
tion. Proquest.

[14] Huang L. and Boehm B. (2005). Determining How Much Software Assurance Is Enough? A
Value-Based Approach. In Proceedings of 4" International Symposium on Empirical Soft-
ware Engineering (ISESE).

[15] IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. STD 610.12-
1990.

[16] ISO (2001). ISO/IEC 9126-1:2001 Software Engineering - Product Quality - Part 1: Quali-
ty Model. 1SO.

[17] Kallepalli, C. and Tian, J. (2001). Measuring and modeling usage and reliability for statis-
tical web testing. IEEE Trans. on Software Engineering, 27(11):1023-1036.

[18] Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd Ed. Aca-
demic Press, New York.

[19] Laprie, J.-C., editor (1992). Dependability: Basic Concepts and Terminlogy, Depaendable
Computing and Fault Tolerance. Springer-Verlag, New York.

[20] Lyu, M. R, editor (1995). Software Fault Tolerance. John Wiley & Sons, Inc., New York.

[21] Lyu, M. R. and Avizienis, A. A. (1992). Assuring design diversity in N-version software: A
design paradigm for N-version programming. In Meyer, J. F. and Schlichting, R. D., editors,
Dependable Computing for Critical Applications 2. Springer-Verlag, New York.

[22] Ma, L. and Tian, J. (2007). Web error classification and analysis for reliability improve-
ment. Journal of Systems and Software, 80(6):795-804.

[23] Mili, A., Vinokurov, A., Jilani, L.L., Sheldon, F.T. and Ayed, R.B. (2007). Towards an En-
gineering Discipline of Computational Security. In Proceedings of 40" Annual Hawaii Inter-
national Conference on System Sciences (HICSS 2007).

[24] Mills, H. D. (1972). On the statistical validation of computer programs. Technical Report
72-6015, IBM Federal Syst. Div.

[25] Munson, J. C. and Khoshgoftaar, T. M. (1992). The detection of fault-prone programs. /EEE
Trans. on Software Engineering, 18(5):423-433.

[26] Musa, J. D. (1993). Operational profiles in software reliability engineering. IEEE Software,
10(2):14-32.

[27] Musa, J. D. (1998). Software Reliability Engineering. McGraw-Hill, New York.

[28] Offutt, J. (2002). Quality attributes of web applications. IEEE Software, 19(2):25-32.

10 Developing Dependable Systems by Maximizing Component Diversity 217

[29] Pfleeger, S. L., Hatton, L., and Howell, C. C. (2002). Solid Software. Prentice Hall, Upper
Saddle River, New Jersey.

[30] Siok, M. F. (2008). Empirical Study of Software Productivity and Quality. D.E. Praxis,
Southern Methodist University, Dallas, Texas, U.S.A.

[31] Steese B., Chulani S., Boehm B. (2002). Determining Software Quality Using
COQUALMO. Case Studies in Reliability and Maintenance, W. Blischke and D. Murthy,
eds., Jon Wiley & Sons.

[32] Thayer, R., Lipow, M., and Nelson, E. (1978). Software Reliability. North-Holland, New
York.

[33] Tian, J. (2005). Software Quality Engineering: Testing, Quality Assurance, and Quantifiable
Improvement. John Wiley & Sons, Inc. and IEEE CS Press, Hoboken, New Jersey.

[34] Tian, J. and Ma, L. (2006). Web testing for reliability improvement. In Zelkowitz, M. V.,
editor, Advances in Computers, Vol.67, pages 177-224. Academic Press, San Diego, CA.

[35] Weyuker, E. J. (1998). Testing component-based software: A cautionary tale. [EEE Soft-
ware, 15(5):54-59.

[36] Whittaker, J. A. and Thomason, M. G. (1994). A Markov chain model for statistical soft-
ware testing. I[EEE Trans. on Software Engineering, 20(10):812-824.

[37] Wu, X., McMullan, D. and Woodside, M. (2003). Component Based Performance Predic-
tion. In Proceedings of the 6" ICSE Workshop on Component-Based Software Engineering:
Automated Reasoning and Prediction (CBSE6), Portland, Oregon.

[38] Yacoub, S., Cukic, B., and Ammar, H. (2004). A scenario-based reliability analysis ap-
proach for component-based software. IEEE Trans. on Reliability, 54(4):465--480.

Chapter 11

High Assurance BPEL Process Models

Mark Robinson, Hui Shen, Jianwei Niu

Department of Computer Science, University of Texas at San Antonio

One UTSA circle, San Antonio, Texas, 78249

Abstract. An increasing number of software applications and business processes
are relying upon the use of web services to achieve their requirements. This is due
in part to the use of standardized composition languages like the Business Process
Execution Language (BPEL). BPEL allows the process designer to compose a
procedural workflow from an arbitrary number of available web services and sup-
plemental “programming-like” activities (e.g., assigning values to variables). Such
composition languages naturally bring concerns of reliability, consistency, and du-
rability, let alone safety and security. Thus, there is a need for formal specification
and analysis of BPEL compositions for high assurance satisfaction. We propose
the use of Unified Modeling Language (UML) sequence diagrams as a means for
analysis of BPEL process consistency and demonstrate our technique with two ex-
amples.

1. Introduction

Today, web services play an important role in service-oriented computing, as the
web is an inarguably ubiquitous medium. Web services provide domain-specific
functionality to client and server applications alike, with the interface to those ser-
vices exposed over the web. There are many web services currently available and
incorporating a web service into an application is simple, although the integration
may impose a reasonable learning curve. Creating a web service is also simple,
with many different development platforms already equipped to produce web ser-
vices.

Web services offer numerous advantages to both the web service consumer and
the web service provider. The use of web services affects the software engineering
process in many advantageous ways. Some of these advantages are:

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0 11, © Springer Science+Business Media, LLC 2009

220 M. Robinson et al.

e Fast and cheap to deploy — while these advantages are not unique to web ser-
vices, it is worth stating that reductions in time-to-market and cost-to-market
are real benefits from utilizing web service technology. Web service providers
specialize in their domains and realize economies of scale by making their ser-
vices affordable to web service consumers. Additionally, the use of the Internet
as a communication medium reduces cost.

e Reusability — one can easily reuse the same web services in new applications,
no matter which development language is being used (e.g., PHP, JSP, .NET).
The only requirement is that the development language provides support for
accessing web services.

e Accessibility — many different platforms and devices may utilize the functio-
nality of web services, including mobile devices. Client-side applications, ad-
hoc queries, and web sites/applications may all access the same web service
(see Figure 1). The web service provider may also freely control how the ser-
vice is accessed and how a service consumer is charged for its use. This allows
for a variety of governance and payment options for the web service, more
easily allowing it to fit the budgetary constraints of the service consumer.

e Centralized method of discovery — web service providers can register their web
services with online registries that provide descriptions of the web services
provide. A description may also include pricing for the use of the service and a
link to the interface specifications required to communicate with the web ser-
vice (e.g., WSDL document).

e Maintainability — the provider of the web service is responsible for maintain-
ing, securing, and updating the web service and its data. The web service con-
sumer bears none of the labor for these tasks, although it is normal for the web
service provider to pass on some of the cost for maintenance to the web service
consumers.

e Value-added content — integration of services that provide proprietary functio-
nality and/or data may increase the value of the web service consumer’s prod-
uct, particularly if the consumer is acting as a service broker.

e Loose coupling — the consumer of the web service does not care how the pro-
vider of the service implements the service, provided its functionality is known,
consistent, and reliable. Future changes to the service or switching web service
providers will not necessitate changes to the consumer’s application as long as
those changes do not affect the service interface.

11 High Assurance BPEL Process Models 221

O E O
Co— w C—
&> [J 2 &
Web Application Web Server BPEL Server
Client
O
-]
Web Application Web Server
Client
@ WSDL
= N [soar)
Application <)
Client n
?llg
>
T
B Web Service
Mobile Device L

Client

Fig. 1. Various devices and platforms accessing the same web service.

Integrating web services into a software project can be a frightening notion, as
the developer might begin to consider some of the negative possibilities of such
integration: loss of service, price gouging, data security and privacy, etc. But,
these concerns have always existed in component-based software engineering.
Trust and long, solid track records can help ease fears of integration disaster. But
if those are in short supply, contracts and service level agreements can be tailored
to suit both parties’ concerns and project requirements. Web service providers and
consumers should also consider Business Interruption and Errors and Omissions
insurance to protect each party in the areas where a contract does not.

A web service is essentially a program that is located on a web server and has
its interface exposed to the outside world using Internet protocols (of which the
normal “web” comprises just a few). The web service interface is constructed in a
standardized fashion using a technology like the Simple Object Access Protocol
(SOAP). A web service performs a very specific function, or set of functions. The
functions typically suit a single domain, e.g., a product catalog. Expected function
input and output has to be provided to potential consumers in order for the poten-
tial consumers to know how to address the interface. This can be accomplished us-

222 M. Robinson et al.

ing web service directories, developer documentation, or Web Service Definition
Language (WSDL) documents. A WSDL document is an Extensible Markup Lan-
guage (XML) description of the interface to the web service. Many web service
client technologies can use the WSDL document directly to utilize the web ser-
vice. WSDL documents simplify the interface aspect of using web services. Using
technologies like SOAP or WSDL, the task of integrating a web service into an
application (e.g., a web site) is straightforward.

1.1 BPEL

There is a further abstraction of web service technology known as the Business
Process Execution Language (BPEL). BPEL is a scripting language that allows
compositions of web services and programming operations to accomplish business
process goals. Web services may be composed into sequential and/or concurrent
process flows. A BPEL process in turn is accessed as a web service via a WSDL
interface. Thus, a BPEL process essentially becomes a broker, providing an ar-
rangement, or orchestration, of other web services (including other BPEL
processes). The programmability of BPEL includes operations like variable as-
signment, loop and conditional constructs, and fault and event handling. BPEL
processes, like WSDL, are specified in XML.

BPEL possesses its own nomenclature for composition and components. A sin-
gle unit of workflow processing is referred to as an activity (e.g., assigning values
to variables, invoking a web service, etc.) Web services calls are known as invoca-
tions. Data are passed to and from web services through messages. Web services
that are part of a BPEL process are thought of as partners and the references de-
scribing the accessibility of web services are referred to as partner links. The con-
text of a service within a BPEL process is described as a partner role, which is ac-
tually just a semantic label for an endpoint reference, describing where a web
service is located and how to access it. Activities that may be accomplished in pa-
rallel are encapsulated within a flow construct.

Several tools and models currently exist to abstract and simplify the implemen-
tation of BPEL. These tools significantly aid and accelerate process implementa-
tion and modeling is necessary to verify process consistency. However, the
process developer must still possess a fundamental understanding of BPEL, its
terminology, and its limitations. This is especially important if one wishes to im-
plement high assurance BPEL processes.

BPEL addresses the high assurance concern of availability in two ways. Firstly,
BPEL allows the dynamic changing of endpoint location (i.e., the location of web
services to be invoked). This allows a BPEL process to use an alternate web ser-
vice in the event that a previous one cannot be located or does not respond in a
timely fashion. BPEL’s second method of addressing availability is a byproduct of
its nature as an internet-accessible service. Load balancers can be implemented to

11 High Assurance BPEL Process Models 223

balance web service requests for high-demand web services among many different
servers providing the requested service.

Security is not an inherent part of BPEL. In order to implement a secure BPEL
process, the process must be built on top of other rugged security mechanisms.
Transport-level security may be achieved using the Secure Socket Layer (SSL), a
widely used point-to-point security mechanism. To better protect integrity and
confidentiality, message-level security mechanisms should also be employed. Web
Services Security (WS-Security) is such a security mechanism that packages au-
thentication information into each message to strengthen trust between web ser-
vice consumers, BPEL processes, and remote web services.

1.2 Motivation

While BPEL is a useful and powerful scripting language for creating composi-
tions of web services, its support for high assurance service-oriented computing is
lacking. Some of BPEL’s problems that complicate high assurance satisfaction
are:

1. BPEL has a unique nomenclature that straddles the line between programmer
and business process specialist. Fully understanding all of BPEL’s terminology,
capabilities, quirks, and deficiencies carries a significant learning curve for
most people.

2. BPEL’s power comes from its ability to compose complex orchestrations of an
arbitrary number of web services into business process solutions. However,
BPEL’s powerful scripting ability also makes it quite easy for a process to suc-
cumb to logical errors and design inconsistencies.

3. BPEL is currently an evolving de-facto standard for web service composition.
Processes created with BPEL today may not be compatible with the BPEL of
tomorrow or they may not easily be able to exploit the latest advancements in
BPEL and web service technology. There is also the distinct possibility that a
different and incompatible web service composition language will replace
BPEL in the future.

UML sequence diagrams model time-ordered interactions between entities. In-
teractions represent events and can express data traveling between entities. The
entities may represent humans and/or non-human processes. We propose that
UML sequence diagrams can suitably model BPEL processes and provide a reme-
dy to these glaring problems. We demonstrate our proposal using two examples of
BPEL processes that we have implemented.

224 M. Robinson et al.

2. Related Work

In addition to the business computing industry, BPEL and web services in general
have drawn a fair amount of interest from the research community. This is due in
part to the distributed processing benefit web services bring to computing. But the
interest in web services is also due to the fact that web service technology is in its
early infancy and there is considerable room for research and improvement.

O’Brien et al. discuss several quality attribute requirements that should be
strongly considered when designing a software architecture that involves web ser-
vices [1]. These attributes are interoperability, performance, security, reliability,
availability, modifiability, testability, usability, and scalability. They also high-
light the importance of acquiring suitable service level agreements to guarantee
adequate satisfaction of these requirements from third party service providers.
Kontogiannis et al. [2] identify three areas of challenges for adoption of service-
oriented systems: business, engineering, and operations. They also reveal an un-
derlying set of “cross-cutting” concerns that these areas share and propose a Ser-
vice Strategy to address these concerns. Sarna-Starosta et al. [3] propose a means
of achieving safe service-oriented architectures through the specification of ser-
vice requirements using declarative contracts. Monitoring and enforcement of
these contractual obligations are handled through the use of hierarchical containers
and middleware.

Zheng et al. [4] propose a type of finite state machine, called Web Service Au-
tomata (WSA), to formally model web services, such as BPEL. They state that us-
ing WSA, they are able to model and analyze most of BPEL's features, including
control flow and data flow. Their proposal includes a mapping from WSA to the
input languages of the NuSMV and SPIN model checkers. Zheng et al. [5] use the
WSA mapping to generate test cases in the NuSMV and SPIN model checkers.
State, transition, and du-path test coverage criteria are expressed in Linear Tem-
poral Logic and Computation Tree Logic. The logical constructs are used to gen-
erate counterexamples, which then provide test cases. These test cases are used to
verify a BPEL process’ control and data conformance and WSDL interface con-
formance.

In [6], Ye et al. address inter-process inconsistency through the public visibility
of atomicity specifications. They adapt the atomicity sphere to allow a service to
provide publicly the necessary details of "compensability and retriability" while
keeping its proprietary details private. Their technique for constructing the atomic-
ity-equivalent public views from its privately held process information involves
the use of a process algebra, which they describe and prove mathematically.

Based on Service Oriented Architecture (SOA), the Bus model is a kind of ser-
vice model to integrate heterogeneous services. Li et al. [7] develop a formal
model for services, which has three levels: the programs model, the agents model,
and the services model. The bus system is constructed from the parallel composi-
tion of the formal models. To exchange information, the service interacts with the

11 High Assurance BPEL Process Models 225

bus space instead of the other services, so concurrency is described by the global
space of the bus system.

Chu et al. [8] design an e-business system using an architecture-centric design.
They combine Semantic Web technology and e-business modeling to construct
and semantically describe a service-oriented e-business model. The architecture-
centric system design follows a “divide-and-conquer” method of decomposing the
goal and defining and validating the architecture. The semantics definition helps
discover registered services automatically and automated verification of system
reconfiguration. In this way, the business goal can be mapped into services.

Dun et al. [9] model BPEL processes as ServiceNets, a special class of Petri
net. Their approach constructs a formal model through a transformation into an S-
Logic representation using an enriched form of reduction rules. They are able to
analyze correctness and detect errors of the BPEL process from the ServiceNet’s
“throughness”. Laneve et al. [10] propose a web transaction calculus, webm, which
assists in the verification of the compensable property for web service technolo-
gies that utilize web transactions as their fundamental unit of work. A compensa-
ble web service is one that facilitates the undoing of work should the web service
fail to complete successfully. webm is an extension to m-calculus. Web service
languages are translated into webm where their transactional protocols may be ana-
lyzed.

Foster et al. describe and implement a model-based approach for verification of
web service compositions [11][12]. Their tool translates UML sequence diagram
scenarios describing web service compositions into Finite State Process (FSP) al-
gebra. The FSP algebra is then used for equivalence trace verifications of the
compositions. Their tool also directly translates BPELAWS into FSP algebra. In
[13], Foster et al. discuss a model-based approach using finite state machines to
represent web service compositions. They semantically describe the web service
processes to verify compatibility between the processes and that the composition
satisfies the overall system specification. In [14], Foster et al. present a detailed
procedure for translating web service compositions expressed in BPEL4WS into
Finite State Process (FSP) notation. They describe BPEL4WS constructs in terms
of FSP semantics and analyze the mapping of specific activities using Labelled
Transition Systems.

Akkiraju et al. [15] propose a framework for supporting web service composi-
tions that provides functions such as security, access control, business partner dis-
covery and selection, service level agreement monitoring, and logging. They be-
lieve that their framework fills in several of the inherent high assurance gaps of
web service composition languages. Fu et al. [16] construct a Web Service Analy-
sis Tool (WSAT) for analysis and verification of web service compositions. Their
tool creates an automata-based intermediate representation of the composition.
Control flow in the intermediate representation is restricted by the use of "syn-
chronizability" conditions and Linear Temporal Logic and the SPIN model check-
er are then used to verify the composition and check its properties. Nakajima et al.
[17] investigate the modeling of the Web Services Flow Language (WSFL) and

226 M. Robinson et al.

the benefit of model checking the web service compositions for reliability. They
conclude that their model checking experiments successfully detect faulty flow
descriptions and can be expanded to accommodate alternative semantics.

3. BPEL Process Examples

We present two examples that are drawn from one of our largest reservoirs of real
business experience: insurance quoting and tracking. These examples are not
meant to demonstrate elegant or solid BPEL process design. Both examples in-
clude simple errors. We use these examples to illustrate how our approach to
BPEL modeling and analysis using UML sequence diagrams reveals problems of
inconsistency and design errors.

3.1 Example 1

BPEL Process: Quote Property Insurance

ajenoen

ayey Aupqen
dnyooT
wniwalid Aypgen

|jony) anl@dey

wniwald |ejoL
aje|nojen

Jouig Jo ajond
ynm Aldey

=l
g
a0
e

7]
)=
o
_
3
=

ys1y Auedoid
dnyoo

ajey Apadoiyd
dnyoo

FyYY

Process-level Variable
Parallel Sub-process A Web Service
Parallel Sub-process B

Fig. 2. The first example BPEL process for quoting insurance.

11 High Assurance BPEL Process Models 227

The first example of a BPEL process is an insurance quote processing and re-
sponse system. The overall process design involves obtaining a quote for property
and liability insurance (see Figure 2). The two different types of premium can be
calculated independently using a Flow activity. There are several steps involved
before a final quote can be determined (if at all) and returned to the BPEL service
consumer. The BPEL process responsible for quoting property insurance proceeds
through each step of the quoting process, calling other web services (located on ei-
ther itself or remote servers). This example demonstrates an inconsistency error
resulting from a mistake in implementation that creates a dependency between two
concurrent sequences of activity in a BPEL flow activity.
The process steps of the first example are:

1. The first step of the example receives the request for the quote along with any
data required for quoting (input requirements are specified within the WSDL
document for the BPEL web service).

2. The second step of the process forks into two separate and concurrently execut-
ing sub-processes. Sub-process A requests a liability rate from the remote web
service. Sub-process B requests property risk information from the remote web
service.

3. Sub-process A requests liability premium to be calculated. The resulting liabili-
ty premium is stored in a process variable. The Sub-process B requests a prop-
erty rate from the remote web service.

4. Sub-process B requests property premium to be calculated, passing the pre-
viously calculated liability premium to determine if a discount modifier is ne-
cessary.

5. The process waits for both sub-processes to complete before requesting the re-
mote web service to add the premium data and apply additional taxes and fees.

6. Lastly, the BPEL process replies to the calling service consumer, providing the
resulting quote. If a fault occurs at any point during the BPEL process, the
BPEL process replies to the calling service consumer with error information.

Below is simplified BPEL code for the first example, beginning with the flow
activity, splitting the process into concurrent sub-processes:

<flow>
<sequence>
<invoke partnerLink="QuotePartner"
operation="getLiabilityRate"
inputVariable="propertyType"
outputVariable="liabilityRate" />
<assign>
<copy>
<from variable="liabilityRate" />
<to variable="liabilityPremiumInput" part="rate" />
</copy>

228

<copy>
<from variable="insuredValue" />
<to variable="liabilityPremiumInput" part="insuredValue" />
</copy>
</assign>
<invoke partnerLink="QuotePartner"
operation="calculateLiabilityPremium"
inputVariable="liabilityPremiumInput"
outputVariable="liabilityPremium" />
</sequence>
<sequence>
<invoke partnerLink="QuotePartner"
operation="getPropertyRisk"
inputVariable="zipCode"
outputVariable="propertyRisk" />
<invoke partnerLink="QuotePartner"
operation="getPropertyRate"
inputVariable="propertyRisk"
outputVariable="propertyRate" />
<assign>
<copy>
<from variable="propertyRate" />
<to variable="propertyPremiumInput" part="rate" />
</copy>
<copy>
<from variable="insuredValue" />
<to variable="propertyPremiumInput" part="insuredValue" />
</copy>
<copy>
<from variable="liabilityPremium" />
<to variable="propertyPremiumInput" part="liabilityPremium" />
</copy>
</assign>
<invoke partnerLink="QuotePartner"
operation="calculatePropertyPremium"
inputVariable="propertyPremiumInput"
outputVariable="propertyPremium" />
</sequence>
</flow>
<assign>
<copy>
<from variable="propertyPremium" />
<to variable="totalPremiumInput" part="propertyPremium" />
</copy>

M. Robinson et al.

11 High Assurance BPEL Process Models 229

<copy>
<from variable="liabilityPremium" />
<to variable="totalPremiumInput" part="liabilityPremium" />
</copy>
</assign>
<invoke partnerLink="QuotePartner"
operation="calculateTotalPremium"
inputVariable="totalPremiumInput"
outputVariable="quoteWithTaxes" />
<reply partnerLink="RequestorPartner"
variable="quoteWithTaxes"
</reply>

3.2 Example 2

Our second BPEL process example also involves an insurance quote processing
and response system (see Figure 3). When the process receives a request for a
quote, it attempts to calculate premium based on parameters provided in the re-
quest. If the premium calculation succeeds, then a quote is emailed to the reques-
tor and a quote request notification is emailed to the company’s agents so that the
agents may contact the requestor if the requestor fails to submit an application for
insurance within a certain timeframe.

BPEL Process: Simple Quote Request

Py
[
o
c
o
@

ajonp aneoay
wniweald
aje|najen

10113 10 $$999Ng
ypm Ajday

\AAJ

Web Service

Fig. 3. The second example BPEL process for quoting insurance.

230 M. Robinson et al.

If an error occurs during the process execution, it is still important that email be
dispatched to both the requestor and the agents. The requestor should receive a
nicely formatted apology from the quoting system, along with alternate methods
of contacting the insurance agency directly for a quote. Additionally, the agents
need to know how to contact the requestor to try to assist them with the quoting
process. Thus, the requirements for the second example state that the process
should always email the requestor and the agents, regardless of the outcome of the
process. Figure 3 clearly demonstrates that if the Calculate Premium activity fails
then this requirement will not be satisfied. The second example serves to illustrate
a discrepancy between the software requirements and the design and/or implemen-
tation of the software. We will show in the following section that our verification
method can detect this discrepancy.

The process steps of the second example are:

1. The first step of the example receives the request for an insurance quote along
with any data required for quoting (input requirements are specified within the
WSDL document for the BPEL web service).

2. The BPEL process attempts to calculate premium based on the received para-
meters.

3. If the premium calculation invocation fails, the BPEL process replies to the re-
questor with an error and a “Sorry for the inconvenience” message. If the pre-
mium calculation succeeds, a quote is emailed to the requestor.

4. Company agents are notified of the request for a quote, along with the calcu-
lated premium. Our requirements dictate that this step should always occur, but
our implementation fails to completely satisfy this requirement.

5. Lastly, the BPEL process replies to the calling service consumer with an indi-
cation of success or failure of the entire process.

These two examples are based on our real experience in the software engineer-
ing realm of the insurance industry. Both examples include simple errors that are
typical of rushed or incomplete design. Detection of these errors using UML se-
quence diagram analysis will be demonstrated in the following sections.

4. Modeling BPEL Processes with Sequence Diagrams

The Unified Modeling Language (UML) provides a collection of modeling nota-
tions for describing different aspects of a software system, such as use-case dia-
grams, sequence diagrams, class diagrams, and state machines for requirements
analysis and design. The sequence diagram is a key notation of UML to capture
the interaction between the user, the system, and other components. A sequence
diagram provides a scenario of one use case diagram using an intuitive graphical
representation. Multiple sequence diagrams can be combined together to provide

11 High Assurance BPEL Process Models 231

the design of system. We model BPEL processes with sequence diagrams which
will ease efforts in utilizing BPEL and enable them to detect hidden errors.

BPEL has structured activities that provide the execution order in a collection
of activities. For example: the flow activity in BPEL represents concurrency and
synchronization of multiple activities; pick represents nondeterministic choice
from multiple activities, and so on. UML 2 provides some structured control con-
structs, such as combined fragments and interaction use, to express concurrent
message exchange.

A sequence diagram has two dimensions, the vertical dimension represents
time and the horizontal dimension represents objects participating in the sequence
diagram [18]. In a sequence diagram, the vertical dash lines represent participants,
called lifelines. The name of each lifeline is shown in the rectangle on the top of
each dash line. The horizontal lines between lifelines represent messages passing
between participants. The intersection points between lifelines and messages are
called occurrence specifications [19].

Combined fragments, introduced in UML 2, represent different types of control
flow. A combined fragment is composed by one interaction operator and one or
more interaction operands. In Figure 4, the interaction operator “par” represents a
parallel combined fragment, which has at least two interaction operands. In a pa-
rallel combined fragment, the occurrence specifications in the same operand keep
their order but the occurrence specifications in different operands may execute in
any order [19]. The negative combined fragment with the interaction operator
“neg” has one interaction operand and it is not enclosed in other sequence dia-
grams. All the possible traces generated by this fragment are invalid traces [19].
The interaction operator “assert” represents the combined fragment as a mandato-
ry behavior at that point in the sequence diagram. If the execution reaches the be-
ginning of the assertion fragment, then the assertion fragment must execute. All
other continuations result in invalid traces [18].

With these features, a UML sequence diagram can represent most BPEL struc-
tured activities, e.g., BPEL consumer, BPEL process, and web service are pre-
sented as lifelines, flow can be shown by a parallel combined fragment, and pick
can be shown by an alternative combined fragment. Table 1 shows the mapping
from BPEL constructs to UML sequence diagrams.

Modeling BPEL with sequence diagrams enables the building of tools to detect
potential errors of system design. The number of errors needs to be minimized at
the design level as this greatly helps to simplify the work of implementation and
verification.

232

M. Robinson et al.

Table 1. Mapping from BPEL to UML sequence diagram constructs.

BPEL Activity Description UML Sequence Construct Description
Activity Diagram
Construct
receive wait for an incoming mes- | receive a mes- the message can be syn-
sage to arrive sage chronous or asynchron-
ous
reply send a message in re- send a reply mes- | the message is synchron-
sponse to previously re- sage ous
ceived message
invoke call a one-way or re- send a call mess the message can be syn-
quest/response operation | age chronous or asynchron-
(e.g., another web ser- ous
vice)
assign modify the value(s) of one | a reply message the message is synchron-
or more variables contains attribute ous
assignments as
arguments
throw create a fault send a fault mes- fault handler actor is
sage to the fault represented as a lifeline
handler actor
exit immediately end the combined frag- the condition of the ope-
BPEL process ment--break rand is true
wait pause for a period of time | the timer actor when a period of time
or until a specified time sets a period of elapses, a timeout mes-
time sage is generated
empty do nothing (i.e., a no-op) the timer actor the actor generates a
sets one cycle timeout message
se- perform enclosed activi- combined frag- the messages execute
quence ties in sequential order ment--weak se- sequentially
quencing
if perform an activity based combined frag- the conditions of all ope-
on condition satisfaction ment--alternatives | rands are mutually exclu-
or option sive in alternatives
while perform the enclosed ac- combined frag- the condition in BPEL is
tivity as long as the condi- | ment--loop mapped to the condition
tion is true of loop, minint=0, max-
int=infinite
repea- perform the enclosed ac- combined frag- the negation of condition
tUntil tivity until the condition is ment--loop in BPEL is mapped to the
true condition of loop, mi-
nint=1, maxint=infinite
forEach perform the enclosed ac- combined frag- condition=true, minint=0,
tivity a specified number ment--loop maxint=N+1
of times
pick wait for one of many combined frag- at most one operand is
possible messages to ar- ment--alternatives | chosen
rive or a timeout
flow perform the enclosed ac- combined frag- the messages in different

tivities concurrently

ment--parallel

operands are interleaved

11 High Assurance BPEL Process Models 233

5. BPEL Inconsistency Analysis

Different BPEL scenarios are based on different views, but they may be relevant
to each other and conflicts that are called inconsistencies may exist among them.
These inconsistencies can be detected by comparing multiple sequence diagrams
with pre-defined inconsistency rules. Once detected, software engineers can fix
the system design to remove the conflicts to make the software system consistent.
To demonstrate detection of inconsistency in our examples, we provide two sam-
ple inconsistency rules.

Inconsistency Rule 1: detecting inconsistency between valid traces and invalid
traces. Valid traces are generated from sequence diagrams with no negative com-
bined fragments. Sequence diagrams with negative combined fragments generate
invalid traces. An inconsistency exists when a valid trace associates directly with
an invalid trace for predetermined properties of the software.
interaction BFEL] [ffi Quote Property Insurance y

BPEL consumer BPEL process

1: Request Quote

|_par J [
0 2 Lookup Lisblity Rate
1

3. Reply Liabilty Rate

4: Calculate Liabilty Premium

5: Reply Liablty Premium

1l 6: Lookup Property Risk

le — I ReplyProperty Risk
&: Lookup Property Rate

9: Reply Property Rate

14. Reply with Quote or Error

Fig. 4. BPEL Process: Quote Property Insurance.

234 M. Robinson et al.

Inconsistency Rule 2: detecting inconsistency between sequence diagrams with
assertion combined fragments and other sequence diagrams. If any trace in a se-
quence diagram exists without the assertion and conflicts with a trace containing
the assertion, then there is an inconsistency.

5.1 Analysis of Example 1

Figure 4 is a sequence diagram representing our first example of a BPEL process
for quoting property insurance. When the BPEL process receives a quote request
from a consumer, the process forks into two interleaving sub-processes and a task
from either sub-process can be chosen to execute. One sub-process is for liability
premium and the other is for determining a property rate. The interleaving relation
of sub-processes is shown with a parallel combined fragment in the sequence dia-
gram. The tasks in the same operand in Figure 4 keep their order, but tasks in dif-
ferent operands can be executed in any combination of orders. In this way, one se-
quence diagram can represent multiple execution traces.
interaction BPEL[@ Quote Property Insurance neg y

[neg J I 1. Request Guote I]
[1 P
_&j 2 Lookup Property Rate L
11
le 3 ReplyProperty Rate
[1 4: Lookup Liakilty Rate
L 5: Reply Lizhilty Rate

6: Lookup Property Rate »
le. — L ReplyProperty Rate . _

8 Calculate Property Premium

ke — 9Reply Property Premium_
10: Calculate Liakility Premium)

11: Reply Liability Premium

= — 13 ReplyTcotalPremium — _—
14 Reply with Quote or Error

Fig. 5. One constraint in Quote Property Insurance.

11 High Assurance BPEL Process Models 235

This begs the question: are all of these execution traces valid? Is there a depen-
dency among tasks from different sub-processes?

Assume that a software requirement states that the Calculate Property Premium
task needs the value of Liability Premium in order to determine a discount modifi-
er. It is easy to find the dependency that the Calculate Property Premium task
should not happen before the Calculate Liability Premium task. Figure 5 shows
this constraint in a sequence diagram with a negative combined fragment. Nega-
tive combined fragments define that all possible execution traces inside are
invalid. A negative combined fragment tells a software engineer that the execution
traces within the fragment should not happen in the software system. In Figure 5,
the tasks inside the parallel fragment are still interleaving to each other, but the
Calculate Property Premium task happens before the Calculate Liability Premium
task. The negative fragments demonstrate that all the executions traces cannot
happen. Comparing Figures 4 and 5, we detect an inconsistency and the design of
system in Figure 4 will not provide a reliable implementation. Therefore, the de-
sign should be modified and the process re-verified with sequence diagram model-
ing.

5.2 Analysis of Example 2

Figure 6 is a sequence diagram of our second example BPEL process: Simple
Quote Request. When a service consumer sends a request for an insurance quote
to the Simple Quote Request BPEL process, the process invokes an external web
service to calculate premium and the external web service replies with the result-
ing premium. The reply may be a success message (the resulting premium) or a
failure message (with a specific error). After the BPEL process receives the reply
message from the external web service, the process must email a quote to the con-
sumer and inform the company agents of the request for a quote. Finally, the
BPEL process replies to the BPEL consumer with a success or error message.

Software engineers may provide an execution trace of the system in Figure 7.
In this execution trace, the BPEL process invokes the calculate premium operation
from the external web service and receives a failure response. The BPEL process
replies with a failure message to the BPEL consumer. The assertion fragment in
Figure 6 is skipped. The assertion fragment in Figure 6 defines that after the BPEL
process receives a reply from the external web service after calculating premium,
only the Email Quote activity can happen. Instead, the reply from the BPEL
process to the BPEL consumer happens in Figure 7. An inconsistency is therefore
detected between the two sequence diagrams.

236

M. Robinson et al.

interaction BPEL[@ Simple Quote Reques‘tﬁ

| BPEL process | |

Web Service

BPEL consumer

| 1: Request Cucte |

2 Calculste Premium

T
|
|

<

_ & Reply Premium

assert _J

4 Email Quote

5. Email Agents »

&: Reply with Success or Error

Fig. 6. BPEL Process: Simple Quote Request

interaction BPEL[@q Simple Guaote Reguest negy y

| BPEL process | |

Web Service

BPEL consumer

1: Reguest Quote

[l

4: Reply with Success or Error

2: Calculate Premium

I

b=

3. Reply Premium (Fail)

™

Fig. 7. One conflict in Simple Quote Request.

11 High Assurance BPEL Process Models 237

5.3 Evaluation

Our analysis technique has only two manual steps for discovery of inconsistencies.
The first step is to create an initial sequence diagram in MagicDraw that models a
BPEL process. The second step is the selection of inconsistency rules to use in
trace generation. Once these steps are performed, traces are generated automatical-
ly, the inconsistency rules are applied, and the analyst is presented with a list of
inconsistency warnings. The analyst must then examine each warning in the report
and determine if the warning necessitates a design change.

By generating a negative combined fragment, our analysis method exposed an
inconsistency in the implementation of our first example. The presence of traces
within a negative combined fragment provides the software engineer with imme-
diate knowledge of inconsistencies within the BPEL process. For our second ex-
ample, we generated a valid execution trace for the BPEL process that did not in-
clude a required assertion combined fragment. This demonstrates a second type of
inconsistency where the requirements of the BPEL process are not met (the activi-
ties of emailing the quote and agents)

Our inconsistency analysis approach with sequence diagrams facilitates rapid
and thorough detection of inconsistencies within BPEL processes. Our approach
may also be easily extended to accommodate other web service composition lan-
guages. Sequence diagrams are very intuitive, promote swift analysis, and incon-
sistencies between them (as traces) tend to be visually prominent. Additionally,
there are currently many tools available to easily assist one in the generation of
sequence diagrams.

6. Conclusions

Currently, BPEL is in a nascent state. It is a technology that straddles the line be-
tween software development and business process specification. As a result, BPEL
contains some of the arcane expression of a programming language mixed with
business-oriented terminology and process logic. BPEL is certainly a powerful ab-
straction language that can render compositions of distinct web services to solve
business problems. These compositions can then be exposed as their own web ser-
vices, which may be used by themselves in web service consumer applications or
other BPEL processes. However, BPEL nomenclature carries a significant over-
head for its initiates. Also, BPEL is not structured well to easily detect neither log-
ical errors nor inconsistencies. Lastly, as an evolving de-facto standard for web
service composition, what works for BPEL today may not work tomorrow.

For these reasons, we feel that BPEL implementation should be accomplished
using abstracted design tools to simplify construction and ease the learning curve
of BPEL’s nomenclature. This will accelerate implementation and help reduce er-

238 M. Robinson et al.

rors. We have shown that modeling techniques such as our UML sequence dia-
gram analysis approach can rapidly and automatically facilitate discovery of
BPEL design flaws of inconsistency. Sequence diagrams are very intuitive and
show temporal-based execution naturally. But tools and models do not obviate the
need for the process designer to fully understand the fundamentals, quirks, and
shortcomings of BPEL and web services. Such understanding is crucial in order to
construct BPEL processes that hope to satisfy the different aspects of high assur-
ance service-oriented computing.

6.1 Future Work

We feel that UML sequence diagrams hold some promise of a straightforward,
well-adopted, and useful means of verifying consistency and reliability in BPEL
processes. There is, of course, more investigation needed in this area. We also
want to experiment with the use of UML sequence diagrams as a high-level BPEL
process composition tool, generating BPEL code underneath the sequence dia-
grams.

The integration of web services within a software development project is an
important consideration for software engineers. Web services may save time and
money in implementation, simplify maintenance challenges, and enrich the overall
specifications of the software. Currently, software engineers and workflow spe-
cialists must peruse registries of available web services and manually determine
the suitability of each available web service in terms of functionality, cost, and in-
terface specifications. There has been some research in semantically describing
and automatically identifying web services within compositions and their initial
results are promising. If web services can provide information regarding their spe-
cifications and context in a formal and standardized fashion, then the suitability of
web services for a given software project could be determined automatically. This
would allow engineers to simply "point" to a set of web service registries and re-
ceive a suitability report of all appropriate web services. The suitability report
could then be automatically matched to the software project's own set of specifica-
tions to determine which implementation gaps could be satisfied by which web
services.

State machines synthesized from our sequence diagrams may be adapted to
provide BPEL process design. Whittle and Schumann [20] presented an algorithm
for synthesizing state machines from multiple UML 1 sequence diagrams, which
do not support structured control constructs. Uchitel et al. [21] provide a method
to synthesize behavior models from multiple message sequence charts. Message
sequence charts are similar to UML sequence diagrams. We may be able to syn-
thesize state machine behavior models from UML 2 sequence diagrams such that
we will be able to perform some formal analysis, like model checking.

11 High Assurance BPEL Process Models 239

References

[1] O’Brien L, Merson P, Bass L (2007) Quality Attributes for Service-Oriented Architectures.
International Workshop on Systems Development in SOA Environments

[2] Kontogiannis K, Lewis GA, Smith DB et al (2007) The Landscape of Service-Oriented Sys-
tems: A Research Perspective. International Workshop on Systems Development in SOA En-
vironments

[3] Sarna-Starosta B, Stirewalt REK, Dillon LK (2007) Contracts and Middleware for Safe SOA
Applications. International Workshop on Systems Development in SOA Environments

[4] Zheng Y, Krause P (2007) Automata Semantics and Analysis of BPEL. Digital EcoSystems
and Technologies Conference 147-152

[5] Zheng Y, Zhou J, Krause P (2007) A Model Checking based Test Case Generation Frame-
work for Web Services. Fourth International Conference on Information Technology 715-722

[6] Ye C, Cheung SC, Chan WK (2006) Publishing and composition of atomicity-equivalent ser-
vices for B2B collaboration. Proceedings of the 28th international Conference on Software
Engineering 351-360

[7] Li Q, Zhu H, He J (2008) Towards the Service Composition Through Buses. High Assurance
Systems Engineering Symposium 441-444

[8] Chu W, Qian D (2008) Architecture Centric System Design for Supporting Reconfiguration
of Service Oriented Systems. High Assurance Systems Engineering Symposium 414-423

[9] Dun H, Xu H, Wang L (2008) Transformation of BPEL Processes to Petri Nets. Theoretical
Aspects of Software Engineering 166-173

[10] Laneve C, Zavattaro G (2005) Foundations of web transactions. Proceedings of Foundations
of Software Science and Computation Structures 282-298

[11] Foster H, Uchitel S, Magee J et al (2006) LTSA-WS: A Tool for Model-Based Verification
of Web Service Compositions and Choreography. International Conference on Software En-
gineering 771-774

[12] Foster H, Uchitel S, Magee J et al (2006) Model-based Verification of Web Service Compo-
sitions. 18" IEEE International Conference on Automated Software Engineering

[13] Foster H, Uchitel S, Magee J et al (2004) Compatibility Verification for Web Service Cho-
reography. 3™ IEEE International Conference on Web Services

[14] Foster H (2003) Mapping BPEL4WS to FSP, Technical Report. Imperial College

[15] Akkiraju R, Flaxer D, Chang H et al (2001) A Framework for Facilitating Dynamic e-
Business Via Web Services. OOPSLA 2001 - Workshop on Object-Oriented Web Services

[16] Fu X, Bultan T, Su J (2004) WSAT: A tool for Formal Analysis of Web Services. 16" In-
ternational Conference on Computer Aided Verification

[17] Nakajima S (2002) Model-Checking Verification for Reliable Web Service. Workshop on
Object-Oriented Web Services

[18] Rumbaugh J, Jacobon I, Booch G (2004) The Unified Modeling Laguage Reference Manual
Second Edition. Addison-Wesley, United States

[19] Object Management Group (2007) Unified Modeling Language: Super-structure v2.1.2.

[20] Whittle J, Schumann J (2000) Generating statechart designs from scenarios. International
Conference on Software Engineering 314-323

240 M. Robinson et al.

[21] Uchitel S, Kramer J, Maggee J (2003) Synthesis of behavioral models from scenarios. IEEE
Transactions on Software Engineering 99-115

[22] Arlow J, Neustadt I (2008) UML 2 and the Unified Process, Second Edition. Addison-
Wesley, United States

[23] OASIS (2007) Web Services Business Process Execution Language Version 2.0.

Chapter 12

Specifying Enterprise Web-Oriented
Architecture

Longji Tang, Yajing Zhao, Jing Dong

Department of Computer Science, the University of Texas at Dallas
Richardson, TX 75083, USA
{Itang, yxz045100, jdong } @utdallas.edu

Abstract. The Web-Oriented Architecture (WOA) is a new software architectural
style that extends Service-Oriented Architecture (SOA) style to the Web. The
WOA is originally created by many new web applications and sites, such as social
websites and personal publish websites. The EWOA is expected to be a part of
next generation of Enterprise Service-Oriented Architecture (ESOA) for enter-
prise. In this chapter, we specify the Enterprise WOA (EWOA) both structurally
and behaviorally based on the generic model of ESOA. We analyze the software
quality attributes of EWOA as well as the relationship between EWOA and
ESOA. We also discuss how EWOA meets the enterprise requirements for high-
assurance service computing.

1 Introduction

With successful application of Web 2.0 [19] by a lot of new web applications and
websites, such as Google AdSense, Wikipedia, blogging, and the emergence of
many new web technologies, such as RESTful web services, AJAX, RSS, JSON,
Rudy and Mashup, the Web-Oriented Architecture (WOA) is gaining great atten-
tion from both industry and research community. The traditional SOA [7] is an
overall umbrella concept and style for how to create the web services with WS-*
style, SOAP protocol and WSDL language. The ESOA is an integration style of
SOA for enterprise. However, the web, HTTP protocol and web browsers do not
directly support the SOAP and WSDL specification, and the design and imple-
mentation of traditional SOA and ESOA requires complex tools and frameworks
because of its complexity. The WOA is really a push back on the complexity of
the traditional WS-* style SOA. It is an alternative style for web-centric web ser-
vices. Fig. 1 shows how the SOA core with reach WOA [14]. The traditional SOA
is service-centric instead of web-centric, thus can be applied to web-centric and

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0 12, © Springer Science+Business Media, LLC 2009

242 L. Tang et al.

desktop applications. However the traditional SOA style does not take advantages
of web simplicity for web-centric web services. That is why it is not widely
adopted for web-centric applications. The question is “Can WOA meet enterprise
and co-exist with traditional SOA?” The answer is “yes”. Many software vendors,
such as IBM, Oracle, and SUN, push WOA and Web 2.0 very hard for enterprise.

SOA

WSDL 2.0 WS-Policy
WS-Reliable Messaging

BPEL, WS-CDL WS-Coordination

WS-Atomic Transaction
WS-Trust

SOAP ws-caF

WS-Security

WSDL 1.1

WOA

Web-Oriented Architecture
REST + HTTP(S)
POX, AJAX, JSON, FEED
Atom, Mashup

Richness

uubDI

JMS
RMI/IIOP

Complexity >

Fig. 1. SOA Core with Reach — WOA

SOA Service-Oriented Architecture:
An architectural style with

* modular

¢ distributable

* sharable

* reusable

* loosely coupled

World Wide Web:

A platform and infrastructure
* HTTP protocol

* URI

* Firewall compatible

* build-in unified operations

WWW - webcache

Representational State Transfer:

A web architectural style with

* resources as states and functionality
« all resources shared unified interfaces
« client-server

* cacheable

« stateless REST

Fig. 2. Triangle of Web-Oriented Architecture

In this chapter, we call the WOA for a web-oriented enterprise as EWOA.
WOA as sub-style of SOA and a new way to build service-oriented applications
on the web has not been well-defined. To introduce it, we use the definition from
Cartner’s Nick Gall [11]:

“WOA is an architectural style that is a sub-style of SOA based
on the architecture of the WWW with the following additional
constraints: globally linked, decentralized, and uniform
intermediary processing of application state via self-describing
messages.”

12 Specifying Enterprise Web-Oriented Architecture 243

Nick Gall also gives an interesting mathematical formula for defining WOA as
WOA = SOA + WWW + REST (1.1)

The mathematical formula can be depicted by the WOA triangle shown in Fig. 2.

In the WOA triangle, the SOA is the parent architectural style of WOA which
is built on many SOA principals, such as statelessness and loosely coupled-ness.
The WWW and REST is the base of WOA. The WWW is the platform and infra-
structure of WOA. It is a mature global network based on HTTP protocol. The
REST (Representational State Transfer) [9] is the foundation of WOA architectur-
al style. It is a simple web architectural style which is developed as “an abstract
model of the Web architecture to guide our redesign and definition of the Hyper-
text Transfer Protocol and Uniform Resource Identifiers”[10]. The model can be
formally defined as the following 4-tuples

REST = < Elements, Principals, Constraints, Quality > (1.2)
where
Elements = {REST Data, REST Connectors, REST Components } (1.3)

Principals = { Application states and functionality as resources, Representation of
a resource, Stateless, Layered, Cacheable} (1.4)

Constraints = {Web Platform, HTTP Protocol, URI Addressing, Client-Server,
Uniform HTTP Interfaces} (1.5)

Quality = {Performance, Scalability, Simplicity, ...} (1.6)

The rest of this chapter is organized as follows. In Section 2, we introduce an
algebraic model of EWOA based on the generic model of ESOA we defined in
[25]. Section 3 presents the realization of the EWOA model. Section 4 discusses
the relationship between EWOA and ESOA. The last two sections cover related
work and future research.

2 Specifying EWOA

We have defined the Enterprise Service-Oriented Architecture (ESOA) as the sets
of architectural elements, environment, principals and processes in [25]. In this
chapter, we define EWOA as the sub-style of ESOA. Thus, EWOA is also defined
as the sets of web-based architectural elements, environments, principals and
processes based on [9] and [19]:

244 L. Tang et al.

EWOA=(S,,Cy, Dy, Sil,SM S P,S;0), 2.1
In which
S.={s, | 5, is a RESTful web service.}, 2.2)
C, ={CR lcp is a web client.}, (2.3)
D,=1{d, |d, is a WOA data element.}, 24
Sel ={w, 1w, is a WOA platform}, (2.5)
S.M ={mR | m, is a WOA management.}, (2.6)
S.P ={p,| p, is a WOA process.}, 2.7)
S.0 ={q, g, is a WOA quality attribute.}, (2.8)

Although formula (2.1) has the same algebraic form as the definition of ESOA in
[25], the algebraic model (2.2) to (2.8) is more concrete. We define EWOA (2.1)
as sub-style of ESOA. We discuss the relationship between EWOA and ESOA in
Section 4. In the following subsections, we specify set (2.2) through set (2.8) for-
mally and informally.

2.1 RESTful Web Services

The RESTful web services (RWS) is the key elements of EWOA. Like a generic
service model we defined in [25], formally, we can define a RWS s, as the fol-
lowing 5-tuple:

SR:(IR’MR’RR’leQR)’ (2.9)

where
I, ={ig lig is a HTTP int erface}, (2.10)
M o ={sp | sp is a RWS state}, (2.11)

Ry ={rR | g is a web resource}, (2.12)

12 Specifying Enterprise Web-Oriented Architecture 245
lp ={uglugisaURL}, (2.13)

Op = {qR | gg is a service quality attribute}, (2.14)

Formula (2.10) indicates the RESTful web services has uniform interfaces which
are HTTP GET, POST, PUT, DELETE, HEAD, OPTIONS, TRACE and
CONNECT based on HTTP 1.1. For most enterprise web applications, the first
four interfaces cover almost every operation as shown in Table 1.

Table 1. Uniform Service Interfaces

HTTP Interface Semantics in RESTful Web Services

GET Retrieve information from resource
POST Add new information

Show its relation to old information
PUT Update information
DELETE Discard information

Formula (2.11) shows that a RWS has a set of states maintained as part of the con-
tent transferred from client to server and then back to client, which include

e Application state, which is the information for the server to understand how to
process the request. The authorization and authentication information are ex-
amples of application states.

e Resource state, which is the representation of the values of the properties of a
resource.

Formula (2.12) indicates a RWS serves a set of resources which are application
states and functionalities of the RWS. Formula (2.13) tells us a RWS can be de-
scribed by a set of URIs each of which is a single string including the service ad-
dress and the specification of the resource. For example, a service for browsing all
books URI looks like

http://www.amazon.com/books
Formula (2.14) is a set of RWS service quality attributes which include perfor-
mance, scalability, simplicity, etc. The detail analysis of them is presented in Sec-
tion 5.

re R

Algebraic Characteristics of Set (2.1): For any resource R there exists

one or many URI in Iy for the resource. If resources ' and r, € R

n#r, orn

R | then only

one statement will be true: =2 It shows that the same resources or
the same URIs have the same behavior or result to the client. Therefore a non-
POST RWS is idempotent.

We propose an abstract algebraic model (2.1) of RESTful web services. Fig. 3
presents the relationship between sets in (2.1) and structural and behavioral mod-

246

els

L. Tang et al.

of RWS. The relationship between set (2.10) through set (2.13) can be summa-

rized as follows:

class RWS
ResourceStates
// 1. 1
Transfers’ has maintained by
1 1
RWS
Resource Representation Format
+ DELETE(serves repressted by has
+ GET(1. 1 B 1 1.0
+ POST() ! T
+ PUT()
T b 1
has1 identified interconnected
by by
1.% 1 1
ApplicationState URI URL
Iy
has contains
|
NetAddressinfo
Fig. 3. Relation Model of RWS

A RWS, with application states, serves resource through processing request and
transfers resource states from one to another in term of response.

A resource, which is a conceptual entity, can be represented by many represen-
tations which are concrete manifestation of the resource.

A resource has one unique URI and many resource states. Each state is main-
tained by the resource representation.

An URI has the resource identifier.

A resource representation can be located by an URL with network address and
other information which includes the protocol (http or https), hostname, path
and extra information for describing how to get the representation of a re-
source.

A resource representation can be represented by multiple formats, such as
XML, HTML, and JSON.

12 Specifying Enterprise Web-Oriented Architecture 247

cmp Connections

Webclients [—(————————————>>—— RESTulWeb

HTTP Interface HTTP Interfaces Service

'
'
This RESTful web service
Thiscomponent needs the exposes an interface for web
services of another clientsto use. The interface
component to perform its isa contract to provide
required work. specific behavior to other
web clients that require that
service.

Fig. 4. Connection Model of RWS

Fig. 4 shows the RWS’ connectional models. We leave the discussion of RWS’
behavior model in the next section.

2.2 RESTful Web Service Consumers

According to the connection model of RWS in Fig. 4, any web client can be the
consumer of RESTful web services. For each & € ¢
viors:

R | it has the following beha-

e Connect to web services by HTTP protocol
e Send RESTful requests through RESTful interfaces
e Consume RESTful web services in WWW browsers or any web application.

There are two interaction models, which describe how web clients consume
RESTful web services:

e Synchronous interaction model

The Java JDK HttpURLConnection[13], Apache’s HttpClient [2] and Micro-
soft’s WebHttpBinding of WCF [8] all provide the client model for accessing
RESTful web services synchronously. The model is based on HTTP request
and reply model. The sequence diagram in Fig. 5 depicts the model.

248

L. Tang et al.

sd RWS Syn Behaviors /

(X) Web clients RWS 1 RWS 2 Resource 1 Resource 2

User
! T T

GET address()
«resource»

«user action»

T

! I
1 request service 1()_ | ! }
|

|

|

!

|

process request() |
l

1
getAddess() -

T T

| |

| |

! !

| |

| |

! !

| |

| |

| |

1 !

«access rerource representation» }
|

:address !

<-——--—-——--—= A== === == — = !

«resource representation» |

|

!

|

|

|

!

|

|

!

|

|

1

:address
display address() = ——

«response»

I
I
I I
I I
GET product() !

«access rerource representation»

-

request service 2(),

«user action»

|
process request()l

1
getProduct()
«access rerource representation»
:product
,,,,,,,,,, e
«resource representation»

>

display product(| [===~~~ dnformations 77

Fig. 5. Synchronous Interaction Model.

The UML 2.1 sequence diagram depicts two RESTful web services RWS 1
and RWS 2 which serve two user requests: GET address and GET product for
a shopping page on the web. To best describe the behaviors of RESTful web
services, we create a RESTful profile with the following stereotypes:

— <<user action>>

— <<resource>>

— <<access resource representation>>

— <<resource representation>>

— <<information>>

— <<response>>

which are helpful at describing the interaction behavior between service con-
sumers and RWS. They are also used in the UML sequence diagram of de-
scribing the following asynchronous interaction model

e Asynchronous interaction model

The EWOA uses HTTP which is a synchronous request/response protocol.
The question is whether the EWOA can support asynchronous interaction for
long-running processes. In fact, there exist some standard asynchronous inte-
raction patterns supported by HTTP, which are independent from RESTful
web services approach. The patterns are listed in Table 2.

12 Speciftying Enterprise Web-Oriented Architecture 249

Table 2. Standard Asynchronous Interaction Patterns

Asynchronous Patterns Description

Reliable one-way messaging Service consumer does not wait for response
(Fire-and-forget)

Polling Service consumer periodically polls the request status
Callback Service provider calls consumer back when service is
done

In EWOA, the web clients can interact with RWS asynchronously by using

AJAX which is a set of technologies including the asynchronous JavaScript

and XML [19]. The UML sequence diagram in Fig. 6 shows such model.
sd RWS Asyn Behaviors /

% AJAX Web Clients RWS 1 RWS 2 Resource 1 Resource 2
Users
! T T T T T
! | | | | |
I request service 1() | I | I I
GET Address() | ! !
«user action» | ! !
| «resource» U | | |
RI

} I i I I I
| } |;|1 I process reqest() } } }
I request service 2() | GET Product(| } }
«user action» r— | |

}] URI I
| | ! getAddress) 2! !
} | I-TJ «access rerource representation» ru |
| | | |
} 1 | process request() |
! ! ! !
| | | getProduct() -l
} } } «access rerource‘ representation» "TI
} I | I
| |
! I
!

__ address «resource repr;esen(a(ion» j:‘l
‘ﬂsﬂi)’ﬁdﬂri%)ﬂ{ «information» I :product
[tl «response» -

=g
| ‘product «resource representation» j;l
7777777777 e — I I

display product() «information» |
|

|

!

!

|

!

«response» !

Fig. 6. Asynchronous Interaction Model

The sequence diagram shows that the user can submit two service requests to
two RWS in almost parallel to update web page blocks and without going to web
server and refreshing the page for each request. We will provide a detail analysis
on AJAX in our future work.

2.3 WOA Data Elements

As a RESTful architectural style, the D, in the model (2.1) plays an important
role for understanding, specifying and designing WOA systems. The D,, is a finite

set which consists of certain abstract data types supported by the style. They can
be informally defined in Table 3.

250

L. Tang et al.

Table 3. WOA Data Elements

Data Elements

Specification

Resource

Resource metadata
Resource identifier

Representation
Representation metadata

Service specification
WOA metadata

WOA Management data
WOA process data

Web configuration data

Web container data

The intended conceptual target of a hypertext reference [9], such
as an online address book and a shop invoice

The data for specifying a resource, such as a source link
URI and URL

The current or intended state of a resource, such as HTTP docu-
ment, XML document, and JPEG image

The data for describing the representation, such as Media type,
last-modified time

WSDL 2.0 RESTful web service specification

The data for describing other metadata, such as message integrity
and service quality contracts

Security policy data
Workflow description

Configuration of Web servers, DNS, Server Proxy, Gateway,
Cache

Configuration of application server web container, such as web-
logic web container

In Table 3, the first five rows, such as Resource and Representation, are REST
data [10] which are the base of WOA data elements.

2.4 WOA Infrastructure and Platform

Table 4. Role and Functionality of Infrastructural Components

Infrastructural Components Example

Role and functionality

Web servers

Proxy servers

DNS

Gateway
Web Containers

Server connectors

Cache service or servers

Apache HTTP server, and HTTP communication, service re-
1S quest and response processing, HTTP
security, Cookie, session management

SUN’ SQUID HTTP server routing, RESTful web
service routing

Round Robin DNS URI addressing

CGI RESTful web service provider

java web container
Libwww, JDK, NSAPI, Make connection between client and
.NET, DNS lookup, Tunnel server

(such as SOCKS, SSL)

Browser cache, JCache,
Akamai Cache Network

RESTful web service provider

Store short-life data for improving
performance

12 Specifying Enterprise Web-Oriented Architecture 251

Unlike traditional ESOA, EWOA is built on existing web infrastructure in the en-
terprise. The S,/in (2.1) can be defined as a set of servers and services:

Sr1 ={Web servers, Proxy servers, Gateway, DNS, Server connectors, Cache
servers, Web containers of application servers} (2.15)

For small and some medium enterprises, the WOA infrastructure is a subset of
Sl . For example, they may not have application servers, even Proxy servers.

Formula (2.15) describes the major components in a generic EWOA infrastruc-
ture. The role and functionality of each infrastructural component are defined in
Table 4.

2.5 WOA Management

The EWOA is the WOA for enterprise, so it also includes WOA management
S M which is a set of web application system management tools and services for

managing RESTful services. The S, M includes

o RESTful web services registry

e Firewalls for network security management, such as Perimeter firewall, NAT
firewall, XML firewall

o Filters for request and response management, such as Java HTTP filter

e Security services for application security management, such as authentication,
authorization, REST parameter analysis and XML threat analysis

e Logging services for error and exception management

e Agents and Monitors for performance management

We will discuss the importance of WOA management for high-assurance
RESTful web service computing in Section 3

2.6 WOA Processes

Traditional web service architectures are designed to accommodate simple point-
to-point interactions — there is no concept of a logical flow or series of steps from
one service to another. In an enterprise, the business often requires software sys-
tem to have the capacity to process complicated business processes, such as
workflow, transaction, online order and shipping. Supporting services composition
(orchestration and choreography) is fundamental to the web services vision.
Therefore the service processes is one of core elements in ESOA [25]. As we
know, there are two specifications, BPEL and WS-CDL, handling the different

252 L. Tang et al.

approaches of orchestration and choreography of SOAP-based web services in
traditional WS-* style ESOA for various complicated business process manage-
ment. Although there is no corresponding standard for EWOA processes, REST-
ful web services composition, such as client-side or server-side Mashup, has been
practicing at Web. iGoogle is a good example. The Web is the most complicated
global enterprise business platform. To meet the increasing requests for handling
complicated web business processing and services interactions, many software in-
dustry vendors and researchers are working on specification and tools for WOA
processes of both RESTful orchestration and choreography. The Bits is a minimal-
ist choreography language for Web [6]. The Bite runtime architecture is imple-
mented by IBM Project Zero [15]. An approach to RESTful process choreogra-
phy based on the Asynchronous Services Access Protocol (ASAP) is proposed in
[16]. There are several approaches to RESTful process orchestration [2][21]. A
common idea is to extend BPEL for RESTful web services orchestration. Fig. 7

depicts how to extend BPEL for two RESTful web services S,le and S,Ze orchestra-

tion.

BPEL for REST

Fig. 7. RESTful Web Services Orchestration by Extended BPEL

2.7 WOA Quality Attributes

The quality attribute requirements drive high assurance software architecture de-
sign [3]. They also drive the ESOA and EWOA system design for high assurance.
In this section, we define a set of quality attributes as architectural properties of
EWOA style. The REST and the Web are two bases of WOA. The quality
attributes of both WEB and REST are discussed in [9]. We list the major parts in
Table 5.

12 Speciftying Enterprise Web-Oriented Architecture 253

Table 5. Quality Attributes of WEB and REST Style

Quality Attributes Description for WEB and REST

Performance Network performance which is one of infrastructure performance which can
be improved by interaction style

Efficiency REST is cacheable. Using cache can improve application performance and
network efficiency

Scalability WEB is internet-scale
Using proxy style can increase web scalability

Simplicity REST is very simple style by client-server for separating concerns

Security HTPS, SSL, firewalls provide basic WEB infrastructure security. REST does
not address application security.
Firewall visibility increases security, but visibility may reduce payload level
security.

Evolvability WEB is easy to evolve. REST style can improve web architecture evolvabili-
ty.

Extensibility REST supports the gradual and fragmented deployment of changes within an
already deployed architecture

Reusability The components defined by REST are reusable

Reliability

Visibility

Modifiability

Customizability

Configurability

REST style use uniform HTTP interfaces
Sharable proxy and cache style all increase reusability

REST style can help reliability by avoiding single failure point, enabling re-
dundancy, using monitoring, or reducing scope of failure to a recoverable ac-
tion.

“Within REST, intermediary components can actively transform the content
of messages because the messages are self-descriptive and their semantics are
visible to intermediaries.”

REST style also improves system modifiability through supporting evolvabil-
ity, customizability, configurability and reusability.

It is induced by remote evaluation and code-on-demand style

WEB Servers and other mediators, such as proxy are configurable.

Table 5 describes the basic quality attributes of the WOA style. For the EWOA
which is enterprise-level WOA style, we have to address additional non-functional
requirements to some of quality attributes, such as security, reliability, managea-
bility, governance. We define high-assurance EWOA style which can address fur-
ther enterprise non-functional requirements.

3. High-Assurance EWOA

To achieve high-assurance SOA in the enterprises, specifically at defense, finan-
cial industry and mission critical business systems, the traditional ESOA style ad-
dresses the enterprise architectural non-functional requirements or quality

254 L. Tang et al.

attributes through the WS-* standards [7] and governance framework. They are
presented in our previous work as a set of SOA managements [25] which can be
governed by QoS rules and policies. Therefore the system based on traditional
ESOA-style is very complicated in general. The WOA is a lightweight approach
to SOA at Web, so it greatly reduces the complexities of SOA with its two funda-
ments: REST style and mature Web infrastructure. Because of its simplicity na-
ture, EWOA does not need WS-* like complicated governance and management.
However, to meet enterprise requirements for high-assurance service computing,
such as web transaction, e-Business of inter-organizations and inter-business part-
ners, dynamic web information system integration, EWOA needs RESTful gover-
nance. The SOA governance includes design time governance and runtime gover-
nance. In this chapter, we focus on specifying the EWOA-style runtime
governance that is what we have defined WOA management in Section 2. In our
specification, the RESTful lightweight governance may include

e RESTful services registry/repository
e RESTful security management
e RESTful application controller, such as a java servlet

We propose the high assurance RESTful information system architecture as
shown in Fig. 8 based on the EWOA style we have specified.

Primary firewall NAT firewall
Web Client EWOA HTTP Infrastructure Application Server Web Container 1 Data
Client App! : Service Registry

HTTP
Client

[[|Database

RESTIul Registry
‘m {Mule Galaxy, ,m

of
Library ;% . WO0S2) . Q

== H

® SE i .
= NS " (ool i) €y s
management | |8

Browser __r = HH T ————— de M Database
Clients =

e T

AJAX
Engine

e

Internet

[[|Database

:,[(ogar ‘swr 4sidepy ‘Aemajen) s10pauuoy

Private Net

Fig. 8. High-Assurance RESTful Information System Architecture

The RESTful architecture consists of the following parts:

e A set of web clients which include any client application by using HTTP client
library and any web site with or without AJAX.

e An EWOA HTTP infrastructure which includes a set of web servers and ser-
vices, such as web servers - Apache, IIS and GWS, and services - proxy, gate-
way, web cache. The EWOA infrastructure also includes a set of data source
connectors, such as Adapters, JMS and JDBC.

12 Specifying Enterprise Web-Oriented Architecture 255

e A set of RESTful services which can be severed by two kinds of resources - in-
dividual resources by GET, PUT and DELETE interfaces and resource collec-
tions by GET and POST interfaces. We define two kinds of RESTful web serv-
ers:

— Managed RWS which is registered by the service registry
— Unmanaged RWS which is for getting public data only.

The RWS can be deployed in either the web server extension, such as secure
cgi-bin, or web containers, such as weblogic and Tomcat.

e The EWOA management consists of an Application Controller, a Security
Manager and a Service Registry which includes a repository storing description
of RWS and policy as well as configuration data, and server and application
monitors. The controller can also act as an RWS orchestration engine.

Due to the simplicity nature of the RWS and the architectural properties of REST
style, we point out in Table 5, EWOA style system is of higher performance and
simplicity compared to traditional WS-* SOAP style ESOA system. However the
security of RESTful applications for enterprise should be taken into consideration
to achieve high-assurance service computing. As we know, the RWS only support
four interfaces GET, POST, PUT and DELETE. Let us define three sets of opera-
tions:

o A={alaisanidempotent and safe operation}

o B={blbisanidempotent and unsafe operation}

o C={clcisanon—idempotent and unsafe operation}

Then we have the following security relationship:
GET e A, PUT,DELETEe B, POSTe C
and
AcB,CcO-B
Fig. 9 depicts the relationship and exposes the security concerns.

Set of non-idempotent operations (unsafe)

Set of Idempotent
and unsafe operations

Set of idempotent
and safe
operations

Fig. 9. Venn Diagram of RESTful operations.

256 L. Tang et al.

Except GET, all other operations are unsafe. Even GET has some security vul-
nerabilities, such as QueryString attack and XML/JSON out attack. Unlike SOAP,
at the message level, RESTful services are using plain text html for request and
POX or JSON for response, therefore they do not provide payload-level security
for routing RESTful request to multiple different servers, such as proxy, gateway,
web servers and web containers. Table 6 shows a security and QoS comparison
between REST message and SOAP message.

Table 6. Comparison of REST and SOAP Messages

Message REST POST SOAP POST
Header There is no QoS defined in header Can specify QoS in header
Body Payload in plain text (HTML or XML), Payload inside SOAP Envelope, which is
which is visible to cross all traveling visible only for the end application.
servers
Envelope There is no Envelope for payload There is SOAP envelope for payload
Example POST/HTTP/1.1 POST/HTTP/1.1
Host: http://www.amazon.com Host: http://www.amazon.com
Contenttype: application/soap-
xml
Book: RESTful Web Service Charset=uft-8

Credit Card: Visa

Number: 123456789
Expire: 11-01-20-12 <env:Envelope xmIns:env="

http://www.w3.0rg/2003/05/
soap-envelope”> <env:Header>
<!--Header information here-->
</env:Header> <env:Body>
<!--Body or “Payload” here,

a Fault if error happened -->
</env:Body> </env:Envelope>

From the example in Table 6, the customer’s credit card information is in the
insecure REST payload. Nevertheless it can be protected by SOAP envelope at the
payload level. In general, the data of any enterprise can be categorized as

e Public data which can be accessed by the world

e Internal confidential data which can be accessed by certain people

e Business data which can only be accessed by authenticated and authorized us-
ers.

In our proposed architecture shown in Fig. 8, the Security Manager includes
authentication which is against identity, and authorization which is against service
policy, URI analysis, response filtering and logging. For the second and third cat-
egory of data, we always need to use a security manager with SSO (Single Sign-
On) and ACL (Access Control List) technologies, where the ACL allows applica-
tion to set the data access control for different users. For RWS, we can set the
permission to use different operations for different users. For accessing business
critical data, such as user account information and transaction data, it is better to
use SOAP style web services. However, the RESTful approach has bigger perfor-
mance and simplicity advantages than WS-* SOAP approach for accessing the

12 Specifying Enterprise Web-Oriented Architecture 257

public data, specifically by getting them by GET. The unmanaged RWS can serve
this kind of data in a very cheap way. In the next section, we discuss the relation-
ship between EWOA and ESOA. Moreover a hybrid approach is proposed.

4. Relationships between EWOA and ESOA

We have defined a generic model of ESOA in [25]. The RESTful-based EWOA
and traditional WS-* based ESOA are two sub styles of the model in [25]. Roger
Smith has compared SOA and WOA styles in [23]. He points that “SOA and
WOA work at different levels of abstraction. SOA is a system-level architectural
style that tries to implement new business capabilities so that they can be con-
sumed by many applications. WOA is an interface-level architectural style that fo-
cuses on the means by which these service capabilities are exposed to consumers.”
Based on our specification and model, ESOA is a SOA style for enterprise integra-
tion, thus it is a system-level abstraction. The EWOA is a WOA style for enter-
prise at the web presentation tier. The EWOA style is a design guideline for (1)
constructing and consuming RESTful web services for web-based applications
and (2) producing the web applications to consume the services created by ESOA.
Based on (2), the EWOA is just an interface-level abstraction. The EWOA will
become a style of system-level abstraction at web. The traditional ESOA also pro-
vides the way for building applications of consuming the services, which are
SOAP-based service clients. Both EWOA style and traditional ESOA style have
their advantages and disadvantages. Pautasso and his colleagues made a detail
comparison between RESTful and WS-* web services in [4]. The EWOA may be
good enough for small and some middle enterprises, such as social web-based
companies, the eServices of small to middle business. Some middle and most
large enterprises have already adopted traditional ESOA. There are existing SOAP
based web services and SOA infrastructure. Moreover complicated business
process and high-security transaction require WS-* based ESOA approach. How-
ever, there are many services computing in the enterprises, such as enterprise Ma-
shup, customer help system, which can be done by EWOA approach in very sim-
ple and cheaper way. Therefore the hybrid approach with both RESTful-based
EWOA and WS-* based ESOA is the best architectural decision. Amazon web
service architecture is a good example of adopting hybrid approach [1]. Fig. 10
depicts a hybrid approach of ESOA-style information system architecture we have
proposed in this chapter.

From our proposal, you can see that all RESTful web services are only allowed
to access the data outside the enterprise private network where critical business
data are normally stored. The hybrid approach to ESOA-style system is a better
architectural tradeoff between

e complexity and simplicity
e security and performance

258 L. Tang et al.
e higher assurance and cost QoS and lower assurance and cost QoS

More detailed study about the tradeoff of architectural attributes of WS-* style
and RESTful style will be done in the future.

Primary firewall NAT firewall
Services Network Infrastructure Hybrid Enterprise SOA Systems Data
Consumers :
) Network channels] /| [ESOA Infrastructure and Management i i
Other || | ; : Services :
Clients 7 nsn"'r‘,'f'ﬁes :
{QoS, Monitor,
< Web (ESB, Security)
P Seryar Mule, WSO2)
SOAP (Apache,
Clients || | L
(Web &
Non-Web))
—_—
A,
RESTUI
Web
Clients 4 N — -
—_— S i Other Enterprise Applications Database
T
Internet DMZ : ZMD Private Net

Fig. 10. Hybrid Enterprise SOA System Architecture

5. Related Work

The WOA vs. SOA and REST vs. SOAP have been debating in recent years.
The RESTful web services and new WOA style are getting more and more atten-
tion from the research community and software industry. The foundation of the
RESTful services is the REST principles and style innovated in [9]. The impor-
tance of REST style is uncovered by new web application development, such as
web 2.0, WOA. However there are few works on specifying the WOA and
EWOA. Some approaches, such as the RESTful Web Services [20], specify the
RESTful approach as Resource-Oriented Architecture (ROA). Gall defines WOA
in [11]. There are some discussions about the REST and SOAP debates, such as
[18,26]. Roger, Smith gives an analysis of new way of web development, which is
the bottom-up WOA in [23]. Pautasso and his colleagues makes a detailed com-
parison for architectural decision on the RESTful web services vs. “Big” WS-*
based web services in [4]. Many software vendors specify WOA from their prod-
ucts prospective, such as Amazon web services [1], Mule Galaxy [17], Microsoft
WCEF as well as BizeTalk server [8], SUN’s Java API JAX-WS for REST as well
as GlassFish application server [24] and IBM sMash and Zero Project [15]. In
[25], we have proposed a generic algebraic model of ESOA that can be used for
specifying RESTful style SOA.

12 Specifying Enterprise Web-Oriented Architecture 259

6. Conclusions and Future Work

The research work of EWOA in this chapter is based on research and practices
of RESTful web services, and a new architectural style WOA and the generic
model of ESOA we have proposed in [25]. As we defined, the EWOA style con-
sists of a set of design principals based on REST [9] and Web 2.0 [19] and a set of
architectural elements of infrastructure, management, process and a set of software
quality attributes. Compared with traditional WS-* ESOA style with top-down
development approach, complicated infrastructure-centric design and heavyweight
QoS governance, EWOA is a web-based architectural style with bottom-up devel-
opment approach, simple web data (hypertext) centric design and lightweight QoS
governance. Although EWOA is an alternative to the ESOA in some enterprise
and some systems in enterprise, the governance, quality of services, security and
manageability are equally important. In this chapter, we analyze the security and
manageability issues of EWOA and proposed two approaches in Fig. 9 — pure
RESTful system architecture with RESTful QoS governance and in Fig. 11 — a
hybrid approach with both REST and SOAP for enterprise. Since the EWOA is a
new paradigm for service computing, many research opportunities are challenging
software researchers. Future research work may include

Formalism of WOA and EWOA style

UML profile for RESTful modeling

RESTful workflow and process

RESTful design patterns

Software quality tradeoff of both ESOA and EWOA

With further research and practices, WOA and EWOA will become more ma-
ture and more powerful.

References

1. Amazon Web Services, http://aws.amazon.com/about-aws/

Apache ODE RESTful BPEL, http://ode.apache.org/restful-bpel-part-i.html

3. L. O’Brien, L. Bass and P. Merson, “Quality Attributes and Service-Oriented Architec-
tures”, Technical Note, CMU/SEI-2005-TN-014.

4. P., Cesare; Zimmermann, Olaf; Leymann, Frank (2008-04), "RESTful Web Services vs.
Big Web Services: Making the Right Architectural Decision", 17" International World
Wide Web Conference (WWW2008) (Beijing, China).

5. L. Clarkin and J. Holmes, Enterprise Mashups, The Architecture Journal, 13 (2007)

6. F. Curbera, M. Duftler, R. Khalaf and D. Lovell, Bite: Wrokflow Composition for the Web,
International Conference on Services Oriented Computing (2007), LNCS 4749, pp. 94-106,
2007

7. T. Erl, Service-Oriented Architecture, Prentice Hall, 2005

260

8.

13.
14.

15.
16.

17.
18.
19.
20.
21.

22.
23.
24.

25.

26.

L. Tang et al.

D. F. Ferguson, Dennis Pilarinos and John Shewchuk, The Internet Service Bus, The Archi-
tecture Journal, 13 (2007)

R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architec-
tures”, PhD thesis, University of California, Irvine, 2000

R. T. Fielding, R. N. Taylor (2002-05), "Principled Design of the Modern Web Architec-
ture", ACM Transactions on Internet Technology (TOIT) (New York: Association for Com-
puting Machinery) 2 (2): 115-150

Nick Gall, Why WOA VS. SOA Doesn’t Matter? (2008) at
http://www.itbusinessedge.com/item/?ci=47620&sr=1

M. T. Gamble and R. Gamble, Monoliths to Mashup: Increasing Opportunistic Assets,
25(6):71-79, 2008 IEEE Software

M. D. Henson, SOA Using Java Web Services, Prentice Hall, 2007

D. Hinchcliffe, The SOA with reach: Web-Oriented Architecture, 2006 at
http://blogs.zdnet.com/Hinchcliffe/?p=27

IBM sMash, http://www.ibm.com/developerworks/ibm/library/i-zero1/

M. zur Muehlen, J. V. Nickerson and K. D. Swenson, Developing web services choreogra-
phy standards — the case REST vs. SOAP, Decision Support Systems 40 (2005) 9-29

Mule Galaxy at http://mule.mulesource.org/display/ MULE/Home

P. Prescod, Roots of the REST/SOAP Debate, Extreme Markup Languages, (2002)

Tim O'Reilly, What Is Web 2.0, (2005, Retrieved on 2006) O'Reilly Network.

L. Richardson and Sam Ruby, “RESTful Web Services”, O’Reilly, 2007

D. Rosenberg, Web-Oriented architecture and the rise of pragmatic SOA, blog (2008) at
http://news.cnet.com/8301-13846_3-10031651-62.html

F. Rosenberg, F. J. Duftler, and R. Khalaf, Composing RESTful Services and Collaborative
Workflows, 12(5):24-31,2008 IEEE Internet Computing

R. Smith, Smart Web App Development, (2008) InformationWeek

SUN GlassFish, http://www.sun.com/software/products/glassfishv3_prelude/

L. Tang, J. Dong and T. Peng, A Generic Model of Enterprise Service-Oriented Architec-
ture, 4™ IEEE International Symposium on Service-Oriented System Engineering (2008)

S. Vinoski, REST Eye for SOA Guy, 11(1):82-84, 2007 IEEE Internet Computing

Chapter 13

Designing an SOA for P2P On-Demand Video
Delivery

Zhenghua Fu', Jun-Jang Jeng', Hui Lei', and Chao Liang®

'IBM T.J.Watson Research Center, Hawthorne, New York 10532, USA
2Polytechnic Institute of NYU, Brooklyn, New York 11201, USA

Abstract. Compared with the traditional client/server streaming model, peer-
assisted video streaming has been shown to provide better scalability with lower
infrastructure cost. In this chapter, we describe how peer-assisted video streaming
can be implemented through real-time service oriented architecture. This chapter
presents an overall design of the Peer-Assisted ContenT Service (PACTS). We
discuss the motivation, principles and service oriented architecture of PACTS
modules and specify the workflow among them. By organizing elements of tradi-
tional video streaming and peer to peer computing into loosely-coupled composa-
ble middleware services and distributing them among participating entities,
PACTS enables high-quality low-cost video streaming at a large scale and in real
time. We illustrate the challenges and our approaches in designing distributed and
highly efficient algorithms. In particular, the algorithms for performing peering-
selection and incentive-driven pre-fetching are studied in detail. These designs are
extensively evaluated by packet-level simulations which are beyond the scope of
this paper. We show that our implementation of PACTS effectively offload serv-
er’s bandwidth demand without sacrificing the service quality. This benefit is fur-
ther verified in dynamic settings with system churns.

1. Introduction

The Media and Entertainment industry has been undergoing significant innova-
tions during recent years. One of the fastest growing areas is Internet Video On-
Demand (VoD). YouTube, for example, has about 20 million views a day with a
total viewing time of over 10,000 years to date [1]. Other popular providers in-
clude MSN Video, Yahoo Video, NBC, ABC, Hulu, etc which all receive ex-
tremely high volume of traffic because of their On-Demand video streaming ser-
vices. Currently, none of the above providers charges a subscription fee. The
contents are provided free of charge, sometimes with periodic commercials and

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0 13, © Springer Science+Business Media, LLC 2009

262 Z.Fuetal.

advertisements. The providers buy bandwidth from Internet Service Providers
(ISP) or Content Distribution Networks Providers (CDN) at about 0.1 to 1.0 cents
per video minutes [2], assuming the videos are encoded in low quality (200-400
Kbps). At these rates, it is estimated that YouTube pays over 1 million dollars a
month in bandwidth costs.

Because of the high bandwidth cost, few VoD providers are significantly prof-
itable today. Furthermore, as the user population grows and video quality increas-
es, the bandwidth cost is expected to grow exponentially. This makes the VoD
service even less profitable, if not impossible to deploy at all. In order to reduce
the server load, the bandwidth resources at the user side could be exploited. Table
1 shows bandwidth distribution of users having requested MSN video from April
to December, 2006 [2]. According to the table, significant bandwidth resources are
available at the user side. For example, more than 60% users have upload band-
width of 768 Kbps, sufficient for delivering a medium quality video to other users.
This suggests the use of peer-to-peer data transfer technologies. Existing peer-to-
peer file sharing system, such as BitTorrent [3] or Kazza, provides poor service
quality for video. First of all, it requires the user to download the whole file be-
fore playback. Secondly, the content may be of low quality, corrupted or even ma-
licious. The low cost but low quality model of P2P file sharing can not be directly
applied to the current VoD streaming service.

Table 1. Download and Upload bandwidth distribution (kbps) of Internet VoD users.

Modem ISDN DSL1 DSL2 Cable Ethernet
download 64 256 768 1500 3000 >3000
upload 64 256 768 384 768/384 768
Share (%) 2.8 4.3 14.3 233 18.0 373

Service oriented architectures have been proposed for peer-to-peer operation
model [7][8][9][10]. Ref. [7] describes a SOA framework for decentralized peer-
to-peer web service. Java Agent Development Framework (JADE) was proposed
in [8] as a service component and program API for peer-to-peer file sharing using
the JAVA programming language. Refs. [9] and [10] propose service models for
content search in peer-to-peer networks using Distributed Hash Table (DHT)
based algorithms. However, none of these works address the issues of the quality
of service in real-time video streaming and the related service composition.

There are several challenges in designing a service oriented VoD streaming
system using the peer-to-peer operation model. First of all, a service model needs
to be established to allow user requests to be collectively fulfilled by the server
and peers with quality of service constraints. This includes SLA specification,
real-time service composition and scheduling that fit into the requirements of
peer-assisted operations. Second, to satisfy streaming requests, service providers
need to quickly find and identify peers, if they exist, that have the required content

13 Designing an SOA for P2P On-Demand Video Delivery 263

and bandwidth in a large network of users. Finally, with peers contributing band-
width, group dynamics, such as user joins/leaves, have direct impact on service
quality. Fast and efficient recovery from disconnections, failures or attacks be-
comes an important part of the overall system design. In this chapter, we propose a
peer-to-peer architecture called Peer Assisted Content Delivery Service (PACTYS).
The goal is to reduce the high bandwidth utilization at VoD servers by leveraging
the upload capability at the user side while maintaining the quality of streaming
service. In particular, we made the following contributions.

Scalable SOA Design We propose extensions of both server and client side ar-
chitectures to leverage peer-to-peer streaming scalable to a large number of con-
current sessions. Typically, VoD streaming servers, such as YouTube, service a
large amount of concurrent download sessions. In order to avoid service bottle-
neck at the server, we push the details of peer-to-peer work flows, including re-
source discovery and scheduling, to the client side. This also provides backward
compatibility and allows the server to service both clients with and without peer-
to-peer extensions.

Real-time Vertical Service Composition PACTS represents a service model for
real-time video streaming from multiple service providers to an end user. In the
context of peer-to-peer streaming, an end user gets partial feeds from multiple
peers streaming at different rates. The end user performs service composition pe-
riodically to orchestrate the rate allocation among multiple providers. This real-
time vertical composition is a new model for the application of peer assisted mul-
timedia streaming.

Incentive-driven SLA As an integrated part of the SOA model, we propose a
simple way for SLA specification. We analytically show a specification that pro-
vides QoS differentiation based on end users’ contribution factors. In addition,
given a server bandwidth budget, the SLA specification is able to maximize the
bandwidth utilization by providing highest video quality to end users.

Peer-to-Peer Implementations There are several challenges in actually imple-
menting PACTS in a large scale distributed and dynamic environment. The goal is
to use existing off-the-shelf media software package for achieving low cost high
quality on-demand video streaming. On the control plane, we propose algorithm
for peering selection to construct an overlay that leads to highly efficient resource
utilization. On the data plane, we propose an incentive-driven data forwarding and
scheduling algorithm to address the heterogeneous bandwidth distribution among
neighboring peers.

The rest of the chapter is organized as follows. Section 3 describes the system
architecture of both servers and end users. Section 4 proposes a service model for
peer assisted video streaming from multiple service providers to an end user. Sec-
tion 5 presents an analytically model for SLA specification. Section 6 discusses
the challenges in PACTS implementation and proposed two algorithms for achiev-
ing resource efficiency. Section 7 concludes the chapter.

264 Z.Fuetal.

Resource
dedication
oeee
Dedicated @ ‘l'
network & server [~ -
M PR o
CDN n ko2 Tube

V¥

peer assisted =

peer to peer |

Playback
real time (ms) seconds minutes non real time response time

Fig. 1. Taxonomy of Internet video delivery technologies and applications

2. Related Work

Peer-to-peer file sharing applications such as BitTorrent [3], Kazaa, utilize user
upload bandwidth for scalable, low cost content distribution. Figure 1 illustrates
the taxonomy of Internet video delivery technologies and applications. Each cate-
gory has different server bandwidth requirements ranging from high (dedicated
network and server) to minimal (peer to peer) as shown on the vertical axis. In re-
turn, they provide different levels of video streaming quality, measured by play-
back response time ranging from real-time to non real-time as shown on the hori-
zontal axis. Hard real-time applications such as video conferencing have strict
delay constrains in the order of milliseconds. Dedicated network and server infra-
structure are usually established for high bandwidth requirement. At the lower
right end of Figure 1, peer-to-peer file sharing applications such as BitTorrent [3]
require no server bandwidth. Video contents are divided into chunks; peers ex-
change missing chunks using their upload bandwidth until the entire file is re-
ceived. As a consequence, continuous playback during downloading is usually
not possible due to the fact that chunks may arrive out-of-order. Users must wait
until the entire file is downloaded.

Moving away from hard real-time applications, VoD services such as You-
Tube, MSN Videos use CDN [4] technology to distribute replicas of same content
to servers all accross the Internet. User requests are serviced by the closest server
in terms of network distance. CDN can achieve playback latency in the order of
seconds. However, as the rapid increase in both user population and video bit rate,
the server bandwidth becomes a bottleneck.

Recently, PPLive [5] and CoolStreaming [6] broadcast live TV program to a
large amount of users over the Internet using peer-to-peer technologies. In Cool-
Streaming [6], the server divides the live feed into chunks to be individually

13 Designing an SOA for P2P On-Demand Video Delivery 265

pulled by users. Missing chunks are provided by neighbors using their upload
bandwidth. Compared with P2P file sharing, they allow users to playback the
downloaded contents with delay in order of minutes, without incurring significant-
ly more server bandwidth resources. In this chapter, we propose PACTS, a real-
time service oriented architecture that provides comparable service quality with
traditional CDN based approach but significantly reduces bandwidth utilization at
the server by leveraging peer assistance.

3. System Architecture

We describe the system architecture of PACTS in two parts, the server side and
client side. The architecture extends the traditional client-server VoD service
model to include both client-server and peer-to-peer operations.

3.1 Design Goals

A key design principle of PACTS is to keep the server side architecture and ser-
vice model as simple as possible by pushing the complexity to the client side.
Practical VoD server must handle large amount of users concurrently. For exam-
ple, YouTube has about 230 views per second on average [2]; during peak time or
flash crowd, the number could be much bigger [13]. Maintaining per-session
state information for dynamic service composition at server side reduces the sca-
lability of the service model. In PACTS, the client-server operations are stateless;
peer assistance such as content search, bandwidth contribution and QoS adaptation
are dynamically composed by client side service modules. Another advantage of
such architecture is information accuracy. It allows the end user to locally meas-
ure its current QoS and make resource scheduling decisions based on this real-
time information. Our real-time service oriented architecture has following bene-
fits compared to the existing P2P system designs such as [6].

Transparency to users The service modules provide atomic functions that hide
the implementation details from the user. For example, applications that broadcast
a live session have different search requirements and behavior from applications
that provides VoD. However, the directory service module provides interface that
makes the implementation transparent to users such as the download control ser-
vice (Figure 3). This flexibility allows for the same architecture to be used for dif-
ferent applications with minimum change.

Adaptivity A central capability of PACTS architecture is the adaptivity to dy-
namics in peer-to-peer network. This includes proactive service quality measure-
ment, service re-composition and failure recovery in real-time. The server also ad-
justs the SLA with end users according to the measurements of bandwidth

266 Z.Fuetal.

utilization and peer contribution to all downloads meets minimum QoS and users
contributing more bandwidth are rewarded with higher QoS.

Extensibility The PACTS architecture and service model can be extended to
support different video streaming applications such as VoD, live broadcasting or
video conferencing. It is also backward compatible with traditional client-server
model and accepts requests from end users both with and without peer assistance
capability. This is important for incremental software deployment in practice.

3.2 Server Side Architecture

The architecture of the server side is presented in Figure 2. The design maintains
the backward compatibility with the traditional client-server architecture. Most of
the back-end service modules such as content manager and billing can be reused.
Main peer-to-peer functionalities are handled by the two new service modules, the
Resource Manager at the back end and the P2P Content Directory Service at the
front end. The Resource Manager determines the QoS level at which an incom-
ing user request should be serviced based on parameters such as server bandwidth
utilization and the user’s contribution level.

Back End Front End
E content
Ej management VoD service
interface
video files
billing ¥

streaming
engine

PP
T Extension
rate
adaptation

APPs

Fig. 2. VoD server architecture with extensions for peer assistance capabilities.

The P2P Content Directory maintains a top level mapping between titles of
video and addresses of potential feeders. Once kicked off from the server, the
search is propagated among peer nodes until either the demand is satisfied or a
maximum search distance has reached. Simple extensions are added to the front-
end modules. We need a capability to communicate SLA at the service interface
module. Rate adaptation capability [14] is also needed at the streaming engine to

13 Designing an SOA for P2P On-Demand Video Delivery 267

respond to the dynamic service composition at the user side. This can be easily
implemented since in today’s RTP streaming engine, such as [12], sophisticated
adaptation algorithms have already been built in.

3.3 Peer Side Architecture Design

Front End Back End

sroct inquiry
irectory £eRy_| content directory|

service | gossip| service (CDS
module ()

user input playback

search search

resufts request
request
QoS _ [download control|—]

signaling | service (DCS) j_|
—

download f
modules l receive
content | gownload data [QoS
service (DDS) |[_| enforcement
module
content el Gl
¢ upload data
service (UDS)
upload
modules T send

signaling [upload control
service (UCS)

content cache

Fig. 3. Peer side architecture

Comparing to the traditional client/server model where the client needs only to re-
ceive stream feeds from the server, PACTS client implements key service modules
enabling peer-to-peer resource discovery and scheduling. Figure 3 presents soft-
ware architecture of a PACTS peer node. The front end consists of search service
modules, download and upload service modules, implementation interfaces for
signaling and data exchange with other peer nodes via network sockets. Back end
consists of modules for service composition and cache management. They expose
the interfaces to end users for initiating the download service and to periodically
retrieve the downloaded content from cache for playback.

User selects a desired video and initiates a request to RCS for downloading the
chosen video. RCS composes the service with server being the only contributor
and forwards the requests to the DCS. DCS first starts a search of the video in
peer nodes by invoking the local CDS service and wait for the reply. Meanwhile,
DCS sends a request to the server and starts the DDS for receiving the feed. As the

268 Z.Fuetal.

peers are coming in, RCS is periodically invoked to re-compute the rate composi-
tion among all service contributors.

4. The Service Model

Figure 4 provides an overview of the client-server operation. User initiates a re-
quest to the server specifying the video she wants to download. The request also
includes the user’s previous contribution level for other peers. Based on this in-
formation, the server responds with a QoS level she is entitled to be serviced, a set
of peers that has previously downloaded the same video, and a unique identifica-
tion number for the video. Meanwhile, the server starts to feed the stream using
the rate according to the decided QoS. Upon receiving the peer set, the user in-
itiates a search for potential contributors for the requested video. We noted that
the operation is stateless; once the search is initiated, matching peers contact the
original node directly. As the contributors arrive, the receiving node composes a
new rate allocation and moves the load from the server to peers. Upon receiving
the recompose message, the server and peers adjust the feeding rate accordingly.

user1 Server Peer

] search:<vid>
L]
time NAN . @ @
o

y accept:<Q0S: OV

recompose:<rate_allocation>

recompose:<rate_allocaﬁon>

Fig. 4. Client-Server Interactions for Dynamic Service Composition

13 Designing an SOA for P2P On-Demand Video Delivery 269

5. SLA Specifications

In order to encourage users to contribute their upload bandwidth, PACTS provides
differentiated QoS to users based on their contributions to other peers. Service
Level Agreement (SLA) maps contribution measures onto the QoS level subject to
constraints on server resources and optimization goals. In this section, we de-
scribe the metrics that are used to differentiate the QoS, the method for measuring
user’s contribution and an SLA model.

5.1 Metrics Definitions

5.1.1 QoS Metrics

We define the following QoS metrics used in SLA model.

Video Quality Using a layered encoder, a video can be compressed into several
sub-streams consisting of one base layer stream and several enhanced layer
streams which progressively improve visual quality of the video presentation. The
better the video quality, the more layers are needed and hence a higher bandwidth
will be consumed. We denote the layers for user j aslj, lj =0,1,2,...,K-1, where

layer O is the base layer guaranteed for all end users and K is the highest layer. The
corresponding streaming rate is denoted as R ..., Ry, -

Playback Quality Due to peer dynamics or network congestion, the download
rate may fluctuate causing jitters at playback. In such situations, RCS at the end
user re-composes a rate allocation to move the load from lagging peer to the lead-
ing peer. If not enough leading peers are available, RCS decreases the video qual-
ity by removing the current highest layer. To improve the playback quality, end
user could recruit a few more contributing peers for faster failure recovery. Max-
imum number of contributing peers allowed is a metric controlling the playback
quality.

Advertisement and Premium Content Optionally, service provider could offer
less advertisement or access to premium content to end users having a much high-
er contribution factor. The contribution factor is defined in the following.

5.1.2 Contribution Metrics

PACTS measures an end user j’s contribution factor, 7;» as the ratio between

bandwidth contribution and consumption. A factor of 0 means the end user does
not contribute any bandwidth; a factor of 1 means the end user uploads as much as
he downloads.

270 Z.Fuetal.

5.2 A Model for SLA

In this section, we derive a formulation to show how to differentiate QoS based on
end users’ contribution factors to achieve system level goals. Specifically, we
seek for a mapping between user j’s contribution factor to the video quality to be
serviced at the rate of T subject to the constraints of server bandwidth limitation.

We start from the case when all peers have contribution factor n;,=0. This

case corresponds to the traditional client-server service model where client does
not contribute any bandwidth. R should be guaranteed even without peer assis-

tance. Therefore, R w=b. 11, where A is the request arrival rate measured at the
server and b, is the server bandwidth budget.

In general, if end user j’s contribution factor is n; he is entitled to receive video

atrater; . A simple mapping from ntor, is given in (1).
r;=RO)+7, - (Re, —Ry) (D
To select a video layer lj based on r;, we have

lj =arg fnax{R, < r,-} 1=0,1,...,.K-1 (2)

According to Equation (1), the server provides a better QoS for users with a
higher contribution factor. From a capacity planning’s perspective, such QoS dif-
ferentiation incurs a risk for bandwidth overload at the server which in turn de-
grades the overall QoS. To enforce QoS strategy given in Equation (1), we need to
derive R, _, , the rate upper bound, subject to the limitation of server bandwidthp_.

Proposition 1 According to the service model given in (1), given server band-

width limitation p_and average user contribution factor 77, R, _, is bounded by

the following.

R, <R, -1 3)

where R, =b /A . We note that both 77 and A can be estimated at the server.
In particular, to estimate 77, server records each user’s contribution factor at re-

quest time and maintains a running average or linear prediction.
First of all, we require that the total bandwidth available at the system should
be greater or equal to the demand. This translates to the following inequality.

13 Designing an SOA for P2P On-Demand Video Delivery 271

b, + Z A rn; 2 Z /1]. r; 4
J J

where ,17_ is the request arrival rate at end user j. Replace r with (1), and (4)

becomes
b 2R, (A~ 22 A, + Z /1_,-77_,?) + R (Z Ui Z /11'77.?))
i i j i

Here we assume that ﬂ,j and r,are two 1.i.d. random variables, i.e., users’ re-

quest rates are statistically independent with their contribution factors. At system
steady state,

2 A0, = A
j

S - i ®
j

Combining (5) and (6), and noting that R) = b / A, we can derive equation (3).

5.3 Discussion

In this section we described a SLA specification that differentiates download rate,
i.e., the playback quality, according to a peer’s contribution. The goal is to reduce
server bandwidth cost by encouraging peers to contribute their bandwidth.

In this service oriented model, every peer is both a consumer and provider; it
utilizes services from peers and is motivated to serve other peers in need. The
model can be generalized to a wider context in large scale peer to peer settings as
illustrated in Figure 5.

Content Provider

l Content Provider

Fig. 5. A general peer-to-peer service model where nodes can be both content providers and con-
sumers

272 Z.Fuetal.

In the following, we present design and implementation of the above SOA
model in context of On-demand Internet Video Streaming.

6. PACTS Design and Implementation

In this section, we present the system implementation of PACTS. We use existing
video streaming technologies, such as MPEG-4 codec implemented in popular
products like IBM Video Charger [12], Microsoft Media Player [15] or Quick-
Time [16]. Our goal is to propose a turn-key solution integrating off-the-shelf
software into a peer-to-peer system that provides large scale high quality video
streaming service with low bandwidth cost for the content provider.

6.1 Design Rationale

Although scalable encoding has been added into current H.264 standard [17], most
consumer side players can not decode layered video streams. Given this con-
straint, we slightly modified the previous SLA specification. Specifically, videos
are encoded in only one layer. Based on peer’s contribution factor, SLA selects a
downloading rate instead of a target quality (layer) for it to be serviced at. The
more a peer contributes, the faster it can download.

Note that this is not the only possible implementation; other incentive alterna-
tives, such as adaptations in advertisement frequencies, premium content availa-
bility or even monetary rewards are also possible. The principle is to differentiate
service quality based on contribution with minimum quality guarantee. In this
chapter, we focus on the study of such incentive-driven SLA specifications within
the framework of real-time peer-to-peer SOA model and its behavior in large scale
on-demand video streaming system. Specifically, PACTS system design and im-
plementation address following fundamental challenges:

e Peering Selection. Among a set of existing peers, how does a newly joined peer
pick a subset to form its neighborhood and how to maintain it during system
churn. As we will show later, this has a significant impact on the resource effi-
ciency.

e Service Composition. Once the neighboring relationship is decided, PACTS de-
composes the content delivery service into sub-services to be carried out by in-
dividual neighbors. With the constraints of heterogeneous bandwidth capacities
and content availability at each individual neighbor, nodes need to carefully
coordinate to efficiently utilize the system resources.

e [Incentive-driven SLA. Providing incentive in asynchronous VoD system is
challenging. The asymmetric data flows between peers with different playback

13 Designing an SOA for P2P On-Demand Video Delivery 273

progress make direct reciprocity incentive mechanism, such as tit-for-tat of
BitTorrent [3], infeasible. Furthermore, unlike BitTorrent, real-time playback is
needed in VoD system. Therefore, chunks in a large file can not be downloaded
in arbitrary order; they must be downloaded before the playback time in order
for on-line streaming.

In the following, we will first show how the proposed real-time peer-to-peer
service model helps to reduce the server cost, which is addressed in Section 6.3.
Furthermore, we quantitatively study the benefits of the incentive-driven SLA in
various dynamic settings in Section 6.4.

6.2 System Model

A key design issue of P2P VoD systems is to minimize the server bandwidth cost
by efficiently utilizing peers’ upload bandwidth. P2P VoD systems have two
unique features: the playback progresses on peers are asynchronous; peers can
download content beyond its current playback range. In addition, to cope with
bandwidth variations and peer-churn, a peer normally buffers a certain amount of
video beyond its playback progress.

Notations: To model a typical P2P VoD system, we introduce the following
notations for peer i in the system:

e Playback progress pi: the current playback position of peer i, indexed by the
sequence number of the video chunk being played.

o Buffering progress bi: the sequence number of the first missing chunk beyond
current playback position pi.

e Buffering level T,: the number of continuous buffered chunks beyond the cur-
rent playback progress point. By definition, 7, = bi — pi.

e Playback buffering threshold Wrd: the number of buffered chunks necessary
for smoothing playback. We call the sliding window [pi, pi+Wrd] peer i’s con-
tinuous playback range.

o Contribution level 77, : the number of chunks that peer i has uploaded to other

peers since it joins the system.

g

4 Tl L)
m f:l

sequence
(a)peerl (b)peer?

Fig. 6. Peer buffer status

274 Z.Fuetal.

Figure 6 illustrates two different peer buffer statuses. On Peer 1, the buffer lev-
el 7, is lower than the playback buffering threshold Wrd. It is downloading the
missing chunks in the continuous playback range. We call peer 1 is in the normal
playback mode. On peer 2, the buffer level 7, is higher than the playback buffer-

ing threshold Wrd. Peer 2 is downloading chunks outside of the playback range.
We call peer 2 is in the pre-fetch mode.

6.3 Peering Selection

PACTS connects peers if their buffering points are close enough. In stead of pick-
ing neighbors randomly, a node picks its peers with approximate bi values. We
term this peering strategy as Buffering Progress Based (BPB). As we will show in
the following, the problem with random peering is its poor resource efficiency. In
fact, as a peer node’s buffering point progresses, it finds less and less suppliers
from which it can download content from — earlier-joined peers may have left and
newly-joined peers cannot supply needed content. BPB groups peers according
to arrival time within in certain threshold.

70

4+ BPB §=0.1
-&-BPB §=0.3]
——Random

[o2]
o

Server Cost
n w B [6)]
[=] (=] o o

—_
[=]

5 10 15 20
Average Peering Degree

Fig. 7. Server Cost Savings in peer assisted VoD system with various peering strategies

We use simulation to demonstrate the benefits of server bandwidth cost savings
using P2P model. In particular, we compare BPB peering with random peering
strategy. Towards this goal, we generate an instance of a peer-assisted video-on-
demand system using a discrete simulation. During the simulated session with du-
ration T=100, peers arrive at the system according to a Poisson process with arriv-
al rate equals to 2 peers per second. Peers stay in the system till they finish the en-
tire video viewing. The video rate is r. There are two types of peers with upload
bandwidth 7.5r and 0.5r respectively. The normalized average peer upload band-
width around 1.2.

13 Designing an SOA for P2P On-Demand Video Delivery 275

With random peering, upon arrival, a peer randomly picks k peers already in
the system as its neighbors. With BPB peering, peers are ordered in an increasing
order of their arrival times. A peer who arrived at the system with rank i will ran-

domly pick k neighbors from peers with arrival ranks in the range of [i - o *N, i

given total N online peers. By changing 5, we manipulate the playback progress
closeness of neighbors in the constructed BPB graph. We then compare the server
cost under BPR and random peering strategies under five snapshots of the system.
For each snapshot, we calculated the minimum required contribution from the
server as the server cost plotted at Y-axis at Figure 7.

The results shown at Figure 7 indicate that with limited peering degree, BPR-
peering can significantly reduce the server cost compared with random peering.
For example, in the case where each node finds no more than 7 neighbors, a server
is able to support 200 concurrent users with bandwidth of only 2 times of the indi-
vidual content streaming rate. That’s about 100 times savings compared with tra-
ditional client/server service model. In addition, we observe the tremendous cost
savings from BPB peering compared with random peering strategy.

6.3.1 BPB Implementation

The key to BPB peering is to find peers with close buffering progresses. To facili-
tate BPB peering, the tracker sorts the list of active peers according to their arrival
times. When a new peer joins in, the tracker records its arrival time and appends it
to the end of peer list. Then the tracker will return the new peer with an initial peer
list consisting of a number of random peers at the end of the list. Those peers will
be the suppliers for the new peer. When there is no pre-fetching, buffering on
peers advances roughly at the same pace, namely the playback rate. Peers who ar-
rive close in time will remain close in buffering progress. During the session,
when a peer needs to connect to new neighbors, either due to neighbor departures
or unsatisfactory peering connections, it can contact the tracker for additional
peers. The tracker can quickly search through the sorted list to find peers with
close buffering progress for the requesting peer. In addition, due to BPB peering, a
peer’s neighbors’ neighbors should also have close buffering progresses with the
peer. Without going to the tracker, a peer can find new “close” neighbors in the
neighbor lists returned by its neighbors.

CETPress

" local

ns nyg n3 na N

buf fering progress

Fig. 8. Dynamic BPB peering

276 Z.Fuetal.

With pre-fetching, buffering on peers advance at different rates. A peer joins
the system later can possibly download video faster than his neighbors who ar-
rived earlier and gain larger buffering progress. Once this happens, the download
rate of the peer will be slowed down due to the lack of enough suppliers. The peer
should then trigger dynamic BPB peering to find more suppliers satisfying the
BPB peering criterion.

Figure 8 shows a simplified example of dynamic BPB peering. Towards the
goal of downloading the whole video, node na runs on the “express track” with
larger download speed, while its neighbors runs on the “local track” with smaller
download speed. As time evolves, it catches up with the buffering progress of its
neighbors. To maintain its download rate, it connects with nl with larger buffering
progress and disconnects from peer n5 with the smallest buffering progress.

To facilitate this dynamic BPB peering, a centralized solution is to have the
tracker keep track of peers’ buffering progresses and help peers to find new
neighbors with close buffering progresses. Peers need to periodically report their
current buffering progresses to the tracker. And the tracker also needs to constant-
ly resort the peer list. This will incur large signaling and processing overhead on
the tracker and peers. On the other hand, peers constantly exchange their buffering
progresses with their neighbors. Due to dynamic BPB buffering, there is a good
chance that a peer, even doing fast pre-fetching, can find peers ahead of him by
searching through the neighbor lists returned by its neighbors. Then instead of re-
questing from the tracker, peers can request complementary peer lists from neigh-
bors and pick appropriate peers with close buffering progress to connect.

6.4 SLA for Incentive-Driven Pre-fetching

To coordinate the asynchronous demands of peers and maintain system-wide
Quality of Experience (QoE), we propose an Adaptive Taxation scheme to regu-
late the pre-fetching on heterogeneous peers. Original taxation scheme [17] is ap-
plied to provide incentive in live streaming system. The bandwidth can be re-
garded as peer’s wealth. Resource-rich peers contribute more bandwidth to the
system, and subsidize for the resource-poor peers. The tax regulated redistribution
of peer wealth helps improve the social welfare and then reduce server cost.

However, in [17], the tax ratio is fixed and the demogrant rate (i.e., the mini-
mum rate a peer receives even if it does not contribute anything) is adaptive. This
has the drawback of not being able to guarantee the minimum QoS when the de-
mogrant rate becomes too low.

In order to meet the design goal of ensuring minimum service level (i.e. each
peer is at least offered a service rate equals to the video playback rate) while en-
forcing incentives, PACTS fix the demogrant rate to be equal to the playback rate
and adaptively adjusts the tax ratio. Suppose we pose a taxation ratio ¢ on peers.

13 Designing an SOA for P2P On-Demand Video Delivery 277

Then one peer with contribution level 77, and lifetime T, could get the average

download rate r, to accumulate expected buffer level

i

ZTi=(ri—r)Ti=n—
t

To make the aggregate tax revenue z r, and budget expenditure z n, /T, ba-

lanced, the taxation ratio ¢ needs to be adaptive to the system wide resource avail-
ability. To decide the ratio, we have

t=z77i/z1.i

Within the framework proposed in Section 5, SLA module of PACTS VoD
server maintains an adaptive tax ratio # based on the current measurement of sys-
tem resource. In a resource rich system, peers accumulate different amount of
buffering levels proportional to their contributions and the system tax rate ¢ which
is given by the PACTS SLA module at the backend. In a resource deficit system
where average upload bandwidth is limited, i.e. u<r, peers bandwidth along are
not enough to sustain minimum service quality. In this case server bandwidth is
needed to meet the SLA requirements.

7. Performance Evaluation

We use simulations to evaluate the performance of PACTS. In particular, we
quantitatively study the benefits of the proposed peering and pre-fetching strate-
gies. Throughout this section we use the term bpbp_np and ranp_np to refer to the
BPB-peering and random peering strategies without incentive based pre-fetching
respectively. bpbp_inc refers to our incentive-driven pre-fetching strategy with
the combination of the BPB-peering. For comparison purpose, a random peering
strategy with non-incentive-driven pre-fetching, denoted by ranp_wp, is also de-
veloped and measured in our simulations.

7.1 Simulation Setup

We developed a packet-level event-driven simulator in C++ to study the perfor-
mance. Our simulator adopts the infrastructure of the simulator engine of [18] si-
mulating the end-to-end latency in terms of real-world latency measurement re-
sults. Two 4-CPU servers are applied to accelerate the simulations.

278 Z.Fuetal.

We follow the common assumption that the download bandwidth of each peer
is large enough and is not a limiting factor in the system. The video’s playback
rate is set to be 400kbps with each chunk being 5K bytes. We distinguish three
types of DSL users with upload bandwidth being 1Mbps, 384kbps and 128kbps
respectively. By varying the distributions of these types we obtain different nor-
malized average bandwidth (w.r.t. the playback rate), as shown in Table 2. In the
simulation, we use a single video with 30mins length. One single simulation round
lasts for 90mins to get a better view of the system behavior. We believe that the
video length and the simulation duration are already long enough to demonstrate
the features of different strategies.

Table 2. Normalized peer average bandwidth and the corresponding fraction of DSL connection

types.
P Fraction of Peers P Fraction of Peers
(1M, 384K, 128K) (1M, 384K, 128K)

090 0.15,0.39, 0.46 140 0.34,0.52,0.14
100 0.20, 0.40, 0.40 1.50 0.43,0.38,0.19
1.12 0.23,0.46, 0.31 1.60 0.49, 0.36, 0.15
120 0.25,0.53,0.22 170 0.54,0.32,0.14
1.30 0.30, 0.50, 0.20 1.80 0.60, 0.30, 0.10

Peers arrive to the system according to a Poisson process with arriving rate 4, =

1/4 per second. The system population is approximately 500 after the startup
phase. The default number of neighbors for each peer is 15. The size of the play-
back buffering threshold and pre-fetching window are both 4 seconds. Peers
broadcast buffer-map messages every 0.5 second and the token number informa-
tion is piggybacked within the message. The server bandwidth cost consists of
two parts, due to the complementary pull from peer for missing chunks and re-
quest scheduled from peers who receive the tokens from server respectively. The
number of tokens sent out periodically from server corresponds to 1Mbps. To
make the comparison fair, we generate the peer arrivals and upload bandwidth
configuration beforehand and use the same setting to compare different strategies.

7.2 Simulation Results

We first show the effectiveness of the proposed SOA model by measuring the
server bandwidth saving in PACTS. We then further study the results on different
pre-fetching schemes to illustrate the benefits of our incentive-driven SLA model.

13 Designing an SOA for P2P On-Demand Video Delivery 279

7.2.1 Server Cost Savings

The server bandwidth saving is the most important performance metric. In the fol-
lowing, we present a detailed study based our simulations.

We begin by showing an evolution of server cost during one simulation ses-
sion. Figure 9(a) shows the instant aggregate user demand and the peer bandwidth
when the normalized average peer bandwidth (0) equals to 1.3. There are no

peers in the system at the beginning. The first peer finished playback and leave the
system at 1, 800 second. The time period [0, 1800] is the system startup phase.
Fig. 9(b) presents the instant server cost under the different strategies. We can ob-
serve that the server cost of random peering strategies increase almost linearly at
the startup phase as the number of peer increases, then the curves oscillate closely
with the instant peer average bandwidth.

x10°

3

n

—_
T

Bandwidth (kbps)

— Aggregate demand
Aggregate peer bw

00 1000 2000 3000 4000 5000
Time (s)

(a) Demand vs. available resource
x 10"

#-ranp_np
| ranp_wp

“bpbp_np
<~ bpbp_inc

N W B~ a

Server BW cost (kbps)

-

0 1000
(b) Instant server cost

Fig. 9. Server cost under different peering strategies

However, for BPB-peering strategies, it is interesting to observe that the server
cost increases in a short period and maintains almost constant at the startup phase.
Peers join the system early have limited data to share with each other. The server
has to stream data to them directly. When more peers get into the system, peers
start to download data from each other. When the startup phase is over, the serv-
er’s bandwidth utilization drops nearly to zero in bpbp_inc strategy. Later simula-
tion results show that a certain amount of peers which have evolved into seeds
take the place of the server.

280 Z.Fuetal.

Figure 9(b) shows that when p = 1.3, the random-peering without pre-

fetching strategy (ranp_np) can save at least around 75% server bandwidth com-
paring to the traditional client/server service model where no peer assistance is
available. The saving can be improved to 85% with pre-fetching. Using BPB-
peering, the bpbp_np can enhance the saving further to around 95%. Moreover,
our simulation shows that bpbp_inc can stabilize the server bandwidth utilization
to a very low level after the startup phase.

7.2.2 Impacts of Peering and Incentive Strategies

We further examine the server cost savings with different normalized peer average
bandwidth. Fig. 10(a) shows the average server cost after the first 50 mins. As the
system resource increases, the cost of all strategies drops. bpbp_np and bpbp_inc
both achieve most bandwidth saving. In particular, bpbp_inc achieves zero server
bandwidth cost when p > 1.2. The BPB-peering effectively improves the sche-

duling efficiency, resulting in more server bandwidth saving. Pre-fetching enables
peers to download future content with extra bandwidth, thus reduces the possibili-
ty of data pull from the server in the future. The ranp_wp strategy with pre-
fetching can also work without server when p = 1.8. When p =0.9, bpbp_np

slightly outperforms bpbp_inc. This is because the pre-fetching potentially impairs
some peers’ normal playback when the whole system is in a bandwidth resource
deficit status. This disadvantage can be conquered in PACTS by giving more pre-
ference to neighbors who haven’t fill up the playback window during the schedul-
ing.

Although bpbp_np and bpbp_inc perform closely in terms of server bandwidth
saving, pre-fetching of bpbp_inc produces seeds in the system. Fig. 10(c) illu-
strates the number of seeds during the simulation with normalized bandwidth
equal to 1.5.

It is very impressive that using bpbp_inc, the seed number can even reach near-
ly 40% of all peers. On the other hand, the ineffectiveness of random peering
leads to less number of seeds in ranp_wp. The existence of seeds makes the sys-
tem resource allocation more flexible and thus more robust to peer dynamics. In
fact, seeds can completely take the place of the server.

Peers only exchange the interested area information, which is efficient to keep
the overhead low. Fig.10(b) shows the control traffic throughput compared with
data traffic. The overhead contributes less than 5% percentage for all cases. As the
resource increases, the exchange between peers become more effective with large
enough bandwidth, which leads to less control overhead in return. The same phe-
nomena can be observed between random peeing and BPB-peering strategies, be-
cause the latter is more effective than the former.

13 Designing an SOA for P2P On-Demand Video Delivery

=¥-ranp_np

—+ranp_wp
= bpbp_np
-©-bpbp_inc

Average server bandwidth cost (kbps)

o] 5 s & = p A=
1 1.2 1.4 1.6 1.8
Normalized average peer upload bandwidth

(a) Averag server cost in stable period

5 : . : :
—¥-ranp_np
—t+ranp_wp
4.5 —*=bpbp_np
3 -©&-bpbp_inc

Percentage of control packet overhead(%)

1.2 1.4 1.6 1.8
Normalized average peer upload bandwidth

(b) Control traffic overhead

bpbp_inc
200 ——ranp wp
(%]
B
2 150
1]
he)
(]
>
2 100}
[}
]
**
50}
0 1000 2000 3000 4000 5000

Time(s)

(c) Number of evolved seed

Fig. 10. Performance with various normalized peer bandwidth distribution

281

282 Z.Fuetal.

8. Conclusion

In this chapter, we proposed a service oriented architecture for peer assisted VoD
streaming system. In particular, we presented the architecture design for both
server side and client side service modules. Our design leverages the benefits of a
service oriented approach such as agility, ease of configuration and ability to adapt
to change. Based on this design, we outlined a service model that performs real-
time composition for peer assisted video streaming. Finally, we proposed a model
for SLA specification. The SLA differentiates QoS to end users based their
bandwidth contributions to the system. Following this SLA model, we analytically
derived minimum and maximum QoS level given a bandwidth budget at the server
side. The SLA computation is simple to implement; the system parameters used in
the computation can be easily observed and maintained by the server.

We further described an implementation of the proposed SOA model, the
PACTS. We presented the design rationales of PACTS followed by the detailed
algorithms in peering strategy and incentive-driven pre-fetching. The design is
being extensively evaluated by packet-level simulations, which will be presented
in another paper shortly. As the future work, we will show that PACTS effectively
offload server’s bandwidth demand without sacrificing the service quality. This
benefit is further verified in dynamic settings with system churns.

References

[1] L. Gomes, “Will All of Us Get Our 15 Minutes On a YouTube Video?” Wall Street Journal,
Aug. 30, 2006

[2] C. Huang, J.Li and K.W.Ross, “Can Internet Video-On-Demand be Profitable?” In Proceed-
ings of SIGCOM 2007

[3] B. Cohen, “Incentives Build Robustness in BitTorrent”, In Proceedings of 1" Workshop on
Economics of Peer-to-Peer Systems, 2003

[4] K.L.Johnson, J.F.Carr, M.S.Day and M.F.Kaashoek, “The Measured Performance of Content
Distribution Networks”, Computer Communication Journal, Elsevier, 2001

[5] T.Silverston, O. Fourmaux, “Measuring P2P IPTV Systems”, In Proceedings of NOSSDAV,
2007

[6] X.Zhang, J.Liu, B.Li and T.S.P.Yum, “Coolstreaming/DONet: A Data-Driven Overlay Net-
work for Efficient Live Media Streaming”, In Proceedings of IEEE INFOCOM, 2005

[71 R.Mondejar, P.Garcia, A.F.G.Skarmeta, “Towards a Decentralized p2pWeb Service
Oriented Architecture”, In Proceedings of National Community Policing Conference — Com-
munity Policing: Leading the Way to a Safer Nation, 2006, Washiongton, D.C.

[8] F.Bellifemine, G.Caire, A.Poggi, G.Rimassa, “JADE, A White Paper”, Technical Report,
Telecom Italia Lab, exp — Volume 3 — n.3 — September 2003

[9] A.Cherenak, M.Cai, M.Frank, “A Peer-to-Peer Replica Location Service Based on A Distri-
buted Hash Table”, In Proceedings of ACM/IEEE Conference on Supercomputing (SC2004),
2004

[10] C.Schmidt, M.Parashar, “A Peer-to-Peer Approach to Web Service Discovery”, In Proceed-
ings of ACM Conference on World Wide Web, 2004

13 Designing an SOA for P2P On-Demand Video Delivery 283

[11] M.Hefeeda, A.Habib, D.Xu, B.Bhargava, B.Botev, “CollectCast: A peer-to-peer Service for
Media Streaming”, in Multimedia Systems Journal, 2005 - Springer

[12] “IBM Video Charger”, October 2005, http://www.306.ibm.com/software/data/videocharger

[13] X.Hei, C.Liang, J.Liang, Y.Liu, K.W.Ross, “A Measurement Study of a Large-Scale P2P
IPTV System”, IEEE Transaction on Multimedia, 2007

[14] C. Venkatramani, P. Westerink O. Verscheure, P. Frossard “Securing Media for Adaptive
Streaming”, ACM Multimedia, 2003.

[15] “Microsoft Media Player”, www.microsoft.com

[16] “QuickTime Player”, www.apple.com

[17] Y.hua Chu, J.Chuang and H.Zhang, “A case for taxation in peer-to-peer streaming broad-
cast”, in Proceedings of ACM SIGCOMM workshop on Practice and theory of incentives in
networked systems, 2004

[18] M.Zhang, Q.Zhang, L.Sun and S.Yang, “Understand-ing the power of pull-based streaming
protocol: can we do better?” IEEE Journal on Selected Areas in Communications, 2007.

[19] Z.Fu, C.Wu, J.J.Jeng, H.Lei, “PACTS: A Service Oriented Architecture for Real-Time Peer-
Assisted Content Delivery Service”, In First IEEE International Workshop On Real-Time
Service-Oriented Architecture and Applications (RTSOAA) 2008, Finland.

Chapter 14

A Coverage Relationship Model for Test Case
Selection and Ranking for Multi-version
Software

Wei-Tek Tsai, Xinyu Zhou, Raymond A. Paul’, Yinong Chen, Xiaoying Bai*

Computer Science & Engineering Department, Arizona State University, USA
{wtsai, xinyu.zhou, bnxiao, yinong } @asu.edu

fDepartment of Defense, Washington, DC, USA

TRaymond.Paul @osd.mil

*Department of Computer Science and Engineering, Tsinghua University, China

*baixy @tsinghua.edu.cn

Abstract. Testing a group of software artifacts that implement the same specifica-
tion is time consuming, especially when the test case repository is large. In the
meantime, some of test cases may cover the same aspects in the software under
test, and thus it is not necessary to apply all the test cases. This paper proposes a
Model-based Adaptive Test (MAT) case selection and ranking technique to elimi-
nate redundant test cases, and rank the test cases according to their potency and
coverage. This technique can be applied in various domains where multiple ver-
sions of an application are available for testing, such as web service group testing,
n-version applications, regression testing, and specification-based application test-
ing. MAT is a statistical model based on earlier testing results, and the model can
accurately determine the next sets of test cases to minimize the testing effort. It
can be applied to testing of multi-versioned web services, and the results shows
that MAT can reduce testing effort while still maintain the effectiveness of testing.

1 Introduction

Service-Oriented Architecture (SOA) and Web services have received signifi-
cant attention recently. SOA is used in the web 2.0 [25], which facilitates colla-

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0 14, © Springer Science+Business Media, LLC 2009

286 W.-T. Tsai et al.

borative sharing and communication for all participants. One reason that prevents
services from being widely used, particular those services developed by third par-
ties, is whether these services are reliable enough to be trusted in mission-critical
applications.

As reported in CBDi Forum (http://searchwebservices.techtarget.com/) in 2002:
“Web services are not yet widely used because of reliability concern. The concern
is ‘Will the service work correctly every time when I need it?” As yet few are
thinking about the issues of testing and certification. We suggest that testing and
certification of Web services is not business as usual and that new solutions are
needed to provide assurance that services can really be trusted.”

While the security issues of services are still a concern, many standards, such
as WS-Security, WS-Secure Conversation, WS-Privacy, WS-Trust, XACML and
SAML, have been studied and published, which have produced the level of securi-
ty that customers are confident with. For example, people are now doing their
communication, banking, and shopping through Internet and services. However,
despite progress in SOA, service verification and testing techniques are not mature
enough to support dependable and trustworthy computing. The current web ser-
vice and SOA research is largely focused on the protocols, functionality, transac-
tions, ontology, composition, semantic web, and interoperability. Little research
has been done on dependability and trustworthiness of services developed by dif-
ferent service providers.

In the SOA development, application builders can search and discover services
from service brokers, and use services provided by different services providers.
Who is responsible for the overall dependability of a system that consists of many
services developed by different service providers? At what layers should reliabili-
ty and security mechanisms be deployed? These are new challenges. To address
these new problems, efforts from all the involved parties are necessary, including
policy makers such as government agencies that may propose reliability criteria,
standard making consortiums to establish the means to evaluate those criteria, in-
dustries such as service providers and brokers to follow the agreed criteria, service
consumers to use only those certificated services, and research institutions to pro-
vide technology for reliability modeling and evaluation.

Current web services are based on UDDI or ebXML server that provides direc-
tory and brokerage services similar to the telephone yellow book. A service broker
is not responsible for the quality of services it refers to. Thus, the trustworthiness
of service presents a concern for users. Traditional dependability techniques such
as correctness proof, fault-tolerant computing, model checking, testing, and evalu-
ation, can be used to improve the trustworthiness of individual service. However,
these techniques need to be redesigned to handle the dynamic applications com-
posed of service at runtime.

Verification can be enforced through the entire SOA development lifecycle
[15], including modeling phase, development phase, composition phase, deploy-
ment phase, and even at runtime. A traditional approach to verify an SOA applica-
tion via the IV&V (Independent Verification and Validation) is to have all the ser-

14 Model for Test Case Selection and Ranking for Multi-version Software 287

vice code available, and let an independent team to test each code, and then test
the application exhaustively using all the combinations of services. In this way, a
SOA application can be composed without dynamic testing, because all the com-
binations have been tested earlier. However, this approach can be too expensive to
implement, because the number of services available as well as their combinations
can be huge. Another serious issue of this approach is that service providers may
not be willing to share the source code, and thus making this approach infeasible.

2 Testing Techniques in SOA Lifecycles

A number of studies have been done to address the testing problems of SOA
applications. In [6], Canfora and Di Penta presented the opportunities and chal-
lenges in SOA testing. In [2], various SOA verification and testing techniques are
presented including monitoring, reliability modeling and analysis.

Testing and evaluation is part of software lifecycle, as well as in each step of
the lifecycle. SOA lifecycle includes modeling and design, development, registra-
tion and publication, deployment, and operation and maintenance. Various testing
techniques have been developed in each step of the lifecycle.

2.1 Testing in Modeling and Design phase

In [28], Zheng et al proposed a model checking based test case generation
framework to test whether the implementation of web services conforms to its
BPEL and WSDL models. The SPIN and NuSMV model checkers are used as the
test generation engine, to achieve state, transition and du-path coverage criteria for
BPEL models.

In [15], Narayanan and Mcllraith proposed a Petri Net (PN) based web service
simulation, verification and validation. In their approach, web services are mod-
eled by DAML-S, then translated to PN. Based on the Petri Net model of the web
service, many existing Petri Net techniques can be applied to simulate, verify and
validate the web service. Specifically, linear algebraic techniques can verify the
properties of the web service; Coverability graph analysis, model checking and re-
duction techniques can analyze the dynamic behavior of the Petri Net; Simulation
and Markov-chain analysis can evaluate the performance of the web service. The
verification on the Petri Net can check the reachability, liveness and deadlocks of
the web service.

288 W.-T. Tsai et al.

2.2 Testing in Assemble/Composition Phase

In [14], Milanovic and Malek reviewed and compared existing approaches to
service composition, including BPEL, OWL-S, Web Components, Algebraic
Process, Petri Nets, Model checking and Finite State Machines. In [13], Koehler
and Srivastava discussed and compared two approaches to service composition: an
industry solution which uses WSDL and BPEL4WS, and a semantic web solution
which uses RDF/DAML-S and Golog/Planning.

In [10], Garcia-Fanjul et al used SPIN model checker to automatically generate
test suites for composite Web service specified in BPEL. In their approach, BPEL
specification is first transformed into a PROMELA model, and then test case are
generated and selected to provide transition coverage.

2.3 Testing in Registration Phase

After service is tested and deployed by the service provider, it should be tested
again by other parties before its registration on the service registry.

In [3], Bertolino et al. presented a framework which extends the UDDI registry
role and supports the validation of services before registration. The testing ap-
proach, which is called audition, is based on a Protocol State Machine (PSM)
which is a behavior diagram of the UML 2.0. PSM is a state machine with the pre-
conditions and post-conditions specified along with each state.

In [11], Heckel and Mariani proposed that services should be tested by auto-
matic testing agents called “discovery services” before their registration. The “dis-
covery services” uses Graph Transformation (GT) rules to test the compatibility
between clients and services. The discovery service can automatically generates
conformance test cases based on the service description and its GT rules, then ex-
ecute the test cases on the Web Service.

In [29], Zhu proposed a service oriented testing framework which involves var-
ious parties in the testing of WS applications. When registering a service, a kind of
auxiliary service called “testing services” should also be registered with the “func-
tional service”. The testing service can be provided by the same vendor or by a
third party. One functional service can correspond to multiple testing services to
perform various testing tasks. Ontology can be used to describe, publish and regis-
ter testing services.

14 Model for Test Case Selection and Ranking for Multi-version Software 289

2.4 Testing in Deployment Phase

In [27], a TTCN-3 based stress testing approach was proposed. The tests stored
on the server side are in the form of Abstract Test Suite (ATS), which is a lan-
guage and platform-independent format. The ATS test cases are publishable and
discoverable. The TTCN-3 compiler can convert the ATS test cases into various
language-dependent formats, such as test in java, test in c#, test in Perl and so on.
In [16], Nevedrov introduced a performance testing tool JMeter to check the per-
formance of SOA applications.

2.5 Testing in Runtime Phase

The Web Services Policy Framework (WS-Policy) [22], developed by BEA,
IBM, Microsoft, and SAP, provides a general-purpose model and corresponding
syntax to describe and communicate the policies of a Web Service. WS-Policy de-
fines a base set of constructs that can be used and extended by other Web Services
specifications to describe a broad range of service requirements, preferences, and
capabilities. WS-Policy provides a flexible and extensible grammar for expressing
the capabilities, requirements, and general characteristics of entities in an XML
Web Services-based system. WS-Policy defines a framework and a model for the
expression of these properties as policies.

In [19], Robinson proposed a monitoring framework called ReqMon that sup-
ports formalization of high-level goals and requirements. ReqMon also supports
the automation of monitor generation, deployment, and optimization. ReqMon is
composed of five components: event capture, analyzer, repository, presenter and
reactor. The event capture component receives runtime events and put the events
into the event streams. The analyzer is used to update the status of monitors. The
repository is a database for storing the events and monitor histories. The monitors
are implemented by model checking, SQL queries and Event Condition Action
(ECA) rules.

290 W.-T. Tsai et al.

3 Objectives

3.1 Requirement for Verification Framework

An open verification framework is beneficial for SOA: It provides an experi-
mental testbed for researchers; it also provides the updated data necessary for var-
ious service research projects such as service performance and reliability assess-
ments. In the open testing framework, the service repository, test case database,
and ranking data are open, i.e., the public can use them and can contribute to them
too. The verification models and tools, including testing and verification mechan-
isms, test case generation methods, reliability and ranking models, are all public,
extendable and replaceable.

In addition, the open verification framework should be able to rank services,
test cases, test case generation algorithms, and reliability models.

One requirement for web service testing is rapidly testing multiple versions of
services of the same specifications. The atomic and composite services can be
specified in WSDL, OWL-S, and BPEL. Based on the specifications, test cases
can be generated by test case generation techniques. The SOA verification tech-
niques include testing, model checking, simulation, policy enforcement, and other
mechanisms such as completeness and consistency. This paper focuses on the test-
ing aspects, in particular, how to test services efficiently.

3.2 Testing Services Adaptively

Statistics has been shown to be promising for software testing. Whittaker pro-
posed a statistical software testing model and applied Markov chain to that model
[23]. Statistical testing follows black-box testing with two extensions: the input
sequence must be stochastically generated and the test history must be analyzed
from a statistical point of view. The statistical testing model can be modeled as a
Markov chain and a testing Markov chain. The usage Markov chain is used to
model the state diagram of the software, while the testing Markov chain is used to
collect the testing profiles. Software cybernetics [5] leverages controlled Markov
chain (CMC) technique for software testing. The software under test serves as a
controlled object and the software testing strategy serves as the controller and op-
timizer. In this way the software and the testing strategy forms a CMC, and con-
trol theory of Markov chains can be used to tackle software testing. However,
CMC is currently limited to those software testing processes that can be modeled
as Markov chains.

14 Model for Test Case Selection and Ranking for Multi-version Software 291

This chapter proposes a Model-based Adaptive Testing (MAT) for multi-
versioned software based a model called Coverage Relationship Model (CRM).
The CRM can be used to select and rank test cases, and can identify and eliminate
those duplicate test cases or those test cases that cover the same aspects. The MAT
also can be used to rank the test cases according to their potency in an adaptive
manner. In this way, software can be efficiently tested using the most potent test
cases and without minimized duplication effort. Furthermore, as more data will be
collected, the model can automatically re-rank test cases based on the new testing
results.

The proposed technique can be applied to various domains where multiple ver-
sions of applications are available such as:

e N-version programming [6]: N-version programming is used to fault-tolerance
approach to ensure the reliability of systems. In an N-version programming
model, multiple versions of system are used to implement the same function,
and versions can be used as software recovery blocks as backup.

e Regression Testing: In a system development lifecycle, multiple versions of
software will be developed, and in modern software development processes
such as agile process, a new version of software can be created on a daily basis.
Furthermore, in the Web. 2.0 paradigm [25], not only a new version will be
created on a hourly basis, but also end users will be involved as co-developers
while using the delivered products. Thus, during the entire development
processes, numerous versions of software will be available.

e Standard-based testing: Standard-based applications are the systems that im-
plement the functionality and interfaces specified in a published standard. For
example, OASIS [17] and W3C [24] have published numerous standards, and
vendors may develop their own software to implement those standards, and
thus standard making organization often need to publish test cases to ensure
that they meet the standard requirements. .

e Web Service Testing. Group Testing technique was originally developed for
blood testing [9], and later for to software regression testing and web service
testing [12][1]. Group testing can be used when detecting faults in multiple ver-
sions of the same specification.

e The chapter is organized as follows. Section two introduces the CRM and the
algorithm of constructing the CRM. Section three optimizes the full CRM into
a Simplified CRM (S-CRM) and then analyzes the implications of various cov-
erage probabilities in the S-CRM. Section four proposes the adaptive test case
ranking and selection algorithm based on the S-CRM. Section five describes an
experiment by applying the S-CRM and MAT to a WSGT environment, and
analyzes the experiment result. Section six concludes this paper.

292 W.-T. Tsai et al.

4 Coverage Relationship Model (CRM)

4.1 Motivation

For a sample set of applications S, after applying two test cases (TC) A and B
respectively, A generates two output sets Ac and A;. Ac denotes the correct output
set, while A; denotes the incorrect output set. Likewise, B generates a correct out-
put set B¢ and an incorrect output set B. Each set of artifacts is defined as a state.
For example, if the software artifact generates the output Ac for a given test case,
then the artifact is in state Ac.

TCA TCB TCA TCB

Ac

A

©r
(~)

Fig. 1. an example of overlap probability

For the artifacts in set Ac, they may be in set B¢ or B; when B is applied. The
number on the arch from denotes the Coverage Probability p s1s2 from set sl to

set s2. For example, from set Ac to B¢, the coverage probability p Aco Be 18 0.83,
which denotes that 83% artifacts in Ac will be in B¢ when TC B is applied. The
left part of Fig. 1. shows the coverage probability from TC A to TC B. Similarly,
from TC B to TC A, the coverage probability can also be calculated as shown in
the right part of Fig. 1..

Note that the coverage probability from one state S1 to another state S2 p Slos2
does not necessarily be equal to p «2s1. For example, if the size of Ac is 10, the
size of B¢ is 5, and the size of the intersection set between Ac and B¢ is 4, then

P prp. =4/10=0.4, while P 5, ,s.= 4/5=0.8.

4.2 Coverage Relationship Model and Potency

4.2.1 Coverage Relationship Model

Consider a more complex situation, where multiple TC exists and each TC has
one correct set and multiple incorrect sets, as shown in Fig. 2..

14 Model for Test Case Selection and Ranking for Multi-version Software 293

Legend
——= from correc! state lo corect State

—————— —» from correct state 1o incorrect state

cesensasnnanns3e fOM iNcOrTect siate to incorrect state
To simplify the figure, we only show
such transformation from B, 1o A, and A,
— - — - —= from incomect state to correct state
To simplify the figure, we only show
such fransformation from B, to A

correct output incorrect oulput
of a test case of a test case

Fig. 2. An example of test case Markov chain model

In the CRM, let

C= {cy, Cy,....c,} be the set of software artifacts that implement the same speci-
fication, where m is the size of the artifacts set.

T= {t;, t5,....t,} be the set of test cases, where n is the size of the test case set.

For each t;, let

Vi={vios Vit o0 Vik)s

be the different output values after applying t; to C, where (k+1) is the number
of different output values.

Let s;; denotes the subset of C that generates the same output value v;; for t;,
thus C can be represented as S; after t; is applied

S={{sio}s {siahs oo skt

Because for a given input, there is one correct output (or a range of correct an-
swers) and multiple incorrect outputs (or multiple ranges of incorrect answers), let
viobe the correct output value, and v, V;,...,Vix denote various incorrect output
values. Thus, s;o denotes the correct output set of C that generates the correct out-

294 W.-T. Tsai et al.

put value v;, and s; 1,8;2,...,8;x denotes the incorrect output sets that generate those
incorrect values v; 1, Vio,...,Vik, respectively.

e let g;; be the size of the set s;j, thus S, has a corresponding Q;

O0={dio» Qi,1» ----» Qixk}»

e let p;jdenotes the probability that a given test case generates the s;j,

4.2.2 Potency

The potency of a test case is that probability that the test case can detect a fault
[21]. For example, if a test case has a potency of 0.5, it will fail half of the ver-
sions. Thus, a potency of test case #; can be defined as

Pot;=1-p;,= 1- kq¢: :

k
Z ik Z 9k
0

0

e For any two set of output s;, and s;s3 where i#, the Coverage

ty P from Si t0 8;p s defined as

P Si,uasj,ﬂ = sizeof(si,aﬂsj‘ﬂ)/qi,u

The value on the edges of the CRM represents the Coverage Probability.

e use A(t;,tp) to denote if the aspects of software that test case t; can test covers
that of test case t,, or simply say t; covers tp; and use A (t;,t,) to denote if t; does
not cover t,,

e use the notation “+” to denote the overall testing domain of multiple test cases.
For example, A(tj+t+t3+ ... + t,, ;) means that the overall testing domain of
ty, o, t3 ... and t, covers that of t,,;;

Lemma 1: For any two set s; , and s; 4, if i=j then s; ,Ns; 5=@.

14 Model for Test Case Selection and Ranking for Multi-version Software 295

Proof: Because for any artifact, it cannot generate the correct output and incorrect
output for a given TC at the same time.

Lemma 1 indicates that there is no coverage probability between two sets that be-
long to the same test case.

4.2.3 An Example

Fig. 3. An Example of CRM consisting of 4 test cases and 5 versions

Fig. 3. shows an example CRM consisting of four test cases and five versions,

and shows the P from test case A to B, and the P from test case B to C. As can
been seen from Fig. 3., for test case A, there is:

Sa={{c1, c2, 3}, {ca}, {cs}),
and the potency of test case A is:
Pot,=3/5=0.6
For test case B, there is
Sp={{ca, ¢3, cs, ¢5}, {ci}),

Thus, from the correct set of test case A to that of test case B, the transition
probability is

—

P= SiZEOf({Cl, Co, C3} ﬂ{Cz, C3, C4, CS})/SiZCOf{Cl, Co, C3}=2/3Z067

296 W.-T. Tsai et al.

4.3 CRM Construction

Table 1. shows an algorithm of construction the CRM. This algorithm uses a
table data structure “CoverageProbalitilyMap” to store the coverage probability
from one set to another set. Note that the arch in the map is bidirectional because
the coverage relationship is bidirectional as shown in Fig. 1..

Table 1. the Algorithm of Constructing the CRM

Input: C={ci,cz...,.Cm};
T={t1,t2.. ., tn};
//1* Step: Create all sets
foreach (tj in 7)
Begin
Vie—{vio};
Si—{9D};
foreach (cjin C)
Begin
Output=apply t; to c;;
if (output is NOT in V)
Begin
Vi.addNew Value(Ouput);
S;.addNewSet(c;);

End
else Si.addComponentToSet(c;);
End
End
/12" Step: Calculate Coverage Probability
foreach (S;in S)
foreach(S; in S where i#j)
Begin
foreach (s;4in S;)
foreach(s; g in Sj)
Begin

P i ;5 < sizeof(sioNs; p)/ sizeof(siq)

CoverageProbalitilyMap.addEdge(si o, S; 5, P,
End
End

14 Model for Test Case Selection and Ranking for Multi-version Software 297

5 Simplified Coverage Relationship Model Analysis

It is expensive to construct the full CRM. Suppose on average each test case
has k different outputs, the computational effort of calculating the coverage proba-
bility consisting of 7 test cases is n*(n-1)*k*. Most times may only concerns about
two sets: correct set and incorrect set, unless further study is needed to analyze the
coverage relationship between different incorrect sets. Thus, this paper proposes
the Simplified Coverage Relationship Model (S-CRM) to reduce the computation-
al complexity of constructing the full CRM. In S-CRM, each t; has only two sets, a
correct set s;c and an incorrect set s;j, the incorrect set s;; combines all the incor-
rect sets from the full CRM into one incorrect set by simply using the union opera-
tion, i.e.,

S={{sich {sir

where ¢ o Correspondingly,

I =

Sij

J=1

e q;cand g;;denote the size of the set s;c,and s;, respectively;
e p;cand p;; denote the probability that a given test case generates the s;c and s;,
respectively.

S-CRM can reduce the computational effort from n*(n-l)*k2 to n*(n-1)*4. He-
reinafter, the discussion will be based on the S-CRM.

5.1 S-CRM Analysis Preparation

In S-CRM, for two test cases, four types of coverage probability exist: from
correct set to correct set (C—C), from correct set to incorrect set (C—1I), from in-
correct set to correct set (I—C), and from incorrect set to incorrect set (I—1), as
shown in Fig. 4. :

Fig. 4. A S-CRM example

For simplicity purpose, in the following analysis we will always calculate P
from test case A to test case B, so in the subscript of P we will omit A and B. For

example, P ;g 1is referred to as P_,;.

298 W.-T. Tsai et al.

The coverage probability from the any set is 1, thus we can have equation (1)
and (2):

PcctPc=l (D

P+ P =1 2

Since p is the potency of test cases, thus we can have equation (3) and (4)

1-Potg=(1-Poty)* P ,c +Poty* P (3)

Potg=(1-Pots)* P c_; +Poty* P, (4)

Let P u be the pre-defined high bound threshold on coverage probability, e.g.,
Pyi=0.99.

Let P L be the pre-defined low bound threshold on coverage probability, e.g.,
P.=00L.

Let Poty be the pre-defined high bound threshold on potency, e.g., Poty =0.98.

Let Pot; be the pre-defined low bound threshold on potency, e.g., Pot;=0.02.

Rule 1: Coverage relationship is not symmetric and in fact, for any two test
cases t, and t,, if A(t,, t), then A (tp,t,)
Lemma 2: If Pot,<Pot,, then A(ty, t,); if A(t,, ty), then Pot,<Pot,.
Proof:
Let

Ac and Bc be the correct set of t, and t, respectively, and

The P th.cota.c = sizeof(Ac NBe)/sizeof(Bc)

The P t,c_t, c = sizeof(Ac NBc)/sizeof(Ac)
Pot,<Pot, => qa1>qp1

=> P tyco to.c> P toco tuc

If P th.c— tac> P 4, then also P taco thc> P 1. In this case, A(t,, tp) instead of A(ty, t,),

because the coverage relationship is not mutual according to rule 1.

Lemma 2 indicates that less potent test cases never cover more potent test cas-
es. If a coverage relationship exists between any two test cases, it must be that the
more potent test case covers the less potent test case.

Lemma 2 implies an optimization method to further reduce the effort of con-
structing the S-CRM. If all test cases are ranked in terms of their potencies, then
those test cases in low rank do not cover the highly ranked test case. For example,
if test case t, ranks hlgher than test case ty,, one only needs to determine if t, cover

t, by using Pcﬁc or PCHI from t, to t,, or using p I-C or P 11 from t, to t,.
Therefore, one only needs to calculate the coverage probability from the current
test case to all test cases after it. Thus, the computational effort of construing the
S-CRM can be further reduced from n*(n-1) to n*(n-1)/2.

14 Model for Test Case Selection and Ranking for Multi-version Software 299

Lemma 3: for any two test cases t, and t,, and any test case set 7, if A(t,, t,), then
A(T+ t,, T+ty)

Proof:

Because A(t,, th)=> 13l o, c=Sizeof (A B)/sizeof(A.) 2 B,

o

ooy o =812e0f(Te U (A NBe))/sizeof (T. U A)

> sizeof(A. N B,)/sizeof(A..)

= i;: .C > P H
When T, c A.NBw
sizeof(T. U (A NB))/sizeof (T, U A)=sizeof(A. NB.)/sizeof(A)
Otherwise,
sizeof (T, U (A, NB))/sizeof(T. U A)>sizeof(A. N B)/sizeof(A.)
Thus, A(T+ t,, T+ty)

5.1.1 From Correct Set to Correct Set (C—C)

Two cases may happen to P ¢_¢:

b I_; Cc—C > I_; H
e Analysis: According to equation (1), one can have

Pca<l-Py
This case indicates that for those versions that test case A cannot detect the
fault, test case B is very unlikely to detect the fault as well. Therefore, test case A

covers B, and applying test case B is almost in vain if test case A cannot detect the
fault.

— Conclusion: A(A,B)
— Recommendation: eliminate B and use A only

o P c—c < P L
— Analysis: According to equation (1) and (4), one can have

Potg=(1-PA)*(1- P c_.0)+pa™* P 1= 1-pa* P 1¢ (5)

This case indicates that, given a fixedI_J'HC, the less possibly the test case A
can detect the fault, the more possibly that test case B can detect the fault. Thus,
test case A does not cover test case B, and one should calculate p cc from B to A
to see if A(B,A).

— Conclusion: A (A,B)

— Recommendation: Calculate P c—c from B to A to see if A(B,A)

300 W.-T. Tsai et al.

5.1.2 From Correct Set to Incorrect Set (C—1)

This is the contrary case as C—C. Because according to equation (1), the larger
the P c—c 1s, the smaller the P c—1- Thus, the contrary rules in C—C can apply.

Two cases may happen to P c_:
o P, >Py
— Analysis: This case indicates that Pc_,c <P

— Conclusion: A (A,B)
— Recommendation: Calculate p c_1 from B to A to see if A(B,A)

o Pc,<P.

— Analysis: This case indicates p cnc > p H
— Conclusion: A(A,B)
— Recommendation: eliminate B and use A only

5.1.3 From Incorrect Set to Correct Set (I—C)

Two cases may happen to P |_¢:

o Prc>Py

— This case indicates that for those versions that have been failed by test case
A, it is very unlikely that test case can detect the fault. Thus, test case B
does not cover test case A.

— Conclusion: A (B,A)

— Recommendation: Calculate P ¢ from B to A to see if A(A,B)

o Prc<P.L

— This case indicates that if for those versions that have been failed by test
case A, it is very likely that test case B can fail them as well. Thus, test
case B covers test case A.

— Conclusion: A(B,A)

— Recommendation: eliminate A, and use B only

14 Model for Test Case Selection and Ranking for Multi-version Software

5.1.4 From Incorrect Set to Incorrect Set (I—1)

301

This is the contrary case as I-C. Because according to equation (2), the larger

the P ¢ 18, the smaller the P -1 1s. Thus, the contrary rules in I-C can apply to

I—-I. Two cases may happen to P JERH

e P, >Py

Analysis: This case indicates that P _c< P

Conclusion: A(B,A)

Recommendation: eliminate A, and use B only

o P, <P,

Analysis: This case indicates P1,c> Py

Conclusion: A (B,A)

Recommendation: Calculate ﬁ 1 from B to A to see if A(A,B)

Table 2. Summary of the Coverage Probability Analysis

From | p_P, P.<P<P, Pu<P
Test
Cases
AtoB
Conclusion: A (A,B) Conclusion: A covers B to Conclusion: A(A,B)
Recommendation: Cal- some extent, Recommendation: elim-
C—C culate P ¢ from B to Recor_r:nmendatlon: Calcu- inate B and use A only
A to see if A(B,A) late P c_cfromBto A to
see if A(B,A).
Conclusion: A(A,B) Conclusion: A covers B to Conclusion: A (A,B)
Recommendation: elim- | SOMe extent, Recor_‘}men' Recommendation: Cal-
C—I i ion. =
- inate B and use A only | dation: Calculate P co1 culate P c_; from B to
from B to A to see if A to see if A(B,A)
A(B,A) ’
Conclusion: A(B,A) Conclusion: B covers A to Conclusion: A (B,A)
Recommendation: elim- | SOMe extent, Recommendation: Cal-
j NG inate A, and use B only Recor_r:nmendatlon: Calcu- culate P 1 from B to
late P ¢ from B to A to A to see if A(A,B)
see if A(A,B)
Conclusion: A (B,A) Conclusion: B covers A to Conclusion: A(B,A)
Recommendation: Cal- | SOme extent, Recommendation: elim-
I—I culate P 1, from B to Recor_I}mendatlon: Calcu- inate A and use B only
A to see if A(A,B) late P from B to A to
see if A(A,B)

302 W.-T. Tsai et al.

5.2 Summary Table

Table 2 summarizes the four ways to analyze the coverage relationship for S-
CRM: I-"CHC, lgcﬁl, I-"IHC, andi"bl. According to equation (1) and (2): l_;ch

and P ¢_,; are interchangeable, and Py .cand P are also interchangeable, thus
these four parameters can be categorized into two groups in terms of their source

sets: the source set P is correct set (P «_c and P), and the source set of P is

incorrect set (F’ ¢ and p). This paper uses p c_c and p c to delegate each
group respectively to explain the difference.

In most cases, both P ¢_,c and P |_,¢ can find the coverage relationship between

two test cases. However, in the following cases, choosing P ¢_,c or P _,cto calcu-
late the coverage probability from test cases t4 to tg is a tradeoff between accuracy
and efficiency.

e When the potency of both test cases is very small, e.g., Poty<Pot, and
P OtB<P OtL
— Analysis:
For example, for a set C consisting of one hundred and two components, if
ta fails 101th application only, and tg fails 100th application only, then

from t, to tg: P c_c =99%>= P y, which indicates t, covers tg, and tg

should be eliminated. However, the reason that P -_,c reaches a large value
is because the correct sets of both test cases are large, thus it does not nec-

essarily indicate t5 cover tg. On the contrary, from p »c =100% one can
conclude A (tg, ts), and both ty and tg should be kept for further testing.

Thus, in this case P 1_c is more accurate than P c_c. On the other hand,
compared to P ¢, P c_c is more efficient in terms of test cases selection,

because P ¢ will eliminate ineffective test cases even if they are not
covered by other test cases(e.g., tg).

— Conclusion: In this case, P _c misses some ineffective test cases if they
are not covered by other test cases, which can lead to a compact but potent

test case set; On the contrary, P 1 ckeeps any ineffective test cases even if
they only add a little new coverage to the existing test case set 7, which

may lead an accurate but large test cases set. P ¢_,c trades accuracy for ef-

ficiency, while P trades efficiency for accuracy.
— Countermeasure: If accuracy is more important than efficiency, two alter-
native countermeasures can be used to increase the accuracy:

Use P _cinstead of P ¢

If still use F’ c_c, increase the threshold F’ H» Mmake F’ u>1-pL.

14 Model for Test Case Selection and Ranking for Multi-version Software 303

e When the potency of both test cases is very large, e.g., Pota>Poty and
POtB>POtH

Analysis:
For example, for a set C consisting of one hundred and two components, if
ta fails all components except the 101th, and tg fails all components except

the 100th, then from t, to tg: p 1c =1%, which indicates A(tg, ts), and tu

should be eliminated. However, the reason that P |_, reaches a large value
is because the incorrect sets of both test cases are large, thus it does not

necessarily indicate tg cover ty. On the contrary, from P ¢ ,c=0%<P |
one can conclude A (ta, tg), and both ty and tg should be kept for further

testing. Thus, in this case P ¢_,cis more accurate than P ,c. On the other
hand, compared to P ¢_,c, P 1.c is more efficient in terms of test cases se-

lection, because P | will eliminate the test cases if they are cannot detect
much more fault than other test cases. (e.g., ta).

Conclusion: In this case, P _,c misses those test cases that only add a little
new coverage than the existing test case set 7, which can lead to a compact

but still potent test case set; On the contrary, P ¢_c keeps any test cases as
long as if they can add new coverage than the existing test case set 7,

which may lead an accurate but large test cases set. P 1 trades accuracy

for efficiency, while P ¢ trades efficiency for accuracy.
Countermeasure: If accuracy is more important than efficiency, two alter-
native countermeasures can be used to increase the accuracy:

Use P c_c instead of P IC
If still use P ¢, decrease the threshold p L, make p L <1-Poty.

Since any of the four types of coverage probability (f’ C—Cs P Cls p ICs p Il
) can be used to analyze the coverage relationship, one can use only one to con-
struct the S-CRM. Thus, the computational effort of constructing the S-CRM can
be further reduced from n*(n-1)*4 to n*(n-1).

6 Adaptive Test Cases Ranking Algorithm

This section proposes two adaptive test case ranking algorithms. Both algo-
rithms rank test cases according to their potency and CRM. The higher the poten-
cy of a test case is, the higher its rank is. The purpose is to apply the test cases
with the highest probability to detect failures first to reduce test cost by ruling out
failed versions as soon as possible. However, ranking by potency alone is not the
optimal way of test case selection, as two potent test cases may cover the same as-

304 W.-T. Tsai et al.

pects of the software. Thus, ranking by potency may subject the software to be pe-
nalized by the same mistakes multiple times.

One way to address the problem is to analyze how test cases are developed.
Specifically, if two test cases were developed to evaluate the same aspects of
software, e.g., control flow or data flow, and on the same segments of software,
then these two test cases have almost identical coverage. This paper takes another
approach, instead of by evaluation of how test cases are derived, it evaluates the
test case coverage by the earlier results obtained. If test cases A and B fail the
same set of versions, their coverage is highly correlated. If they fail completely
different set of versions, they have almost no overlap in their coverage.

While analyzing how test cases are derived may yield accurate results, assign-
ing coverage relationship by examining test cases have several distinct advantag-
es:

e The entire process of identifying coverage relationship among test cases can be
automated, and this can eliminate many human errors;

e There is no need to track and record the derivation or rational of test cases; and

e The resulting coverage is purely results driven. Specifically, two test cases de-
rived from the same testing techniques and on the same software segment may
still identify faults in two completely different sets of versions. In other words,
an identical testing process applied to the same code segments may still pro-
duce test cases that detect different kinds of faults. For example, one of two
control flow test cases may detect the incorrect action within a path, while the
other may detect a fault in a decision in the same path. However, the CRM ap-
proach is completely results driven based on data collected.

Note that because the CRM is totally based on test results, thus two test cases
derived from two different testing techniques and address two completely different
code segments, may still have identical coverage in the CRM. This does not imply
that the two test cases have the same coverage, it implies only that the people who
made the first mistakes also made the second mistake in another part of the code
by accident. As more data will be collected during the process, test cases devel-
oped using different techniques will eventually detect different sets of versions.

The proposed test case selection is thus based on a) test case potency; b) the
CRM obtained. The CRM overwrites the potency criterion, i.e..,, for a set of exist-
ing test case 7, and two new test cases; ¢ T and; e T, even if p,> py, but if A(T+

ty, I+ t,), then t, should rank higher than t,.
Two adaptive ranking algorithms are given in Table 3. and Table 4. respec-
tively. Table 3. describes a C—C algorithm for adaptive test cases ranking by us-

ing P Cc—C. Table 4. presents an I—I algorithm for test case ranking by us-

ing P11,

14 Model for Test Case Selection and Ranking for Multi-version Software 305

Table 3. The C—C Algorithm

Initialize component set C={c;,C;...,Cm};

Initialize test case ranking T={t;,t,...,t,} according to their potency

TestCase* t=t;; P ¢_c=0;

While (t!=null)

Begin

foreach(t; that ti.rank<t.rank)
Begin

ﬁ c—c<—calculate the coverage probability i; c—c fromtto t;;
if (ﬁ coe>= ﬁ n) then delete (t);
else if (ﬁ coc<= ﬁ L);

// one can customize the operation if t does not cover t;.

else;// one can customize the operation if t covers t;
to some extent, for e.g., move t; to the end of the rank

End

t.ranked=true;

t=t—next;
End

Table 4. The -1 Algorithm

Initialize component set C={ci,C>...,Cm};

Initialize test case ranking T={t,,t,...,t,} according to their potency

TestCase* t=t;; P ;_=0;

While (t!=null)

Begin

foreach(t; that ti.rank<t.rank)
Begin

P _—calculate the coverage probability P fromttot;
if (P._>=P n) then delete (t;);
else if (P._.<=P L)

// one can customize the operation if t does not cover t;.

else ;// one can customize the operation if t covers t;
to some extent, for e.g., move t; to the end of the rank

End

t.ranked=true;

306 W.-T. Tsai et al.

t=t—next;
End

Note that the algorithm based on p 1 is slightly different from that of p CcoC
in that the direction of calculating the coverage probability is opposition, i.e., the

direction of calculating p coc 1s from t to t, while the direction of
ing p 11 is from ¢; to t. According to equation (1) and (2), one can apply the same
algorithms by replacing p c—c with 1- P c—1 in Table 3. and replace p 11 Withl-
P ¢ in Table 4. respectively.

Table 5. The adaptive algorithm

Step1: using the C—C algorithm or I—I algorithm to rank existing test case set T.

Step2: Rank newly added test case t.
While (t!=null)
Begin
t.Pot«—t.calculatePotency(C); //C is the component set.
Foreach(t; in the ranked test case list T)
Begin
if (ti.Pot>=t.Pot)
Begin

P _—calculate the coverage probability P fromttot;

if (P._>=P u) then exit; //t; covers t, just delete t.
End
else

Begin
P _i—calculate the coverage probability P fromt;tot;

if (16 [>= 16 n) then replate(t, t;); //t covers t;, just replace t; with t.
End
End
End
These algorithms are adaptive because the test case can be re-ranked whenever
new data arrive, in this way, test cases are constantly being ranked as the test is
being performed, and only the most potent test cases that has least coverage rela-
tionship with already applied test cases will be selected for test execution. A two-
step adaptive algorithm is listed in Table 5. . When a new test case t is added into
the test case set, its potency is calculated and its result sets are established by per-
forming testing on the component set C. For all test cases that are more potent
than t, the coverage relationship is calculated to check if t is covered by these test

14 Model for Test Case Selection and Ranking for Multi-version Software 307

cases; for all test cases that are less potent than t, the coverage relationship is cal-
culated to check if t covers these test cases.

7 Experiment Studies

This section demonstrates an experiment of applying S-CRM to web services
group testing [21]. A Web service is an instance or implementation of the Web
service specification. Such a specification can be a Web Services Description
Language (WSDL) [26] file, or a Web Ontology Language for Service (OWL-S)
[18] file. WSDL file presents the required interface of a function. Web service
client, which is typically a local application, can invoke any external Web Servic-
es that implement the WSDL file. There might be multiple Web service vendors
implementing the same interface according to the WSDL or OWL-S but with dif-
ferent algorithms. Specifically, WSDL does not specify the algorithm to be used.
Instead, it specifies only the input-output relationships. Thus, potentially different
algorithms can be used if they achieve the same functionality. The OWL-S speci-
fications are different as they may specify the high-level algorithms to be used. In
that case, a service developer may have less freedom in choosing different algo-
rithms. The proposed techniques can be used to evaluate multiple implementations
of the same service specifications. For this experimental study, sixty services have
been independently developed and they have been evaluated using thirty-two test
cases. All the services and test cases can be obtained by contacting the authors.

7.1 Experiments Results Analysis

Table 6. shows that the test cases are ranked by their potencies after the expe-
riment. The result is divided into to two rows because of page size limitation. The
TC3 ranks first with the largest potency, while TC30 ranks last because it has the
smallest potency.

Table 6. The test case ranking according to the potency

TCID 3 ¢4 R |1 10 |11 9 12 |16 6 [7 [13 p4 |5 [8 [15
otencyj0.4 10.370.35]0.3 [0.23 10.23 [0.22 [0.22 [0.18 [0.17 |0.170.17]0.17 |0.15 [0.15]0.15
TCID |18 PO 21 |22 P3 R4 [P5 pP6 P7 P8 P9 1 32)17 |19 |30

otency]0.05/0.05/0.0510.05 0.05 10.05 [0.05 [0.05 [0.05 0.05 |0.05 10.05]0.05 |0.03 [0.03]0.03
As can be observed from Table 6. , all test cases with have a potency Pot<Poty,.

Thus, from the explanation in section 3.2, one can conclude that calculating P

or Pi_c can lead to an accurate test case set. Table 7. shows the test case rank af-

308 W.-T. Tsai et al.

ter applying the I—I algorithm with P p=0.95. The P 11 from TC3 to TC4 is
0.55.

Table 7. Select and rank the test cases by using the [—1 algorithm

c B b b i lo it b iz liel b [3lis k& lis|s

f_;pl 0.55 0.33 [0.72]0.79 10.93 |0.92 [0.92]0.64 0.8 0.9 0.8 /0.9 10.89 10.89 [O

From the explanation in section 3.2, one can conclude that calculating P ¢_,c or
P _ can lead to a compact but might inaccurate test case set. Table 7. shows the

test case rank after applying the C—C algorithm with P 1=0.95. The P c—c from
TC3 to TC4 is 0.72.

Table 8. Select and rank the test cases by using the C—C algorithm

TC 314 |2 |1 1w [[7] 18

Pcc 0.72 0.63 0.87 0.93 0.93 0.94 0.94
Compared with Table 7. and Table 8. , one can find that all test cases retained
by the C—C algorithm can be found in the test cases retained by the [—I algo-
rithm. This conclusion supports the analysis in section 3.2: when the potency of
test cases is very small, C—C algorithm trades accuracy for efficiency, while I—I
algorithm trades efficiency for accuracy. In this experiment, [—1 algorithm elimi-
nates 50% test cases (16/32), and C—C algorithm eliminates 75% test cases
(24/32),

Compared Table 6. with Table 7. , one can see the relationship between the
number of eliminated test cases and the rank of the test cases. The top 10 ranked
test case in Table 6. are retained in Table 7. after applying the I—I algorithm.
Only one test case from 11" to 15" in Table 6. is eliminated, and the total number
of eliminated test cases increases to 4, 9 and 16 for top 20, top 25 and all test cases
in Table 6. . Fig. 5. shows the number of eliminated test cases increases if these
test cases have low ranks.

7.2 Test Case Effectiveness Analysis

While the proposed CRM saves testing efforts by eliminating redundant test cases,
it still keeps the effectiveness of the remained test cases. This section provides the
effectiveness of CRM by using experimental data.

The test result is shown in Fig. 6. . The most left column is the sixty web ser-
vices, and the first show denotes the thirty-two test cases. The test cases and web
services are organized and numbered. A white cell in the figure denotes a correct
output, while a black cell denotes an incorrect output. The right three columns

14 Model for Test Case Selection and Ranking for Multi-version Software 309

show the number of test cases in total thirty-two test cases, the sixteen test cases
selected by the I—1 algorithm, and the eight test cases selected by the C—C algo-
rithm respectively, that fail a given web services. If the total thirty-two test cases
set can detect the error for a given web services, the test case set selected by the
I—-I algorithm or C—C algorithm can detect the error as well. Therefore, in this
experiment, the I—I algorithm and C—C algorithm do not lose any effective test
cases.

18
16 Most TC are eliminated in the end of t
Rank

14
12

10

N O

Fig. 5. The relationship between the number of eliminated test cases and the rank of those test
cases.

12 3/ 4 5 6 7 8 9101112 13 14 15 16/17 18 19 20 21]22 23 24 25 236 27 28 29| 30| 31 32 Total Io1 [CoC

e e e e i e R L e PP)
HeSunninwee—Roooooooooooo
me

b B

i Dl B e 0 B 0900 00 e e e B G

bl b i oo e ol i o b3 {1 o e e b bt 03 o o o b a3 b 6 S L e B B B S e s

B L b B 1 B 000 1 00 e e b

—_—

Fig. 6. Compare the coverage of total test case set, the test case set selected by I—I and C—C
algorithm

310 W.-T. Tsai et al.

8 Conclusions

This chapter presents a Model-based Adaptive Testing (MAT) for multi-
versioned software based the CRM. The CRM can be used to select and rank test
cases, and can identify and eliminate those duplicate test cases or those test cases
that cover the same aspects. In addition, two adaptive test cases ranking algo-
rithms are given by using the coverage probability. Experiments are conducted us-
ing the proposed techniques, and experiment results are analyzed. The experiment
results indicate that the CRM-based test case selection algorithm can eliminate re-
dundant test cases while maintaining the quality and effectiveness of testing.

References

[1] A. Bar-Noy, F. Hwang, H. Kessler, and S. Kutten. A new competitive algorithm for group
testing. Discrete Applied Mathematics, 52:29--38, July 1994.

[2] L. Baresi, and E. Di Nitto, Test and Analysis of Web Services, Springer, 1st edition, No-
vember, 2007

[3] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Audition of web services for testing
conformance to open specified protocols. In Architecting Systems with Trustworthy Com-
ponents, No. 3938 in LNCS. Springer-Verlag, 2006.

[4] P.A. Bonatti, P. Festa, “On Optimal Service Selection”, Proc. of the International World
Wide Web Conference (WWW), 2005, pp.530-538.

[5] Kai-Yuan Cai, Yong-Chao Li, Ke Liu, "Optimal and adaptive testing for software reliability
assessment,” Information & Software Technologies, volume 46, December 2004, pp. 989-
1000.

[6] G. Canfora and M. Di Penta, “Testing Services and Service-centric Systems, Challenges and
Opportunities,” IT Professional, vol. 8, no. 2, 2006, pp. 10-17.

[7] Liming Chen; A. Avizienis, N-Version Programming: a Fault-Tolerance Approach to Relia-
bility of Software Operation, Twenty-Fifth International Symposium on Fault-Tolerant
Computing, 1995, pp. 113-119.

[8] B. De, “Web Services - Challenges and Solutions”, WIPRO white paper, 2003,
http://www.wipro.com.

[9] D. Z. Du and F. Hwang, Combinatorial Group Testing And Its Applications, World Scien-
tific, 2nd edition, 2000

[10] J. Garcia-Fanjul, J. Tuya, C. de la Riva. Generating test cases specifications for bpel compo-
sitions of web services using spin, International Workshop on Web Services Modeling and
Testing (WSMaTe), 2006.

[11] Heckel, R. and Mariani, L., Automatic conformance testing of Web Services, Proceedings
of FASE 05: 34-48.

14 Model for Test Case Selection and Ranking for Multi-version Software 311

[12] Andrew B. Kahng, Sherief Reda, Combinatorial group testing methods for the BIST diag-
nosis problem, Proceedings of the 2004 conference on Asia South Pacific design automa-
tion: electronic design and solution fair, pp. 113 — 116, Yokohama, Japan, 2004

[13] J. Koehler, B. Srivastava, “Web Service Composition: Current Solutions and Open Prob-
lems”, ICAPS 2003 Workshop on Planning for Web Services, pp. 28-35.

[14] N. Milanovic, M. Malek, “Current Solutions for Web Service Composition”, IEEE Internet
Computing, Nov/Dec 2004, Volume: 8, Issue: 6. pp. 51- 59.

[15] S. Narayanan and S. Mcllraith, “Simulation, verification and automated composition of web
services”, In Proc. WWW, 2002.

[16] Dmitri Nevedrov, Using JMeter to Performance Test Web Services,
http://dev2dev.bea.com/pub/a/2006/08/jmeter-performance-testing.html

[17] OASIS: Business Process Execution Language for Web Services (BPEL4WS), 2003.
http://xml.coverpages.org/bpeldws.html

[18] OWL-S, http://www.daml.org/services/owl-s/

[19] William N. Robinson, "A requirements monitoring framework for enterprise systems," Re-

quirements Engineering Journal, 11 (2006): 17-41.

[20] W.T Tsai, X. Bai, Y. Chen, X. Zhou, "Web Service Group Testing with Windowing Me-
chanisms," IEEE International Workshop on Service-Oriented System Engineering (SOSE),
Beijing October 2005, 213-218.

[21] W.T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, X. Wei, "Adaptive Testing, Oracle Gener-
ation, and Test Script Ranking for Web Services," 29th IEEE Annual International Comput-
er Software and Applications Conference (COMPSAC), Edinburgh, July 2005, pp.101-106.

[22] Web Services Policy 1.2 - Framework (WS-Policy) W3C Member Submission 25 April
2006, available at http://www.w3.org/Submission/2006/06/

[23] J. A. Whittaker and M. G. Thomason. AMarkov chain model for statistical software testing.

IEEE Trans. on Software Engineering,20(10):812-824, Oct. 1994.

W3C, the World Wide Web Consortium, www.w3.org/

Web 2.0, Wikipedia, http://en.wikipedia.org/wiki/Web_2

WSDL, available at http://www.w3.org/TR/wsdl

Pulei Xiong, Robert L. Probert, Bernard Stepien, An Efficient Formal Testing Approach for

Web Service with TTCN-3 , In Proceedings of the 13th International Conference on Soft-

ware, Telecommunications and Computer Networks (SoftCOM 2005), Split, Croatia, 2005.

[28] Yongyan Zheng, Jiong Zhou, P. Krause, A model checking based test case generation

[24
[25
[26
[27

—_ e

framework for Web services, 4th International Conference on Information Technology New
Generations, 2007.

[29] Hong Zhu, A Framework for Service-Oriented Testing of Web Services, 30th Annual Inter-
national Computer Software and Applications Conference, 2006.

About the Editors

Jing Dong received his B.S. in computer science from Peking University and
Ph.D. in computer science from the University of Waterloo. He is currently an As-
sistant Professor of Computer Science at the University of Texas at Dallas. His re-
search interests are services computing, high-assurance system engineering, for-
mal methods, software engineering, model driven architecture, design pattern, and
software architecture. He has been a guest editor of IEEE Computer and Program
Co-Chair of IEEE Symposium on High Assurance System Engineering. He is a
member of the ACM and the IEEE. Contact him at jdong@utdallas.edu.

Raymond A. Paul serves in command and control (C2) Policy and manages net-
work enabled command and control systems engineering development in the De-
partment of Defense. His current research focus is on high assurance system engi-
neering, software engineering, C2 networks, dynamic environment decision
making, and sensor network. Paul holds a doctorate in software engineering and is
an active "Fellow" member of the IEEE Computer Society and member of the
ACM. Contact him at raymond.paul@osd.mil.

Liang-Jie Zhang is a research staff member and program manager of application
architectures and realization at the IBM T.J. Watson Research Center. His techni-
cal interests include services computing, Internet media, and software engineering.
He is the founding chair of the Services Computing Professional Interest Commu-
nity at IBM Research. Dr. Zhang is the editor-in-chief of IEEE Transactions on
Services Computing. Zhang has a PhD in pattern recognition and intelligent con-
trol from Tsinghua University. Contact him at zhanglj@jieee.org.

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_BM2, © Springer Science+Business Media, LLC 2009

About the Authors

Nasser Alaeddine received a B.E. degree in Computer and Telecommunication
Engineering from American University of Beirut, Lebanon in 1993, and M.S. de-
gree in Software Engineering from Southern Methodist University, and a Ph.D.
degree in Computer Science from Southern Methodist University expected in May
2009. Since 2001, he has been working for Verizon, Dallas, Texas, now as a sen-
ior manager for IT product development. He worked for SAPTriversity, Toronto,
Canada and AJB Software Design, Toronto, Canada as a software engineer be-
tween 1998 and 2001. He also worked as a network engineer between 1993 and
1998. His current research interests include software testing, quality assurance,
software reliability, and software process.

Xiaoying Bai is an Associate professor in the Department of Computer Science
and Technology at Tsinghua University, China. Her research interests include
software engineering, software testing and service-oriented architectures. She re-
ceived her PhD from Arizona State University. Her email is
baixy@tsinghua.edu.cn.

Farokh B. Bastani received the BTech degree in electrical engineering from the
Indian Institute of Technology, Bombay, and the MS and PhD degrees in com-
puter science from the University of California, Berkeley. He is currently a profes-
sor of computer science at the University of Texas at Dallas. His research interests
are in the areas of relational programs, high-assurance hardware/software systems
engineering, hardware/software reliability assessment, self-stabilizing systems, in-
herent fault tolerance, and high-performance modular parallel programs. Dr. Bas-
tani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data
Engineering and is on the editorial boards of the International Journal of Artificial

316 About the Authors

Intelligence Tools, the Journal of Knowledge and Information Systems (KAIS),
and the Springer-Verlag book series on Knowledge and Information Management
(KAIM). He has been the program chair/co-chair and the PC member of many
conferences.

Jay S. Bayne received his B.Sc (70), M.Sc.(71), and Ph.D. (76) degrees in electri-
cal engineering and computer science from the University of California at Santa
Barbara. He was Professor of Computer Science at California Polytechnic State
University from 1973-1984. He is presently CEO of Meta Command Systems, Inc.
and Executive Director of the Milwaukee Institute. Additionally, he is Adjunct
Professor of Computer Science at the University of Wisconsin-Milwaukee and a
consultant to the Office of the Assistant Secretary of Defense (OSD/NII).

Ramesh Bharadwaj is currently a member of the Software Engineering Section
of NRL's Center for High Assurance Computer Systems. He also served as an Ad-
junct Associate Professor of Computer Science at George Washington University.

Alenka Brown is a Senior Research Fellow for the National Defense University-
CTNSP; Special Advisor for Human Interactions to the Deputy to the Assistant
Secretary of Defense, Networks & Information Integration/ Department of De-
fense Chief Information Office (ASD(NII)/DoD CIO) for National Leadership
Command Capabilities Office, and the Director to the Integrated Information &
Communications Technology Support (IIS) Directorate. Dr. Brown as a Senior
Advisor to the Defense Agencies and Intelligence Community, and is Director of
Human System Development under the National Security Directorate at DoE-Oak
Ridge National Laboratory. Dr. Brown earned a Ph.D. in Human Factors Engi-
neering (emphasis in Cognitive Engineering); M.S. in Electrical Engineering, and
a B.S. in Computer Science. She is a Certified Human Factors Professional, Lead
of the “Human Interoperability Enterprise,” Program, and considered one of the
foremost experts of behavioral communications in cross-cultural pattern recogni-
tion. Dr. Brown’s field of knowledge and publications topics range from human
interoperability dynamics of human networks, traditional human factors and
/virtual/nuclear/display environments, instrumentation and controls, command and
control, micro behavioral language, trust and mistrust indicators, rapid trust for
hastily formed networks, neural-linguistics of human (social) networks, cognitive-
behavior cross cultural analysis, psycho-physiological assessments of special tar-
gets of interests, information operational assessments of underground facilities,
human system integration, and other topics of US interests.

Chun Cao received his B.Sc., M.Sc. and Ph.D. degrees in Computer Science from
the Nanjing University. He is now a lecturer in the Department of Computer Sci-
ence and Technology at Nanjing University. His research interests include soft-
ware engineering, access control and service-oriented computing.

About the Authors 317

Yinong Chen is with the Computer Science and Engineering Department at Ari-
zona State University. His research interests include fault-tolerant computing, reli-
ability modeling, and Web services testing. He received his PhD from University
of Karlsruhe, Germany. His email is yinong.chen@asu.edu.

S.C. Cheung received his M.Sc. and Ph.D. degrees in Computing from the Impe-
rial College London. He is an Associate Professor in the Department of Computer
Science and Engineering at the Hong Kong University of Science and Technol-
ogy. He participates actively in the research communities of software engineering
and service-oriented computing. He serves on the executive committee of the
ACM SIGSOFT, the editorial boards of the IEEE Transactions on Software Engi-
neering (TSE), the Journal of Computer Science and Technology (JCST), and the
International Journal of RF Technologies: Research and Application. His research
interests include context-aware computing, service-oriented computing, software
testing, fault localization, RFID, and wireless sensor network systems.

Paolo Falcarin is research assistant in the Software Engineering Group at
Politecnico di Torino, where he received his PhD in software engineering in 2004.
He was task leader of service creation environment activities in IST-SPICE pro-
ject. His current research interests include automated software engineering, tele-
com service oriented architectures, software modeling.

Zhenghua Fu is a research staff member at IBM T.J. Watson research center in
Hawthorne, New York. He received Ph.D in Computer Science from UCLA in
2004, and joined IBM in 2006. Dr. Fu's research interests include composition,
sharing and collaboration of digital media.

Arif Ghafoor is currently a Professor in the School of Electrical and Computer
Engineering, at Purdue University, West Lafayette, IN, and is the Director of Dis-
tributed Multimedia Systems Laboratory. He has been actively engaged in re-
search areas related to multimedia information systems, database security, and
parallel and distributed computing. He has published numerous papers in these ar-
eas. Dr. Ghafoor has served on the editorial boards of various journals including
ACM/Springer Multimedia Systems Journal, the Journal of Parallel and Distrib-
uted Databases, and the International Journal on Computer Networks. He has
served as a Guest/Co-Guest Editor for various special issues of numerous journals
including ACM/Springer Multimedia Systems Journal, the Journal of Parallel and
Distributed Computing, International Journal on Multimedia Tools and Applica-
tions, IEEE Journal on the Selected Areas in Communications and IEEE Transac-
tions on Knowledge and Data Engineering. He has co-edited a book entitled "Mul-
timedia Document Systems in Perspectives" and has co-authored a book entitled
"Semantic Models for Multimedia Database Searching and Browsing" (Kluwer
Academic Publishers, 2000). He has been consultant to numerous organizations
including UNDP, US Dept. of Defense, Bell Labs, and GE. Dr. Ghafoor is a Fel-

318 About the Authors

low of the IEEE. He has received the IEEE Computer Society 2000 Technical
Achievement Award for his research contributions in the area of multimedia sys-
tems. In 2007 he has received an IEEE Technical Achievement Award in Bioin-
formtics.

LiGuo Huang is currently an Assistant Professor of Computer Science and Engi-
neering Department at the Southern Methodist University. She received both her
Ph.D. and M.S. from the Computer Science Department at the University of
Southern California (USC). Her research centers around software process model-
ing and improvement, process data/text mining, software economics/value-based
software engineering, software metrics and modeling, software quality, and high
dependability computing. Previously she had been intensively involved in origi-
nating the principles of value-based software engineering and published related
papers in IEEE Computer and IEEE Software. She is currently a member of the
IEEE.

Jun-Jang (JJ) Jeng is a Research Staff Member at the Thomas J. Watson Re-
search Center. He received a B. S. degree in Chemical Engineering from National
Taiwan University, and M. S. and Ph. D. degrees in Computer Science from the
Michigan State University. His research interests include Business Process Man-
agement, Formal Methods, Software Engineering, Cloud Computing, Green Com-
puting, Cyber-Physical Systems, Real-Time Systems, and Agent Technology. Dr.
Jeng is an IEEE senior member.

Chao Liang received his B.Engr. and M.Engr. degrees from Department of Elec-
tronic and Information Engineering, Huazhong University of Science & Technol-
ogy (HUST), China, in 2000 and 2002, respectively. He is currently a Ph.D. can-
didate at the Department of Electrical and Computer Engineering, Polytechnic
University, Brooklyn, New York. His research interests include network optimiza-
tion in overlay and wireless networks, corresponding algorithm and protocol de-
sign.

Hui Lei is a Research Staff Member at the IBM T. J. Watson Research Center,
where he manages the Messaging Systems department. He received a Ph.D. from
Columbia University, an M.S. from Courant Institute, New York University, and a
B.S. from Sun Yat-sen University; all in Computer Science. Prior to his doctoral
career, he was a Senior Software Engineer at Syncsort Inc. Hui Lei's research has
spanned the areas of application messaging, mobile computing, business process
management.

Jian Lu received his B.Sc., M.Sc. and Ph.D. degrees in Computer Science from
Nanjing University, P.R. China. He is currently a Professor in the Department of
Computer Science and Technology and the Director of the State Key Laboratory
for Novel Software at Nanjing University. Prof. Lu serves on the Board of the In-

About the Authors 319

ternational Institute for Software Technology of the United Nations University. He
also serves as the director of the Software Engineering Technical Committee of
the China Computer Federation. His research interests include software method-
ologies, software automation, software agents, and middleware systems.

Xiaoxing Ma received his M.Sc. and Ph.D. degrees in Computer Science from the
Nanjing University, P.R. China. He is an Associate Professor in the Department of
Computer Science and Technology. His research interests include service-oriented
computing, self-adaptive computing and component-based software engineering.

Miroslaw Malek received the M.Sc. degree in Electrical Engineering (Electron-
ics) and the Ph.D. degree in Computer Science in 1975, both from the Technical
University of Wroclaw, Poland. He is professor and holder of the Chair in Com-
puter Architecture and Communication at Humboldt University in Berlin since
1994. In 1977, he was a visiting scholar at the Department of Systems Design at
the University of Waterloo, Ontario, Canada, then Assistant, Associate, and Full
Professor at the University of Texas at Austin where he was also a holder of the
Bettie Margaret Smith and the Southwestern Bell Professorships in Engineering.

Supratik Mukhopadhyay is currently a faculty member at the Utah State Univer-
sity. He has extensive experience in research and education in the areas of soft-
ware engineering, service-oriented computing, and formal methods.

Suku Nair is a Professor and Chair in the Computer Science and Engineering De-
partment at the Southern Methodist University at Dallas where he held a J. Lind-
say Embrey Trustee Professorship in Engineering. He is also the director of
HACNet (High Assurance Computing and Networking) Lab., which drives the
NSA Center of Excellence in Information Assurance at SMU. He received his
M.S. and Ph.D. in Electrical and Computer Engineering from the University of Il-
linois at Urbana in 1988 and 1990, respectively. He is a member of the IEEE, and
Epsilon Pi Epsilon.

Jianwei Niu received the BSc degree in computer science from Jilin University,
Changchun, China, and the PhD degree in Computer Science from the University
of Waterloo in 2005. She has been an assistant professor in the Department of
Computer Science at the University of Texas at San Antonio since 2005. Her re-
search interests include formal methods, software modeling, and computing secu-
rity. She is a member of ACM.

Manuel Peralta is currently a PhD student in the Utah State University
Mark Robinson received his BS in Computer Science at Trinity University in

1993. He founded Fulgent Corporation, a software engineering firm in 2004 and is
currently serving as the company's president. He received his MS in Computer

320 About the Authors

Science from the University of Texas at San Antonio in 2006 and is currently a
PhD student in Computer Science.

Hui Shen is a PhD student in the Department of Computer Science at the Univer-
sity of Texas at San Antonio. She received the B.E degree in Software Engineer-
ing from Beijing Institute of Technology, China, in 2006. Her current research in-
terests include formal methods and requirements engineering.

Michael F. Siok received his Bachelor's of Engineering Technology Degree (with
a second major in Music) from Southwest State University in Marshall, MN USA
in 1985, a Master's of Science in Engineering Management from Southern Meth-
odist University (SMU) in Dallas, TX USA in 1995, and his Doctorate of Engi-
neering in Engineering Management in 2008, also from SMU. Michael works for
Lockheed Martin Aeronautics Company in Fort Worth, TX as a software systems
engineer developing avionics and test systems and software for advanced fighter
aircraft. His current work and research interests include topics in software reliabil-
ity, software safety, testing, and the application of engineering techniques and
models to company business problems. Michael is a member of the IEEE, the
ACM, and the INCOSE and is a Certified Systems Engineering Professional. He is
a registered Professional Engineer in Texas in the field of Software Engineering.

Vladimir Stantchev is a senior scientist at the Berlin Institute of Technology
where he heads the Public Services and SOA Group. In 2008 he was a visiting
postdoctoral scholar - Fellow at the University of California, Berkeley and at the
International Computer Science Institute in Berkeley. He holds a Ph. D. in Com-
puter Science from the Berlin Institute of Technology.

Longji Tang received ME in Computer Science & Engineering and MA in Appli-
cation Mathematics from Penn State University in 1995. He is a PhD candidate in
Software Engineering at the University of Texas at Dallas. His research interests
include software architecture and design, service-oriented architecture, service-
oriented computing and application, system modeling and formalism. He is also a
senior technical advisor at FedEx IT as well as leader/architect in several critical
eCommerce projects.

Jeff (Jianhui) Tian received a B.S. degree in Electrical Engineering from Xi'an
Jiaotong University in 1982, an M.S. degree in Engineering Science from Harvard
University in 1986, and a Ph.D. degree in Computer Science from the University
of Maryland in 1992. He worked for the IBM Software Solutions Toronto Labo-
ratory between 1992 and 1995 as a software quality and process analyst. Since
1995, he has been with Southern Methodist University, Dallas, Texas, now as an
Associate Professor of Computer Science and Engineering, with joint appointment
at the Dept of Engineering Management, Information and Systems. His current re-
search interests include software testing and quality assurance, measurement,

About the Authors 321

analysis and improvement of software reliability, safety, dependability, and com-
plexity, risk identification and management, and applications in net-centric, com-
mercial, web-based, service-oriented, telecommunication, and embedded software
and systems. He is a member of IEEE, ACM, and ASQ Software Division.

W. T. Tsai is a professor in the Computer science and Engineering Department
and director of the Software Research Laboratory at Arizona State University. His
research interests include software engineering and Web services testing and veri-
fication. He received his PhD from University of California at Berkeley. His email
is wtsai@asu.edu.

Mohammad Gias Uddin received his B.Sc. in Computer Science and Engineer-
ing from Bangladesh University of Engineering and Technology in 2004. He re-
ceived his M.Sc. degree from the Electrical and Computer Engineering Depart-
ment of Queen’s University, Kingston, Canada in 2008. He is currently a software
developer at Recognia Inc., Ottawa, Canada.

Feng Xu received his B.S. and M.S. degrees from Hohai University in 1997 and
2000, respectively. He received his Ph.D. degree from Nanjing University in 2003.
He is an Associate Professor of Computer Science at Nanjing University. His re-
search interests include trust management, trusted computing, software reliability.

I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her
MS and PhD degrees in Computer Science from the University of Houston. She is
currently a Professor of Computer Science at the University of Texas at Dallas.
Dr. Yen's research interests include fault-tolerant computing, secure and surviv-
able systems, parallel and distributed systems, grid and peer-to-peer computing,
and component-based design of distributed adaptive systems. She had published
over 150 technical papers and received many research awards in these research ar-
eas. She has served as Program Chair/Co-Chair for the IEEE Symposium on Reli-
able Distributed Systems, IEEE High Assurance Systems Engineering Sympo-
sium, IEEE International Computer Software and Applications Conference, IEEE
International Symposium on Autonomous Decentralized Systems, etc. She has
served on the Program Committee of many conferences.

Kang Zhang is Professor of Computer Science Department, Adjunct Professor of
University of Electronic Science and Technology and Soochow University. Prior
to joining UTD, he held academic positions in the UK and Australia. Dr. Zhang's
current research interests are in the areas of information visualization, visual pro-
gramming and visual languages, and Web engineering; and has published over
170 papers in these areas. Home page: www.utdallas.edu/~kzhang

Chunying Zhao received the BEng and MEng in computer engineering from
Nankai University, China, in 2002 and 2005, respectively. She is currently a Ph.D.

322 About the Authors

candidate in the University of Texas at Dallas. Her current research areas include
software engineering, visual languages, service-oriented architecture, and informa-
tion visualization.

Yajing Zhao received the MS degree in Computer Science from the University of
Texas at Dallas in 2007. She is a Ph.D. candidate at the University of Texas at
Dallas, majoring in Software Engineering. Her research interests include software
architecture and design, service-oriented architecture, semantic web ser-
vices, system modeling, and model transformation.

Xinyu Zhou received his PhD from Arizona State University where he worked on
Web services design, testing, and implementation. Email: xinyu.zhou@asu.edu.

Mohammad Zulkernine is a faculty member of the School of Computing of
Queen’s University, Canada, and the leader of the Queen’s Reliable Software
Technology (QRST) research group. He received his Ph.D. from the University of
Waterloo, Canada in 2003, where he belonged to the university’s Bell Canada
Software Reliability Laboratory. Dr. Zulkernine's research focuses on software re-
liability and security (automatic software monitoring and intrusion detection,
methods and tools for reliable and secure software). His research work are funded
by a number of provincial and federal research organizations of Canada, while he
is having an industry research partnership with Bell Canada. He is a senior mem-
ber of the IEEE and a member of the ACM. Dr. Zulkernine is also cross-appointed
in the Department of Electrical and Computer Engineering of Queen's University,
and a licensed professional engineer of the province of Ontario, Canada.

Index

A
Actuality, 116
Adaptive Testing, 285
agent, 149
architectural translucency, 2
assessment, 19
availability, 24
B
bandwidth, 264
BPEL, 167, See Business Process
Execution Language
Business Process Execution Language, 219

C
Capability, 116
cognitive engineering, 72
component diversity, 193
dependability attribute perspective,
193,199, 214
environmental perspective, 193, 196,
214
internal perspective, 193, 204, 214
value perspective, 193, 209, 214
Conformance Checking, 133
continuation, 156
coordination, 166
Credibility, 24
cybernetics, 106
Cyberphysical systems, 103, 104
cyberspace, 105, 106, 108, 113, 114

cyberspatial objects, 105, 108, 115
cyberspatial reference model, 103, 104
D
data envelopment analysis (DEA), 193,
199, 201, 214
decision making, 74
dependability, 193, 194
dependability attribute, 194, 200, 210
dependable, 20, 165
digital earth reference model, 108
distributable thread, 113
distributed enterprises, 68
Distributed Hash Table, 262
dynamic reconfigurations, 175
E
enterprise operating system, 112
Enterprise Service-Oriented Architecture,
241
events, 151
experimental computer science, 5
Extensible Markup Language, 222
F
failure, 195
fault, 195
fault-failure mapping, 206
federated systems, 104

G

geospace, 105, 110, 117
graph grammar, 129

324

group testing, 285
H

human interoperability, 66

|
infospace, 105, 110, 115
interaction, 46
Internet Video On-Demand, 261
L
Latency, 116
M
Modeling, 230
monitoring, 46
N
net-centric system, 19
non functional properties, 95
nonfunctional properties, 2
0]
ontology, 22, 179
operational profile (OP), 196
OWL-S, 167
P
peer-assisted video streaming, 261
Performance, 116
performance measurement framework, 103
Potential, 116
Productivity, 116
R
recommendation, 47
reconfiguratio, 148
regression testing, 285
reliability, 23, 193, 200
replication, 3, 4
REST, 243
S
Safety, 24
security, 24, 45, 195
semantic web services, 92
sequence diagrams, 230
service access points, 108, 110, 121
service composition, 90
Service Creation Environment, 90
service engineering, 90

Index

service level agreement, 2, 103, 113, 269
service systems, 103, 104, 105, 106
service-based software, 45
service-oriented architecture, 1, 127
Simple Object Access Protocol, 221
situation awareness, 74

SOAP. See Simple Object Access Protocol
sociospace, 105, 110, 115

SOL, 152

Spatial Graph Grammar, 135

Spread, 147

State machines, 238

static type system, 146

statistical testing, 285

synchronous programming, 146
Synchrony Hypothesis, 152

T
test case selection and ranking, 285
time-utility function, 113, 115
trading protocols, 106
Trust, 46
trust rules, 46
trustworthiness, 19

U
UML. See Unified Modeling Language
Unified Modeling Language, 219
utility accrual scheduling, 113

\'
value propositions, 103, 104, 105, 106,

110, 116, 120

VEGGIE, 135
viable systems model, 106
video streaming, 261
Visual languages, 134

W
Web Service Definition Language, 222
Web services, 1, 130, 219, 285
Web-Oriented Architecture, 241
WSDL. See Web Service Definition

Language

X

XML. See Extensible Markup Language

	cover-large.JPG
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	back-matter.pdf

