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Preface

The main objective of this text is to provide a comprehensive, in-depth
introduction to the background materials, fundamental concepts, and research
challenges in mathematical modeling and computer simulation of
electrophysiological heart processes, under both normal and pathological conditions.

Though these topics are closely connected to the field of scientific computing
they are interdisciplinary in nature, combining the disciplines of applied
mathematics, computer science, physiology, and medicine. From a theoretical point
of view these topics are related to the study of a particular type of the more general
class of so-called excitable media.

An excitable medium is defined as a nonlinear dynamical system consisting of
units distributed in space that interact according to the laws of diffusion. Each unit of
the system is itself a nonlinear dynamical system, with its own source of energy.
After application of an external over-threshold stimulus, a unit can generate a
solitary excitation pulse or a sequence of pulses depending on its nonlinear
properties.

The following specific wave phenomena can be observed in excitable media:

e Propagation of traveling waves without decay

e The formation of spiral waves

e Generation of circular waves by autonomous leading centers

e  Formation of dissipative structures (e.g. stationary standing wave)

Excitable media are encountered in both biology (cardiac tissue, nerve fiber,
smooth and skeletal muscles, eye retina, population of amoeboid cells, some
demographical problems, etc.) and technology (specific chemical reactions, some
microelectronics devices, burning processes, plasma systems, etc.).

Mathematically, the processes in excitable media are described by a special type
of parabolic nonlinear partial differential equations known in literature as reaction-
diffusion equations. In contrast to engineering systems, in which mathematical
models (descriptions) can be derived from the first principles, biological systems are
described in a majority of cases as semi-phenomenological mathematical models
partly derived from the first principles and partly represented as the mathematical
approximation of experimental data obtained for a specific situation and extrapolated
to the more general ones.

The scope of this text is restricted to the mathematical modeling and computer
simulations of the dynamical processes in a particular class of these systems —
cardiac cells and tissue. It is divided on the following major parts:

L Electrophysiological background and basic concepts of mathematical
modeling and computer simulation.
1L Mathematical modeling and computer simulation of action potential

(AP) generation, from simple models such as Van der Pol and FitzHugh-
Nagumo to physiological models of the I* and II"* generations based on
the Hodgkin-Huxley formalism.

I1I. Theory, mathematical modeling, and computer simulations of excitation
wave propagation in one-dimensional tissue
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Iv. Mathematical modeling and computer simulations of excitation wave
propagation in uniform and non-uniform two-dimensional tissues
including rectilinear and circular wave propagation, theory of stationary
and nonstationary spiral waves, and conditions of wave front breakup as
analogue of tachyarrhythmia and ventricular fibrillation.

V. The implementation of mathematical models on serial and parallel
supercomputers.

Special attention is devoted to new topics such as Markovian representation of
cell channel gate processes, and new phenomena appearing in single cells with Ca
dynamics under high pacing rates and in cardiac tissues during spiral wave
propagation.

The included topics do not cover such important subjects as propagation in
three-dimensional tissue with natural heterogeneity of AP characteristics along the
thickness of the tissue and directional variability of fiber angles. Computer
simulations of these problems have until now been performed using over-simplified
non-physiological models such as FitzHugh-Nagumo and simplified ionic models
such as the Luo-Rudy I AP model. Application of more realistic models is under
intensive investigation. A similar situation is encountered in the investigation of the
effect of mechanical cell contractions on conductivity of cell channels and AP
propagation. The dynamics of the pacemaker system and the development of cell
contraction processes, described in detail in published books, are excluded from the
text and replaced by corresponding references.

Despite the many talented scientists working in mathematical modeling and
computer simulation of cardiac processes, there are currently no published materials
in which these topics are treated systematically, up-to-date with current research and
containing the required minimum of materials which allow the specialists in other
fields (mathematics, computer science, heart physiology and cardiology) to
participate in such interdisciplinary research.

The book, “Simulation of Wave Processes in Excitable Media”, by Dr. Zykov
(my former PhD student and later colleague) was published in 1984 in the Soviet
Union. The English translation of this book (from Russian) was edited by late Dr.
Winfree and published in 1987. It includes some of the first approaches and
information on the subject matter. The content of the book has become obsolete
(except for the kinematics theory of stationary spiral waves), especially as applied to
heart processes, because it focuses on simplified, nonionic cell models in which Ca
dynamics are not present. J. Keener and J. Sneid’s excellent work, ‘“Mathematical
Physiology,” is devoted to broad topics of mathematical modeling of different
physiological systems. Unfortunately the authors, in taking a more general
approach, did not consider the heart processes in detail and fully omitted the
implementation of mathematical models on modern parallel computer systems,
focusing instead on the use of standard programs on desktop computers. Several
collections of papers exist (e.g. “Computational Biology of the Heart,” edited by
A.V. Panfilov and A.V. Holden, 1997) addressing some of the proposed topics, but
these collections require extensive prior knowledge of the subject and as such are not
functional as an introductory text.
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The content of this manuscript is combined from the author’s lecture notes for the
course “Introduction to Computational Cardiology,” delivered to graduate students
of the UCLA Computer Science and Biomedical Engineering Departments; the
results of his personal research activities and those conducted by his PhD students in
the former Soviet Union and United States over the last 30-35 years; and new
achievements described in current literature. This book can serve not only as a text
book for graduate students specializing in modeling and computer simulation of
heart processes, but also as a reference for researchers engaged in mathematical
modeling and computer simulation of different bio-medical problems. The latter,

among other useful information, may find in the text many challenging problems
awaiting solutions.
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Chapter 1. Introduction

In this chapter, we briefly outline the basic preliminary information about the
heart as a pump in the blood circulatory system, its structure, and major component
systems. The material presented here is a series of short excerpts from A.C. Guyton
and J.E. Hall’s “Textbook of Medical Physiology” [1], which is meant to introduce
readers without biological background to the basic terminology, definitions and
functions of the heart systems as part of the whole organ. We will look at additional
physiological information in greater depth in later chapters.

Here we also emphasize that heart arrhythmias and fibrillation continue to be
dangerous heart diseases, the mechanisms of which have not been clearly understood
until recently. Mathematical modeling and computer simulations are characterized as
modern tools for scientific research in this area.

1.1. Heart as a four-chamber pump

1.1.1. Heart function

The heart is a rhythmical, adjustable, muscular pump whose function is to
maintain adequate supply of blood at sufficient pressure to meet tissue demands for
nutrients and waste removal in all organs of the body (see Fig. 1).

' head,
upper limbs

pulmonary
veins

hepatic artery

- spleen, .
gastrointestinal
portal vein tract

kidneys

lower limbs

Fig. 1 A schematic representation of the circulatory system [1]
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2 Chapter 1 Introduction
1.1.2. Heart structure

The heart is a four-chambered organ supplied with valves to control the direction of
blood flow (Fig. 2). It is composed of the basic types of tissue that account for its
auto-rhythmicity, conductivity, and contractility.

innominateartery. 'St cOMMOn carotid artery

left subclavian artery
aorta

branches of right . pulmonary artery
pulmonary artery

superior vena cava

branches of
—— left pulmonary
vein

hr:lnr;:‘ges of vnsi[';t ‘ : N semilunar valves
pulmanary L — mitral {bicuspid) valve

right atrium

tricuspid valve

inferior vena cava

Fig. 2 Diagram of the heart and its major blood vessels. The heart is viewed from the front [1]

1.1.3. Blood supply of the heart-coronary system

1)

The term coronary means literally “a crown,” which implies encirclement. The
term is apropos since coronary vessels do, in fact, encircle the heart.

The low coronary arteries branch off the aorta just beyond the aortic valve (Fig.
3). Thus, as soon as the blood leaves the left ventricle, it enters the coronary arteries
for distribution to the cardiac muscle.

Unfortunately, the two coronary arteries are functionally end arteries. This means
that the two vessels are more or less independent of each other. In contrast, in most
organs of the body, the various blood vessels meet with one another so that, if one is
blocked, blood from the other vessels may still nourish the tissues. But in the heart,
if one of the coronary arteries is suddenly occluded, the corresponding part of the
heart muscle loses its blood supply.
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Superior
veno cava

Aorta

Pulmonary artery
Right atrium

Left atrium
Right coronary
Gﬂw
Left coronary
artery

W

%_ A Coronary sinus

Fig. 3 Anatomy of the coronary circulation [1]

1.1.4. Heart Automaticity

Heart contractions or heartbeats are initiated by a special system called the
pacemaker system. This system consists of several nodes that automatically generate
excitation pulses at their own different rates (see Table 1). Being connected in the
system by atrium tissue, conducting and Purkinje fibers they transfer and distribute
along the ventricles’ muscles the excitation pulses generated with higher frequency
in the system. The location of the each part of pacemaker system in the heart is
shown in Fig. 4.

superior vena cava —

S—A node
right atrium left atrium
A-V node—
junction and A~V bundle
transitional fibers (bundle of His)
inferior Ieft ventricle
vena cava
right and left
bundle branches
. right _§
ventricle Purkinje fibers
’ to muscle of ventricles

Fig. 4 The locations of the nodal tissue in the human heart [1]. (S-A)- sin-atria node; (A-V)-
atria-ventricular node
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Table 1. Some characteristics of nodal tissue and cardiac muscle

Area Velocity of Inherent rate of discharge
conduction (impulses/min)
(m/sec)

S — A node 0.05 70-80 (pacemaker)

Atrium muscle 0.3 -

A -V node 0.05-0.1 40-60

A -V bundle 2-4 35-40

Purkinje fibers 2-4 15-40

Ventricular muscle 0.3 -

1.2.  Heart systems

Under normal conditions, proper functioning of the heart’s major systems (see Fig.
5) supports the normal pump activity. These systems include: heart blood supply,
neuro-humoral regulation, metabolism, heart electro-physiology [2, 3], and cardiac
muscle contraction system. Distortion in any of these systems may trigger different
types of heart diseases including heart arrhythmias leading to ventricular fibrillation.

Blood
output
\
Heart Heart Electro- Heart
blood > ; » physiological »  muscle
metabolism )
supply system contraction
y y
Blood
input

_ | Neuro-humoral control
. (table 2)

Fig. 5 Heart system (simplified block diagram)

A simplified block diagram of the electrophysiological system is shown in Fig. 6,
inside the white square box.
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Neuro-humoral

Contraction

Cardiac _| Cardiac

Cells "1 Tissue

. Cell
Metabolic * 2 4 :
> / »| contractile
Effects /
/ elements
Pacemaker

System Relaxation

Fig. 6 Electrophysiological system

Nervous control system affects the blood pumping by changing the heart rate and
strength of contractions, as described in table 2.

Table 2: Nerve Control of the heart

Type of Location of Effect on Effect on Mechanism of
nerve system endings heart beat  strength of action: nerve
rate contraction endings release
hormones
Sympathetic ~ Ventricles Increase Increase: Norepinephrine,
Both atria Normally which increases
(sparsely) 20% membrane
Max. 200% permeability to
Na ions
Para- SA and AV Decrease Decrease by:  Acetylcholine,
sympathetic ~ nodes 10 - 20% which increases
membrane
permeability to K
ions

1.3. Control of Heart Contractility

Heart contractility is the major property of the heart muscle, providing its
function as a blood pump. This occurs when special protein cell motors (myofibrils)
directly transform chemical energy into mechanical contraction of the heart chamber
walls. Contractions have to be periodic (Heart Cycle) and occur in some required
sequence in time and space to provide coordinating function of all four chambers of
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the heart. Special control signals are produced by heart subsystems to perform this
function. This is called excitation—contraction coupling.

1.3.1. Excitation-contraction coupling

Excitation-contraction coupling includes three heart subsystem control signals.
First the pace-maker system generates the control signals of the basic heart thythm
(70 beats/min). These signals propagate directly through the atria and indirectly
through the ventricular (via Giss fibers and Purkinje cardiac cells) and excite the
atria and ventricular cell membranes (appearance of membrane depolarization and
subsequent AP) in the required space distribution and timing. The AP may be
considered as a second control signal on the way to cell contraction. It causes the
opening of the Ca cell membrane channels, and in response the Ca releases from
intracellular sarcoplasmic reticulum stores, providing the  intracellular Ca
concentration changes required for myofibril contraction and then relaxation (see [6]
for details). Thus, Ca dynamics may be considered as a third control signal on the
way to excitation-contraction coupling. A block diagram of this three-step control
system is illustrated schematically in fig. 7.

) @) 3)

Lt AP Generation | Intracellular > System 9f
System (SAN, > and Propacation Calcium Contractile
AVN, Purkinje pag > < Elements

J

Neuro-humoral
System

Fig. 7 Simplified block diagram of the heart control
1.4.  Heart Fibrillation and Sudden Cardiac Death

Sudden cardiac death takes the lives of about a half million people every year in the
US alone. As it is widely recognized now, the main cause of this death is ventricular
fibrillation (VF), the severe distortion of cardiac muscle contraction rhythm (see fig.
8 and fig. 9), leading to full loss of the heart’s pumping function. VF may arise in
both originally healthy hearts, and ischemic hearts. Both cases are considered in
modeling and computer simulation.
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Fig. 8 Stages of sudden cardiac death [4] (EKG record) (SR — sinus rhythm, VT — ventricular
tachycardia, VF- ventricular fibrillation)

SANAN AN AN 1oV

I ; nmvl

0 sec 30 sec Imin 15 sec 1min 30 sec

2 min

Fig. 9 The time course of monophasic AP dog’s heart in ischemic (I) and non-ischemic (NI) zones
after coronary artery occlusion (CAO) [5].

1.5. The methods for investigation of heart processes

Two complementary main approaches are now widely used to study the behavior
of the heart’s systems under normal and pathological conditions. One is based on
experimental investigations performed on different biological levels (cellular,
molecular, tissue, separate organ, and whole organism); the other uses mathematical
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modeling and computer simulations. Particular results of both approaches are shown
in Fig. 10.

Fig.10 Examples of spiral wave: a. observed in computer simulation [7], and b. spiral wave in
experimental record [8].

It is appropriate to emphasize here the fundamental role and importance of
mathematical methods in supporting these approaches and generalizing the results
(see [9]). Both approaches have their drawbacks, advantages and limitations, which
we will discuss later. Only cooperative use of these approaches in combination with
broad use of mathematical methods can provide reliable and useful results.

This book is focused on the modeling and computer simulation of
electrophysiological processes in myocardium. The development of a mathematical
model of the whole heart (as a hierarchy of the particular model of heart systems and
subsystems) is the subject of a special project, which is called the physiome of the
heart [10].

1.6. Role of mathematical modeling and computer simulation in
investigating the heart processes

Mathematical modeling and computer simulations are powerful methods used for
research in almost all areas of science and technology. They possess the predictive
ability and, in conjunction with the experimental method, facilitate the discovery of
new phenomena and understanding of its mechanisms. These methods were also
widely used for the last fifty years for solving an array of both general and specific
problems in cardiology. Some of these include:

1. Investigation of electrophysiological mechanisms under normal and pathological
conditions (without and with intracellular Ca dynamics)



1.7 References 9

2. Validation of hypotheses proposed during investigations of ventricular fibrillation
appearance (ectopic activity, re-entry of excitation, role of arrhythmias and
subsequent changes in repolarization cell processes, etc.)

3. Creation of a theory of stationary spiral wave propagation

4. Investigation of mechanisms of heart defibrillation and reasons for
defibrillation failure

5. Investigation of the effect of protein mutations in cardiac cell channels on action
potential generation and propagation

6. Study of the effect of anti-arrhythmic and anti-fibrillatory drugs

7. Creation of a whole heart mathematical model with three-dimensional geometry.

Not all of these problems are fully solved, and some, such as genetic effects, the
role of mechanical contraction in the myocardial electrical activity, and others await
a solution.

The additional advantages of mathematical modeling and computer simulation are
the possibility of gaining insight into some internal processes and/or parameter
changes that cannot be directly observed in the course of physiological experiments.
They also allow us to isolate each process under investigation and study the effects
of different factors independently (parameters, stimulation, initial conditions, etc).

Validation of the mathematical model and computer simulation results is of
primary importance.
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Chapter 2. Mathematical Modeling and Computer
Simulation

Once upon a time, man started to use models in his practical activity. Modeling
continues to play a very important role in studying natural phenomena and processes
as well as helping to create modern engineering systems. Additionally, modeling is
used in biology and medicine to find the mechanisms of function and malfunction
concerning the organs of living organisms at both the micro and macro level.

Generally, a model has been defined [1] as the reconstruction of something found
or created in the real world, a simplified representation of a more complex form,
process, or idea, which may enhance understanding and facilitate prediction. The
object of the model is called the original, or prototype system.

The model and the original may have the same physical nature; such models are
called physical models. Correct physical models must satisfy the criteria of
similarity, which include not only the conditions of geometrical similarity but also
similarity of other characteristics (for example: temperature, strength of
electromagnetic field, etc.). Physical models have been widely used in engineering
and biomedicine. Examples include the testing of various civil constructions for
seismic stability, testing the aero-dynamic characteristics of new aircraft and rockets
in wind tunnels, and experimental studies on animals (organ, tissue, and cell)
considered as a prototypes for human beings.

However, in scientific research this type of modeling studies is complemented
with another modeling approach, which is based on the development of
mathematical descriptions of the behavior of the prototype system under
investigation. These descriptions are called mathematical models. The results are
expected to be obtained by using existing mathematical methods (which give the
solution in closed form mostly for very simplified cases) or by computer simulation
using powerful serial or parallel supercomputers.

In this chapter we present definitions and terminology, classification of
mathematical models, general assumptions accepted in mathematical modeling, and
some considerations about mathematical models of direct analogy (see also
Appendix) and computer simulations.

2.1. Mathematical modeling

The place of mathematical modeling among the other methods of scientific
investigation [2] is shown schematically in Fig. 1.

B.Ja. Kogan, Introduction to Computational Cardiology: Mathematical Modeling 11
and Computer Simulation, DOI 10.1007/978-0-387-76686-7 2,
© Springer Science+Business Media, LLC 2010
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Fig. 1 Schematic representation of different modeling approaches

Mathematical models represent a mathematical description of the original, based
on known general laws of nature (First Principles) and experimental data. The well-
known fact that the systems of different physical natures have the same
mathematical descriptions led to a special type of mathematical models: models of
direct analogy. The tremendous advancements in computer hardware and software
stimulated the wide use of mathematical models, especially because most of the new
problems, particularly in physiology, are nonlinear and, thus, their solutions cannot
be obtained analytically in closed form.

Mathematical modeling facilitates the solution of three major problems for a
prototype system: analysis, synthesis and control. The characteristic of these
problems (see [3]) is given in Fig. 2 and Table 1.
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E: S R

Fig. 2 The cause-and-effect relation between excitation, E, and, response, R as they
relate to the system S

Problems can be classified according to which two of the items E, S, R are given
and which is to be found. E represents excitations, S the system, and R the system’s
responses.

Table 1. General classification of the problems

Type of Problem Given To find

Analysis (direct) E, S R
Synthesis (design identification) | E,R S

Instrumentation (control) S,R E

The analysis problem is sometimes referred to as the direct problem, whereas the
synthesis and control problems are termed as inverse problems. A direct problem
generally has a unique solution. For example, if the Noble mathematical model of
Purkinje fiber [4] is used, we obtain only one action potential shape in response to a
specified stimulus for given cell parameters. In contrast, the inverse problem always
gives an infinite number of solutions. To find a single solution additional conditions
and constraints must be specified separately. An example of this is found in the
modeling of Ca® induced Ca® release mechanisms from the cardiac cell
sarcoplasmic reticulum (SR).

The spectrum of mathematical models can be constructed based on our prior
knowledge of the prototype system (see Fig. 3 taken from [3] and reflecting the
situation in the year 1980). The darker the color, the more restricted our knowledge
about the system, and the more qualitative the simulation results. As our knowledge
of prototype systems progresses, some parts of this spectrum became brighter and
the possibility of obtaining quantitative results increases.



14 Chapter 2 Mathematical Modeling and Computer Simulation

EXPERIMENTATION
WITH CONTROL

TION

FoR SIRAIEGIES TESTING OF

ACTION . — — = g _ THEORIES

- —
- ~—
RFORMANGE ~ GAINING
PREDICTION 2 AIR ~~ _ INSIGHT
= POLLUTION ~
e N

prODUCT PHYSIOLOGICAL ™ CRElTG
CESIGN  PROCESS 5%,

CONTROL 5 ECOLOGICAL

HYDROLOGICAL

ECONOMIC

AIRCRAFT

/' DYNAMICS CONTROL

POLITICAL

ELECTRIC
CIRCUITS

WHITE BLACK
BOX BOX

Fig. 3 Motivations for modeling [3] showing the shift from quantitative models (light end of the
spectrum) to qualitative models (dark end)

2.1.1. Deductive, inductive and combined mathematical models

In cases when there is enough knowledge and insight about the system, the
deductive approach is used for model formulation. Deduction derives knowledge
from known principles in order to apply to them to unknown ones; it is reasoning
from the general to the specific. The deductive models are derived analytically (from
first principles), and experimental data is used to fill in certain gaps and for
validation. The alternative to deduction is induction. Generally, induction starts with
specific information in order to infer something more general. An induction
approach in biomedicine is fully based on experimental observations and has led to
the development of numerous phenomenological models (e.g. Wiener and
Rosenbluth [5], Krinski [6], Moe [7] models of the cardiac cell). In most practical
modeling situations of the heart processes, both deductive and inductive approaches
are required. The gate variable equations introduced by Hodjkin-Huxley [8], derived
from the cell-clamp experiments, are an example of an inductive approach, whereas
the application of Kirchoff’s law to the current balance through the cell membrane is
an indicator of the deductive approach used in formulating the action potential
models for nerve and heart cells.

Using induction, we must accept the possibility that the model might not be
unique and its predictions will be less reliable than when the model is purely
deductive. Consequently, such a model will have less predictive validity; defined as
the ability of the model to predict the behavior of the original system under
conditions (inputs) which are different from that used when the model was originally
formulated. Most of the mathematical models in biology are semi-
phenomenological. This means that part of the model derives from first principles
(the laws of conservation of matter and energy) and the rest represent the appropriate
mathematical interpretation of experimental findings.
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2.1.2. General assumptions used in mathematical modeling

Some simplified assumptions of general character are used in formulation of
mathematical models. These assumptions relate to the general properties of the
original system or phenomena under investigation:

1. Separability makes it possible to divide the entire system into subsystems and
study them independently (with the possibility of ignoring some interactions). For
example, typically AP models do not include cardiac cell metabolic processes.
Practically, they remain unchanged during the time course of many cardiac cycles
(changing over different time scales).

2. Selectivity makes it possible to select some restricted number of stimuli, which
affect the system. The excitable membrane, for example, can be excited by
current stimulus, changing the concentration of chemical substances inside the
cell and changing the cell temperature.

3. Causality makes it possible to find cause and reason relationships. It is not
enough to observe that variable ‘y’ always appears after variable ‘x’. There is a
possibility that they both are the result of the common reason-variable ‘u’.

2.1.3. Mathematical Models of direct analogy

Let us consider, as examples, the mathematical models of two prototype systems
with different physical natures. The first is an electrical lumped R, L, C circuit and
the second is a mechanical mass, spring system with damping. Both are shown in
Fig. 4.

The electrical circuit serves here as a mathematical model of direct analogy for
mechanical systems and vice versa. With the development of powerful computers
the role of direct analogy models becomes negligibly small. Nevertheless,
historically, the FitzHugh-Nagumo simplified AP model, which is still widely used
today [4], was derived for nerve cell study as a direct analogy for the Van der Pol
equation of relaxation oscillation (see Chapter 5).

R
1
C U 0 L ] m
T L X
_l-J\.I\N

Fig. 4 Schematic diagram of electrical and mechanical oscillators.
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We will assume that the capacitor was initially charged to the voltage U, (0) =
U,, and mass m was initially displaced (from the equilibrium position x = 0) by the
value x(0) = x( and released with (dx / dt )z:o = 0 . We also suppose that these

perturbations are small enough to consider that the parameters of the systems remain
constant.

Kirhoff’s law for electrical circuits and Newton’s law for mechanical systems
give respectively:

a. Balance of voltages in an electrical circuit:

di . . dU
U, +Up,+U,=0; where: U, =L—; U, =IR,; i=C
LTUR c L dr R d
Thus,
2
ﬂ+£%+Lyc=o (1)
dr? L dt LC
b. Balance of forces in a mechanical system:
2
F,+F,+F, =0, where: F, =md—2x; F, =k, ﬂ; F, =k.x;
dt dt
So,
2
ﬂJrk_dﬂJrﬁx:o )

The coefficients: R/L = 2¢, in (1) and k¢/m = 20, in (2) are the damping ratios;
coefficients 1/LC = ((002)e and kg / m= ((1)02)m represent the squares of natural angular
frequencies for systems (1) and (2) respectively.

The solutions of (1) and (2) depend on the ratio o, / (). and ¢, /(@y),,
correspondingly.

For initial conditions:

U(0) = Ug, (dUJ/d?) ;-o=0 and x(0) = x, (dx/df),-c=0 and when parameters are
such that o, < (). and «,, < (@,),, Wwe get:

-t -t
U =U_ e € cosat; x=xpe ™M cosm t 3)
c <o e m

Here, w, =,/(w, )e2 —aez) and o, = ,/(a)o )m2 —amz)

If o, = o, and @y, = Wy, then U, (t) / Uy = x(t) / X¢ (t) and we can study the
behavior of a mechanical system using an electrical circuit where it is easier to
perform the measurements and change the system parameters.

Using this example it is possible to notice that both systems, when using the
appropriate initial conditions, are mathematically described by the same differential
equation:
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2
d—?+2aﬂ+ a)ozu =0 “)
dt dt
with appropriate initial conditions.
This equation represents the mathematical model for second order linear dynamic
systems, independently of the physical nature of state variable u. In Table 2 we

demonstrate the predictive ability of this model.

Table 2 The predicted behavior of a linear oscillator based on the mathematical model of direct
analogy

o < @ Sinusoidal oscillations with Sinusoidal oscillations sinusoidal
decreasing amplitude with increasing amplitude | oscillations with

o> Aperiodic process with Aperiodic with increasing | constant
decreasing amplitude amplitude amplitude

2.1.4. Relaxation oscillations

Van Der Pol [10] discovered relaxation oscillations when he investigated the
problem of stabilization of the amplitude of a carrier signal generated to broadcast
radio translations. For this purpose he proposed the introduction of nonlinear
positive damping proportional to the square of oscillation amplitude in addition to
negative damping (a<0) in the second order oscillator equation (4). The equation (4)
with this modification attains the form:

d—2”+2a(1—/3u2)ﬂ+w2u=0 (5)
dt* a

Here f is a coefficient usually chosen equal to one.

This is the Van Der Pol equation. Its solution for o < a)o2 and & <0 is shown

in Fig.5. Each time the amplitude u becomes more or less than unity the sign of the
damping ratio changes respectively stabilizing the amplitude of oscillation.

¥
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Fig. 5 The solution of Van Der Pol equation for £ = —— = 0.1
a
0
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The relaxation oscillations were discovered as a solution of equation (5) for
a <0 and when o >> y” (see Fig. 6)
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Fig. 6 Relaxation oscillations, € = — =10 . T,y= —= RC approximately gives the period
(00 [0)

of the relaxation oscillations.

Van Der Pol proposed using the sequentially connected relaxation oscillators as a
model of the heart pacemaker system [10]. For this purpose each relaxation
oscillation generator in the system is adjusted to the frequency of the corresponding
pacemaker system node. The discovery of relaxation oscillations and the
development of the phase-plan approach in the analysis of nonlinear dynamic
systems facilitated the development of simplified nerve and heart cells models (see
Chapter 5 for details)

2.1.5. Validation of mathematical models

Mathematical model validation involves the comparison of computer simulation
results with those obtained on a real prototype of the simulated object, assuming the
digital computer implementation introduces negligible additional errors. Model
identification theory and methods have been developed for most linear and quasi-
linear dynamical systems (in engineering and some in biology). These methods can
be used to identify the parameters [11] and even structure of the model without and
with the presence of noise [12]. One of the possible block diagrams of mathematical
model validation and identification is presented in Fig. 7.
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Fig. 7 Simplified block diagram for validation and identification of a mathematical model. E is a
vector of chosen input excitation, R is the measured response, c is a vector of control parameters of
the model, and {e} is a vector of mathematical model error. F{e} is a chosen error function
(typically, F{e}=e?). Q[ F{e} ] is a criterion of identification quality (typically mean square)

Unfortunately, most biological systems are significantly nonlinear dynamical
systems (nerve, heart, vascular and skeletal muscle systems etc), which cannot be
reduced to linear or quasi-linear models without loss of their major functions.
Moreover, for these systems even the most advanced experimental technology
cannot provide the necessary data not only for full verification but also for
formulation of some phenomenological part of the mathematical model (for
example, there is no experimental data to formulate the mathematical model of
spontaneous Ca release from SR). In these cases, some plausible hypothesis is
usually formulated and the model predictions are considered correct until new
contradictory experimental data is obtained. Similar situations have been
encountered throughout the history of studying different natural phenomena.

2.2, Appendix: Lilly-Bonhoeffer Iron Wire Model

William Ostwald (1900) [13] was the first to notice that iron wire in nitric acid
exhibits an electrochemical surface phenomenon quite similar to the action potential
in nerves. Later the iron wire model was investigated experimentally by Lillie [14]
and theoretically by Bonhoeffer [15]. The one-dimensional iron wire model is a
mathematical model of direct analogy for nerve pulse propagation and is shown in
Fig. 8.
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Fig. 8. One-dimensional iron wire model. @ — electricalpotential

The iron wire, IW, is immersed in the vessel, V, filled with nitric acid of some
concentration (electrolyte). The iron wire is covered with a thin film of iron oxide,
shown by the dotted line in Fig. 8. After an application of a suprathreshold current
stimuli, the difference of potential between the iron wire and electrolyte, ¢, rises so

that the thin film of iron oxide is destroyed at that place. Then, this potential
accompanied by the destruction of the thin film begins to propagate toward the two
ends of the wire, resembling the propagation of a nerve pulse along the nerve fiber.

The mathematical model can be derived from the current balance in the system:

Here:

liw

na

[NA]

00 . .o L. 0%p
gzlf T, Ty +llw+lst+Eax_2

the difference of potential between the iron wire and the
electrolyte
capacitance of a double layer
time
1=k (p) @2 @h}
ok, (@) P <Py,
- oa 1.
degree of activation ——=-—i,
ot 0
electrical charge per unit of film surface
iron wire current iy, =k (@)
nitric acid current; i,, =[NAJk; (@)
the concentration of nitric acid near the surface of wire

thin film current = {
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Fig. 9 Shape of propagated potential

A grid of iron wires (see Fig. 10a) supports propagation of 2D waves. The first
publication of this experimental system [16] exhibited both circular waves radiating
from a point source of excitation and spiral waves rotating loosely about one
endpoint of the wavefront (Fig. 10b). Figure 10a shows a 26x26 grid of iron wires
(30cm x 30cm). Figure 10b shows pencil tracing at 1/8s intervals (left to right, then
down arrow) taken from a photo of an iron wire grid when stimuli were introduced at
S1, S, S;, and S,. Spontaneous activity persisted for a while in the form of waves
irregularly pivoting about moving points [16].
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Fig. 10. The 2D iron wire model. a: grid of iron wires. b: circular wave propagation.

A two dimensional closed surface (a ten-inch iron sphere) behaves in many ways
like a human heart, even “fibrillating” when made too excitable or stimulated too
frequently (see Smith and Guyton, [17]). This type of model was vigorously
investigated for decades (see [18, 19] for a review). Fortunately for many in the
West, this remarkable and thorough study published only in Japanese became known
to English speakers thanks to a book published by the late outstanding scientist A.
Winfree [20].
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Chapter 3. Electrophysiological and
Electrochemical Background

In this chapter we present some selected elementary knowledge concerning both
the electro-physiology and electro-chemistry of the heart (for details see [1, 2, 3, 4]).
This information covers the structures and properties of cardiac cells and tissues,
required for understanding the formulation of the mathematical models of action
potential (AP) generation and propagation. The basic terminology and definitions are
introduced as is required by the discussed topics. Additional physiological
information and definitions will be introduced in the following chapters as soon as
they become necessary.

The basic distinctive features of cardiac cells and tissues are the properties of
excitability and contractility. Excitability is defined as the ability of cardiac cells
and tissues to respond to an over-threshold stimulation by generating and
propagating electrical pulses — action potentials (APs). Contractility is the ability of
cell contractile elements to shorten the cell length in response to an increase in
intracellular Ca concentration in the process of developing AP (depolarization phase
of membrane potential)

Heart excitable tissues are composed of several excitable cells (with their
individual energy sources), which have some common features but differ in other
respects by structure and function depending on their location in the heart. Thus
Atrium and Ventricle cells exhibit both excitability and contractility properties while
the cells of the pace-maker system, similar in their functions to nerve fibers (axons),
exhibit only excitability.

In living beings similar properties are found in the cells of both skeletal and
smooth muscles. We encounter the properties of excitability also in chemistry
(oscillation reactions), electronics, crystallography, plasma systems, etc.

3.1. Cardiac cell and cardiac muscle structures

Heart muscle is formed from bundles of heart fibers consisting of cardiac cells
interconnected along their axial and transversal directions as it is shown in Fig. 1.

Intercalated disks

Fig 1 The structure of cardiac muscle [5]

B.Ja. Kogan, Introduction to Computational Cardiology: Mathematical Modeling 25
and Computer Simulation, DOI 10.1007/978-0-387-76686-7 3,
© Springer Science+Business Media, LLC 2010
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Intercalated disks connect the cells in the bundle in an axial direction. In normal
conditions and assuming a macro approach, the heart muscle can be considered a
continuous medium — “functional syncytium” with axial and transversal directional
anisotropy.

The geometry of a cell is reduced to a cylindrical form for rough calculations. The
dimensions for a mammalian idealized cardiac cell are shown in Fig. 2

%770—1 00 pm———»
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Fig.2 Cardiac cell simplified shape and dimensions

The anatomical sketch of a myocardial cell is represented schematically in Fig.3.
These cells have a regular structure: the myofibrils occupy most of the cell volume
and are located along the cell’s longitudinal axis. The big mitochondria are stationed
between them. The nucleus is localized in the center of the cell and elongated along
its length.

Fig. 3 Schematic representation of a mammal’s myocardial cell [3] (T — Tubule; M — mitochondria;
SR — sarcoplasmic reticulum SC — subsarcolemmal cisterns)

3.1.1. Intercalated disc

The intercalated disc represents one of the important structural cardiac cell
systems. It provides the mechanical and electrical junctions for the neighboring cells
in the axial direction and is formed by the membranes of these cells. In the axial
direction of a cell, the intercalated disc has a zigzag form with the deep penetration
(in a three dimensional plane) of one neighboring cell to the other (see Fig. 4). This
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leads to an increase in the contact surface by a factor of nine. The intercalated disc is
characterized by an area with a normal intercellular membrane gap (with width on
the order of 200A) and three specialized intercellular contacts: areas of myofibrils
entering a membrane (the places where myofibrils attach), desmosomes (points
fastening the areas of membrane between myofibrils), and nexuses (electrical gap
junctions through which the cells are connected electrically in tissue).
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Fig. 4 Part of intercalated disc (A — Nexsus (gap junction); Ry = 1.1 Qcm?, B — Normal split
between the neighbor membranes; C — The region of cells mechanical adhesion (Demosoma)) [5]

The side surfaces of neighboring cellular membranes are also interconnected by
the specialized structures of desmosomes and nexuses. The latter are encountered
rarely on the lateral side of the membranes and are more frequently found in
intercalated discs. That explains the anisotropy of conductance in cardiac tissue in
the axial and transversal directions (conductance in the axial direction is
approximately 9 times higher than in the transversal direction).

3.1.2. Myofibrils

Myofibrils are defined as bundles of myofilaments [6]. Myofilaments are the
contractile elements of cardiac cells responsible for the transformation of chemical
energy into mechanical work required for heart contraction in the process of blood
pumping. The myofilaments occupy 45-60% of the cell volume. They are composed
of the thin and thick filaments of two major proteins, actin and myosin respectively.
The thin actin filaments (~10nm thick) extend 1 um from the Z-line toward the
center of each sarcomere (see Fig. 5). The thick myosin filaments are ~1.6 um long
and 15 nm thick. Titin is a long structural protein that runs from the M-line, through
the thick filament and all the way to the Z-lines. It plays a role in the structural
foundation for myosin deposition on the thick filaments. The interaction between
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actin and myosin caused by increased [Ca]; during AP leads to the contraction of
each heart muscles’ cells as well as the heart as a whole. The detailed explanation of
the mechanisms of heart muscle contraction processes on the molecular level can be
found in Bers’ excellent book [6].
Myosin
filament

o |

Actine filament
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Fig. 5 Schematic representation of a myofibril. (a) Position of filaments when [Ca2+]i is low; (b)
Position of filaments when [Ca“]i is high.

Here we present only the static characteristic of contractile elements (see Fig. 6
and 7), which are known from physiological literature [6, 7]
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Fig. 6 The length-tension relationship for cat cardiac muscle (excerption from Fig 19 of the Bers
[6] book) is presented for the range of physiological sarcomere length.
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In Fig. 7 we observe the relationships between the developed cardiac muscle
tension and the concentration of intracellular [Ca®*]; for different temperatures for a
single species and for multiple species with a single temperature. These graphs allow
us to find the sensitivity of the tension to temperature and [Ca]; changes and
sensitivity of tension to [Ca®]; for different species.

Temperature and Ca Sensitivity o 100+ =
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Fig. 7 A. The influence of temperature on the tension-[Ca]; relationship for chemically skinned
rabbit ventricular muscle. Both the sensitivity of maximum tension to [Ca]; and temperature
decrease with transfer to the lower temperatures. B. Myofilament tension-[Ca]; dependencies for
ventricles of different species at temperature under 29°C (excerption from Figs. 20 and 21 of [6])

3.1.3. Cell membrane

A cell membrane forms a boundary which separates the intracellular liquid and
intracellular compartments (organelles) from external liquid. The structure of a
membrane is shown in Fig. 8. A membrane consists of a double layer of

phospholipid molecules and aggregates of globular proteins. It also contains water
filled pores and protein-lined channels.

&? Mobile protein carrier . Protein-lined

(ionophore) channel or gate

Fig. 8 The cell membrane [3]

Extra-cellular and intra-cellular liquid contain, among other things, Na*, K*, CI,
and Ca®* ions in the concentrations shown in the Table 1.
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Table 1. Ton concentrations for standard preparations at t = 37 °C

In extracellular liquid [X], In intracellular liquid [X];

[K*]e = 5.4 mM [K*]; = 145 mM

[Na'], = 140 mM [Na*]; = 10 mM
[Ca*].=1.8 mM [Ca®];=0.12%10" mM
[CI]. = 120 mM [CI]; = 20 mM

In an equilibrium state, the membrane has different permeability for different
ions, which prevents the uniform distribution of ion concentration between extra-
and intra-cellular liquids and leads to the creation of a resulting electro-chemical
membrane potential (membrane rest potential). In response to pacemaker stimulus,
the membrane potential changes and causes the changes in membrane permeability
to different ions in such a way that AP is generated. This provides for an increase of
Ca”* current through the (Ca), channels of the membrane, which causes a significant
release of intracellular Ca®* from the sarcoplasmic reticulum (SR) required for the
contraction of myofibrils.

3.2, The basic laws and equations

A. The Nernst-Planck equation

The Nernst-Planck equation shows that the density of ion S flowing through a
membrane, Jg is dependent on the concentration gradient of ion S and the gradient of
potential on a membrane.

RT dc F d
Js(x):—?“s{d_strgscsEd_jﬂ (1)

Here:
R —is the universal gas constant
T — is the absolute temperature (273 £ t°C)
F —is the Faraday's constant
S — is the name of an ion
{, —is a valence of s
us — is a mobility of “S”
Cs or [S] —is a concentration of “S”
@(x) - is an electrical potential at point x inside a membrane

¢, — @, =V —is a membrane potential

X — is a coordinate measured along the membrane thickness

B. The Nernst equation
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Let us consider the particular case of (1) when Jg(x) = 0 and concentrations of
ions [S] in extracellular liquid, [S]. and intracellular liquid, [S]; are constant. From
(1) follows:

dCy F

=S . —d 2

Cy Ss RT 2 2

After integration of the variables in expression (2) in the limits (Cg). = [S]. to

(Cs)1=[S]i and ¢, to @, , we finally obtain:

_ Rt Is].,
{oF IS

Vg is the equilibrium or the Nernst potential across a membrane caused by the
difference in ions concentration on both sides of a membrane.

VS VS =0~ @, (3)

For example, let us find the Nernst potential for sodium and potassium ions
separately. For t=27°C, RT/F=25.8 mV. It is known from the experimental data that
[Nale= 140 mM, [Na*];= 10 mM and [K];=5.4 mM, [K'];=145 mM. Using (3) we
obtain:

V=258 In [Nal, 258 1020 _68.11 mV
[Na), 10
V=258 In k], >4

=258 In— =-854 mV
145

K],

C. Goldman-Hodgkin-Katz equation (GHK equation)

This equation is used in cases when concentrations of ions [S]. and [S]; are not
constant and change over time
The assumptions used in derivation of the GHK equation are:
e The ions move across a membrane under the effects of diffusion and the
electrical field in the same manner as in a free solution.
e The ions concentrations on the membrane borders are directly proportional
to the ions concentrations in intra and extra cellular solutions:

(Cs), :,BS[S]g and (Cg); :ﬂs[s]i

e The dielectric constant of a membrane does not change along its thickness.

. . . d \%
e The electrical field across a membrane is constant: d—¢ = const = Z
x

o Here: ¢ —is the electric potential in a point x inside a membrane;

o d - is the thickness of a membrane.

Let us apply these assumptions to the Nernst-Plank equation (1) for the density of
S ions flux through a membrane. After integration (1) in the limits x=0 and x=d and
using the above-mentioned assumptions, we obtain:
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e
Jeo = gSuSIBSV [S]l _[S]ee T (4)
S F
d LV
l1-e RT

To obtain the current density through a membrane, we multiply both sides of (4)
by CsF. Then we obtain:

- L
I _U,ps EgsF V[S]i_[S]ee R
* d F RT vt
l—e = KT
ug Bs RT

The physical meaning of =(FPg),, is the maximal value of the

d
permeability of the membrane to S ions. Generally, (Ps) = (Ps),Os. Os is the
probability of the ion S channel to be in an open state. This probability is a function
of membrane voltage and time and is determined using the clamp experiment data.

So, finally:

vt
o2 Is]-[s]e A
*{SVRL;_
1-e
This theory is called the theory of constant field due to the assumption that the
gradient of the electrical field along the channel is unchanging. It also is based on the
assumption that in the considered time interval the probability of crossing a
membrane by "S" ions is not dependent on the presence of other ions. Therefore, this
theory is used when a membrane is permeable to several kinds of ions and,
particularly, in cases when the total ionic current equals zero (rest state).
For illustration, consider an example:
Let us find the rest potential for the membrane permeable to the ions of

Na*, K%, and CI™.
In the rest state:
INa+ +11<+ +ICl_ =0

I¢ =P 5)

Using (5) for each of these currents, we obtain:

F
_;avi
I . =P é“NazeV[Nf]i—[Nf]ee " R
Na* Na* RT _é‘NaVi
1—e RT
k'] -[c ]
2 2 + +| T Rrr
Kt -k RT
1 =p SkFTy ¢

kt Tk F
RT _rv it
1-e ;kVRT
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car o) -lorle™
kT v
1_6 é,CIVRT

Taking into consideration that ', . =¢,. =1 and { - =-1 and V = Vg, we

Io =Py

obtain the following after a simple transformation:

kT P+lNa | +pe x| +paler|

V}'&Y = (6)
TTF P vat] 4P KT+ Pl ]
The typical values of the resting potentials are presented in Table 2. [1]
Table 2. The values of resting potential for different cell types
Cell Type ‘ Resting Potential (mV) ‘
Neuron -70
Skeletal muscle (mammalian) -80
Skeletal muscle (frog) -90
Cardiac muscle (atrial and ventricular) -80
Cardiac Purkinje fiber -90
Atria-ventricular nodal cell -65
Sin-atrial nodal cell -55

3.3. Currents through a cell membrane

Electrical currents have different natures and mathematical expressions. They
can be divided into the following basic groups: capacitive currents, ionic currents
through gated channels, ion exchangers, ATP pumps, ions leakage currents, and
additional ionic currents induced by other cell ions. Different mathematical cell
models have different compositions of these currents depending on the time of their
formulation (reflecting the corresponding availability of experimental data) and on
the specificity of the problem set to be solved using mathematical modeling and
computer simulation approach. All membrane currents are divided into two groups:
inward and outward. The currents, which cross a membrane from intracellular to
extra-cellular domain, are called outward while those flowing in the opposite
direction are called inward. In equations, inward currents are agreed to have a
negative sign while outward currents have a positive sign.

3.3.1. Capacitive current

Cell membranes with extra- and intra-cellular liquids share many properties with
capacitors. A membrane’s double lipid layer represents the insulator while extra and
intracellular liquids with different ion concentrations play a role of the capacitor’s
conductive plates.
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Q —is the electrical charge

V —is the membrane potential

From the definition of capacitance it follows:
ke,

Cm = d Acap

Ay, — is the real membrane surface in cm’

d — is the thickness of membrane

k&, ~ is the insulator constant

Two definitions are used for membrane surface:
1. the surface calculated considering the membrane as cylinder Aeom,
2. taking into account the real membrane configuration A,
In mathematical modeling, membrane capacity is related to the membrane

surface, expressed in cm?. So, C= ColAcop [uF/ cm? ]. For myocardial cell Ageom <

Acap
The capacitive current is determined as:
dQ dv 2
[.=—=C— /cm 7
<= i [ LA ] (N

3.3.2. lonic currents trough channels gated by membrane potential

When conditions for the existence of the equilibrium Nernst potentials are
satisfied, it is possible to use the simplest formulation of the ionic channel current
proposed by H-H [8]. Let us apply Ohm’s law to the ionic membrane channel, for
ion S:

V= rsls + VS
r, — is a membrane resistance, generally a nonlinear function of two
variables: V and time t.
Thus, expression for ionic current

IS=L(V_VS)=gS(Vvt)(V_VS) (®)

Ts
The equivalent circuit diagram constructed using (8) is shown in Fig. 9.
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Fig. 9 The equivalent circuit diagram of a simplified cell membrane mathematical model. Three
ionic currents (Sodium, Potassium and Leakage) are represented here: In,, Ik , and I.. VN, , Vk and
Vi are the corresponding Nernst potentials. gn., gk and g show the full conductivity of the
considered ionic channels and r; and r. are the intra and extra cellular resistances. Is; represents an
external stimulus current for an isolated cell or the resulting current from the neighboring cell in
tissue.

The ionic current, Ig, traveling through the membrane can be expressed according
to HH formulation as:

Is= g50s(V-Vs),
Here: g — s the maximum value of the membrane conductance

Og— is the probability that the S channel is in an open state.
Generally Og is a function of V and .

The expression (8) is valid only when [S]. and [S]; are constant. In cases when
[S]e and [S]; are variable, the current Is must be computed using the GHK constant
field equation:

F
[S], ~[Sl,e " T

F
—cV—
Ss RT

22
1, =(Py), O g;? v 9)

l1-e

In both cases, according to H-H the function Og(V, t) is determined to be the
product of the gate variables (y;)s, which represent the probabilities of possible
channel states as a function of membrane potential and time. Each gate variable y; is
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defined as a solution to a corresponding ordinary nonlinear differential equation of
the form:
i _ Vi V) =y

dt T, (V) 1o

Here: y,, (V) is the value of gate variable y; at time f=co, and 7, (V) is the

time constant of this gate variable as a function of membrane voltage. The index
i=(1,2,3...), reflects the possible conformation states occupied by protein molecules
in ionic channel S under the effect of the membrane potential [8].

In determination of Og, we distinguish between two approaches based on the
clamp experiment data: one proposed by H-H [8] on the earlier stages of clamp
experiment development (clamp on cell patches) and the other developed more
recently [9] (clamping on a single ionic channel of the cell) and called, due to the
random nature of channel current, the Markovian approach [10, 11].

3.4. Action potential mathematical models

The application of Kirchhoff’s law to the isolated cell membrane gives:

av I
CE+ZI,.O,LS+15,=0 (11
1

Here: I, s is a current of ion, S; I is a stimulus current and must have inward
direction.

It is convenient to represent the total ionic current through the membrane also as a
sum of currents flowing from extra-cellular into intra-cellular space and vice versa as
the total inward and outward currents respectively and to assign to inward currents
the minus sign. Then:

!
Zn: Ligns = —z (I ion.S )inw + Zn: (I ion.S )Omw and equation (11) can be rewritten as:
1 1 I

n

!

CCZ_‘I/ = Z(Iion,s )inw - Z(Iion.s )(mtw + Ist (12)

1 ]

From (12) follows that inward currents increase membrane potential V from the
rest potential (depolarized membrane) while the outward currents decrease this
potential toward the rest potential (repolarizing membrane).

With the progress being made in experimental technology more and more
components of basic ionic currents have become known. Indeed, the model for a
Purkinje cardiac cell (proposed by Noble in 1962 [12]) contained the following
currents on the right side of eqn (12) (see Fig. 10):

Z(Iion.S)inw = INa +INa,b and Z(Iion,S}()tw = IK +1K1 +IL
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Fig. 10. Schematic diagram of the Noble cell model [12] (1962) (I.- leakage or anion current; Inap-
background current)

The numbers of inward and outward currents for the model of the guinea-pig
heart AP (proposed in 1994 by Luo and Rudy [13]) were significantly increased (see
Fig. 11):

(z Lipn s )mw =Ina leaw) + Inaca + lcam +lascay T Inap +lcap
and
z(lion,S)outw = I, g g+l Ik +Hpca

Here, inward currents are expanded to account for Ca currents through the (L) and
(T) type membrane channels. Introduction of the Na-Ca exchanger current and
nonspecific, ns(Ca), currents depending on the phase of AP and intracellular Ca
concentration may flow in both inward and outward directions. The outward
potassium time independent current [ is added to the plateau current I,

component and the time dependent potassium current is split into rapid Ik, and slow
Ixs components [14]. The Ca ion pump current Iyc, is comparatively small and
serves to stabilize the intracellular Ca concentration in normal conditions after cell
contraction.
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Fig. 11. Schematic diagram of the Luo-Rudy II AP model [13] (1994)

3.4.1. Action Potential and corresponding definitions.

The shape of the normal AP may be obtained by the integration of equation (11).

Potential, mV

Systole : Diastole

Fig.12. Example of the cardiac AP shape under a normal basic cycle length (BCL) of stimulation
TP-is a threshold potential; ARP-is absolute refractory period; Systole is a total time of the AP
activation and inactivation phase, Diastole is the relaxation phase of cardiac activity.

The four phases of AP are distinguished from each other as follows:
0. depolarization

1. overshoot
2. slow repolarization (plateau)
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3. fast repolarization

4. equilibrium (or rest potential).

Without the application of external stimulus the cell membrane is at rest potential
which is negative when the sum of ionic currents through the membrane becomes
equal to zero (see eq. (6)). If this balance of inward and outward currents occurs
during the repolarization phase it may cause the prolongation of the AP, or cardiac
cell repolarization failure.

After the application of external stimulus as an additional inward pulse current,
the membrane potential becomes linearly depolarized in time as a result of charging
of the membrane capacitance. When it reaches the threshold value, the sodium
channel is activated with participation of the two processes of activation (positive
feedback) and inactivation (negative feedback). The interaction of these processes
provides the depolarization phase-0 with prevailing inward currents. During the
repolarization phases in its normal condition the cell’s outward currents prevail.

The threshold potential is a membrane potential in which the balance of inward
and outward currents is first distorted under the effect of the stimulus current. Its
value depends on the inward and outward currents-voltage characteristics that are
different for different cells and change under some pathological conditions.

The time characteristics of AP are: AP duration, usually measured at the 90%
level from the peak of AP and basic cycle length, the time between two successive
stimuli. The latter is divided into two parts: systole and diastole. During the systole,
the absolute and relative refractory periods emerge. The diastole is the time when
cells rest from excitation and all ionic channel gate processes return to their initial
conditions.

3.4.2. Cell’s passive properties

We encounter passive cell properties when membrane potential is inside the
threshold range (-Viest »-Viest +Vin). In this range the sum of inward and outward
currents equals zero and the only inward membrane capacitance current, caused by
applied pulse shape stimulus, raises the AP linearly in time. When AP reaches the
upper value of the threshold (-V+Vy,) the passive behavior is changed into an active
one on account of prevailing inward currents (basically due to Iy, current). In the
passive regime, total membrane conductivity is characteristically constant and equal

to gm= Z g s -
The strength-duration relationship is the dependence between the amplitude of
the stimulus pulse Iy, and its duration Ty required to raise AP to the threshold level.

To find this dependence let us consider the cell membrane equivalent circuit diagram
transformed for this case, as shown in Fig. 13.
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Fig. 13 Cell’s equivalent circuit diagram in passive regime. For V<Vy all g = const. and

ZgS :geqv .

Here E=V-Vi, so Ey= V- Vi The balance of the currents through a
membrane gives:

dE .
CE‘f‘Egeqv :Im with E(O) =0

The solution is:

E=tali—e ¢ |o I, :—ge‘if - (13)
geqv 1—6_ C

Let us find the dependence between I and Ty, that provides that E reaches Ey,.
For t =T, and E = E,;, we obtain:

Eth geqv EthC

=——————— . Forsmall T,/ =~ ——

8egvl st

C

(14)

st

st

I-e

This expression (14) is called the strength — duration relation and represents a
hyperbolic curve for a fixed E;;,C.

3.5. Types of Cardiac Cells
According to [2], the APs of pacemaker cells (SA node, Purkinje fibers) are

shown in Figs. 14a and 14e and the APs of atrium and ventricular cells in Figs. 14.b,
d correspondingly.
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Fig. 14 Action potentials and pacemaker activity recorded in different parts of the heart.[2]: (a)
Recorded from frog sinus venosus (Hutter and Trautwein 1956), (b) Recorded from dog atrium by
Hoffman and Sucking (from Weidmann 1956), (c) Recorded from dog Purkinje fiber by Draper
and Weidmann (1951) (photograph from Folkow and Neil (1971), (d). Recorded from frog

ventricle by Hoffman (from Weidmann 1956), (e) Recorded from sheep Purkinje fiber
(Weidmann 1956).

The natural pacemaker, the SA node or sinus venosus (), is spontaneously active
and the membrane potential never becomes more negative than —60 mV. Each action
potential is followed by a slow spontaneous depolarization known as the pacemaker
potential. The atrium (b) has a higher resting potential (which may be up to —80 or —
90 mV), and a triangular-shaped action potential. It is usually quiescent, although a
steady depolarizing current can induce pacemaker activity. Purkinje fibers are
sometimes quiescent (c) and sometimes exhibit show pacemaker activity (e). This
pacemaker activity occurs at very negative potential (-90 to =70 mV), below the
range at which sinus pacemaker activity occurs. The action potential shows two
phases of fast repolarization separated by a very slow phase know as the plateau. The
ventricular fibers (d) have a much higher plateau and show no pacemaker activity.
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The shape of APs changing across the ventricular wall. The experimental results
presented in [15] are shown in Fig. 15.
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Fig. 15 The distribution of AP properties across the width of the left ventricular wall [15].

Transmembrane activity in Fig. 15 is recorded from five sites of a transmural
preparation isolated from the free wall of the left ventricle near the base of the heart.
Each letter in the inset indicates the respective location of the recording site. The
recordings were obtained during field stimulation during the preparation. The action
potentials are purposely staggered so that the upstrokes of responses from different
sites do not overlap. The lower right panel shows the distribution of APD across the
ventricular free wall of nine transmural preparations. APDgy measured at BCLs of
500 and 5000 ms is plotted as a function of the distance of the recording site of the
epicardial surface (expressed as a percentage of the total width of the ventricular
wall). The results suggest that M cells are widely distributed within the ventricular
wall and that transitional behavior occurs from the midmyocardial to deep
subendocardial layers.
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Chapter 4. Mathematical Models of Action Potential

Mathematical models of action potential first appear at the beginning and the
middle of twentieth century as both models of analogy (Ostwald [1], Van Der Pol
[2]), FitzHugh [3], Nagumo[4]) and pure phenomenological models ( Wienner and
Rosenblut [5], Moe et al [6]., Krinski [7]) including models based on finite automata
representations. With significant developments of experimental technique and
computer technology, and due to classical pioneering research accomplished by a
group of scientists lead by Hodgkin and Huxley [8-10], the semi phenomenological
ionic models have received recognition and wide applications for nerve AP models
and were then modified to cardiac AP models in fundamental investigations
accomplished by D. Noble and his group [11-13].

All ionic AP mathematical models are based on a balance of the electrical
currents through a cell membrane. The existing ionic mathematical models reflect
different knowledge of ionic currents flowing through the membrane and are based
on experimental finding that ionic channel currents have stochastic character. There
exist two approaches (see Chapter 3) in formulating the probability that an ionic
channel, s, is in the open state. The first, introduced by Hodgkin-Huxley [8], is based
on the assumption of mutual independence in time of channel gate variable
processes, which describe different possible states of a channel. It is important to
note that there were many concerns [14] about the validity of this assumption.

Hodjkin and Huxley acknowledged the issue of assumptive validity but
maintained that, for their purposes, the issue did not affect their objective [8]:

"...there is little hope of calculating the time course of the Sodium
and Potassium conductance from first principles. Our object here
is to find equations, which describe the conductances with
reasonable accuracy and are sufficiently simple for theoretical
calculation of the action potential and refractory period. For the
sake of illustration we shall try to provide a physical basis for the
equations, but must emphasize that the interpretation given is
unlikely to provide a correct picture of the membrane."

The second approach introduces new formulation of channel gate processes based
on representation of these processes as a Markov chain of interacting processes of
channel state probabilities in time. The data obtained during a single channel clamp
experiment [15] allows for the identification of the parameters of this formulation.

One can safely argue that H-H expressions are a particular case of Markovian
representation. The AP mathematical models for cardiac cells based on Markovian
representation are now in the process of intensive development.

This chapter will explore the genesis of Action Potential ionic mathematical
models of cardiac cell based on H-H formulation. The latter is illustrated by
description of H-H model for giant squid axonal membrane.

41. Hodgkin-Huxley Model for Axonal Membrane

The introduced ionic membrane currents are sodium, potassium and leakage
currents:

B.Ja. Kogan, Introduction to Computational Cardiology: Mathematical Modeling 45
and Computer Simulation, DOI 10.1007/978-0-387-76686-7 4,
© Springer Science+Business Media, LLC 2010
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Ing =8na(V=Vna) s Ix = g (V=Vg)sand ;= g, (V-V))

Here: V,,, V.V, are the known equilibrium Nernst potentials for these
ions,
Ing I are the known ionic currents from clamp-experiments as a

family of the functions I,,(t, V;), Ix(t, V,), I;(V;) with
clamp voltage V; as a parameter
If we divide these currents respectively on their driving forceV; =V (S denotes
ion names, we obtain conductivities gg:
1,(0.v;)

t’Vi e ——
gs( ) V—VS

1

-1
g

|
10 I1 msec

Fig. 1 Rise of potassium conductance associated with different depolarizations. The circles are
experimental points obtained on axon 17, temperature 6-7°C, using observations in seawater and

choline seawater [8]. The ordinate scale is the same in the upper ten curves (A to J) and is increased
fourfold in the lower two curves (K and L).
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Fig. 2 Changes of sodium conductance associated with different depolarizations [8]. The circles
are experimental estimates of sodium conductance obtained on axon 17, temperature 6-7°C

Families of curves for potassium and sodium conductivities are presented in figs.
1 and 2.

Analytical expressions approximating the experimental data were proposed by
H-H as follows:

Sxna =8na 58 x=gxn". 81 =¢, (1

Here: gy, . 8x . &; are constant components of corresponding ion channels
conductivities; m, h, and n are gate variables of sodium and potassium channels
respectively. They are presented as continuous functions (of common time ¢ and

voltage V) obtained in the process of solving the full system of equations presented
below.

The full system of equations for HH mathematical model.

The total current I,, through the membrane (ions, capacitive and stimulus /;,) is:
1m=c‘;—v+§m3h V=Vy)+gn' V=V +g,(V-V)+1I,: 2
t

The gate variables equations:
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dm dh dn

—=a,l-m)-p,m, —=o,1-h)-6,h, —=a,0-n)-F,n; 2a
o m( )= B ot W=h)=p, ot (I1-n)-p (2a)
Known functions:
V=25 \%4
Olm :0.1—2ﬂ, ﬂm =4exp(—§);
I—exp 10
o, = 007exp(- L), B = — (2b)
h — Y p 20 ’ h — 30_V 4
1+exp
vV -10 \%
=0.01 R =0.125 ——).
o, o=y P exp(—2o)
1—exp
10
Parameters:
. HF — mmho — mmho mmho
Here: C=1_2’gNa =120—2, gK=36—2’ gl=0'3—2’
cm cm cm cm

Ve =115mV, Vg = =12mV, andV, = 10mV

In equations (2a and 2b), V represents the difference between membrane potential
E,, and Ej rest potential. Thus V= E,-Eg, V.= Eni— Eg, Vk = Ex—Eg, Vi = E; —
Eg. For nerve cell Ex= - 60 mV, Ey,= 55 mV, Ex = =72 mV, E; = -50 mV.

The variables m, h and n are called the gate variables. They are dimensionless,
vary between 0 and 1 and control the conductivity of sodium and potassium channels
respectively. The physical explanation of the sodium channel gate variables is based
on the hypothesis that sodium channel opens during a temporal coincidence of three
activating events (the probability of each is equal to m). The channel is closed if an
inactivating event occurs with probability equal to (/-4). The gate variables m and h
are assumed to change independently with time (2a).

A potassium channel is assumed to open when four activating events occur
simultaneously. If the probability of one such event is n, then the probability that
channel is in open state is equal to n".

The functions «,,(V),B,V); a,(V),B,V)and «, V), 5, (V) given in (2b)
can be viewed as the rate constants in the first order kinetic equations for gate
variables (see (2a)). These equations can be easily transformed to another form:

dan m, V)-m dh h (V)—-h dn n_ (V)—n
bl , —= ,and — = —=———. 3)
dt 7, (V) dt 7,(V) dt 7,(V)
Here:
mm(v):am—(v), Tm(v):;;
a,V)+p,V) a,V)+p,V)

2, (V) + B, (V) a, (V) + B, (V)
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%, Tn (V):;
Ay + B, (V) a,V)+ By

The detailed investigations of this model showed a good agreement with the
major experimental data obtained for the giant squid axon. Particularly, that is true in
respect to the: 1) shape, amplitude, duration of a normal AP and it threshold value;
2) shape, amplitude and conduction velocity of propagated pulse in one-dimensional
nerve fiber; 3) changes in excitation threshold and response to stimulation during the
refractory period.

However, like any mathematical model, which is not completely based on the first
principles (semi-phenomenological) this model only represents an approximation of
the reality. The authors of this model indicated that the better approximation for the
potassium channel could be achieved with gate variable n raised to the fifth power,
while Cole and Moore [9] suggested raising, n to the 25" power.

R. Hoyt [14, 15] considered that gate variables m and h, which determine the
conductivity of sodium channel, must be presented in the model as interrelated
temporal processes. These considerations acknowledge that semi-deductive
mathematical models require revision each time new experimental data become
available and when we try to apply them to study a new problem in the same area.

n, (V)=

4.2. Classification of lonic Action Potential Models

All ionic mathematical models can be provisionally divided into generations.
Each generation is characterized by the time of its development, the features of the
problem, which this model is assigned to solve and the relative completeness of the
cardiac cell phenomena reproduced by the model.

The short characteristics of three generations of cardiac AP ionic mathematical
models are presented in Fig. 3.

Tonic Mathematical Models

A 4 A 4 A 4
1* Generation 2" Generation 3" & future Generation
1.H-H formulation of I 1.H-H formulation of all 1. Variable [S]; and [S].
and O, ionic currents except 2.GHK const field equation for I
2.No pumps and Ic., [Cal; # const 3.Markovian represent. for O
exchangers 2.Pump and exchangers 4.Improved [Ca**]; dynamics
3. Slow inward current, 3. Intracellular [Ca2+]i 5. The effect of contraction on
depending on [Ca]; dynamics. channels conductivity

Fig. 3. Three generations of the cardiac AP ionic mathematical models

The first generation was developed during 1962-1995 and used clamp
experiment data taken from both a patch of cells and a single cell. The beginning of
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the second generation models may be traced to 1985 and were formulated in broad
outline to 1999. The third generation models are currently the subjects of intensive
development.

4.3. First Generation Cardiac Action Potential Models

The evolution of the first generation of cardiac AP ionic models, including their
simplified versions, are shown in Fig. 4.

These improvements pursued the major objective of extending the H-H approach
proposed for the formulation of a nerve cell mathematical ionic model. The revised
model was also intended to reproduce the cardiac AP and its properties in normal
conditions (normal pacing rate, constant intra- and extra-cellular ionic
concentrations, fixed cell volume).

IONIC MODELS

l

l

Mcallister Beeler Full
Nﬂlljgaﬁgl 1] Noble Tsien Reuter Lﬁ%ﬁgﬂ% I Models
[12] 1974 [19] 1979
FH-N [3]
1969 - :
Gulko-Petrov Simiplited
[18] Models
VC-D [20] e
1930 =
ogan
Karpoukhin
[23] 1995
K arma [21-22]
1993-94
Third-order

Second-order

Fig. 4 Block diagram of the first generation AP models [3, 11, 12, 17-23]

The first of such cardiac AP models was proposed by D. Noble for Purkinje
cardiac cells [11] and was further improved by him and other investigators
mentioned in the first line in Fig. 4. The boxes shown below the dotted line relate to
simplified AP models derived mostly from the cited original Noble models (for
details see Chapter 5).

4.3.1. Noble Model of the Purkinje Fiber Action Potential

The H-H formulation of the AP model of the nerve cell was modified by D. Noble
[11] for simulation the Purkinje cardiac cell AP. The major distinctions between the
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shape of a normal AP of the Purkinje fiber and that of the axon can be observed in
Fig. 5.
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Fig. 5 Comparison of the AP for: A). Axon of the nerve cell (here Eg.s=—55 mV), and B) Purkinje
fiber.

In fig. 5B is shown the effect of additional conductance, gk, , on the duration of
the computed AP: curve a, corresponds to the case without additional conductance;
b, when additional conductance gg,= 0.2 mmho/cm* with equilibrium potential at the
resting potential; ¢, showing the effect of increasing gg, by 1.0 mmho/cm’.

Observation of Fig. 5 shows that the main distinctions between a Purkinje cardiac
cell AP and a nerve cell AP are:

1. The existence of plato-phase during membrane repolarization
2. Overshoot
3. Increased duration of AP
4. Possibility to have or not to have a slow diastolic depolarization.
The equivalent electrical circuit diagrams for the Noble mathematical model of
the membrane element are shown in Fig. 6.
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Fig. 6. Equivalent electrical circuit diagrams for a membrane element of the Purkinje fiber. a).
According to Noble [11], and, b) to McAlister [12]. Here Cs is a series capacitance.

Full system of equations for Noble model has the form:

av
CE +gNu(V _VNa)+

— 3 .
8 Na _gNul m h+gNa2’

gxV-Vi)+g,(V-V)=-1_; @)

8k = gKl(V)+gK2”4§

gKl =1.2€_(0'02V+1'8) + 0.0156(0'016V+1'5);

am o d=my=p,
dt
dh
—=o,01-h)-4,,
==,
dn
—=a,0-n)-p,,
Here:
0.1V +438)
m =T 0,067V 43.2) ’
e -1

a, =0.17 o~(0.05V+4.5)
h * ’

_0.0001(V +50)
nTT e

The constant coefficients

_m,(V)—m
o)
_h,(V)-h
W)
n,V)—n
V)

_0.12V +0.96
T (02V+L.6)
e -1

1
By =
o0V

B

ﬁ =0 Ooze—(0.0125V+1.125) .
n * ’

values are:

8 Na, =400 mmho | cm?, 8 Na, =0.14 mmho | cm*;

gzl.mehO/cmz, g

Ve =40mV, Vi

; £0.07 mmho/ cm*;

100mV, V, =—60mV,and C =12uF / cm*.

The Noble mathematical model correctly reproduces:

1. Spontaneous AP

generation (pace-maker property)
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2. Solitary AP generation in response to a single stimulus. The latter is

achieved by increasing the gy by 0.08 mmho/cm’.

suppresses the constant component of inward current due to g,

This increase

3. The major characteristics of normal action potential. The exception is a
maximum rate of depolarization. The later was found lowered by a factor of
four to five. The addition of a series capacitor (see Fig.6b and [12]) allows
the rate of depolarization to increase.

4.4. Second Generation Cardiac Action Potential Models

The models of second generation are characterized by the introduction of
membrane ionic pumps, exchangers and intracellular Ca dynamics with additional
[Caz+]i - sensitive currents (Icu, Inscca) Inaca ) and Ca-activated Igyc, currents.
Additionally the potassium current in these models is represented by three
components: rapid Ig,, slow I, and time independent I;.

The evolution of the second - generation AP models is shown in Fig.7 separately
for the atrium and the ventricle. Basically they differ by the properties of the

introduced Ca dynamic.
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Fig. 7. Second-generation AP mathematical models

Intracellular calcium dynamics can be described as follows: during the
depolarization phase of each AP a relatively small amount of Ca** enters the cell
sarcoplasm via L-type Ca channels and, possibly, the reverse mode of the Na*—Ca®
exchanger. Both activate and control the release of a much larger amount of Ca**
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from the sarcoplasmic reticulum (SR) known as Ca induced Ca release (CICR)
process. Ca’* that entered the myoplasm through the plasma membrane is pumped
out of the cell primarily by a Na+- Ca** exchanger. Ca** ions that were released from
the SR experience re-uptake via SR- Ca®* ATPase. Other Ca** transport mechanism,
such as mitochondrial Ca®* uniporter and sarcolemmal Ca®* pump, play a
comparatively minor role under normal conditions. It should be noted, that
approximately 98% of the released Ca’* ions become buffered in the myoplasm. Ca**
buffering in the SR increases a releasable pool of Ca** ions. Otherwise, with its small
volume fraction, the SR would not be able to store sufficient amounts of Ca** ions to
cause muscle contraction upon release. The processes described above are
summarized in [24] (see Fig.8 below).

3Na 2K Na
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Fig. 8. General scheme of Ca cycle in a cardiac ventricular myocyte according [24]

Among the other properties of Cadynamics, it is necessary to mention the graded
response (proportionality between Ca’* fluxes injected by the Ca; channel and
released with amplification (CICR) by RyRs of SR) [25], not full depletion of Ca™
from JSR [26]. The latter provide under high pacing rates, the Ca** accumulation
(both in sarcoplasma and JSR [24]) with following spontaneous release from SR
[27]. Under high pacing rates, when CICR is formulated as a time dependent
process with increased sensitivity to [Ca**] concentration in JSR, the model have to
reproduce Ca and APD alternans in time [28].

Intracellular Ca dynamics play a major role in the process of excitation-
contractions (E-C) coupling and also produce a feedback effect on the shape and
duration of AP. This feedback is mainly realized through Ca;-dependent trans-
membrane channels and Na-Ca exchanger currents. In normal conditions, the L-
channel current provides the AP with no significant increased plateau region while
Na-Ca exchanger prolongs the late repolarization phase. Under abnormal conditions
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such as brady or tachycardias complicated with LQT syndromes, the temporary
distortion of repolarization currents balance (prevailing inward currents) may cause
the appearance of early after depolarization (EAD) and delayed after depolarization
(DAD) [29]. They often transfer heart arrhythmias into fibrillation.

The second - generation models differ mainly with respect to the completeness in
reproducing the above mentioned intracellular Ca dynamics properties. Below, we
discuss the handling of these properties in different proposed AP models.

4.4.1. Short Overview of Second Generation AP Models

The first AP mathematical model, incorporating intracellular Ca dynamics
(DiFrancesco and Noble, [13]), was formulated using the experimental data from
Purkinje fiber strands (multi-cellular preparation) and served as a prototype for
subsequent models. The latter can be divided into two groups: models of the atrial
myocyte AP (Hilgemann and Noble [30], Earm and Noble [31], Lindblad et al. [32],
Nygren and Lindblad [33], Courtemanche [34]) and models of the ventricular
myocyte AP (Nordin [35], Luo and Rudy [17], Zeng et al. [36], Priebe and
Beuckelmann [37], Jafri and Winslow [38], Noble et al. [39], Chudin et al. [40],
Shiferaw et al [41, 42]). Recently, new AP models were proposed for rabbit and
human ventricles (see Puglisi and Bers [43], and Mahajan & Shiferaw et al [28], and
K. H. W. J. ten Tusscher et al [44].

The DiFrancesco and Noble (DN) model introduced the Ica; (an analog of the
currents through Ca;-L type channel). This current is activated by a gate variable
controlled by membrane potential and inactivated by two gate variables: one,
controlled by membrane potential, and the other by [Ca**];. The Na-Ca exchanger,
with stoichiometry of exchange 3:1 or 4:1, is considered to be driven by Na" and
Ca’* ion gradients and by the membrane potential. The Ca”* release from SR was
assumed to be Ca®*- induced and provided complete depletion of Ca from the release
compartment. The buffering processes of Ca’* ions in the myoplasm and SR were
not considered.

In the Hilgemann and Noble (HN) model, the DN formulation of intracellular Ca
dynamics was revised and modified, according to newly available experimental data.
The activation and inactivation of Ca>* channel were reformulated, resulting in faster
activation and slower membrane potential dependent component of inactivation. The
Ca’* release from SR was modified to fit closely the results of Fabiato [29]. In
addition, the membrane potential dependent activation of Ca release was
incorporated. These properties were described using the Hodgkin-Huxley
formulation. Ca®* buffering in myoplasm was also introduced. This model was
subsequently scaled down to the single-cell level by Earn and Noble, who also made
other adjustments to achieve better agreement with experimental results available at
that time.

Later, Lindblad et al. [32] formulated a new model for the rabbit atrial myocyte.
In the intracellular Ca dynamics, they includes a description of Ca**buffers in all
intracellular compartments; the CICR formulation is very similar to the one
proposed by HN. In this model the inactivating effect of [Ca™"]; on the current
through the L-type Ca channel is not represented. This can be considered as a
drawback. Courtemanthe [34] presented the most complete atrial AP model.
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With respect to Ca dynamics, Nordin’s model of the ventricular myocyte is based
on the DN formulation with only minor changes to parameters values.

A more highly developed model, based on physiological data available in 1994-
95, was presented by Luo and Rudy [45] and the Zeng et al.[36]. Rapid and slow
components of the delayed rectifier K* currents were incorporated in that model. For
the sake of brevity we will refer to this model as LR2.

4.4.2. The Luo and Rudy AP Model (LR2)

One can find the full formulation of this model with all used parameters in part I
of the Appendix to this chapter. LR2 includes Ca** current through the L-type Ca
channel; a Na-Ca exchanger current, buffering of the Ca**ions in the myoplasm and
SR, CICR and spontaneous releases from SR. It has the advantage of having [Ca®*];
dependent inactivation of the L-type channel and CICR mechanism allowing graded
Ca’* release. CICR is formulated using a phenomenological approach, as a process
graded by a grater then threshold amount of Ca®* influx into myoplasm during a time
interval from the start of membrane depolarization to the moment when its maximal
rate is attained. The time course of the CICR flux was reproduced by an exponential

activation and inactivation processes with equal time constants 7., =7, =2ms .

tnact
Such formulation of CICR mechanism allows to us to get Ca overload conditions
under high pacing rates (due to Ca accumulation) unlike other formulations in which
SR is emptied completely every time CICR occurs. The introduced CICR threshold
properties were shown in physiological studies to be incorrect and were removed
from the new versions of this model [46, 47]. However, the artificially introduced
dependence of CICR mechanism on Ca** influx (during first 2 ms after AP reaches
its maximum depolarization rate) remains unchanged. In spite of the known
drawbacks of the LR2 [48] model, it represent first of the few unique full ionic
model of AP with Ca dynamics incorporating Ca spontaneous release. These models
have served as a prototype for most of the proposed new AP models (at least in
respect to sodium-potassium dynamics. It is worthwhile to mention that even today
there is insufficient physiological data not only to create quantitative
phenomenological model of CICR, but even qualitative phenomenological
mathematical models of spontaneous release.

4.4.3. The Jafri et al AP Model

This mathematical model based on LR 2 formulation has a much more complex
formulation of the L-type Ca channel. The description of this channel is
characterized by Markovian approach and consists of eleven time-dependent gate
states rather than two time independent states as in the LR2 model which used the H-
H approach. The CICR release is formulated using the Keizer-Levine RyR
adaptation model [49]. In this respect, it is necessary to mention that Gyorke & Fill
found in [50] that this adaptation of the kinetics of the RyR model is too slow to
account for graded CICR. Furthermore, mathematical modeling has shown [51] that
if the Ca™ adaptation kinetics is made much faster, it is possible to obtain graded
control of CICR but at the expense of loss of model stability (spontaneous
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oscillations). Therefore, formulations of CICR including Ca** adaptation may not be
robust.

Also, Jafri et al. introduced a “cleft space” into the model. As a result of the
extremely small volume of the cleft compartment, the integration of the model
equations requires very small time steps during activation of L-type channels and
Ca®* release from the SR. Even a fourth order Runge-Kutta adaptive time step
algorithm adjusts time step to 0.0001 ms during the initial part of the AP. Such a
small integration step significantly increases computational time required for
simulation.

Investigation of the Jafri’s et al model has shown that proposed new formulation
of the current through the L-type Ca channel produces current transients similar to
the one observed in the LR 2 model. The SR is emptied almost completely with
each excitation as a result of the slow adaptation of RyR to the elevation of [Ca’"] in
the cleft. With respect to the model behavior under various pacing rates, the Jafri’s
at al model showed a maximum peak [Ca®*] in the myoplasm at frequency equal to 2
Hz. This corresponds to the 500 ms basic cycle length (BCL). The maximum of the
peak value of the [Ca2+] in the junctional SR (the release compartment) was a
monotonically increasing function of the frequency of stimulation, but showed
saturation starting from BCL = 250 ms. Overall, despite its computational
complexity this model does not have obvious advantages over the LR 2 model in
simulation of AP wave propagation in a tissue. Moreover, it produces erratic
behavior unless myoplasmic [Na*] and [K*] are held constant [52].

4.4.4. The Chudin AP Model

The further modification of Ca dynamics in model of ventricle AP (see Chudin et
al [40] and Appendix part II) is characterized by the extension the H-H formulation
with Ca dynamics and elimination of all discontinuities presented in LR2 model.
This model is one of the few that reproduce SR spontaneous release, and it is unique
in its ability to vary the shape and timing of a spontaneous release by changing the
corresponding model parameters. The Chudin model incorporates several properties
of Ca dynamics that have been observed in physiological experiments: graded CICR
by I¢,1 , prevention of complete SR depletion during normal CICR, accumulation of
Ca in the cytosol (Ca;) and Ca in the junction SR (Caj,) during high-frequency
stimulation, and spontaneous Ca release (denoted in the model as the Ca®* ion flux
Jyon) dependent on Ca overload concentrations in both the SR and cytosol. The
original model had two drawbacks. First, the time to peak of normal Ca transients is
increased. Second, it is impossible to reproduce Ca and AP alternans at high pacing
rate. The first drawback limits the model application to the cases of high pacing
rates when time to pick values of Ca transients is naturally increased. This model has
since been modified [53] to eliminate the second drawback by reformulating CICR
as a time dependent process with a strong dependence on Caj, (as was originally
proposed by Shiferaw et al. [41]), while leaving unchanged the above mentioned Ca
dynamics properties. The reformulation of CICR involved replacement of the
original expression (5) for J -jcp :

Jcicr = Geicr P, P, (1Ca®* ljsr —[Ca 1) (%)
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by the time-dependent

djci=gCICRPon(Q(C“jxr)_Cai)_Jcﬂ (6)
dt Tcicr

with the initial condition Jgcp(t = 0) = 0. Here, Jgycg is the CICR flux from the
JSR, gcicr = 2.0 ms™ is the conductance, and g = 30 ms is the average time
constant of Ca sparks throughout the myocyte. The open probability P, reflects the
dependence of CICR on Ca entry via I, and the probability function P, represents
the voltage dependent nature of CICR. Expressions for both P, and P, can be found
in the original Chudin model (see Appendix II. The term Q(Ca;,) is a function that
reproduces the steep dependence of CICR on Ca concentration in the JSR. It is
represented as the following piecewise-linear function:

0, Ca,, <0.5mM
olca,, )=1ca,, -05, 0.5mM < Ca,, <0.9mM )
HurCayy +b,) Cajy, 209mM

jsr =
where u,,; = 11.0 is the gain of CICR at high JSR loads, b,,; = 10.0 mM is the
point of intersection between the second and third segments of Q(Ca,), and y is a
parameter introduced in the original Chudin model to prevent complete Ca depletion
from the SR during normal CICR. Comparison of expressions (1) and (2) allows us
to consider (1) as a steady state solution of (2). The presentation of CICR as a
process developed in time with time constant 7, is a great contribution made by

Shiferaw et al [42] which showed that Ca alternans may be obtained with other AP
models at high pacing rate but with appropriate choice of the dynamics of the CICR
process

In addition, let us show how the Chudin model allows us to reproduce
different J,,,, pulse morphologies, by varying model parameter values. The equation
for Jy,,, in the Chudin model is:

J‘vpon = Gspon p(Cajsr - Cai ) (3

Gypon = 60 ms’ is the spontaneous release channel coefficient. Cay,-Ca;, the Ca
gradient between the JSR and cytosol, is the chemical driving force.

The gate variable p can be considered a probability of J,,,, occurrence. It is
described by a Hodgkin-Huxley type gate differential equation:

d —

T ®
t Tp

T, =7 +7,(1- p..) (10)

T,, the time constant of variable p, effectively determines the duration of a J,,
event. If 7, is increased (by increasing parameters T; and T), the duration of J,,
events also increases. p., the steady state value of p, is a Hodgkin-Huxley type
sigmoid function of two variables (Ca; and Ca;,,), though dependent on Ca; and Ca,,
rather than V. Bilinear approximation of this function is explicitly defined by the
following equations for different regions of [Ca; ] —[Cay, ] space:
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0, if region I
Cajsr - Kl . . II( )
_— if region Il (a
K3-K1 Jre
Ca. — K2 Ca,.” - K1
= . : , if regionII(b 11
Pe (K4—K2j( ka_k1 ) Uresonti® (4o
Ca. — K2
— if region Il (c
K4-K2 fre ©
1, if region III

If either Cajy, or Ca; are below the lower thresholds set by parameters K7 and K2,
respectively, then p,, = 0 (see Appendix Fig. 1 A, region I). If both Ca;, and Ca;
exceed the lower thresholds K/ and K2, but either fails to exceed the upper threshold
set by parameters K3 and K4, respectively, then p,, is approximated by a linear
function of Ca;,, and Ca; (see Appendix part II Fig. 1 A, region II). If both Ca;, and
Ca; exceed the upper thresholds K3 and K4, then p,, = 1 (see Appendix Fig. 1 A,
region III).

K1 and K2 are the lower thresholds for a Jg,,, event to occur. These thresholds
effectively determine the timing of the start of J,,, events in the AP cycle. During
phase 3 and 4 of a normal AP, Ca;,, is increasing and Ca; is decreasing. Thus, to
make J,,, start earlier in the AP cycle, KI (the Caj,, threshold) should be decreased
and K2 (the Ca; threshold) should be increased. Table 1 presents the pairs of K/ and
K2 values used to achieve Jy,,, events during diastole (temporally outside the AP)
and during systole (during the AP).

Table 1. Timing of the Jy,, upstroke in the AP cycle for different Jy,,, thresholds.

KI (mM) K2 (uM) Timing of J,,, upstroke
0.65 0.7 Diastole
0.58 1.12 Systole

The differences (K3-KI) and (K4-K2) effectively determine the amplitude of a
Jyon €vent. If either of the differences are reduced (either by increasing the lower
thresholds K7 and K2, or decreasing the upper thresholds K3 and K4), then the slope
of the p, function and p, itself are increased, leading to higher-amplitude Jj,,,
events.

A desired Jg,,, morphology can be obtained by setting the desired duration
(choosing the appropriate value of 7,) and amplitude (choosing appropriate values of
K3-KI and K4-K2). Table 2 describes the J,,,, morphology for two different sets of
parameter values used in the AP model for the present study.
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Table 2. Jpon morphology for two different sets of parameter values.

K3 -K1 K4 - K2

Jspon Morphology
(mM) (M)
0.5 0.6 20+ 200(1-p.,) Low amplitude,
long duration (Chudin )
0.0003 0.08 20(1-ps) High amplitude,
short duration (LR2)

The first set of parameter values produces relatively low amplitude, long duration
Jypon €vents (see Fig. 9(ii)) as in [40].

125 (I)
100 -

i

Jspm [pviimsi
L

25 4

(i)

a 20 C 240 00 Tal 1000

Time after J_,, activation (ms)

Fig. 9. Sample traces of Jp,, activations (elicited via high-frequency stimulation) for two different
sets of Jypo, parameter values. One set (ii) yields low amplitude, long duration Jyp., events. The
other set (i) yields high amplitude (via reduction of K3-KI/ and K4-K2), short duration (via

reduction of 1) Jyon events. The total Ca released from the SR (crosshatched region) is relatively
equal for both morphologies.

In the second set of parameter values, T, is an order of magnitude smaller than in
the original, while the differences (K3-KI) and (K4-K2) are at least an order of
magnitude larger. Thus, it produces high amplitude, short duration Jy,,, events (see
Fig. 9(7)), as in [45]. The total Ca in an average release was conserved between
morphologies.

By first selecting the timing of the J,,,, upstroke in the AP cycle from Table 1
(setting the values of K/ and K2), and then selecting a J,,,, morphology from Table
2 (setting the values of T,, K3, and K4), we obtained four cases of Jy,,, events to

study: low amplitude, long duration during diastole and systole; high amplitude,
short duration during diastole and systole.
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4.5. Further Developments of AP Models

Noble et al. [39] proposed a AP model for guinea-pig ventricular cell, which
greatly extended their previous results including accumulation and depletion of
calcium in thy dyadic space (between the sarcolemma and the sarcoplasmic
reticulum). The authors’ strategic aim was to incorporate this model into the whole
heart simulation and for the sake of computational simplicity the major Ca dynamics
properties reproduced earlier in the models [38, 40, 45] were not retained. Of
significant interest is the inclusion in the model of the calculation of cell contraction
properties and its feedback effect on AP through additional ionic stretch channels.
The authors also showed how it is possible to perform simulation study of drug
receptor interaction when the drugs have kinetics with the same time scale as the
cardiac AP. The proposal to use a time variable (duplicating the shape of the AP)
voltage clamp during clamp experiment improves accuracy of simulation for cases
when dynamics of ionic channels plays an important role (e.g. under condition of
high pacing rate).

Puglisi and Bers [43] adjusted the LR2 guinea-pig AP model to a rabbit ventricle,
adding in a transient outward K current (Iy) and Ca-activated Cl current. The
modification of the kinetics of the T-type Ca channel and the rapid component of
delayed K current (Ix,) were made as well as the rescaling of several conductance’s
to match the results in a rabbit ventricle. The authors demonstrate that by choosing
the AP model parameters (corresponding to some particular case of heart failure
(HF)), it is possible to decrease the level of Ca release from GSR required for
delayed after depolarization (DAD) to trigger full AP. Based on this result the
conclusion is made that triggered APs contribute to the nonreentrant tachycardia
observed in HF.

Ten Tussher et al [44] tried to improve the previous Priebe and Beuckelmann
human ventricle AP model [37] by incorporating up-to-date physiological data and
some new insights on the mechanisms of AP generation. The lack of experimental
information especially about Ca dynamics under the condition of fast pacing rates
(for human heart cells as well as for other species) compels the authors to simplify
the Ca dynamics formulation. Thus some of observed phenomena cannot be
reproduced by the proposed model including Ca accumulation in sarcoplasma and
JSR with following overload and JSR spontaneous release; and Ca and APD
alternans occurring due to temporal characteristics of CICR (induced by I, ) from
JSR. Therefore, its application to simulation of reentrant propagation in 2D heart
tissue yields results as if the Ca dynamics was frozen. Never-the-less, the creation of
this model may be considered a useful but premature step in an important direction.

Mahajan& Shiferaw et al [28] proposed a model of rabbit ventricular myocite AP
at a rapid pacing rate. The Shannon et al model [54] (an improved version of the
rabbit ventricular AP model [38]) is used here as a platform to introduce a number of
important innovations. The most important are: representation Cal type channel
gating as a Markov process with seven possible state including voltage and calcium
induced inactivation states; and the formulation the CICR from JSR as a time
dependent process, which allows reproducing Ca alternans at fast pacing rates and
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under some predetermined conditions. Here, as in most existing AP models
(except [45] and [40]), the formulation of the spontaneous Ca release by JSR is fully
absent at high pacing rates when Ca overload occurs both in the intracellular domain
and in JSR. This eliminates the possibility of reproducing the DADs and EADs in a
solitary cell at high pacing rates or a clusters of EADs and DADs in tissues under
conditions of tachycardia and fibrillation.

In conclusion we can expect that the AP models of the third generation will
express the emerging tendencies:

¢ to transfer from H-H formulation of channels gate processes to the
Markovian representation based on single channel voltage and AP clamp
experimental data;

¢ to introduce the effect of the variability of ionic concentrations especially
under high pacing rates;

e to take into account the feedback between cell’s contraction and
changing of ionic channels conductivity;

¢ to replace the description of the CICR and GSR Ca spontaneous (for high
pacing rates) releases obtained from plausible considerations and pure
phenomenological basis with that based on future physiological
investigations performed on a cell compartmental-molecular level.

4.6. Clamp Experiment Techniques

This technique allows time-based measurement of changes in ionic currents
through the membrane when the membrane potential is fixed. In 1952 Hodgkin,
Huxley and Katz made significant contributions to the development and application
of the clamp-experiment method (see Fig.10A and [10]).

Most of the block-diagrams shown in Fig. 10 have common features. They use
two intracellular electrodes: a voltage-recording electrode E’ and a current-
delivering electrode I’. The voltage electrode connects to a high impedance follower
circuit (x1). The output of the follower is recorded at E and also compared with the
voltage-clamp command pulses by a feedback amplifier (FBA). The highly
amplified difference of these signals is applied as a current (dashed arrows) through
I’, across the membrane, and to the bath-grounding electrode where it can be
recorded (I).

In the gap method, the extracellular compartment is divided into pools by gaps of
Vaseline, sucrose, or air and the end pools contain a depolarizing “intracellular”
solution. The patch-clamp method can study a minute patch of membrane sealed to
the end of a glass pipette. The patch clamp represents modern improvement to the
clamp-experiment technique (See Fig. 10. (E)) and allows measurement of currents
through a single ionic channel [16].

A system of several intra-cellular electrodes connected to a high gain operational
amplifier forms the feedback system. This system allows adjustment of the constant
membrane voltage and measurement of the total ionic current and its components on
a microsecond timescale. Due to the short time frame for adjustment of the
membrane voltage, the total measured current does not contain a capacitive
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component. Further ionic separation is performed using intracellular perfusion and
drugs, which selectively affect different ionic channels (see fig. 10)

Fig. 10. Clamp-experiment techniques. (A). Using a piece of long nerve fiber membrane; (E).
Patch clamp on a single cell channel

4.6.1. Separation of Na and K Currents

The classical ionic substitution method is shown in Fig. 11 following the original
Hodgkin, Huxley, Katz results [10].Here ionic currents are measured in a squid axon
membrane stepped from a holding potential of —65mV to -9 mV at a temperature of
8.5 'C. The components carried by Na+ ions are eliminated by substituting
impairment choline ions for most of the external sodium. Algebraic difference
between experimental record A and B, shows the transient inward component of
current due to the inward movement of external Na* ions.
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-9 my

Thme after start of test pulse {(ms)

Fig.11. Separation of ionic currents using clamp-experiment data. (A) Axon in seawater, showing
inward and outward ionic currents. (B) Axon in low-sodium solution with 90% of the NaCl
substituted by choline chloride, showing only outward ionic current. (C).The experiments were
carried out at the temperature 8.5°C.

Many other drugs, channels blockers, and other substances and were found [16]
for separation of ion currents in the more complex cardiac cell.

4.7. Recovery of Excitation at Normal and High Rates of Stimulation

Under normal conditions, the excitation of cardiac cells (accompanied by AP
generation) occupies the systole part of the full cardiac cycle. That time span is only
long enough for some state variables, such as membrane voltage and some of the
channels gate variables, to return to their initial values. For illustration, all state
variables are shown as functions of time for Luo and Rudy I and LR2 AP models in
Fig.12 and Fig. 13.
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Fig. 12. A) The AP and gate variables f, j, and x; B) The gate variables d, h, m and [Ca];. in Luo-
Rudyl model [17].
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Fig. 13. A) The AP, the gate variables f, j, r, X, and [Ca];; B) The AP and gate variables d, h, and m
in. Luo-Rudy II model [45].

Additional time (diastole) is required in order for the cell recovery processes to
end and the next applied heart beat to produces the same AP as the previous one. The
sum of this diastolic interval (DI) and systole (approximately equal to the action
potential duration (APD)), composes a normal cardiac cycle.

The ability of a cardiac cell to recover after excitation is called restitution. The
latter play a crucial role in cases of heart arrhythmia (brady and tachicardia) and
when distortion of the balance between inward and outward currents happens during
the normal cardiac cycle. The effect of cardiac cycle length shortening on the
duration of APD is shown in Fig. 14 for the Nobel AP model [11].
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Fig. 14. The effect of repetitive stimulation on the computed action potential (continuous curve).
The dotted curve shows the changes, which occur in, n, gate variable. ‘Fiber made quiescent’ by
adding 0.1 mmho/cm® to gx and then suddenly stimulated at a frequency of 3/sec. Note the
alternation in duration of action potentials during transient to stationary but shorter APD.

The restitution properties of an isolated cell differ from that of the cell in tissue.
Difficulties arising in experimental measurement of the recovery processes (temporal
activity of membrane channel gating) attract attention to the effects, which they
produce on such characteristics of AP generation and propagation as APD
restitution (APD; = f; (DI;,) for a single cell) and conduction velocity restitution in
one dimensional fibers (CV; = f,(DI;.;) for some fixed position x on the fiber). Here i
is the number of cardiac cycle. These restitution dependencies may be measured in
physiological experiments on isolated cells or on cells located in the tissue. These
measurements are much easier using computer simulations based on mathematical
modeling of AP generation and propagation. In both cases, two protocols are widely
used for this purpose: one is called the extra stimulus method or S;, S, protocol; the
other is called the dynamic method [54] or rapid pacing protocol. According to the
first protocol, the myocyte is paced using a normal cardiac cycle until all measured
state variable come to their stationary values. Once the stationary values are
reached, an extra stimulus S, is delivered in progressively shorter S;-S, coupling
intervals. These processes continue until the loss of stimulus capture. Using the other
protocol, the myocyte is paced at normal cycle length (CL) until APD reaches steady
state and then CL begins to progressively decrease by some appropriately chosen
time step. The myocyte is paced with new established CL for some numbers of
cycles — enough to stop changes in APD. The process ends when a 2:1 block
appears. The APD is measured at 90%-repolarization and the diastolic interval is
calculated as CL duration minus APDy,.

The obtained data are fitted to the mono-exponential curve:

APD(T¢;) = (APD)g, (1— e Plein ) (12)
Equation (12) is known as the Carmeliet approximation [56] of an APD
restitution curve. Its slope, 0<¥,pp 21 (derivative d APD.”d DI with respect to DI

or CL), may serve as indicator of APD variability under different pacing rates. At the
same time, these changes will cause corresponding variations in length, A, of
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propagated wave in a tissue, which can be calculated from the self evident
relationship:

A,=APD xCV (13)

The recovery processes also affect the restitution in conduction velocity (CV) for
excitation propagation between cells in a tissue. CV restitution together with the
APD restitution curve (when slope of both curves ¥ > 1 for the same DI regions)
significantly increases (see (13)) the wavelength variability of propagated excitation
in tissues. The latter may lead to the transfer of stationary propagated waves into
nonstationary waves and even cause the wavefront to breakup (a situation
resembling fibrillation).

In conclusion, it is necessary to make some comments: in reality, the APD
restitution curve is not a function of the previous DI, but of all DIs encountered in
the entire cell excitation history and measurements show that APD restitution curves
differ between the isolated cell and those embedded in tissue. Here, it loses its
single-valued properties and exhibits a loop. It is not correct to equate this restitution
curve a recovery process, notwithstanding that, the restitution curves reflects these
properties to some extent,. The measurements of APD and CV restitution curves in
physiological experiments are not accurate and cause some difficulties.

Some researchers hold that if M21 and Vi 21 for some range of
dDI, dDI,_,
DI, ,, the wave propagation in any tissue is unstable. The subscript i in these
equations indicates the time index of the stimulation. However, this conjecture has
not been proven mathematically.
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4.8. Appendix: Description of AP Models with Ca®* Dynamics

Part I: Luo-Rudy II Model

* Cell geometry

Length (L) = 100 um; Radius (r) = 11 pm; Geometric membrane area (Ageq) = 2mr2 +
27l = 0.767x10-4 em?; Capacitive membrane area (Acap) = 2Age0; Cell volume (Vg =
nr?L, = 38.0x10-6 uL; Myoplasm volume (Vo) = 68%V ey = 25.84x10-6 uL; NSR vol-
ume (Vi) = 5.52%V ooy = 2.098x10-6 pL; TSR volume (Vig) = 0.48%V ooy = 0.182x10-6
uL.

» Standard ionic eoncentrations

Ko = 5.4 mM; [K1]; = 145 mM; [Nat]g = 140 mM; [KH]; = 10 mM; [Ca2t], = 1.8

Fast sodium eurrent: Iy,

RT[ L. = mS
Iy=G - mH(V-Ey); Ey,=—n T e ot

&33}(;1(—2‘5359:1@“7?)
10
o, =0, = 0; ]3& = - ﬁ;{ =

4 7+10.66\( 1 32
0, 13 1+KP(T) +Exp( 10

when V2 —40mV

o, =0. 135exp( s 8‘3‘) By = 3.56exp(0.079%) +3.1x10%xp(0.357)
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1.2714x10%exp (0.24447) +3.474x10exp( ~ 0.043917)

= —(V+37.78)
o= ~(7+37.78) 1+exp(0311(7+79.23))

0.1212exp( - 0.010527)
1t oxp(0.1378(V+40,14))

when V<—40mV
0.32(V+47.13)
1-axp(-0.1(V+47.13)

= G.ﬂSexp(—%) v

Current through the T-type channel: /¢, 7,

— G BRlV_F. _
I =G, b8V ~Eg); G =0 ﬂs Fln

2-}-]
i

o1 wﬂL

V+14 V+25
1+exp| — 108 1+exp 13

1 —0875V+12 for V<O mV
Tg= I

8™ 2 , .
1+exp 3

Current through the L-type channel: I,

.{M) =Xmm+fmx+1m'm; Forion 8 = {Cﬂ2+, K-l-, Na+}‘

Tons= dffe] here: fs, = s K. =06
cas=dfcd where: fq Kot ICa T, pM
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[STiexp(9s) —Y;s,[S], here zVF
exp(fg)— 1 " =R

Po,=54x107" 2 ey =1; g = 0341

= VEYs,
I= Ps%RT

Pe= 6151077 =5 g, =0.75; Yy =075

Py,=193x107" oy =0.75; g = 0.75
oo _FH10
. P\~ 624
d = 5 T,=d,; -
. V410 0.035(7+10)
Texpl — 624
1 0.6 50
fu= , + 3 =
V+35.06 50—V ﬂ_gssm(-ﬂmz?(m m)’)+1
1+exp 86 1+exp 0

Fast component of the delayed rectifier K* current: Iy,

- l‘lflams . Rr, X7,
fKr_G x,r_(V Eg), G —ﬂﬂZﬁl vy Egr=?n[?]i

1 1
Tw™ , ? Hrea ™ , ,
V+9 V+21.5
erlna) el
1
T, 0001387, 0000617, s Where: V,=V+14.2; V,=V+389

1-exp( - 0.123%;) Texp(a‘145;§)-1
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of the delayed rectifier Kt current:

_RT, K"+ Py dNa"],
F K+ Py, INa"],

Iy =G xp(V-Eyp); Ey, ; Pyax= 001833

G_=0057+ ol® Zﬁ pCa= —10g([Ca2+]i)+3 with [Ca*], in mM
1+exp(L‘ z;}?‘z)
_ L V,= V430
15— 7.19x107¥, : 131607y, !
XP( 16 ?V) 1-exp(~0.148%;) exp(0.068777 )1

Time-independent K+ current: I

= . - K1, ms
_ % 102
Oy + By

1+exp(0.238(V~ B~ 59215)

01,49124exp(0.08032( V— Ey, +5.476) ) +exp(0.06175(V— By ~ 594 31))

B = ,
L+ exp( ~0.5143 (V—Eg +4753))
Plateau K* current: I,
mS, 1
Iy=G KoV Egy); G = 000552 = Eg, =Ep; K, =

7 488 _
I+ep| =553
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Na*-Ca2*t exchanger current: Iy,

bue  0(no)Va'BICA 1, ~exp((n-1)0)Na' FlCa],
Dca = Kg‘m 'Ef‘#]i
(Km,c¢+[€?az”],)(1 egexp((n- 1)¢~))

pd . . . .o JF
Fivica =2000 0 Ko =87.5 mM; Koy, = 138 mM; kyy=0.1; 1=035; 9=

Nat-K* pump current: I,z
I héf]JNa*]ij -
Ly = ,fm_lsd%ﬂ_mm Ky pp=1.5 mh:
(Rt 1) (K71, 4K )
- 1 R B 00 A
o™ » 0=rp O=7|"\ 573 |-

1+0. 1245exp( %)m 03650exp(—¢)

Nonspecific Ca?* activated eurrent: I, ;)
Inicay=Tuspat hi. For ion S={ K, Na* }

7 [Ca?*ja
I —; K =12
8 = %m) [Ca“]a mns(Cid) A

. . 7 om
Im«.s is computed as I Ejévr L~ channel, with P, = 1.75x107 —

Sarcolemmal CaZ* pump: I,cy)

I cd, -
_M;g =1_15.&;

Licw= K
"D Ca™ K sy HCD cm”

matcy = 05 WM
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Ca2* background current: Ir, 5

o . = ﬂ
Im'&— GWEV—EEQ), Gﬂﬂ =0.003016 g

Na* background eurrent: Iy, ,
mS

lias= G,y (V= Ei G, =0.00141 2

» Ca* buffers in the myoplasm

—_— [,fj,_v,;m']i —_—
[TRP] = [IRP] 3 [TRP] =70 WM; K, g = 0.5 UM

[Ca*1+K,, rep

—_— [Ca2+ L
[CMD] = [CMD] —_—
[Ca™* |+ K

; [CMD] =50 pM; K, oy = 2.38 uM

73

Here [TRP] and [CMD] are concentrations of buffered troponin and calmedulin cor-
respondingly. The above expressions allow one to express [Ca2t]; as a funetion of total

Ca2* concentration ([Ca2*];) in the myoplasm:

[Cd**],= 1%@ 2‘| B-3c ms(wgél)—ﬁ

B = [CMD]+[TRP1+K et Koy cagp—0.001[C? ],

C= K, p Kpeap+ [TRP] K, 35+ [CMD] K, 1p—0.001[C ]t(xmm,g: i

D= —0.001[Ca", K,y rpp Kpens
_ 9BC-2B°-21D

2 (32-3(:)3

E
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Note that both [Ca?*]; and [Ca?t]; are measured in UM, therefore, one needs to use a fac-

tor of 1000 to make transitions between mM and pM units.
 Ca2* fluxes in the SR

CICR current:/,;

I,= Gm,([f:'a“]m [Caz‘f],)

msec

Ga= Efd Km,:l‘fﬁ ('i)'m(ﬁ) a0

0, otherwise
A= ﬁ[Caz+]L2-A[Ca2+ L [ca?t g ~018 KM G =60 ms” 1 Ky rel = 08 HM; 7 =2 ms
Here, A[Ca?*]; ; equals to the change in [Ca2*]; 2 ms after the maximum rate of mem-
brane depolarization has oceurred; time t is reset at the beginning of each release. Im~
portantly, convert [Ca2+]; to mM to use the above formula.

Ca?* release under Ca?* overload conditions:/,,,,

2+ Y MM
Lom= t:r',,,,,,,,([t:’az’f]m-[z:.‘fzz2 ]i) p—

G sxp( )-ﬂxp(-—) g"[Caz+] >1.8mM — .
G =9 won ;G =4ms ;1=2ms

0, otherwise

Here, [Ca?']j; is free Ca?* concentration in the JSR; time t is reset with the start of each
new release event. Importantly, convert [CaZ2+]; to mM to use the above

formula.,
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CaZ* buffer in the JSR

Ca* —_—
0T Lir ; [CSQ1= 10 mM; K, =08 mM

€SO = [CSQ| —————
(0501 = 001 fezm—

Here [CSQ] is concentration of buffered calsequestrin. The above expression allows to
resolve for free Ca2* in the JSR ([Ca?'];s,) as a function of total Ca" concentration
([Ca?*};jgp) in the JSR:

[€8+L,=%(a+J b +4[Ca™], ﬁ,f.;w); b=[Ca™], ;=K g~ [CSQ]

Ca?' uptake of NSR: 7,,,

I,=I, [Caff:ﬁw = 1,=0005 I K= 092 1M
Ca? leak of NSR: /g

IM=EM%; Ky =15mM; T_ = 0,005 22

Ca2* translocation from NSR to JSR: /.

([Caz’f]m,_ [Ca“"‘*]ﬁr) -

I, = = 180 msec
r T, p——

¢ Membrane potential dynamie
dv 1
ke E(IMH&{,}H&“@ gt I+ iy gyt Inncat I+ Lcay M pcay eap e, b)

Here C = 1 uF/em? is the membrane capacitance per unit area.
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* Dynamies of gate variables

Dynamics of all gate variables can be represented in such general form:

dy vV)-y o)

a= o o= %(P’HB » = e M

» Intracellular Ca2+ dynamics

d[caz ]t ( ,}21' (f

Aoy
ety Hoam Hoas o Dvaca) o F ‘(‘Tug‘f

d[Caz”]m Vg
d[Ca’"],

— =L,

Part I1: Modified Model

Currents not described in this section remained the same as in the original Luo-Rudy II
model given above.

Current through the T-type channel: /¢, 7)

This current is neglected in the modified model

Na*-CaZ exchanger current:: Iy,c,

Same as in LR IT except kg, = 117724
cm

CaZ* uptake of NSR: Ly
- €T mM - o mM ,
L= Iﬂr [Ca? J’],EH‘Kg msec’ qu= 1.792:10 msec’ Koy = 06 1M

Ca?* leak of NSR: Iy,

Importantly, convert [Ca?+]; to mM to use the formula given below.
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Tt =810 [CF 1= [CA7,) ; Giou= 119510 ms™

CaZ* translocation from NSR to JSR: /.

Same as in LR IT except T, =50 msec

CICR current:[ .,

ch‘aﬁ = Gcﬁvp apamP v(%[c“”],n—[c"%].), Ga‘a' =60 m—l

1 [Ca" T,
Pqpm—dffcﬁw 'PV— 1+1‘656Xp(ﬂ.05V)’ K—K;“_'_[Caﬂﬁ; K,‘W—Z.GMM

Here d, f, and f, are gates of L-type Ca2" channel, defined in the previous section. Im~
portantly, convert [Ca2+]; to mM to use the above formula.
Ca?* release under CaZ* overload conditions:7,,,,

Ln= GMPM([CE"]_M- [Caz”]i); Gpon =60 ms™"

dP,

@m_P-_PM

dt T,

[Gaz-l-]'m—xl 2+ +
— (i, e )e 1

[Ca™ K, [Ca" ]~
- K4‘K2 KS_KI
[Ca*]-K,
KK,
K, =08 mM; K;=14mM; K,=07 pM; K,=1.3 pM

3 Tp= 2ﬁ+2§ﬂ(1—i’u) msec

~

K.
L if (1Ca }uniCa 1) e

i ([Caz‘”]fm[Caz*']i)e o
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ot
HE BN BN BN BN BN B = N

P_=1
= RS S aa— .
JI | I

[C a1_lj§|

Importantly, convert [Ca2+]; to mM to use the formula for Lipon-

Fig. 15. To the graphical representation of P, as bilinear function of [Ca*"] and [Ca®"].
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Chapter 5. Simplified Action Potential Models

The basic motivations for simplifying the AP mathematical models are:
e To make computer simulation of excitation wave propagation in 3D-tissue
model with complex configuration feasible.
e To find a qualitative relationship between normal AP generation and
propagation.
There are at least three known approaches used to simplify AP mathematical
models:
a. Based on singular perturbation theory
b. Based on clamp-experiment data
c. Based on the Van der Pole relaxation generator
In some cases, the sensitivity analysis [1] allows the introduction of some
simplifications to modern sophisticated mathematical models.

5.1. Simplification of AP models using perturbation theory

Physically, the approach of singular perturbation theory [2] is based on the
difference in the speed of model state variables, which allows the replacement of
differential equations describing the fast variables by finite (algebraic) equations.

Let us illustrate this approach using, as an example, the Nobel AP model in the
following form:

d - —_—
CT‘I/ — (&g mh+ 8NV =V (8 V)+8k, ”4)(‘/—VK)+g](V—V]):ISZ 0

Tm(V)Z—szm(V)—m; Th(V)%zhm(V)—h; T,l%znm(V)—n

The gate variables m and h are much faster than variable m. Indeed,
7, =107 sec, 7, =10 secand 7, =~107" sec.

Now, let us substitute tz;ro (where 7, =10""sec) in each of the Noble model
equations (1).

Then we obtain:

cdv — —
T—z—agm‘m3h+gNa2><v—vNa>+<gK, )+gx, nHV Vi) +g,(V=-V)=I,
0
En ey vy L vyen By )
Ty dt Ty dt Ty dt
The values T—”‘:é‘l; T—hzé‘z are the small parameters and are much smaller than
%o To
Tn
Ty

When ¢, and g, are =0, the equations for variables m and & are reduced to:
m_(V)—-m=0 and h_(V)—h=0. The Noble model (1) is transformed into a
system of second order ODE’s:
B.Ja. Kogan, Introduction to Computational Cardiology: Mathematical Modeling 81
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av — -
€ =8 R+ 83, )V Vi ) (8 Vg i)V =V +g,(V=V)=1,
@)

Tn(V)ili—lzznw(V)—n

The equations (2) are derived assuming that the time constants 7, andz, are
negligibly small in comparison to 7,. Therefore, its solutions are correct for the
time t>>7,,7,.

The transition from (1) to (2) (replacing m with m, (V) and h with h_(V))

decreases the maximal value of the fast sodium current. The effect of this
simplification on the shape of action potential is shown in Fig. 1.

V. mv

25

» S

— S0 I+

=75 F

Fig. 1. Comparison of the shape of the AP calculated using the complete (solid line) and the
simplified (dotted line) Noble models, taken from [3].

This effect can be partly compensated by decreasing the membrane capacity, C.
5.2. Simplification using clamp-experiment data

The single cell clamp- experiments give a family of functions:
Itotal = f(t’vl)
V; is the fixed membrane potential ranging from Vg, to V., and 1 rorat 18 the total

current measured at the fixed membrane potential.
One of the functions from this family is shown in fig. 2.
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ITut
F 3 T(Vl) 5
S |
- ISlow
(ISIUW )ss
V;= const
—
ITot (ITot)ss‘
it

1AL (V)

Y

'IToL

Fig. 2. Splitting of the total clamp experiment currents on fast and slow components.

According to Kirchoff’s law:

av
CE + Itotal = Ist (3)

Let us divide /,,,, into two components: fast /, and slow /. Thus, according to
fig. 2, 1,<0,1320.So0 1, =—I,+1; and the fast component can be expressed
as:

dl
I, (V) when —24L <

I, = dt
1,(V) otherwise

Equation (3) can be rewritten as: Cii/:_[] (DALY H,,-
dt !

Here: t =t—At(V), At(V) is the time of (4 yprat ) max
In order to find the equation for /g, we assume that it can be represented as an

exponential function of time. Therefore:

Ds 11,000, -1

/i
7o (V)—3
dt
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[IS (V)]m = [Ilotal (V)]ss _Ip (V)
Here subscript ss indicates the steady state value.
Taking into consideration the signs of the currents and neglecting A#(V') , the final

version of the simplified mathematical model will be:
av

Lt V)= 15 V)1, @
dl
Tg (V)d_: = [IS (V)]vv _IS

All the functions in (4) are defined by tables of clamp-experiment data.

5.3. From Van Der Pol to FitzHugh-Nagumo simplified model

5.3.1. Preliminary considerations

A second-order linear R, L and C oscillator is described in Chapter 2 by the
following differential equation:

2
av ‘2/+2ad—v+ V=0 ®)
dt dr

with the initial conditions V(0) = V; and (dV/dt),-o = 0.

Analysis of the roots of this characteristic equation shows that the solution is
stabile when « >0. Note that when a =0 the system will be on the border of
stability, and when a <0 the solution is unstable.

Let us consider the state variables corresponding to equation (5) and analyze its
behavior on a phase-plane.

5.3.2. State variable representation

Let us make the following substitutions in (5):

dv
V=x; —=x
L 2

Then (5) is reduced to a system of two first order ordinary differential equations:
dx2 2
—==-2ax, — Wy X 6

ar 2 W) X (6)
dx,
—=x 7

P (7)

Variables x; and x; are called the state variables. They fully determine the state of
the considered dynamical system.

5.3.3. Phase-plane approach

Let us construct a phase-plane in rectangular coordinates which abscissa
represents the state variable X, and ordinate the state variable X, . To derive the
solution of (6) and (7) on this phase-plane let us divide equation (6) by (7):
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dx, 20y +ag x )
dx, X,
The trajectory of the solution x, =f(x;) in the phase-plane can be found, for
some cases, by the direct integration of (8) with given initial conditions.
For example, when in (8) ¢ =0 we obtain:

ﬁ__ngl

dx, X,

After integration from x,(0)=0 to x, and x;(0) to x;:

R X
J. Xpdx, = —a)g J.xldxl or x22 = —a)g (x12 —xlz 0)
%,(0)=0 x(0)
Finally:
R

(€))

5Oy 27 (0)

The equation (9) represents an ellipse in the phase-plane.

For ), =1, we obtain acircle with radius x;(0). The typical phase-plane plots for
second order linear dynamic systems are shown in Fig. 3a,b.

Name Roots Sketch
Stable focus Damped Trajectories spiral asymptotically to
or spiral complex focus

conjugate *
]
I— i X
X
F

Stable node Stable real Trajectories approach node
roots monotonically

X3
D E— NN
K -

Vertex or Imaginary Conservative system or oscillator
center roots f %2

(Structurally
unstable) m
&

Fig. 3a. Typical phase-plane trajectories for linear second-order dynamical systems
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Name Roots Sketch
Unstable Complex
focus conjugate with %
positive real part -
b
— 3
Saddle Unstable
point equilibrium point E
ey
N/ =
/N
e~
Unstable Unstable real Trajectories diverge monotonically from
node roots node
X2
N
/1 X1

Fig. 3b. Typical phase-plane trajectories for linear second-order dynamical systems

In most cases, the direct analytical approach (to obtain the phase trajectory)
cannot be applied because the variables x,and x, are not separable. Thus, the
graphical and graph-analytical methods are used. Among them the method of

isoclines is widely used. Isoclines are lines in phase-plane at each point of which the
slope of tangent to the phase trajectory is the same.

. dx . .
The equation (8) d—2 represents a tangent to the trajectory of the solution in a
X
. . . . dx, . .
phase-plane in a given point. Denoting: —= =¢ = const., we obtain the equation for
X1

isoclines:
200, + Wi x w;
A) =; or _x2 =— 0

The expression (10) represents a straight line in phase plane. The trajectories of
the solutions will cross this straight line with the same inclination ¢.

= (

X (10)

Among all isoclines, the theory of oscillation distinguishes two: with ¢ =0 and
{ =oo. They are called the horizontal and vertical null-isoclines and reflect the fact

dx dx .
that d_2 or 71 becomes zero for some points in phase-plane.
t t
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The points in the phase-plane where these derivatives become zero
simultaneously are called singular points. They correspond to the equilibrium states
of the considered dynamical system because the phase coordinates xlg and xlk do
not change in time at these points k. The equilibrium states can be stable or unstable.

5.3.4. Relaxation Oscillations
Let us consider the Van Der Pol equation mentioned in Chapter 2 when parameter
a>>w:

% 5 dV
—=2a(1-V)—+ayV =0 11
0 ( )dt 3 (1D

The solution of this equation represents periodical but not sinusoidal oscillations
with period T= R C shown in Fig. 4 according to [4].

a
Fig. 4. Example of the equation (11) solution for — =10,

In this case, the solution represents a ‘“relaxation oscillation,” which is
significantly different from a sinusoidal curve. Sudden jumps are seen to occur
periodically.

5.3.5. Phase-Plane approach for analysis of V-P equation.

Let us introduce a new time 7 =2f¢ in (11) and designate as a small parameter

@

¢ =—= . As aresult, equation (11) becomes:
4a
d*v _, dv
—+V =D)—+¢V =0 12
yERS A (12)

In order to study (12) on a phase-plane this equation must be reduced to a system
of two first order ordinary differential equations. According to the Lienard
dv v?

transformation, we introduce state variables W = _d_ +V - T and V.
T

Thus,
2
d—W = _d_\2/+d_V(1 —V2) . The right side of this equation, according to (12), is
dt dt dr

equal to ¢V . Therefore,
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‘;—V:=¢v (13)

The ODE for the second state variable V is obtained from expression for W,

S dv
solving it in respect to — .
dt

3
av _ V- v _ w (14)
dt 3
We will study the solution of equations (13) and (14) on the phase plane W, V
using the method of isoclines. In particular, let us consider the null-isoclines.

The equation for horizontal and vertical null - isoclines follows from (13) and

(14) (when C;—W and d_V are set to zero). Indeed,
T

dr
For horizontal null-isoclines:
oV =0 (15)
For vertical null-isoclines:
V3
wW=V- T (16)

The equations (15) and (16) for null-isoclines on a phase-plane W, V describe the
ordinate axis and a cubic parabola respectively (see Fig.5).

W
Ll
3 >
|
g - ﬁ 3
v - | -3 "
| 1
L= -2
3
-W
Fig. 5. Null-isoclines for Van Der Pol equation
. . . . . dw _dv
The origin of the coordinate systems is the singular point where o = o =0
T T

Let us deteremine if this singular point is stable or unstable.

The stability of the steady state point is determined by stability of the system that
is in close proximity to this point or in other words, by the stability in response to
small perturbations.
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Let us designate the small deviations from the steady state point AW and

AV . Introducing these small deviations in (13) and (14) and
3

neglecting in comparison to V, we obtain:
AW _ sy
dt
AV _ Ay —aw
dt

This is a system of linear differential equations. The stability of its solution
depends of the location of the roots of a corresponding characteristic equation in the
complex plane. The characteristic equation is:

D*-D+¢=0
The roots of this quadratic equation are:

Dy =+%i /i—¢ where ¢~ 0.01-0.08

Both roots are real, positive and different and the solution of our original system
for small perturbation around singular point will be unstable. Such a singular point in
phase-plane is called the unstable center.

Determination of the direction of the tangent to phase trajectories on
horizontal and vertical Null-Isoclines

The expression for a tangent & to the trajectory of the solution to the VP equation
on the phase plane is:

aw
Vv
de OV _c-igp (17
dv V3
— v-l—w
dt 3

B is the angle between the positive V axis and tangent to a phase trajectory.
For horizontal null-isoclines CZZ—W =9V =0 so ¢=tgf=0and =0 or 180°.
T

Let us determine the direction of the tangent for positive and negative parts of the
axis W. For this purpose assume that ¢V is a very small but finite value equal to &;.

According to (17) and when

W>0, then tgf} = —;/—1 and B =180°.

W<O0, then 1gf = % and f=0°.

The corresponding marking of the axis W is shown in Fig. 6.
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W
W=0_|
V=0
b
v
T

Fig. 6. Horizontal null isoclines for VP equation
. L av . .
For vertical null-isoclines a7 =0, according to (17), it follows that tg/8 = o0 and
T

B =% or 3% . In order to find the distribution of angle £ along the vertical null-

L . . . dv .

isoclines (in our case, a cubic parabola), let us consider e as a very small positive
T

but finite value equal to &, .

oV

Then, it follows from (17) that zgf8 =—— and the sign of 7gf will coincide with
&

the sign of V. So, for positive V, the angle S will be equal to % and for negative V

to 3% . The corresponding marking of both null-isoclines is shown in Fig. 7

W
=
W=0
Sy
V=0
G
v \1\H\ v
—f - ‘-\A
— = \
A7

Fig. 7. The trajectories directions of solution to Van Der Pol equation on phase-plane null-isoclines
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The limit cycle in phase-plane and corresponding pulse (AP) train, generated in
time, are presented in Figures 8 and 9 respectively.

Figure 8. Trajectory of the solution on the phase plane plot.

The point in this phase-plane, which represents the equilibrium state of the
system, is the origin of the coordinate where both null-isoclines cross. It was proved
before that this equilibrium state is unstable. Van Der Pol used the model (13), (14)
for the simulation of the heart pacemaker system.

+V

-V

Fig. 9. The solution of the VP equation in time represents the relaxation oscillations, one of the non-
sinusoidal types of oscillation with period depending of small parameter ¢ value.
5.3.6. FitzHugh modification of VP equations

FitzHugh proposed to modify the BVP (B. Van Der Pol) equations to simulate
nerve AP. He changed the vertical isocline, the cubic parabola, by shifting it along
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the vertical coordinate W by adding step-function current / [5]. The line of
horizontal isoclines is changed from the vertical axis W to a sloped straight line. All
these modifications are introduced in equation (18) and shown in figs. 10, 11, 12,
and 13.

. V3
V=V—T—W+I (18)

W=eV+a-bW)
Here: £=¢=0.08, a=0.7, b=0.8

W

A We, Var)

.
4

Figure 10. Null isoclines for FitzHugh modifications of BVP relaxation generator
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+

W

Fig. 11. Phase plane of cubic BVP modified equations (18), for instantaneous current I shocks of
various amplitudes. Broken curves are null-isoclines. Shock displaces a state point from a resting
point to a point on the dotted line. Double arrowheads denote the threshold separatrix. In this and
subsequent figures, + and — indicate a pair of trajectories, one for a stimulus slightly above (+) and
one slightly below (-) threshold. a=0.7,b=0.8, ¢ =0.08.

Encircled letters denote the physiological states as follows: A = Active, AR =
absolutely refractory, D = depressed, E = enhanced, NM = no man’s land, R =
regenerative, RR = relatively refractory. Inset: curves of V versus #, showing an
action potential (+) and an active sub-threshold response (-).

w
7
L

14
01 \

=0.142 \-on\
2 R \
: £ : : —

Fig. 12. The phase plane for modified BVP equations showing stimulation by step currents above
(I=0.142) and below (I = 0.140) rheobase.

The curve of vertical isoclines (V = 0) is raised by positive values of I. R =
resting point, S= singular point.
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Fig. 13. BVP phase plane for step current I= 0.4, with an unstable singular point S and a plus stable
limit cycle. Inset above: endless train of action potentials. R = resting point.

5.3.7. Nagumo analog model based on nonlinear properties of tunnel
diode

Nagumo et. al. [6] proposed to use an electrical circuit (see Fig.14) containing a
tunnel diode as an analogy model for nerve AP generation.

a. I b. i,

| |
|

Fig. 14. (a) Equivalent circuit diagram, (b) voltage-current characteristics of a tunne diode

Kirchoff’s law requires that the sum of internal currents is equal to the external
current. Indeed,

CV+FV)+W =1 (19)

LW+RW-E=V
Here F (V) is current, ig , through a tunnel diode (see Fig. 14b).
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3
This function may be made close to the F(V) =V—VT in the Van Der Pol

equation. Solving each equation of (19) with respect to its first derivative, we get:
-1 -]
Vv =E(—F(V)—W+I) and W:Z(V+E—RW)

After reducing the above equations to dimensionless form, we get the FitzHugh
equations (18) for a nerve cell. Indeed:

d—‘f=+F(V)—W+1'
dt
d—vflzg(\ﬂi—v?)
dr
_ _ _ _ _ CR \%
Here:VZL;WZE;Izi,Ezi;IZ t . _ eqv, m:_’"
v, I, I, E, CR,, L/R R

5.3.8. Simplification of FitzHugh-Nagumo equations for heart muscle
cell

In order to investigate the FitzHugh-Nagumo equations analytically, the research
group of the Biophysics Institute in Pushchino (Russia) proposed [7] to replace the
function F(V), a cubic parabola, by its piece-wise linear approximation and constant
small parameter £(V') with step wise approximation of V as it is shown in Fig. 15.

~
f(\') E(\-)

Fig.15. Null isoclines and &(V) plot for the FitzHugh-Nagumo model with a linear approximation.

All parameters of this model were chosen to roughly reproduce the major
characteristics of cardiac normal AP and are presented below as in [7].
tan f=Gpitany =G tanax =G,

Gf =1;G, =1; G, =30; Vy =0.16;
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0.5 when 0<V <0.01
E(V)=140.01 when 0.01<V <0.95
0.5 when V >0.95

The simplified model equations have the form:
Y _Fwy-w + I,
dt
21

W eI W)W
dt

The parameters of the model must be chosen to provide the same relaxation

m

coefficient p = AB = as in a real cardiac cell A.P.(see Fig. 16).

m

Fig. 16. To the determination of relaxation coefficient O

5.4. Comparative analysis of the second order simplified AP models

5.4.1. General comments

The comparative analysis of the three most widely used simplified AP models:
FitzHugh-Nagumo, Van Capelle-Durrer and Karma was first presented in [8]. In this
section we demonstrate a common approach to synthesis of simplified second order
AP models.

From here on, the total ionic current is divided into two components: inward
current [;,,, which flows from outside to inside the cell, and outward current I,
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which flows from inside to outside the cell. The simplification of the full
mathematical model of AP generation is based on two assumptions:

1. The gate variables m and h, which determine the conductivity of the
membrane for the sodium current in the full model, are changing so
rapidly that it is possible to assume that they reach their steady state
values m.(V) and h.(V) instantaneously. For the Noble model, it was
proven in [3], using singular perturbation theory, that this assumption is
correct. This assumption causes a decrease of the maximal rate of
depolarization and can be easily compensated by decreasing the
membrane capacity or by increasing the maximum value of the inward
current.

2. The total outward current being a function of membrane potential, V,
and time, ¢, can be represented as a product of two functions: a function
of one variable V, representing the dependence of steady state
generalized outward current on membrane potential V, and a function of
two variables V and ¢, representing the generalized gate variable for the
generalized outward current: /,,,,= Y (V, t) Lyn(V).

Here, Y is the dimensionless generalized gate variable for outward current
(0=Y<1), and k is a constant; usually k is chosen greater than unity to minimize the
effect of outward current on the depolarization processes. For example, in the Noble
equations k = 4.

The second assumption excludes the time independent components of outward
current inherent in physiological models (see [9] and [10]). These components are
responsible for the first part of the repolarization phase of AP and, particularly, for
the overshoot. Therefore, this assumption introduces additional errors in the
reproduction of the AP shape.

The generalized gate variable Y(V,¢) is obtained as a solution of the equation:

dy
= Y.(V)-Y (22)
The Noble equations show that only one gate variable n does not reach the steady
state value after the completion of the repolarization processes. The transient of that
gate variable during diastole determines the APD restitution curve, a very important
determinant of repeatable wave propagation. This transient cannot be described
properly by (22) with Ty being a constant. Ty must be a function of V and [dY/ df]:

7 ifd—Y>0
dt

Y
Ty =17, K, ifc;—<0, and Y > Y,
t

7,K, otherwise

The value of T, determines the AP duration and, under normal conditions, is 100
times greater than the time constant of the fast variable V. The coefficient K, can be
found directly from the given APD restitution curve (see [11]), and K; and Y};, are
established in the process of the final adjustment of this restitution curve. The
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function Y.(V) has to be equal to zero when V=V, and equal to 1 when V=V,,,,.
Inside this range of Vc[V,.. V../, any rough stepwise or piece-wise linear
approximations can be used (see, for example, fig.17). The effect of n on [dV/df] .«
of the next AP is negligible.

vV
400

1.2 4

0.6 7
0‘*'1 * f ‘/ 3

0.2+ v

0.0

—-0.2 T T |

T T T
—-120 =90 —-60 =30 O 30 60
V [mv]

Figure 17. The Y (V) dependences used in the: 1) Karma model, 2) Van Capelle-Durrer model,
and 3) Noble model.

Therefore, the general form of the simplified model based on the Noble
formulation [11] and the above mentioned assumptions is:

k
dv Y
C2—=_1. \)—=|—1|1 \% 23
d[ mw ( ) ( YB ) ourw ( ) ( )
TY(V)%zYw(V)—Y (24)

with the initial conditions: V(0) = V,., Y(0) = 0. Here Y is a generalized gate
variable. The introduction of the ratio [ Y/YB]k instead of Y* following Karma [12]
permits the adjustment of parameters Y and k to control the action potential duration
and the shape of the AP during the last part of repolarization phase.

The behavior of the models described by general equations (23) and (24) can be
analyzed using 1;,,(V) and 1,,,(V) plots and some general properties of the AP.
Indeed, the slope of the AP at any given point of time is completely determined by
the difference between I;,,(V) and [ Y/YB]k L,..,(V). During the depolarization phase,
[Y7Y, B]k = (), and the outward current does not affect the depolarization processes. If
[ Y/YB]k continues to be zero after /;,,(V)=0 or I,,,(V)=[ Y/YB]k L,..(V), we obtain a
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plateau without overshoot. To obtain fast repolarization, the following has to be true:
[Y/Y 5] Ll V)> Ll V).

Another form of the generalized second order simplified model can be obtained if
L,y in (23) is represented as the sum of two components 1, = - Ly, + ALy,

Kk k
c d_v = _Iinw (V )|:1 - (LJ :| - [d_v) Alautw (25)
dr Yy dr

TY(V)dd—I:=Yw(V)—Y (26)

The current 41,,,, can be defined (as a piecewise-linear function) to reproduce the
desired shape of the repolarization phase of the AP. I, can be obtained from
experimental data.

Using these general considerations let us analyze the existing simplified models.

5.4.2. FitzHugh-Nagumo model

The FitzHugh-Nagumo (FH-N) model is the simplest of the existing simplified
models. The mathematical model equations, reduced to dimensionless form [5, 6]
are:

v _ +FWV)-1+1,,
dt
27
dl
— =Wl -1]
Here

e V - fast variable (membrane potential displacement between the interior and
exterior domains of the cell)

¢ | - slow variable (generalized outward current)

e [~ stimulus current,

¢ F(V) - current-voltage characteristic of the fast inward current

e f(V) - current-voltage characteristic of the slow outward current

® £(V) - small parameter (inversely proportional to the time constant of the
slow outward current).

The piece-wise linear approximation of the functions F(V) , f{V) , and
gV)=[1/(7Y(V))] are shown in Fig. 18.
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Fig.18. The piece-wise-linear approximation of functions F (V), f (V), and €(V). The tan o = Gy; tan
B = Gg; tan Y =Gs; Vy is the threshold potential.

To solve equations (27), it is necessary to choose the appropriate initial and
boundary conditions.

Let us reduce equations (27) to the general form given by (23) and (24). After
introducing the substitutions I = Yf;(V) and f{V) = Y(V)f;(V) in (27) we obtain:

d—V:+F(V)—Yf1(V)+I
dt

stim

dy

= EWlLv)-v] (28)
Here Y.(V) is a step function of V; F(V) and Yf;(V) can be considered the

generalized inward and outward currents. In Fig. 19, these currents are shown as

functions of V. The graph shows that after the end of the depolarization phase, the
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action potential will have an abnormally prolonged plateau phase and a short fast
repolarization phase.

=F,. Yh

1.0
e[
0.8
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Fig. 19. Functions F(V) and Y f)(V) for FH-N model. The arrows pointing from left to right
designate the changes of inward (—F(V) and outward (Y f;(V)) currents in the depolarization phase
of the AP, and arrows pointing in the opposite direction show the changes of the same currents in
the repolarization phase.

The widely used set of parameters for this model (see [13-18]), hereafter referred
to as the standard set, is: G=1; Gy=1; G, =30 ; V,;=0.16 and
g if 0.00<V <0.01
eV)y=4¢, if 0.01<V <095 ,where & =0.5 and &, =0.01
g if V>0.95

The relationships between the action potential duration (APD), refractory period
(R), and the model parameters G, , Gy, and € are presented in [15] for the model
without diffusion (point model). These dependencies qualitatively reflect the
essential properties of heart muscle cells, but do not correctly express the restitution
properties and the shape of the AP.

The transients of V and Y in a cardiac cycle with a small DI are shown in fig. 20
for the standard parameters of the F-N simplified model. Note that the slow variable
Y reaches zero almost immediately after the AP returns to the resting potential. Thus,
a stimulus applied after a short DI produces a subsequent AP of approximately the
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same duration as the previous one, because the gate variable Y almost decreases
instantaneously when [dY/df] < O (see Fig. 20). The original APD restitution curve in
the FH-N model is very steep (see Fig. 21 curve 1) and differs quite a bit from the
experimental curve (Fig. 21 curve 3). Therefore a method was developed [19] to
modify the function &V) to fit the experimental APD restitution curve.

V.Y

Vv
0.8 A =~

rd
/ /|
0.6
/ DI
0.4 -

~/ lappi |l X AapPD,

00 k
0 100 200 300 400 500

Fig. 20. The V() and Y(z) for short diastolic interval. DI/APD1=0.234 APD, /APD; =1 (in model
[15D)
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Fig.21. The APD restitution curves in normalized form obtained for the original models: 1)
FitzHugh-Nagumo, 2) Van Capelle-Durrer, 3) Lou-Rudy, and 4) Karma.

According to this method (see [19] for details) the previous expression for £(V)
can now be written as:
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& ifV<0.01andd—Y>0
: dt
. dy
8(V)= 82 lfV ZOOlandE>0
£ ifY>Y . andd—YSO
3 min dt
£, = kg, otherwise

5.4.3. Van Capelle-Durrer model

The Van Capelle and Durrer model [20] can be derived from general equations
(25) - (26) as follows: we rename 1,,,, as —f and 4l,,,, as i;, and then replace the term
1-[Y/Yp]* in equation (25) with (1-Y), replace the term [Y/Y3 J* with 1, and set TY (V)
=T = constant in equation (26). As a result, we get:

dv ;
CE= A=) fV)=i(V) (29)

Td—Y=Ym(V)—Y
dt

The functions (/-Y)f{(V) and i;(V) are shown in fig. 22 in the form proposed by
VCD [20]. The figure clearly shows that the maximal rate of [dV/df] in the
depolarization phase can be determined by:

[de Z(I_Y)f(va)_il(va)

ar c
[d_v j IAARR CUARIAA) (30)
dt max C C

V, is the value of membrane potential at which [dV/df] reaches its maximum
value. The first term on the right side of equation (30) represents the ideal value of
([dV/df])max, and the second term is the error introduced by the VCD model. The
error grows with the increasing values of Y and i;(V,). This occurs in the case of
repetitive stimulation (an increase of Y) and when a decrease of APD is achieved by
an increase of i;.



104 Chapter 5 Simplified Action Potential Models

Iinw [autw
pAfem? nA/em?
100 20

Iowte| | 22T
LA 7l
\
U 3 -;_:‘— — — ] 5 D
\ /
\ /
-100 3 * -20
/
\
\ 7
—200 t 7 —40
\ /
\‘ / Ilrlw
. \ .
—300 — —60
\/
—400 —80
—-80 —60 —40 -20 0 20 40
V [mv]

Fig. 22. Linw=(1-Y)f(V) and Iouw=i;(V) currents for the VCD model. The arrows pointing from left to
right designate the changes of inward and outward currents in the depolarization phase of AP and
arrows pointing in the opposite direction show the changes of the same currents in the
repolarization phase.

The replacement of Ty(V) with T = const leads to an error in the reproduction of
APD restitution properties (see Fig. 21 curve 2). This error and the error in
([dV/df])max, inherent in the VCD model, affect the conduction velocity and,
therefore, restrict the domain of the applicability of this model.

The transient of the AP and gate variable Y for the VCD model are shown in fig.
23.
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Fig. 23. The AP and gate variable Y as functions of time in the VCD model.

5.4.4. Karma model

This model [12] is a simplification of the Noble model [11]. It has three essential
properties of the Noble model that are missing in the original FitzHugh-Nagumo
model:

1. Insensitivity of ([dV/df])m.x to changes in the slow gate variable # in the
case of repeatable excitation

2. The fast repolarization period is much longer than that of the fast
depolarization period

3. There is returned alternation in APD in the case of repeatable
excitation.

The two-variable model equations in the dimensionless form proposed by Karma
[12] are:

v M V2
e eV v 4| A- (iJ x [1 - tanh(V - 3)]—
ot ng 2
9 _ oV —1)—n G1)
ot
where

® x) is the standard Heaviside step-function
e ¢ is a small parameter characterizing the abruptness of excitation
® A is a constant
 V?is a Laplacian of appropriate dimension of the tissue
® n is a slow gate variable equivalent to Y in (25).
Typical values of the parameters are A = 1.5415, M = 30, ng = 0.507, € = 0.009.
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Let us reduce the equations (31) to the generalized form. For this purpose,
consider the isolated cell V2V = 0. After defining f{V) = [1 - tanh(V-3)]x[V°/2] and

n{V) = @V-1), and substituting ¢ =[t/e] ; T =[1/e] into (31) we finally get:

M

av n

&[] )

dt ng

T4 V) =n (32)
dt

In these equations (A f{V) — V) corresponds to the inward current and [ n/nB]M

F(V) to the outward current. So,

dv

—=I (V)-1 V.t

dt mw( ) ()M[W( )

T@=nw(V)—n (33)
dt

In fig. 24, Ly (V) = ~(Af(V)-V) and L (V, 1) = ( [0/ np)] )" fiV) are shown in the
coarse of AP generation (fig. 25). During the depolarization phase, I;,, traces the
bottom curve in the direction of the arrows from left to right. At the same time,
1,,,=0 due to ( [n/ ng)] )M << 1 (the arrows along x-axis). Therefore, in the case of
repeatable excitation with small but finite diastolic intervals, the outward current
does not affect the depolarization processes, and especially ( [dV/df] )nax. A growth
of [Af{V)]max Will cause a rise of ([dV/df])n.x. After I;,, becomes equal to 0, and V
reaches V. the repolarization phase begins. Due to the small excess of outward
current, the membrane potential begins to decrease at a slow rate, producing in the
time domain something resembling a plateau. The duration of this phase depends on
the value of the time constant 7 in (33) (which determines the change of the variable
n with respect to time), as well as on parameters A, ng and M. In fig. 24, this region
is located near the point V.. The arrows on the I;,, and I,,, curves show the
development of the depolarization and repolarization processes. Fig. 24 and equation
(32) lead to the conclusion that the greater T or A are, the longer the period of slow
repolarization. With the decrease of the parameter np, the period of slow
repolarization as well as the APD shortens. When n> ng, the excess of the outward
current over the inward current increases in time, causes a smooth increase in the
repolarization rate, until its maximum value is reached. When the AP is close to V.,
this excess decreases together with f{V), and the AP slowly approaches V.
Parameter ny also affects the APD restitution curve. The APD restitution curve (4)
on Fig. 21 corresponds to ng = 0.507.
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Fig. 24: I;,=-(Af(V) = V) and Loy, = (n/nB)M f(V) currents for the Karma model. The arrow pointing
from left to right designates the change of inward and outward currents in the depolarization phase
of AP, and arrows pointing in the opposite direction show the changes of the same currents in the
repolarization phase.

The AP reproduced by Karma Model is shown in fig. 25
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Fig. 25: AP generates by the Karma model.
5.5. Conclusion

We state that the existing simplified second-order models exhibit the following
properties:
(1) All of them are based on the same assumptions and differ in the analytical
approximations of the experimental dependencies of [, and 1,,, on V, and in
this way show how the slow variable affects the outward current.
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(2) In comparison with the electrophysiological ionic models, they all produce
decreased ([dV/df])yax (due to the substitution h = h,., m = m,) and introduce
time constants of slow variable, 7, that do not depend on V. This independence
leads to substantial errors in reproducing the APD restitution.

(3) In all simplified models considered here, the time-independent component of
the outward current is neglected. This excludes the overshoot in generated AP.
The VCD model is an exception, where overshoot can be obtained by changing
the slope of the last segment of the piece-wise-linear approximation of current
.

Analysis of the Beeler-Reuter [9] and Luo and Rudy [10] ionic models shows that
the introduced gate variable j in the sodium channel does not return to its steady state
value (j=1) in the case of a short diastolic interval. That decreases the (dV/df),. of
the depolarization phase of the next AP and correspondingly decreases the
conduction velocity. Second-order simplified models do not reproduce this
phenomenon.
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Chapter 6. Computer Implementation of
Mathematical Models

Computer implementation of an AP mathematical model requires:

a. A well-defined statement of the problem for computer simulation

Selecting a computer architecture — a sequential or parallel

c. Choosing the most effective numerical algorithms for the problem under
investigation

d. Investigating the possibility of utilizing standard (MATLAB, Mathematica, etc.)
and specialized software (OXSOFT, Madonna, Visualization programs)
packages

e. Providing programming tools for measuring the conduction velocity of the
wavefront and representing the cell’s state in time for chosen grid points in the
spatial domain.

3

6.1. Numerical methods for solving ordinary differential equations

Consider the following nonlinear ordinary differential equation:
d
d—f=f(y,t), y=yo att=0. )]

Let us introduce a discrete-time variable, 7. For simplicity, let us choose equal
time steps denoted by the variable A:

W=l —10) ==t 1) =~
where discrete samples of ¢ are shown below on a continuous interval.

L e

o 1 2 3 K K+l

Two types of numerical methods are used for solving (1) [1]:
e  Single step or self originated methods (self-starting)
e Multi-steps or non-self originated methods (non-self starting)

6.1.1. Methods Based on Taylor Series Representation

For the first time step:

2 3 n
nh 2 h 3) h h
wilto +1)= yo + 70" T+ 36D T 4y T Ly B )
1 2! 3! n!
where:
-1
w_dy _ w4y _d"fy1)
Yo T Grey= T Floto) ¥ Tt ey T T el Aoy’
For the K+1% step:
2 3 n
0 h o) h 3) h h
Vin =k Fy@ oty oy T ey P 3)
1! 2! 3! n!
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112
where:
)’2) = f(vk-te)
d d
e =[—y(l)j =—flytat =1,y =y,
dt =txand y=yy
(n) dﬂ—l
v =——fnlat =15, y=yg

dtl‘t—l
This simple analysis shows that the solution of a first order differential equation

requires n-1 differentiations of the given function f(y, ¢).
Let us consider, as an example [2], the solution of the following linear ordinary
equation:

(cii A dy + y =sin wt , with initial conditions y (0) =2, y(O) =3
t t

In state variable form, this equation takes the form:

dy
2 4
7t “)
dz . dy
— =sinwt—2z—-y, Zo=|—]| =2, =3. 5
d y 0 (dt jo Yo Q)
Taylor series expansion for y and z at the point #, gives:
dy) ,n*[d’y)  n'(d’
¥ =y +H = =7 s (©)
dt 2' dr® 3‘ dr’ 0
2( 52 3
zl—zo+h(dzj +h— d—zz +h a2 e @)
dt )y 2t~ ), 3 dr

The higher derivatives in equations (6)-(7) are determined using repeated

differentiation of equations (4)-(5):

2 2
Qzﬂzsinwt—Zz—y,ﬂ:wcoswt— %—ﬂ,

dt*  dt dr’ dt dt

3 2 3 2 2
u=B=wcoswt— E—ﬂ,an d—3z=—wzsinwt—2dzZ d—;
e’ dr? dt dt dt dt*  dt
So, for w=1:

2 2 3
4 _2 & =—7, Ay _ g 142 Cps 4 213, and
dt dr dr? o dt? o ar’ o

3
(EJ =-19.
dt
0
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If h=102sec:

—4 —6
yl:3+10_2*2—{%*7J+(106 *13}4— (8)

—4 —6
2 =2-102 %7+ 22 w13 [+ 1 g |4 )
! 2 6

It can be easily observed that the higher order terms in equations (8)-(9) quickly
become negligibly small with the choice of a sufficiently small time step 4.

A major advantage of this technique is that it allows estimation of the maximum
error on each integration step. A drawback of this technique is that it requires
numerical differentiation operations, which introduce additional errors when f(y, 1) is
a complex function or is defined by a lookup table.

6.1.2. Euler's Method
Consider the Taylor expansion at the point 7

h g K n
Yk+1 = Yk +ﬁy2)+a)’g)+§)’$)+"‘
(2)

Assume that all derivatives shown do exist. Now if yy’ is bounded and 4 is

small, we may ignore all terms after the first two and obtain:

via = vk thyl) = kb gk K=0l..N-1.
In the above expression, = means "approximately equal to." This numerical
scheme is known as Euler's method.
y

Y+t

Yk

1. tier1

Fig. 1. Graphical representation of one step for Euler's method.
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Geometrically, Euler's method consists of approximating the solution at #x,; by
following the tangent to the solution curve at point #¢ (see Fig. 1).

If we denote M :max‘ y(z)(tX, 0<t<T, the local truncation error of Euler's

method can be expressed as:
2
L(h) < M= o(hZ)
The standard notation O(h) denotes the quantity that approaches zero at the same
rate as h.
The global truncation error when y(z)(t) is bounded can be expressed as:

E(h) = O(h).
Therefore, the error decreases proportionally to the decrease in step size h.

In order to make the error tend to zero at a faster rate than /4, other methods were
developed. As an example, we examine the Heun or second-order Runge-Kutta
method (RK2).

6.1.3. Second Order Runge-Kutta (RK2) Method

1
Y+ = Yk +E S Okate)+fl vk +hf(thK )]JK+1 h,

Where Yk + hf(yK, tK): y;(+1 .

Denoting ko = hf (yg.tx) and k, =hf{[ygx +hf(yg.tx )], gy}, we finally obtain:

Y =i +5 kot k). (10)
Here, we replaced f(yk, fx) in Euler method by an average of the function f

evaluated at the beginning #, and the end #,; of time step A, as illustrated in fig. 2.
The local truncation error is O(h®). The global truncation error is E(h) = o).
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}I’
Y}:+ 1
k,
*

Yie1

Vi

. ol ¢
fics1

ti
Fig. 2. Graphical representation of one step for the second order Runge-Kutta method.

6.2. Numerical solution of a system of ordinary differential equation

6.2.1. Euler’s Method:
Let us consider the numerical solution of the following system of equations:
(1)

V= fl()’pyz’t)
(12)

Vo = f2(y1’y2’t)’
with the given initial conditions y, (0) = )71, Vs (0) = 512

Yik+n =ik T hfl(tK’ Yik» yZK)
Yak+) = Yok +hf2(tK’y1K’y2K )
where K=0,1, 2, ...

6.2.2. RK2 Method
For the same system of ordinary differential equations (ODEs):

1
Yik+1 = Yik +E[k0 + kl]

1
Yok+1 = Yok +§[lo +lll
where ko, ki, lo, and I are ko =hf,(tx, yix.vox ) ki =hfiltx 1. ik +kor Yaxlo).

ly= hfz(tK’)ﬁK’)’ZK)» and /; :hfz(tKw)’lK +k0’y2K10)-
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Using a fourth-order Runge-Kutta method for the system of simultaneous first-
order differential equations, we obtain for equations (11)-(12):

1
Vik+1 = Vik +g[k0 + 2k + 2k, + k3 (13a)

1
Yak+1 = Yok +g[lo +20; +2, +15) (13b)
where ko, kl, kz, k3, lo, ll’ lz, and l'; are

1 1 1
ko =hfl(t1<’)’11<’)’21<)’k1 = hfl(tK +Eh» Yik +5k0’ Yok +5l0j s
1 1 1
ky = hf\| 1 +Eh» Yik +Ek1’y2K "'511 > k3 =hf1(t1< +h yix +kys Yog +lz),

1 1 1
ly =hf2(tK’le’y2K)’l1 = hfz[tlc +Eh» Yik +Ek0’ Yok +Eloj s

1 1 1
L, =hf |ty +—h, +—k, +—1 |,
2 fZ(K 5 Yik ) 12 Y2k 2 1}

I3 :hfZ(tK +h yix thyyox +12)-

The local truncation error can be estimated as L(h) = O(h5 ) and the global error
as E(h)=0(h*). See [1] and [2] for details.

6.2.3. The Ashour-Hanna Method

The classical explicit integration methods (such as Euler and Runge-Kutta) have
very limited stability regions. Since the integration step size is restricted mainly by
stability, rather than by truncation error considerations, these methods tend to
become extremely inefficient [3]. More efficient implicit methods allowing the use
of a much larger step size, such as the implicit Runge-Kutta and backward
differentiation methods are used to perform the integration for moderately and
mildly stiff problems. These methods, however, require more memory and more
computation per time step.

S. S. Ashour and O. T. Hanna [4] proposed a new simple explicit method for the
integration of mildly stiff ODEs. Let us consider the following system of ODEs:

Y= £t y)

with initial condition

¥t)= yo -

Following the Ashour-Hanna (AH) method, we start from a specified or
previously determined y(f), and execute a single step using the first-order explicit
Euler method:

Yiuert+1) = y(0)+ hf [t y(0)] (14)
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Then we carry out a single step using the second-order explicit Runge-Kutta-
Trapezoidal method (RK2T) starting from the same y(#):

yigar (4 1)= 500+ (4 bl Ly O+ £l iy e )] (15)

Finally, we average the Euler and RK2T values to obtain the new value as
follows:

Wt +h)= 0y g (¢ + 1)+ (1= @)y iy (1 + 1), (16)

After substituting (14) and (15) in (16), we obtain :

ye+h)=afy@)+hflt, yOl} + A= a){ f[, y(O)+ flt+ h, y(0) + hf (2, y(D)]}

a7

where ¢ris an averaging parameter, 0 < #< 1. When o= 0, the AH algorithm is
reduced to the second order RK2T; when a = 1, it is reduced to the first-order Euler
method. The parameter ¢ is chosen so as to minimize spurious oscillations in the
solution and maximize the permissible integration step size.

6.2.4. The Hybrid Integration Method
For sufficiently small membrane potential offsets, the rate constants &, (V) and
Y/ ), (V) remain essentially unchanged over the corresponding time interval, Az. The

approximate solution of the gate variable equations
dy;

E= ayi(l_ yi)_ﬁyiyi
or
dy;
z, (V)?wim(V)—y,-, (18)

can be written as a simple exponential of the form:
At

Vi = Viw +vio = viul e 7. (19)

So, the numerical integration of (18) can be replaced by (19) for a given time
increment Af.  An automatic procedure can be introduced to adjust the time
increment Ar so that the membrane potential offset AV remains between required
limits.

6.3. Model Implementation on Parallel Supercomputers
6.3.1. Mathematical Model for AP Generation and Propagation

(Generalized Form)

W 1 e 2y 7% 1 . r v «
2 FV.0)+DVV* +=1,(). dimU=N * 20
o= Flv.0) +1,0). dim (20)

* For non-uniform anisotropic tissue, the expression DV?V is replaced by
V(DVYV). Here, V is the gradient operator.
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o = N o
E:f(V,U,,u,t), dimzi =M, fi= ) @1
Here
e V is the cell membrane potential [mV]
e ¢ is time [ms]
e D is the diffusion coefficient [cmzls]
e V? is the Laplacian operator
e F (V,(j ) is a nonlinear function which represents the sum of the
ionic currents [].LA/cmz]
e (D is the external applied stimulus current [pA/cmz]
o C is the membrane capacitance [UF/cm’]
e U describes the dynamics of ionic channel permeabilities
(gate variables) and ionic concentrations in intracellular compartments
o I is the vector of the parameters, which varies with time.

These equations are solved with the following initial and boundary conditions:
V(?,O),ﬁ (F,O) and % =0, where 7 is the vector of space coordinates and 7 is the

direction of the normal to the boundary G.

When D=0 (no diffusion), equations (20) and (21) are reduced to the so-called
point model, which reproduces the AP generation by a single cell.

The simplest second-order FitzHugh-Nagumo point model has only one
generalized gate variable (N=1 and M=0 in (20) and (21)) and three nonlinear
functions of V, while the most sophisticated thirteenth-order Luo and Rudy II model
[8, 9] includes 9 equations for ionic gate variables and 3 for [Ca2+]i in intracellular
compartments (N=12 in (20) and (21)) and 33 nonlinear functions.

6.3.2. Implementation on Parallel Computers

The objective of a computer simulation is to find the distribution of membrane
potential in time and space for a 2D or 3D model of cardiac tissue. The cardiac
tissue, assumed to be a uniform isotropic syncytium (continuous medium) is
approximated by a grid of 256x256 nodes connected by coupling resistors. The
operator splitting algorithm [10] allows adaptive time step integration. According to
this method, the integration of (20) and (21) is split into two parts:

integration of the diffusion equation

v

=DV*V, 22
EP (22)
and integration of the point model equations
v 1 =\ 1
—==FWV,U|+—=1I,l¢ 23
o= Flv0) =1, 0) (23)
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20 -y
o= iv.0.1) = ) @)

Equations (22) and (23) are solved in the following sequence of events in each
time cycle. First, equation (22) is solved during time step A#/2 with the given initial
and boundary conditions. Then, equations (21) and (23) are solved with the given

initial conditions for the variableU . For the variable V, the initial condition is
obtained by using the solution of (22) at the end of time A#/2. Equations (21) and
(23) are stiff ODEs; therefore, integration with an adaptive time step is used to
decrease the overall simulation time. We used Ar; = 0.05A¢ to integrate the stiff part
of the equations. Finally, the values of V, obtained at the end of At, are used as
initial conditions for the next integration step of the diffusion equation (22), during
another time step A#/2. This completes the first cycle. The data from the Laplacian
calculations are exchanged between all processors twice during each time step At.
Subsequently, the initial conditions for the next solution of equation (22) are taken
from the solution at the end of the previous cycle.

The grid is divided between "n" available parallel processor units (PU) so that
each processor is solving equations (21), (22) and (23) for (256x256/n) nodes. The
geometrical apportionment of the grid nodes to the processors can be accomplished
in different ways. The optimum one results in an equal computational load for all
PUs and a minimum exchange of data between the PUs. We elected to divide the 2D
tissue into parallel strips.

The explicit Euler numerical integration algorithm is used for equation (22)
where the fixed time step A#2 = 0.1ms. Well-known implicit integration methods
(such as alternative direction) are difficult to implement for parallel computations.
Equations (21) and (23) are solved by the explicit Euler method with the exception
of the equations for the gate variables with time constants 7, ~ Af; . In the Luo-Rudy

IT model in particular, only one time constant is encountered which is comparable
with the smallest chosen time step, Af;. This time constant is associated with the
gating variable m of the sodium channel. The solution for this gate variable is
obtained by the so-called hybrid method proposed in [5] and [6] and analyzed in [7].
For this application, the hybrid method provides better stability then the Euler
method.

6.4. Dimensionless Form of Equations for Wave Propagation

2 2
cd—v=ax&—v+a,&—v—21m +1,,. (24)
dt &2 y @)2 i
Here:
oV is membrane potential [mV]
oC is membrane capacitance [UF/cm?2]
ot is time [ms]

® o/, = a/2R; is coupling conductivity [1/kQ]
°q is the cell radius equal to 5 - 10 um or (5-10)10™*cm
*R; is the specific resistance of intracellular liquid, equals 0.2 kQ-cm.
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For the gating variables:

0, )2

where y; represents the gating variables (i.e. m, h, j, n, etc.).

=y, V)-», (25)

L, =2:./iV,y) or §,~f,~(V)[‘ﬂ. (26)

cm

Let us multiply both sides of (24) by the membrane resistance at equilibrium or
rest potential, R,,, [kQ-cm?] and introduce the anisotropy ratio A =& 3 / o, . We then

obtain:

2
R, C&—V—OJR [07\/
at dx?

27
We designate:
R,.C=1%
R, o = ﬂ,i
A, - is the length constant.

82 h
VJ Rmz ion +Rm1vt’
1

Introducing dimensionless values:

e time t=tt,

® space X=x/A, and y = y/(A4,)
® potential V= |V| / | mdx|

e currents I=1 )T -

We obtain finally for (27)

N (W V) -

= = + +3 (1., ). 28
o (&22 &yZJ ;(,on), (28)
For (25), we obtain:

4 Iy ()
T; 57 =Y, (V) Yis

with the ratio 7 [ / T, =&;; when T, >>7T;, € are the small parameters

6.5. Determination of Wave Front Velocity in a 2D Model of Tissue

Wavefront conduction velocity is defined as velocity measured along the normal
at each given point on the front.
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The wavefront appears at a point (i, j) (a node of the grid) when the following
conditions are satisfied:

(d_vj >0
dt i

Vij 2 Vfrom‘ .

Assume that a wavefront has passed through the grid nodes (i, j), (i+1, j) and (i,
j+1) at times t, t, and t; respectively (see fig. 3). Then, the velocity of wavefront
propagation at point (i,j) can be computed as:

AB Axcosa AC| Aysin o
0= | | = and 9:—| | = 2Ye
=4 I, =4 ;-4 ;-4

Therefore
Axcosar  Aysina
=4 I3 =4
and
t;—t, Ax
tano = —>—1— .

Fig. 3. Graphical method for determining wavefront conduction velocity.
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We propose another approach. During the simulation, we can store the times (&;;,
ti+1;) when the wavefront visited the nodes (i, j) and (i+1, j) in memory. Thus, the
projection of conduction velocity in the x direction is

Ax

0,); =———
it L
Taking into consideration that the direction of normal to the wavefront coincides
with the direction of gradient of V at that point, we find that

4
Vo
¥
¥ )
The components of VV are well known from Laplacian calculations, so it is now

possible to obtain:
6. =6, cosa.
ij

cotax =

X ij

and

6,
6, =—'—=6_+1+tan’ .

i cosa i

6.6. Appendix: Stability Conditions for Parabolic Partial Differential
Equation (PDE) Solutions

The stability of the solution is understood here as the ability of the solution to
converge more accurately when the time and space steps (of the chosen numerical
algorithm) are decreasing. Such stability is reached when special relationships
between time and space steps are satisfied.

For 1-D parabolic problems:
2
pV .
ox> ot
2
The stability condition for this case is: Af < e For our problems, usually D =

0.001 [cm*/ms].

For 2-D parabolic problems:
2 2

D(a_v + a_v) = a_v s

ox* 9y’ ot

, s L Ax?
with the stability condition given by Ar < R
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A.Winfree recommended choosing Ax based on the following consideration:

DT,
Ax2

>1 [11]. In this equation7, denotes the rise time in the AP depolarization

phase (usually 7, = 3ms ).

Implicit numerical algorithms do not require these limitations on time and space
steps, but lead to the iterative solutions of large matrices when nonlinear parabolic
systems have to be solved.
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Chapter 7. Excitation-Propagation in One
Dimensional Fibers

The study of pulse propagation in one-dimensional (1D) fiber is of prime interest
for the propagation through nerve fibers. For cardiac tissue, which is predominately
2D and 3D, this study presents chiefly methodological value. The exception is a
type of the atrium flutter and observed circulation of excitation in atrium around
vena cava.

It is worthwhile to consider two major cases: propagation along the fiber with
open ends and propagation in a ring-shaped 1D fiber. For the first case we will
consider the propagation of a solitary pulse and pulse sequences generated at one of
the open ends.

The study of excitation wave propagation in a ring of cardiac tissue is a subject
of significant practical and theoretical importance [1-3]. Methodologically it allows
us to investigate the behavior of the cell in the fiber under different pacing rates by
only changing the equivalent ring length. The study of excitation pulse propagation
in a ring facilitates an understanding of mechanisms of many life-threatening cardiac
tachyarrhythmias.

The physiological studies of excitation wave circulation in certain ring-shaped
preparations of atrial tissue [4,6] show unstable propagation with irregular
oscillations of the action potential duration (APD), period of circulation, and
conduction velocity (CV).

7.1. Characteristics of excitation-propagation in a fiber

7.1.1. The cable theory

One-dimensional fiber is considered here as an extended cylindrical cell
membrane (see Fig. 1.) This simplification is correct only when the gap junction
resistance is negligible.

. .]*:“m Exira cellular domain, r;
~ ]

i  Intracellular domain, r;
I.. 1

Fig. 1. Schematic representation of an extended excitable cell.

For fiber of such geometry and with intracellular resistance r;>>r, (mono
domain approach), radius a and length [ :

av,
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where: r; = R;S,, R, is specific resistance of intracellular liquid [Q cm]; Sy denotes
27[6211 =z, Vv, is difference of potential between
wa’l a

the surface to volume ratio S, =

intra- and extra-cellular membrane surfaces.
The full membrane current, 7, , is defined as:
)
Jdx
Eliminating #;, in (1) by using (2) we obtain
J? di;
Y i, 3)
o ox
Finally replacing ,,by the sum of membrane currents (see (11) chapter 3):
1 9% N
———=C, —+ ) I¢+1 4
r, dxz m ot z N St ( )
For the fiber considered as a continuous membrane of finite length L, (4) is valid
and the initial and boundary conditions are:

V,(00) =V, 0 Xelt)_Hale)
ot dc

When I <Ipin (4), the cell is not excited and applied stimulus propagates

2

through the passive equivalent electrical circuit. This called passive propagation. In
the opposite case, we deal with active propagation. The discrete equivalent circuit
diagrams for active and passive propagation are shown in fig. 2a,b. These figures
reflect the macro approach used for investigation of active (excitation) and passive

wave propagation in one-dimensional tissue.
T T T

a) 5 [ t - — | él—
| ] |
gk/?gNa . gl C: gk gNanl —LC ,g%/gk gNangl =
V, Ve Vs V Vi Ve
T : : I, L_kT NT : r T kT NTVI T,
B e B I 1 — 1

b)

Fig. 2. Equivalent circuit diagrams for: a). Active propagation; b). Passive propagation

In cases where the gap junction resistance cannot be neglected relative to
intracellular resistance, r;, the discrete micro approach has to be used. One version of
this approach, proposed in [7], is shown in Fig. 3.
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Fig. 3. A) Discrete cable model of cylindrical cardiac cells, each 100 wm in length and 16 pm in
diameter, interconnected by an intercalated disk structure that contains intercellular bridges
(connexons). B) Core conductor network with 3 generalized AP model (G-M) of membrane patches
per cell, and a T network representing the intercalated disk between cells. Ry, disk resistance; Rmyo
= 1;, myoplasmic resistivity; and R, leakage resistance to extra cellular space.

7.1.2. Passive propagation

For simplicity, we consider a semi-infinite fiber, initially at rest potential. A small
potential E; < E,, is then applied at one end.

The equation (4) for this case may be rewritten as follows:

1 J°E JE

__:Cm_+Egeqv ®)
roodx? ot

E(0,0)=E,; E(te0)=0

® Gogy = R_ , R, is a membrane resistance at rest potential.
m

e E is depolarized increment of the membrane voltage smaller than E,,

mth — Vm rest
The equation (5) has a solution:

Ny ' e
E(X,t)zﬂ —e( 'm)e#c f\/@_ ﬁ
2 S\ -
=X, ; t i
+e me;fc f\/ng 18eqr
2 t Cln

or
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—x N : tev
()= Eremear| _erge] £ [Cuti _ |Beq
2 2V ¢ c,
. t
+erfc ﬁ M_F ﬁ
2V ¢ C,

Properties of the error function:

(6)

1. Definition: erf(x 4t

5 %
-
erfc(x) =1—erf(x)
. erf(O)zO; erf(oo)zl
3. erf(x)=—erf(-x)

Let us find the spacial distribution of E, when t — oo (stationary state). From (6)
and properties 2, and 3, it follows:

E(x,00)= Eje VEe" (7

Defining

L Ain (7), we finally obtain:
\/ geqvn‘

E(x,oo) = Ele_z

A is called the length constant and determines the decay of a local potential
L

e

=

propagation in space. Namely, whenx = A4, E =

For example:

Calculate the value of A if the cell parameters are:
a=8-10uM

R;=0.2[kQ cm]

R,= 6.25 [kQ cm?]

7.1.3. Active propagation (mono-domain approach)

Let us consider the equation (4). After division by C,,, we obtain:
1 9%, &, 1 > 1
rC, &> o C,~° c, " ®

Here

2
= D is called the diffusion coefficient and has the dimension |:cm }

r.C s

1 m

After multiplying the denominator of expression for D by /= R,, g.q,, We obtain:
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1 2
D=— = /7“_ )
T; geqv (Rm Cm ) Tm
1
eqv =7 5 Um :Rmcm

8eq R,

It follows from (9) that diffusion coefficient expresses the passive properties of a
membrane.

7.2 Bidomain approach

In this case we cannot neglect the value of r, in comparison to r; = 1/g;. Moreover
let us consider for generality that conductivities of extra- and intra-cellular liquid
show anisotropy along the fiber axis x. Then, g.(x) and g,(x) are given functions of x.

By definition: V,, = V; - V,. According the Ohm’s law the decrease in potential
per unit length along the intra- or extra-cellular paths equals axial current times the
resistance:

) (10)

The loss of longitudinal current (per unit length) must precisely equal the
transmembrane current according the Kirchoff’s law. Indeed:

di; i

Pio g and Le=1, +i, (11)

ox ox

v, . .
Here: 1 —(C ZI s +1g | is the transmembrane current measured in
t

HAT em?, i, is an external current applied to external domain and resembling

defibrillation shock applied to tissues of higher dimensions.
Using equations (10) and (11) and expressions for V,, and I,, we obtain two basic
equations for bidomain one-dimensional tissue representation:

%=L[a( 1 8V,,,]+i[ 1 %])_L(lion-i-lvtiln) (12)
ot ox\ r,(x) ox ox\ ri(x) ox C, ’

and

i[( 1 1 Jav) a( 1 %]—Ia 13
ox rl-(x) r,(x) ox\ r,(x) ox

Thus, the bi-domain approach in contrast to mono-domain requires solving a

system of PDE: one parabolic equation (12), which describes the V,, propagation
initiated by I,, and distribution of V, obtained in the previous time step as solution of
elliptic PDE (13) with appropriate boundary conditions and forcing function.

If r; and r, do not change along the fiber axis x, equations (12) and (13) may be
simplified:

av,

. 1 (9%, av
ot _Cmr,'[ax ) (zls-i-lst)

x
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and

1 1)9%, 19%,
—+— = _Ia
ror, ) ox® roox?

These two equations can be reduced to one if we substitute the expression for
2

< obtained from the last equation into the previous one. As a result, we get:

ox?
2
9;%: LoVal L | LhSyoirg v, (14)
C G || G, na
T T,

l e
Equation (14) reflects the behavior of 1D fiber with homogenous resistance
distribution in x-direction for both domains. The bi-domain approach is expressed in
decreasing the effective diffusion coefficient and presence of additional stimulus

1, , originally applied to extra-cellular domain.

v
1+

T,

Indeed, let us denote the diffusion coefficient for bi-domain case as Dy, and ratio

e =o. Then, D,=D/o+1. Because a >0, D,<D. Additional stimulus

T

(L) ada :Ia% will be smaller than I, In the limit where @ —0 (14)

1+—
o

smoothly becomes the equation for mono-domain approach.
For passive propagation:

D, = !

, Ay =————— . Thus, D, <D and A, <A
Tm (rl +re )geqv

7.2.1. Velocity of propagation, 9

Physiological observation show that @ =+/D . For stationary propagation, 0 is
constant and it is possible to substitute ¢ = x+ 6 in (8), which transforms the partial

differential equation to an ordinary one:

dv, dav, Ig+1
D=1 =g—" +Z S (15)
d¢ d¢ C

Here, @is an unknown parameter — velocity of stationary propagation.

There exists an efficient numerical method [9, 12] to find 6. This method consists
of multiple numerical integrations of the system (8) for constant initial conditions
chosen near the initial stationary state, but each time for new values of 6.

Depending on the value of 8, the solution V({) when { — oo will tend to either +oo
or —eo. Organizing computational process so as to find two close values 6, and 6
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for which the solutions diverge to +co and -oo respectively, one can get the value of
6,.+6_

stationary velocity in the form: 8 =

The approximate computational method for calculation the variable propagation
velocity in 1D and 2D tissue models is discussed below.

7.3. Excitation propagation in 1D fiber model

7.3.1. Propagation of the solitary pulse along a 1D fiber

As shown previously (see chapter 6), the mathematical model for excitation wave
propagation in 1D tissue can be presented in either dimensional or dimensionless
forms:

1. Dimensional form: for mono-domain approach:

v, 10V,
m g m — z (Iion )l + IS[ (16)

m- N N2
of 1 ox pr

9y,
Tyk (‘/m 7 = ykoo(Vm)_ yk

N J—
Here: D (1) = 2 Ui = 2T )it ()i = 8 Si OV, [ [0V, =V0)
i=1

av,
Initial conditions: V, (x,0), y, (x,0). Boundary conditions: —= =a—’”
X | oo X oo
2. Dimensionless form:
v, 3V, <« - —
== ===t ) (Lion) ;p, = D) (Lion) yyy 1 (17)
R 2 A
b _ _
= e (V) (V) = 3]
ot
_ T
Here: ¢,(V,)= . are the small parameters. The initial and boundary

Y Nom
conditions are the same, but are expressed through dimensionless variables
xand V.

The main task for a computer simulation is to find the shape and velocity of the
propagated pulse. The solution of that problem for a general case is rather difficult. It
can be simplified if we consider the case when pulse is propagated with a constant
velocity, 6.

For this particular case, using the substitution: £ =x+8¢ or E=;+E, we

transfer our problem from the solution of PDEs to ODEs. Indeed, for dimensional
case we obtain:

dv, d*V
Ca > =a‘( é’l _Zli(m+1vr
dé " dé ‘
(18)
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d 1
ﬂ=ykw(V)—yk s ———=&()

or, (vV
e 7, (V)

Using the H-H method described in paragraph 7.1.1, it is possible to find the
steady state value of &, which corresponds to the chosen parameters. Moreover, it is
possible to find how 6 depends on some parameters in equation (18).

For example, the dependence &= f(&) is shown in fig. 4 for the FH-N model

reduced to dimensionless form.

1.0}

Unstable

Fig. 4. Impulse velocity @ for stationary propagation vs. a small parameter € [13] in FH-N model

The cell’s outward current grows as € increases. This leads to APD shortening

max

dv
and to the decrease of AP amplitude and (d—”’) values.
t

If ¢ is increased above &, , no stationary pulse propagation is possible and

cr>

conduction is blocked.
7.4. Propagation of pulse sequences

A pulse sequence occurs, for example, under periodic stimulation of a long fiber
from one of its ends. For a given period of stimulation, one can observe the
influence of the preceding pulse on the propagation of the subsequent one.

Three different cases can be considered:

1. Period of stimulation is long enough for recovery process to reach steady
state (long diastolic interval).

2. Period of stimulation provides comparatively short DI.

3. Very short period of stimulation compared with full APD.
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The tendency for equalization of the period of pulse sequence is observed at some
distance from the point of stimulation. The velocity of pulse propagation decreases
with decrease in period between pulses (see fig. 5.).

8Qh|%

0.54---mmmmmmmmmm o

-

9
2 3 ‘90 5

B o i e i

1
Fig. 5. Here ¥ = ? - frequency of a pulses sequence, T- period of pulses sequence, ¥} 5 is the
frequency of a pulses sequence for which @ = 0.56_ and @_, is the velocity of propagation when
¥ =0 (single pulse propagation)

7.5. Propagation of excitation wave in model of a ring-shaped tissue

7.5.1. |Initiation of pulse propagation in a ring-shaped tissue

Circulation of a pulse around a ring-shaped excitable tissue can be started by
applying two stimuli at two appropriately chosen points on a ring (1 and 2, as it is
shown in Fig. 6) with a time delay.
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a. b. C.
1 1 1 2

d.

Fig. 6. Initiation of a pulse propagation in a ring-shaped fiber.

7.5.2. Ring model formation and changing it length in course of
computer simulation

In computer simulation, different approaches are used for initiation the pulse
circulation in a ring. At the beginning, these approaches provide the solution of
equations (16) or (17) of the pulse propagation in an open-end fiber model of finite

dv
length L with boundary condition (d—”’) 0.2 = 0. The stimulus is applied to one of
X

the ends of a fiber and causes the propagated pulse. After this pulse propagates
away from the site of initiation, the fiber ends are joined, i.e. the boundary
conditions introduced earlier are replaced by the conditions of periodicity:

wv,| v,

Vv =V, _,and —=
' dx

mx=0 — "m a
X

x=0 x=L

It is interesting to consider the following cases:

- L large compared to the propagated wavelength and the effect of
recovery process can be neglected.

- L smaller and it is necessary to consider recovery processes.

The major problems, which arise in studying the pulse propagation in a ring, are:
- Find the possible regimes of propagation
- Determine the conditions of stability of propagation
- Determine the conditions of termination of pulse circulation
- Reveal the effects of a ring length, the cell and tissue properties on the
character of pulse propagation

There are three known approaches: graphical, analytical (requires some computer
simulation), and pure computer simulation.

7.5.3. Graphical approach

This approach is based on the following assumptions:
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- APD restitution curves measured on an isolated cell and on a cell in a ring
are the same.

- The velocity of pulse propagation in a ring is constant for the duration of
one turn of circulation.

The circulation of excitation in a ring is governed by two relationships. The first
is called the conservation equation:

T, =APD,(DI,_)+DI, ; T,= ai (19)
k
The second relationship is called the dispersion equation:
O = f(DI;_)) (20)
Here:
ok subscript indicates the number of the pulse turn in a ring
T is a time required for circulation of the pulse around the ring
¢ APD, is the action potential duration
e DI, is the diastolic interval
L is the velocity of pulse propagation

The equation (19) represents a straight line in coordinates (APD, DI) (see fig 7b).
The distance of this line from the center of coordinates is proportional to the ring
length, L. In fig. 7b, the dependence (20) is plotted under the APD restitution curve.
Both curves were obtained by computer simulation of the simplified model [14].
The first turn of pulse propagation in a ring is clarified in fig. 7A and the other three
in the following text and fig.7b. Three cases are presented in fig. 7b; with ring length
L,>L,>L;, which correspond to stable circulation, circulation on the border of
instability and unstable circulation respectively for the ring tissue formed with the
cell models without developed Ca dynamics.

For explanation, let us study several turn of pulse circulations using these curves.
Conservation Equation:

T, = APD,(DI, )+ DI, ; T, = L

6,

over,

First Turn

We initiate the excitation propagation in a ring when 1D fiber is at rest or, in
other words, after an infinitely long previous diastolic interval.

Therefore, the APD=APD;,,,x and 6, =6, .,

//Ll = almaxAPDlmax
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A=60 APD

®, emfs

30 4

284

26 1

24

0 100 150 200 e

0 40 80 120 160 200 240 DI s

Fig.7. To graphical investigation of pulse propagation in a ring shape tissue. A. Presenting the first
turn of pulse propagation. B. The three ring lengths: Ll, L, L, are shown together with APD

restitution curve. L; corresponds to the stable circulation, L, to the case when circulation is on the
border of stability, and Ls when unstable circulation may lead to termination of circulation.

We assume that L; > A, s0 L, — 4 =Al, and DI, =

Therefore, T, = APD),, + DI =

Second Turn

1 max

Al

1 max

From APD restitution and dispersion curves (see fig. 7b), we find APD, and 6, .

6, < 6,. Assuming that 6, is constant on the second pulse turn we obtain T, > T

and on the graphic in Fig. 7b the straight line L changes its position to L'|. Using
obtained values of APD, and 8, , we determine the corresponding wavelength and

DI, for the second turn:
A =6,APD, so A, <4,



7.6 Analytical approach 137

L, -4, =Al,, so Al, > Al and

pr, = Ak
6,

Third turn

Using APD restitution and dispersion curves we find:

APD,(DI,) and 65(DI,); 6, =6, but 8, >0,

. DI, > DI,

The third cycle time, T.3= eﬂ =T, and line L', return to the close vicinity of L;.
3

The wave length A; = 6;APD;. Because APD;>APD,, A; > 4, and the diastolic

Al
interval on the third turn is: DI, = 0—3 here Al =L, — /44
3

Because Al; <Al,,, DI;< DI, and so forth...

The graphical approach shows that it is possible to make some qualitative
judgments about the circulation based on the slope of the APD restitution curve and
the length of a ring,. Normally, if the APD restitution curve has slope smaller than
one for all DI's, the circulation is stationary except for very short ring length
(L < 1), when it terminates.

When APD restitution curve has some interval of DI for which the slope ¥ >1, it

is possible to obtain stationary circulation for long ring length, unstable for the ring
length which provide circulation with DI’s corresponding to the slope of APD
restitution curve with ¥ > 1, and termination for the shorter ring-lengths.

7.6. Analytical approach

Pure analytical solution of the whole problem is not available. Courtemanche
et.al. developed an original and elegant analytical approach to determine the
conditions for instability of pulse propagation in a ring [9, 10]. They also determined
the transition from steady state circulation to quasi-periodic oscillatory regime and
derived the expressions to estimate the parameters. The approach is based on
reduction of the original PDE to the time delay neutral differential equations.

This theory is based on the assumption that both APD and velocity of pulse
propagation at each point on a ring can be expressed as functions of DI in this point
on the previous turn (APD restitution and dispersion curves are exist and unique).

The time conservation relations are used just like in the graphical approach, but
no assumption is made about the constancy of the velocity of propagation on each
turn of pulse circulation. Indeed, for each node on a ring with coordinate x, the
conservation relation gives:

T.(x)=APD(DI(x— L))+ DI(x) (21)

On the other hand, the time of one pulse turn with variable velocity of
propagation can be determined as:
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X

ds
()= | —— 22
T.(x) XIL Q[DI(S)] (22)
From (21) and (22):
r ds

DI(x) = x I ol APD(DI(x— L)) (23)
Let us differentiate the both sides of (23) with respect to x:

4 (DI(x)+ APD(DI(x - L))) = L ! (24)
dx 6(DI(x)) 6(DI(x-L))

The equation (24) is a non-linear neutral delay equation and its solution can be
found numerically if the non-linear functions APD(DI(x—L)),0(DI(x—L)) and

the initial distribution of DI(x) are known. These data can be obtained only by first
solving the original PDEs. From the point of view of numerical solution, this
transformation of the problem formulation makes no sense. The main goal of [15,16]
was to find the condition of instability of the possible steady state solution of (24). In
steady state, the velocity of propagation along a ring is constant. Designating the

steady state values of 0=6and DI=DI in (21) and (22) we obtain:
L

DI (x)=————APD(DI" 25

(%) o ) (DI') (25)

T.(x)= 2 (26)
6" (DI")

To find the stability of the possible steady state solution of (24) it is necessary to
investigate its behavior close to the steady state solution. Designating the increments

y(x)=DI(x)-DI", y, = DI(x—L)— DI and linearizing (24), we obtain:

d
i a(y=yr) 27)

Let us analyze the stability conditions for linear equation (27). These conditions
will be true for original nonlinear equation (24) in the vicinity of the possible steady
state solution. Because (27) is a linear delay equation, let us apply the Laplace
transformation to both sites:

pra=(a-mpl (28)

Solving (28) with respect to the delay operator, we obtain:
rL _ a-—-pw

pta

e
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Here the complex variable p =0 + jw and therefore
oL pitl _ (o — o)~ jowy
S +a)? +&*
This equality will be true if and only if:

1
) 2,2\,
X :((“ Py Fay ] (29)
+a) +w
and
oL = —arctan /A arctan( j 30)
a-yo J+a

For linear systems, the border of stability solution is achieved when the real part
of the root of the characteristic equation becomes equal to zero. In our case, this

condition corresponds to ¢ =0. So, letting e¥ =11in (29) and
1

a’ + oyt )2
— 5| =1
o +w
The equation holds when ¥ =1. It means that the condition of instability is y >1.
For y =1 the phase condition (30) transformed to:

a
WL = -2 arctan—
o

Assuming aL <<1, in [15] this implicit equation was solved approximately and
all@w, and corresponding periods A :2_7z of space distribution of DI(x) were
W
obtained from the expression:
_ 2L 4Ala
2k+1 2k +1)> 72
Among all solutions of A, found to date, only two have been observed, namely

A, k=0,1,2,3.... 31)

for k=0 and k=1. The second term in (31) is comparatively small and determines the
appearance of the beats in DI and APD for any node of a ring. The periods of the
beats are equal 2L/2L- A, . This form of oscillation is called quasi-periodic.

According to the Hopf bifurcation theory, the appearance of an oscillating
solution in a linearized system when ¥ =1 guarantees the appearance of an

oscillating solution in the original nonlinear system when the DI in close to the DI,
This theorem provides no proof of stability of this oscillatory solution for original
nonlinear system for DI significantly different from the DI* and cannot be used to
describe the system behavior for shorter ring-length.
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7.7. APD and velocity restitution in a ring-shaped model

The graphical and analytical methods described in previous paragraphs are based
on assumptions that APD restitution curve and velocity of wave propagation exist at
any point of the tissue and are the single-valued functions of previous DI.

The restitution properties express an ability of a cardiac cell to recover after
excitation. The recovery processes are difficult if not impossible to observe during
physiological experiments since they are determined by the temporal activity of
membrane channels. That explains why physiologists prefer to measure the
secondary effects of these processes on the duration of AP. The protocol of these
measurements specifies that tissue (or its mathematical model) is preconditioned by
applying periodic stimulation with a period equal to the normal heart rate until
steady-state is attained. Then, after a relatively short DI, a premature excitation is
applied, and the resulting APD is measured. This process is repeated from the
beginning for longer initial DI.

For a long time that the dependence of APD on previous DI (APD restitution
curve) was thought to be single valued. However, it was found [17] that the APD
restitution curve changes when the frequency of the precondition stimulation is
increased. Moreover, it was shown that different measurement protocols (e.g.,S1, S2,
S3 protocol) lead to the appearance of families of APD restitution curves.

Thus, it is possible to conclude that the APD restitution curve is not a function
only of the previous DI, but of the history of the preceding sequence of excitations.

Justification of these principles may be found in [18], where they were verified on
the cell mathematical models based on clamp-experiment data, which reflect the
dynamics of membrane channels during and after excitation. In order to check
whether the APD after an excitation depends only on the previous DI, a sequence of
three excitation stimuli was applied to the different single-cell models . In these
simulations, the last two premature stimuli appear after equal DIs.

The results, presented in Table 1, show that only for the Nobel model after equal
DIs the APs appear with equal durations. In the BR model, the APD after the second
premature beat is longer than the first, whereas for the LR I in the same situation, the
APD is shorter. In addition, the APD restitution curves are measured for these
models, using computer simulations performed using S1, S2, and S3 protocol.

Table 1. Results of consecutive stimulation with equal DIs
Original AP AP after first AP after second

premature premature stimulus
sti
Model DI, | APD, DI, APD, DI, APD,
(ms) | (ms) (ms) (ms) (ms) (ms)
Nobel o0 380 38 151 38 151
BR oo 291 20 117 20 146
LRI oo 384 20 256 20 242

Under these pacing conditions, instead of one APD restitution curve we have a
family of curves. Remarks that APD is not a function of only the previous DI are
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also found in [17]. The pacing order of a cell placed in a ring will be different in
comparison to these two protocols, especially during the propagation with
quasiperiodic oscillation. Indeed there is experimental evidence [6] supporting that
idea. In [6] during unstable circulation, different values of APD were observed for
the same values of DI. Therefore, one can expect the APD restitution curve of a cell
in a ring to be significantly different from that of an isolated cell. Computer
simulation results reported in [18] show that the APD restitution curve of a cell in
ring-shaped tissue is below that obtained for isolated cell demonstrating the effect of
local current.

In summary it is necessary to underline that presented stability conditions for

wave propagation in ring-shaped tissue are evaluated for the mathematical models
without or with very primitive Ca dynamics (see [17, 19] in chapter 4).
Moreover, they are obtained assuming that cell’s memory effect (not single valued
APD restitution curve) can be neglected, and for linearized originally nonlinear
system under condition of small perturbation in DI. Thus, these stability conditions
can be considered necessary but not sufficient for the original dynamic system. It
means that locally our system may be stable but globally unstable. The developed Ca
dynamics significantly affect the wave propagation in a ring-shaped tissue involving
new phenomena described in the next paragraph.

7.8. Propagation instability in ring-shaped tissue with Ca*
dynamics

As mentioned in chapter 4, Ca** dynamics play a major role in the excitation-
contraction coupling. Ca** dynamics also significantly affects the characteristics of
the generated AP. The latter are caused by the effects of Na-Ca exchanger, L-type
Ca channel currents, and Ca release from the SR, which activates others Ca-
dependant membrane currents. These effects are increased significantly during
stimulation with high pacing rates, when Ca accumulation in SR and myoplasm
creates conditions for spontaneous release of Ca from SR. These conditions appear
only when an excitation wave circulates in a ring-shaped tissue of sufficiently short
length for some finite time.

In 1D ring of tissue, the effective period of reentrant wave circulated with a
constant velocity is directly proportional to the length of the ring. Stationary
propagation is observed in a relatively long ring (L>20 cm). Unstable irregular
propagation, characterized by variability in the local period of excitation, was
observed [19] in intermediate ring lengths (L<15-20 cm) (APD and velocity of
propagation see figs 8 and 9 respectively).
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Fig. 8. APD distribution along a ring-shaped 1D cable of myocardium.
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Fig. 9. Conduction velocity distribution along a ring-shaped 1D cable of myocardium.

The APD restitution was measured during the irregular regime and remained a
random collection of points (fig. 10).
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Fig. 10. APD restitution during irregular wave propagation.

At short ring lengths (L <9.728-15 cm), the rate of excitation was rapid enough to
intermittently cause non-uniform Ca accumulation in the cells along a ring and
following spontaneous late-diastolic SR Ca*" release in cells with sufficiently large
Ca accumulation. This spontaneous Ca release facilitates the appearance of an EAD
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on the ensuing AP. The inset in Fig. 11, demonstrates [20] that the EAD did not
coincide temporally with the Jspon peak.
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Fig.11. Spatiotemporal profiles of V,, during wave propagation in a 1-dimensional (1D) ring, length
640 nodes (10.24 cm) A: spatial distribution of V,, across the ring at different times as indicated.
Thick lines indicate nodes in the ring with dV,/dx >0 at the chosen time. Stationary wave
propagation [time () = 1 s] becomes irregular (# = 2 s), and then early afterdepolarizations (EADs)
appear (t = 4 s) as bumps on the tail of the wave with dV,/dt > 0. After 5 s, the tissue enters a state
of repolarization failure and never returns to rest potential (¢ = 8 s). B: traces of V,,, intracellular Ca
(Caj), and spontaneous Ca release (Jyp0,) from SR are taken at node 160 during wave circulation. As
time passes, V,, trace show EAD activity becoming more pronounced, from single EADs to multiple
EADs and to the state of repolarization failure. Dashed vertical line in the inset indicates that
spontaneous SR Ca release occurs during late diastole preceding the action potential (AP) in which
an EAD occurs.

Spontaneous late-diastolic SR Ca release triggered the EAD during the ensuing
AP, consistent with experimental observations of DADs preceding the upstroke of
APs exhibiting EADs [21, 22]. The spontaneous late diastolic Ca release combined
with the /¢, ;-induced SR Ca release produced by the ensuing AP, augmenting the Ca
transient amplitude. The resultant larger Ca transient enhanced Ca-sensitive inward
currents, specifically the Na/Ca exchange current (In,ca) and Iygca), during the AP
plateau phase. The enhanced inward currents decreased repolarization reserve and
thereby established a more tenuous balance of repolarizing currents, such that
window /¢, reactivation was able to generate an EAD. If J,,, in the cell model was
inactivated, EADs did not develop. Although every EAD was preceded by a
corresponding late diastolic Jy,,, peak, not every Jy,o, peak was followed by an EAD
(fig. 11B). For very short ring lengths (L= 9.728 cm), the ring was not sufficiently
long to sustain reentry. Here, we consider only those ring lengths for which Ca
release-induced EADs occurred (1=9.728 —15 cm).
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Fig. 11 A shows the spatial distribution of membrane voltage along the ring at
different moments in time, while Fig 11B shows the voltage, Ca; , and J,, traces of
an arbitrary node in the ring. After a short transient period during the first few turns
of the wave, stationary propagation is established (t=1 s; Fig. 11B). From 1 to 2 s,
spontaneous diastolic SR Ca releases (because of activations of Jspon) began and
delayed repolarization appears, indicating diminished repolarization reserve.
However, at this point, the spontaneous SR Ca release events were not sufficiently
large to produce EADs (=2 s; Fig. 11B). As it was shown [19, 23], the repolarization
delay was heterogeneous because of an inhomogeneous spatial distribution of SR Ca
accumulation, and hence Jspon amplitude, along the ring. From 2-5 s, spontaneous
diastolic SR Ca release resulting from Jspon activation became large enough to induce
EADs in various regions of the ring. These EADs could both terminate and
regenerate wave propagation. EADs are seen in voltage traces from single nodes
(fig. 12B) and appear as bumps with positive dV,/dx on the tail of the voltage wave,
indicated in the spatial distribution of voltage (Fig. 2A) by the thick lines. EADs
appeared slightly earlier in shorter rings. Multiple EADs are also observed during
this time (fig. 12B).

EADs affected wave propagation in several ways. A region of EADs could stop a
propagating wave if the region was sufficiently large and arose just ahead of the
wavefront, or it could regenerate wave propagation if it was sufficiently large and
arose adjacent to a region of repolarized tissue into which the new wave could
propagate. Alternatively, a region of EADs could occur in such a way that
propagation was terminated and not regenerated. For example, a region of EADs
could arise that prolonged refractoriness enough to block reentry of the original
wave but was not large enough to trigger a new wave. Wave regeneration could be
prevented manually by inactivating Jspon in all cell models just after the original wave
stopped. Several different regions of EADs could also arise in the ring at the same
time (1=5 s; fig. 12A).

Simulation experiments in [23] described EAD-induced regeneration of wave
propagation antegradely. The existence of the following new modes of EAD-induced
wave regeneration was demonstrated [20]:

® a new wave traveling retrogradely;

® two new waves traveling in the same direction, both antegrade (Fig. 12A4);

etwo new waves traveling in opposite directions, antegrade and
retrograde(Fig. 12B),

®a special case of the last mode, where two waves traveling in opposite
directions arose from a single region of EADs, which then propagated in
both directions.

In the time window from 2 to 5 s and within the range of ring lengths where
EADs occurred, we observed any or all of these four modes of wave regeneration
depending upon the ring length.
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Fig . 12. EAD-induced regeneration of two simultaneous waves in a 1D ring. The spatial profile of
V,n is shown at different times, with the thick lines indicating regions with dV,,/dt > 0. The original
circulating wave front is indicated by the arrow in panel on fop, and other regions with dV,/dt > 0
correspond to EADs (no arrow) or EAD-induced propagating wave fronts (arrows in subsequent
panels). A: regeneration of two waves in the same direction in a ring of 650 nodes (10.4 cm). After
termination of the initial wave by EADs, two distinct regions of EADs occur, each bordering
repolarizing tissue (f _3.70 s). Two antegrade wave fronts generate (¢ _ 3.75 s), although they
eventually collide and terminate each other since the ring is not long enough to sustain two fully
propagated waves. B: similar to A, except that the regenerated waves propagate in opposite
directions and extinguish by collision of wave fronts. Ring length was 645 nodes (10.32 cm).

Changing the ring length altered the variability in the local period of excitation
during reentry and led to different patterns of regional pacing history. The
subsequent patterns of inhomogeneous J,,,, distribution along the ring determined
which modes of wave regeneration occurred. The chaotic nature of the reentry makes
the prediction of the regeneration wave difficult if not impossible. Unfortunately,
the author did not find a treatment of the effect of [CazJ']i dynamics on wave
propagation along ring-shaped cardiac tissue in current literature.
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Chapter 8. Waves in Two Dimensional Models of
Myocardium

Normal heart function is directly connected with periodic propagation of
excitation waves initiated by the pacemaker heart system. Electrophysiological
experiments show that distortions in heart rhythm such as tachycardia are a precursor
to ventricular fibrillation (see Fig. 5A and 5B in Chapter 1, Introduction).
Ventricular fibrillation may occur in either already damaged or initially healthy
hearts. The mechanisms of ventricular fibrillation are not fully understood. In current
literature [1], monomorphic tachycardia is associated with stationary propagation of
spiral excitation waves, while polymorphic tachycardia is thought to be due to non-
stationary propagation. The breakup of a wavefront of a non-stationary propagating
spiral wave obtained in computer simulation with tissue formed of AP models
without Ca dynamics is considered fibrillation [2]. Spiral waves were discovered
during computer simulations [3]. Their existence was confirmed, years later, in the
course of physiological experiments [4] in 2D normal atrium cardiac tissue by

properly applied premature stimulation.

Generally, it is convenient to divide excitation-propagation into two cases: wave
propagation with rectilinear and curvilinear fronts. Waves with rectilinear fronts
represent a particular case of curvilinear, when the radius of curvature along
wavefront tends to infinity equally for all the front points. Spiral waves represent one
of the most important types of traveling waves. Unfortunately, theory has only been
developed for stationary spiral waves ([5], [6]). Here and in the next chapters, we
discuss the elements of stationary spiral wave theory, preliminarily introducing some
important assumptions about cardiac tissues (e.g. representation as a continuous
media — a syncytium) and some consideration about mono- and bidomain approaches
used in mathematical modeling of cardiac tissues.

8.1. Heart muscle as a 2D and 3D syncytium

The idea of a syncytium as continuous mono- and bidomain media can be
illustrated by considering the limit to which a uniform and discrete 2D grid (fig. 1)
tends to when the distance between the grid nodes goes to zero.

B.Ja. Kogan, Introduction to Computational Cardiology: Mathematical Modeling 147
and Computer Simulation, DOI 10.1007/978-0-387-76686-7 8,
© Springer Science+Business Media, LLC 2010
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Fig. 1. Equivalent electrical circuit for a patch of 2D uniform heart muscle tissue using the
monodomain approach (the resistance of extracellular liquid is much smaller than intracellular).
gAPm designates a generalized AP model. The intracellular coupling resistances in the x and y
directions are respectively 7, and r.

According to the electrical equivalent circuit diagram of a tissue model shown in
fig. 1, the external local current for the node located at (i, j) is:

i* =‘/i+ij Vy V _V' Vz,+1 ‘/i,j+‘/i(j—1)_‘/ij
(’Xfrv'
’ T rix Ty Ty
Here:
Vii-— is a membrane voltage V,, at the node located at (i, j),

r,, and I, —are the coupling resistances along the longitudinal and transverse cell

axes.
Reordering the previous equation, we obtain:

o Ve Vi = Vi Vi — 2, 0

" T r.

ix iy

The dimensions of 7, and Ty is [kQ-cmz].

Let us introduce the following substitutions in (1):
= KXAXZ and n, = KyAy2 (dimension of K and K, is kQ).

This gives:
Vi

ok _ (i+1)j (j+1)i

AV, — 2V Vi Vi —2Y;
l =
KXsz K, Ay

Taking the limit of both sides of this equation, as Ax and Ay both tend to zero:

lim i}, =—— lim Vierg P Vo) =2V | 1 o Vg ¥V =2V
Ax,Ay—0 K, A0 Ax? K, -0 Ay?
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We obtain i,,, expressed as a Laplacian of V,,;:
2 2
P A o
K, & K, &
According to fig. 2, this external current must be equal to total membrane ionic
and capacitance currents:

V(i,j+1) V(i,j+1)

(b)

V(-1 : : V(@i+1,)) V(1)) V(i+1,j)

Fig. 2. Generalized AP equivalent circuit diagrams in 2D tissue for: a) passive and b) active modes.

N, 1 2%, 1 9%,
i, =C ’”+EI—I =— ot — L
ext m at N St KX &62 Ky @)2
After division by C,, and denoting:

2 2
1 :D{Cm } 1 :Dv[cm :|, the mathematical model for 2-D
| se

C. K. sec | C,K, c
monodomain excitable tissue becomes:
oV I +1
D "4+ D = Z sl 3)

T ox’ y 0" y? at
It is evident that for three-dimensional uniform tissues (3D) in the monodomain
representation, the expression (3) is changed only by the Laplacian:
p.%Ya i p ‘92Vm + D, Wy P, LI+l
tox’ Yy’ oz’ ot C,
Here, we assume that the diffusion coefficients D,, D, and D, are different but
constant along their coordinate axes.

If I5, > I,;,, then expressions (3) and (4) describe active propagation. If I, < I, and

m

“)

le is replaced by g, V  in these equations, then they describe passive

eqv m
propagation.
Both equations (3) and (4) must be solved with appropriate boundary and initial
conditions. Neumann boundary conditions are typically used. Neuman boundary
conditions are characterized by no current flow across the boundaries (i.e.
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(aaﬁ] =0). Initial conditions are': V,(0)=V,., and all y{0) and [S](0) reflect the
n /g

properties of the utilized AP model. For passive propagation, boundary conditions
remain the same, but the initial condition is reduced to V,,(0) = V.

8.1.1. Anisotropy of the tissue

Isotropic 2D tissue is characterized by equal diffusion properties in both
geometrical directions, D, = D, = D, with the Laplacian (L) in (3) reducing to:
2%V, 9%V,
L=D| —+—F &)
dx dy
Anisotropic tissue has, generally, D, # D, . For heart muscle, D,>D, ; namely D, =
(3 or 4)x D,. We distinguish two cases: the first is uniform anisotropy, when D, and
D, do not change with the space coordinates x and y respectively; and the second is
non-uniform anisotropy, when the diffusion coefficients are a function of these
coordinates (D,(x) # D,(y)). In the first case, it is possible to transform the Laplacian

from the form used in (3) to that in (5) by scaling one of the space coordinates.
Indeed:

2 2 2 D 22
Dxan+DyaV’" =Dx3Vm+_}3Vm
ox> dy? ox2 D, 9y?

D,
and designating: D—) =d,y =§ we reduce the expression for the Laplacian to the
X

form (5), but with scaled space coordinate y. All of the values obtained from

computer simulations with this transformed Laplacian, which depend on coordinate
¥, must be rescaled by multiplying them by the scale factor d.

In the second case, the Laplacian in the left side of (3) will take the form:

d v, ) av,

—(D, x)=—")+—(D, (y) == 6

- x()ax> 5 s () 5 6)

In real cardiac tissue, non-uniformity also exists due to variability of the
longitudinal directionality of the fibers (see [7]). This leads to representation of the
diffusion coefficient as a function of conductivity tensors. The curvilinear nature of
fibers can be neglected, as a first-order approximation, for small tissue pieces. In 3D
tissue, transmural heterogeneity is also present (see chapter 3).

' To find the initial conditions (ICs) for phase variables in a particular AP
mathematical model, it is possible to use the results of computer simulation of this
model with a normal pacing rate and qualitatively selected ICs. The system must be
stable and the steady state solutions of AP phase coordinates have to show all real
values of unknown ICs.
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8.2. Bidomain representation of 2D tissue

Mathematical models for computer simulations of cardiac tissue with a bidomain
representation [8] were developed to study wave propagation under application of
excitation stimuli to the external tissue domain. That is very important in cases of
defibrillation processes simulations (when the electrical shock is applied to the
surface of the body or to the pericardium) and when waves initiated by the
pacemaker system due to some abnormal processes meet extracellular liquid with
resistance comparable with that of intracellular. In all of these situations, the
myocardium is considered as a syncytium [9]. The bidomain approach for studying
excitation-propagation processes in tissue, in the presence of an external stimulus
(particularly, a defibrillation shock), gives rise to the following generalized system
of equations [10]:

V-(6,V®,)= By 1, :lBSV(Cm a;/tm + Lipy +Iistimj (7a)
V6.V, )=~Bov (L + 1 oin)

=P (Cm aaL;n*‘ Lion + 1 g, j = Bsv 1 esiim 7
V,=®,-®,, (7¢)

with homogeneous Neumann boundary conditions and appropriate initial conditions.
In (7a) and (7b), 6, and 6, are the conductivity tensors for the intracellular and

extracellular domains, respectively (mS/cm). They reflect the variable fiber
directionality in 3D tissue. Other variables in (7) are:
* /3., — the myocyte surface-to-volume ratio (em™);

¢ C,, — membrane capacitance per unit area [uF/cmz];
® ], — the sum of transmembrane currents [uA/cmz];

e; and [/

st estim — Stimulus currents applied to the intra- and extracellular
surfaces of a membrane [uA/cmz];

® @ and @ —intra- and extracellular potentials correspondingly [mV];
vV, - difference of membrane potentials [mV];
® ¢ —time [ms].
The system of equations (7) can be simplified by excluding the variable ¢, from

(7a) by substituting for it the value from (7c), followed by the summation of the

obtained equation with (7b). As a result, we obtain the general form for the

bidomain representation of cardiac tissue:

av, 1 1

Zm Vo, VV,)+V(o, VD)) ——U,,, + 11 8
ot ﬂsvcm( ( i m) ( i e)) Cm( ion Imm) ( )

V((o; +0,)VP, =-V(o,;VV,) = Bsy 1 .1im ©)
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Here V is a space gradient operator. For 1D, 2D, and 3D, these operators are

equal to V, =ii;V2 =ii+ ji; vV, =i—+ji+lri,respectively
ox ox " dy ox “dy 0dz

Assuming no fiber curvature but recognizing the presence of uniform anisotropy
in both domains between the longitudinal and transverse directions, (8) and (9) for
2D tissue reduce to the following equations:

v, 0%V, %V,
i Dy TP e
. ’ (10)
2 2
+ Di X J (I)ze +Di y J q)ze — (Iiﬂn + Ixtim)
ooox T oy Con
2’d, ’®, 3%, N 2%V, ~ Bsv Lisim an
o o TN TR T
y X y gt,x ge,x

In (10)-(11), D, , = g;,/(B,,C,)and D, , =g, /(B,,C,,) are the diffusivities
along the x and y-axes, respectively [cm*/ms]. ¥, = _gi,x/(g,‘,x + gg,x),

V2 == gi,y/(gi,x + ge,x)’ a= (gi,y + ge,y)/(gi,x + ge,x)’ 8ix> 8ex 9gi,y ’ and
8.y are conductances [mS/cm]. The subscripts i, e refer to intracellular,

extracellular domains, respectively, . The subscript x indicates the longitudinal
direction of the fiber and subscript y the transverse direction.

A system of nonlinear ordinary differential equations that describes all membrane
current components of [;,, and relevant intracellular compartment processes is
needed to make (4) a closed form expression. For this purpose, it is possible to
select, among existing AP models of different species, one that is adequate to
solving the problem and is based on up-to-date physiological data. For example, I;,,
in the guinea pig ventricular AP model proposed by Luo and Rudy [11] and its
modifications introduced by Chudin [12] and supplements made by Huffaker and
Samade [13] are suitable to study propagation phenomena under conditions of Ca;
overload in the myoplasm and SR.

8.3. Heart muscle as a system of parallel interconnected cables

The approach presented in the previous paragraph is based on the supposition that
it is possible to simulate cardiac tissue as continuous media (mono- or bidomain).
This is correct when gap junction resistance between the cells is negligible in
comparison with the resistance of the cellular domains. There is physiological
evidence that this is not true in some pathological cases (e.g. for tissue cells in a
region of local ischemia). For these cases, it is theoretically possible to use the
original approach proposed by Rudy and Quan in [14] and briefly described in
chapter 7. Unfortunately, this approach is now computationally tractable only in 1D
monodomain tissues of restricted length.

Leon and Roberge [15,16] proposed to use a system of parallel interconnected
cables (see fig. 3) as a representation of cardiac fibers in 2D monodomain tissue.
This abstraction is closer to real cardiac tissue topology. They neglected the gap
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junction resistance in comparison to that of intracellular liquid and do not take the
orientation of real fibers into account. Single cables, in their interpretation, consist
of a system of the cells’ current generators (taken from the Beeler Reuter modified
AP model [17]) connected through intracellular resistance R, proportional to the
cell’s length. The distance between the neighboring cables is equal to the diameter of
a cell, d. The interconnection between these cables is realized with space interval A
by intracellular resistance R, in both directions. Thus, interconnections between
cables are much sparser then between cells in a cable. That and use of R,<R, allows
the reproduction of a given uniform anisotropy in simulated tissue. The
mathematical description of this representation of 2D tissue is given in the appendix.

The authors of this approach considered that there are two major computational
advantages of this method:

1. it significantly reduced matrix sizes, which must be inverted using
conventional numerical approaches;

2. it makes parallelization of the computational algorithm possible.

Longitudinal Edge

>

Fig. 3. Representation of heart muscle model as a system of parallel and interconnected cables
BRM is the abbreviation for the Beeler Reuter AP model modification [17].
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The geometry of the 2D tissue model in which excitation-wave propagation was
studied is shown in fig. 4. In particular, fig. 4 illustrates the case of excitation-wave
propagation from a narrow path to an open space. It is easy to show that there exists
a critical value of the pass width below which a conduction block appears.

Fig. 4. Wave propagation from a narrow pass into an expanse of tissue.

Unfortunately, this method was not widely applied and deserves to be
reconsidered for cardiac tissue with developed cellular Ca dynamics and a bidomain
representation. The method is practical given the increasing power of modern
computers and new numerical algorithms used for parallel computation of such
problems. Some difficulties may arise in simulation of these problems for 3D tissue
with transmural heterogeneity and variable fiber orientation.

8.4. Propagation of rectilinear front

Propagation of a solitary wave with a rectilinear front is shown in fig. 5. In
normal cardiac tissue, the conduction velocity of a rectilinear front achieves the
value 8 =50 [ﬂ]. The wavelength is defined as:

s
A=6APD 12)
For APD=250 ms, and & = 50cm/s , the wavelength will be 4 =12.5cm.
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a b, & d

-
d

Fig. 5. Rectilinear wave propagation in homogeneous 2D tissue: a. Initiation of a propagating wave.
b. wavelength is longer than tissue length. c. Wave exits tissue through a border. d. Cylindrical
tissue shape with diameter d = L.

Propagation of a sequence of waves with rectilinear fronts in 2D tissue is the
same as that in 1D fiber with restricted length (cases a, b, ¢ in Fig. 5). The
propagation of an excitation wave with a rectilinear front along a closed cylindrical
2D surface (case (d) in fig. 5) may be considered a set of propagating waves in a
ring-shaped 1D tissue.

8.5. Propagation of wave with curvilinear front
Propagation of an initially rectilinear front in inhomogeneous tissue leads to

its curvature, shown in fig. 6. The wave with a curvilinear front, after some transient
period, propagates in this case without changing its shape.

& Pl D=0.25cm'sec
7

t=0 f t U,=U,=U, = const

Fig. 6. A. Propagation in heterogeneous 2D tissue leads to the appearance of a curvilinear front.
Heterogeneity is introduced using different diffusion values for tissue strips a, b, ¢ (D; = 0.25 for
strips a, ¢ and D, = 0.15 for strip b). B. Relationship between the translational and normal
conduction velocity components of a point on the curvilinear wavefront.
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8.5.1. Circular wave as an example of wavefront with equal curvature,
K, in each point on the wavefront.

The propagation of circular waves illustrated in Fig. 7 gives an example when
K =1/Z , where Z is the radius of circular wavefront. For a given time 7, Z and K are

constant at all points of the circular front.

Fig. 7. Propagation of circular wavefronts with equal normal conduction velocity at each point of
the front at fixed instants of time.

Normal propagation (see Fig. 8) of a circular wave is initiated by external
stimulation applied to an nxn subgrid in the upper right corner of the whole tissue
model. The number n must satisfy the source-sink conditions in order to obtain a
propagating wave.

The states of tissue excitation are shown in fig. 8 at fixed propagation times. Due
to diffusion properties, the original square-shaped excited tissue area is transformed
into a propagating one-quarter wave portion with a circular front (Fig. 8B, left map).
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A

C

Fig. 8. Circular wave propagation initiated from the right upper corner of 2D tissue. A. Traces of
the spatial distribution of membrane potential Vi, along a diagonal emanating from the right upper
corner of the tissue at different times after the initiation of wave propagation. The term V" defines
the front and tail of the propagating wave. B. Spatial maps of V, in 2D tissue (6.4 cm x 6.4 cm)
from which the spatial distributions of A are obtained. These results were obtain with the Chudin
AP model [11] using parallel supercomputer NERSC IBM p575 POWER 5. C. The color code used
in Fig. 8B.

The excited areas are indicated by multicolor regions that are not blue in Fig. 8B,
center map and are defined as a cluster of nodes where voltage exceeds a certain
threshold V". When the excitation wave propagates, this voltage level is reached

0
twice: when the nodes enter (whenaaLt’” >0) and exit (when% < 0) excitation.

The narrow area of these nodes entering excitation and moving towards the
unexcited region of the tissue grid is called the wavefront. The nodes going out of

excitation and moving toward the recovering nodes form the wavetail.

8.6. Approaches for Spiral Wave Initiation in Computer Simulations

All approaches are based on the creation of a prematurely stimulated zone
before the front or behind the tail of a propagating wave. Generally, the initiation of
spiral waves in originally homogeneous excitable media requires the introduction of
some temporal heterogeneity in the tissue. Gulko and Petrov [3] were the first who
showed, in computer simulations, the initiation of spiral waves when some part of
the tissue becomes temporarily unexcitable (Fig. 9), and when a premature stimulus
S, is applied before the front (Fig. 10) and behind the tail (Fig. 11) of a basic
propagated wave S;.

The cross-hatched area in Fig. 9 is made temporarily unexcitable. In the left
upper corner of the simulated tissue, a basic propagating wave S; is initiated with a
circular front in time #<t;. This wave reaches the border of the unexcitable segment,
stops, and the cells in a portion of its front begin to repolarize and turn into the tail of
the wave. A point g subsequently emerges, where the front and tail of the wave are
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joined (by the time #,). The S| wave then morphs into a single spiral wave with bq as
its tail and agq as its front (¢, and t; and further). Excitability in the S, area is then
restored (after time #3).and the spiral wave then continue to circulates in the fully
excitable tissue model.

t1 3AX tg t3

Sﬁ%%ﬁ .

N
®

=
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< NN

@
o
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Fig. 9. The cells of a certain segment of cardiac excitable tissue (double shading) becomes
temporarily unexcitable, remaining at the cell membrane rest potential. The size of the tissue model
was 35x35 nodes with equal space steps Ax = Ay =0.05mm and the time step At =2.5ms .

The simplified model of cardiac cell proposed in [18] served in these computer simulations
(performed using Hybrid Computer System HCS-100 [19]) as a point model.

The temporarily unexcitable region of tissue may be created by a number of
other ways. For example, Fig. 10 illustrates how it is possible to obtain in computer
experiments a spiral wave by applying an additional stimulus to some segment S, of
tissue before the front of a propagating wave S;. In this case, the size of a stimulated
area and stimulus magnitudes must be small enough to not allow the origination of a
propagating wave. Therefore, at the instant when primary wave S; approaches the
segment S, all of its nodes transfer to the absolute refractory period of the
repolarization phase and hence serve as temporarily unexcitable tissue for the arrived
S| wave.
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Fig.10. Premature excitation applied before the front of the wave. These results were obtained under
the same conditions used for Fig. 9.

Another method to initiate reentry wave processes (see Fig. 11) is to create a
zone of premature stimulation near the tail of the basic excitation wave S; caused by
pacemaker activity. This prematurely stimulated area can generate an additional
propagating wave only in the direction opposite to that of the wave S;. Otherwise,
the refractory properties of the S, area will present an insurmountable obstacle. The
front of a premature wave of excitation directed toward a tail of a basic wave will
stop and turn to repolarize, creating the conditions for forming the point gq.
Depending on the location of the premature stimulus area in relation to the border of
a tissue, it is possible to generate single or double spiral waves. This method
resembles, to some extent, the Wiener and Rosenblueth approach [20] to create
solitary excitable wave propagation in 1D ring-shaped tissue by applying two
consecutive stimuli to different points on the ring (also see chapter 7).
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Fig. 11. Premature excitation at the tail of the propagating wave. The parameters and size of the
tissue as well the type of used hybrid computer are the same as mentioned for the previous two
figures.

It is necessary to note that these figures show the initiation of spiral waves when
a previous propagating wave had a circular morphology. The location of a premature
stimulus close to the tissue border is the reason why only single spiral waves were
obtained. Double spiral waves can be initiated if the premature stimulus is applied in
the middle of the tissue. The different approaches to initiating double and single
spiral waves are illustrated in Fig. 12 and 13, respectively.
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Action Potential
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124 190

Fig. 12. Initiation of double spiral waves using a FitzHugh-Nagumo AP model with modified
restitution properties [21] in a tissue model of 35 x 35 nodes. The simulations were performed using
the massively parallel computer CM-2 introduced by the Thinking Machines Corporation. The
numbers shown close to the upper left corners of the tissue indicate the time instances in ms related
to different S; and S, waves locations.

The initiation of a spiral wave in initially uniform tissue by the method of cross field
stimulation when S; and premature S, waves have rectilinear fronts is illustrated in
Fig. 13.
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t,=207 ms t,=275ms t,=500 ms

Fig. 13. Initiation of a single spiral wave by cross field stimulation in a tissue model of 256x256
nodes (measuring 6.4 cm x 6.4 cm) using the Chudin AP model [12]. Computer simulations were
performed using the NERSC IBM p575 POWER 5 parallel supercomputer. The color code is the
same used in Fig. 8B.

Comparison of different methods of initiating the spiral waves shows that
characteristics of these waves do not depend on the specifics of the method. The
method mostly affects the duration and behavior of the transient period during
formation of a spiral wave. The location of the premature stimulation area in relation
to the tissue border defines the type (single or double) of the obtained spiral wave.

8.7. Stationary and non-stationary spiral waves

The shapes of the cores (trajectory of the point g) for stationary and nonstationary
propagation are shown in Fig. 14a and 14b, respectively. Fig. 15 illustrates the
separation of the parameter space into regions of stationary and nonstationary
propagation for 2D tissue composed of simplified FitzZHugh-Nagumo type of AP
models.

a) ' N b)

Fig. 14. a) Stationary spiral wave propagation with circular trajectory of the point g. Here it is
shown that a comparatively small part of the tissue in the vicinity of the point g trajectory b) One of
the possible point ¢ trajectories during nonstationary propagation [5].
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Stationary propagating spiral waves, as it follows from Fig. 14a, occur when the
point g moves around a regular circle with constant angular velocity. All points must
move with the same angular velocity on the front and tail of a spiral wave. By
changing the parameters of the cell and tissue, it is possible to obtain nonstationary
propagation. If nonstationarity is not strong, the trajectories of the point ¢ do not
extend beyond a circle of radius r.; (Fig.14b).

The stationarity of wave circulation and values of r, and r,., depend on the
parameters of tissue cells [5]. Corresponding results for a tissue model made up of
simplified AP models are presented in Fig. 15.

/
Voo (ms)
V
= 1.0 I,
Tefr
10 54
5 10
0.8
0.6 -
nonstationary
circulation
0.4 ~
~
stationary ~ .
circulation
0.2
L L 1 1 L 1 A.PD (ms)
20 100 180

Fig. 15. Curves of different values of r, and r, .y in the parameter space (APD, Vmax/
obtained for FitzHugh—-Nagumo type AP model [5].

max )

From this figure, it follows that increase of a cell’s APD in tissue with a propagating
spiral wave facilitates the transfer to nonstationary propagation. This explains why
nonstationary spiral propagation is observed in tissues with Ca dynamics.

8.8. Curvature and Dispersion Relations

Experimentally (in course of physiological and computer simulation experiments)
it was found that normal velocity of stationary spiral wave propagation at a given
point on the front depends on curvature, K, at this point and the period, 7, of spiral
wave rotation. This means that there must exists a relationship:

0(s,t)= f[K(s,1). T(s,1)] (13)

Where:
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e 0 - is the normal component of conduction velocity at the point s of the
wavefront.

e K- is the curvature of the wavefront at the point s, which reflects the effect
of diffusion currents in this point.

e T — is the elapsed time from the last excitation of the point s, which
characterizes the distribution of cell recovery processes between successive
waves.

The major task of the theory of stationary spiral wave propagation in excitable
media and, in cardiac tissue in particular, is to find an explicit form of (13) and the
major parameters of the cardiac cell and tissue, which determine K and 7.

Unfortunately, these goals are not yet fully achieved. Significant contributions to
the theory of the creation of stationary spiral wave propagation were made
independently by Fife [22], Zykov [5], and Keener [23].

Here and in the following chapters, we present the most important elements of
this theory, which, together with computer simulation experiments, help to explain,
at least qualitatively, the properties of stationary spiral wave propagation in cardiac
tissue. For our purposes, it is convenient to consider the relationship (13) for two
extreme cases:

a) when the effect of cardiac cell gate variable recovery processes is finished
before the next wavefront reaches the considered point, S, of a previous
wavefront.

b) when the wavefront is close to rectilinear and the conduction velocity is
dependent predominantly on gate variable recovery processes.

This approximate approach allows us to replace (13) by two relationships: the
curvature relation, 6 = fi(K, T.,); and the dispersion relation, & = f5(0, 7). Let us begin
with the curvature relation, 8 = fi(K, T,), which determines the component of
conduction velocity when the period of spiral wave rotation is significantly higher
than the time it takes cell processes to recover.

8.8.1. Curvature equation

Let us consider propagation in 2D isotropic tissue using (14):

2 2

a a VZm + a Vzm = Cm avm +I‘vtim +Iion(vm’m) (14)
ox dy ot

O 0 L T

"ok
m={m1,m2,...,mk}

1 1 1[1 UF
o=—~»\—la=—+—|—|; C,=1
2R | kQ 300~ 800| kQ em?




8.8 Curvature and Dispersion Relations 165

The Laplacian reflects the effect of local currents acting at the given point on the
wavefront. They can be expressed through the curvature of the wavefront in this
point. Indeed:
2%, . v,
ax?  dy?
From vector analysis follows:
divgradV, = (i1, grad(gradV,,n)+(gradV, 7 )divii (15)

m?

= div(gmd Vm)

Introducing curvilinear coordinate z, a read off along the line of current flow
allows us to obtain:
av
(gradv,,mw)=——= (16)
dz

and
2

(ﬁ, grad (grad V. ﬁ)) = %

Taking into consideration that

divn =—=

+—=. Here, n, and n, are the projections of the unit normal vector to

the point S on the x and y axes. Thus, n, = n cos(f) and n, = —n sin(f). So,

on, __ . (0B03S
5 = snllea
I, __ (5B
5 = eoslBlyg Ay

By definition, K = 0f/0S. Here, f is the angle between the direction of vector n and
the x-axis at the point S. Therefore, 65/0x = sin(f) and 0S/0y = cos(f). Finally, we
obtain

div(7@) = —K [sin> (B) + cos (8))= -k
Substituting this result and (16) into the second part of (15), we get

DR VA Rl VAR R V4 V
P EER E A » an

The propagation equations now are:

2
ol 2 ‘Z k|2 Lo +I1(V, . m)+1,
& & ot

(18)

Let as introduce the following assumptions:
e K does not depend on z
e The wavefront propagates stationarily (€= constant)
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Changing the variable z to £ = z + &, we obtain:

V. v, %
a—r oK = — @ =V, ,m)+ 1, BTm(Vm)@me(Vm)—m

X% x* x* %
or

Jsz av, _ 19
o +(aK - c6) 7 =1(v,.m)+1, 19)

or, (v, )@ =m,_—m

29

Let us consider the coefficient before 9V in (17). Designating itby y = Ka—c6
d

ForK=0, =6y .So, y=-cOy

0=0,+%k ; £=D. (20)
C C

Here K < 0 for convex front and K > 0 for concave front.

Equation (20) represents the linear dependence between the normal velocity at a
given point of the propagating wavefront and its curvature at that point. That is
certainly an estimate. In reality, as shown in Fig. 16, only a part of this relation is
linear and critical curvature is reached at some small, but non-zero, level of
wavefront velocity.

cR

(K rn (K r et

Fig. 16. The theoretical (th) and actual (act) curvature relations.
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The curvature equation is an estimate. For a different AP model, it is necessary to
introduce a correction coefficient, v. The curvature equation now has the form:

o
6= 0, +V—K , where Or, = f(T).
c

8.8.2. Dispersion Relation

The dispersion relation reflects the dependence of conduction velocity on the
dispersion of cell recovery processes in time 7 elapsed from the previous excitation
6 =6z =/>(0,T) when curvature is equal to zero. Recovery processes distribution in
time and space may be measured during computer simulations.

Ok,

(OrL)cr

Ler s Tor LT

Fig. 17. The dispersion relation. L — distance between two stationary spiral wavefronts. T- time
elapsed from the previous front of a stationary wave.

The character of the dispersion relation shown in Fig. 17 is obtained from general
considerations. The details depend on the cellular characteristics of the tissue, and
there is not yet enough data available to present specifics.

8.8.3. The effect of diffusion coefficient

As it is known, the diffusion coefficient is defined as D=%. In order to

introduce the diffusion coefficient in the propagation equation explicitly, let us
divide both sides of that equation by C. We obtain:

82Vm 82Vm an Ixt +zlion (Vm’m)
D| —~+—3~ |= +
ox dy ot C

Introducing the substitution:

21



168 Chapter 8 Waves in Two Dimensional Models of Myocardium

Y= and y=—2 (22)
=——an =—
A D \ND
We finally get (21) in the form:
82Vm " E)ZVm _ an n Ist + Zlion(Vm’m)

a}z a}z - ot C

(23)

We can consider (23) as a special case of (21) when D = 1. This allows us to
conclude that the diffusion coefficient affects only the space characteristics of the
solution. Each parameter, with dimensions including space, can be represented as:

Plx]=VD (P),

For the example for conduction velocity in 1D tissue:

dx dx
0 == =JDZ==\D(#
X dl' dt ( )D:I

8.8.4. Direct computer simulation approach to find the curvature
relation

Here we present the results from determining the curvature relation for isotropic
and anisotropic cardiac tissue using a computer simulation method proposed in [24].
The results presented in Fig. 18 are in good agreement with those obtained in [5] for
isotropic tissue using the FitzHugh-Nagumo AP model with standard parameters.

P space units
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Fig. 18. Curvature relationships for isotropic and anisotropic tissue with the FitzHugh-Nagumo AP
model.
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8.9. Appendix: 2D Myocardium Modeled as Interconnected Cables

For an isolated j fiber:
a J*V/(x,t) N (x,1)
=C + > I )+ 1 24
2’; axz m dt z wn(x ) St ( )
Discretization of the time ¢ gives:
NV t30,%) =V (1, %)

ot L — 1
Let us introduce the following definitions:
At =t —1;

aAt; -D.=D

2r;
_Vj(x’ti)+lzlion(x’ti)"'IStJAti = F(x1;)

2yJ A A
D%—Vj(x,tm)zFf(x,ti) 25)
X

The solution
VI(xty)=Vi+V,
2 i (.1, .

D J V&(:;,tm) —V’(x,tm) -0
Vi =CeVP +Cype VP ; VJ(xr)
For cable with junctions
th = bkle‘/B +bkze ‘/5 +VP
by; and by, can be obtained from the junction conditions:
Ik—0+1k+0+IR" =O

_VI(E)-VI (%)
n R

n

Ig

V(x) - continuous

) 1 LI S
Vp’(x)z e‘m.fe
0

2+/D

X X

‘mF(x)dx— eiﬁjeﬁF(x)dx
0

Results obtained with a two-dimensional spiral wave [16] are presented in fig. 19.
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Fig. 19. Initiation of two-dimensional reentry. AP distribution (V-map, left column) and
distributions of recovery from inactivation (h-map, right column) at 130-190 ms after application of
stimulus S;. Stimulus S, occurring 110 ms after S;. A = activation front due to S,, R = recovery
front due to Sy; R” = recovery front due to S;; q = point of junction between the A and R fronts.
Figure is an excerpt from [16].

Results in fig. 19 were obtained under the following conditions to achieve
reentry:
® AR (anisotropy ratio) = 4:1 and
® time constants, 7, and 7, in expression for I; decreased by a factor of 8 to
obtain the shortening of APD and ARP (absolute refractory period).

8.10. References

Winfree, A.T., Mechanisms of cardiac fibrillation - Reply. Science, 1995. 270: 1224-1225.
. Karma, A., Electrical alternans and spiral wave breakup in cardiac tissue. Chaos, 1994. 4: 461-
472.

3. Gulko, F.B. and A.A. Petrov, Mechanisms of the formation of closed pathways of conduction in
excitable media. Biofizika (USSR), 1972. 17: 261-270.

4. Allessie, M.A., F1.M. Bonke, and F.J.C. Schopman, Circus movement in rabbit atrial muscle as
a mechanism of tachycardia. Circ.Res., 1973. 33: 54-77.

5. Zykov, V.S., Simulation of Wave Process in Excitable Media. Nonlinear science: theory and
applications, ed. A.V. Holden. 1987, Manchester and New York: Manchester University Press.

6. Tyson, J.J. and J.P. Keener, Singular perturbation theory of traveling waves in excitable media.
Physica D, 1988. 32: 327-361.

7. Keener, J.P. and A.V. Panfilov, The effects of geometry and fibre orientation on propagation
and extracellular potentials in myocardium, in Computational Biology of the Heart, A.V.
Panfilov and J.P. Keener, Editors. 1997, John Wiley & Sons: New York, NY. p. 235-258.

8. Henriquez, C.S., Simulating the electrical behavior of cardiac tissue using the bidomain model.

Crit Rev Biomed Eng, 1993. 21: 1-77.

0N =



8.10 References 171

9. Neu, J.C. and W. Krassowska, Homogenization of syncytial tissues. Crit Rev Biomed Eng, 1993.
21: 137-199.

10.Roth, B.J., How the anisotropy of the intracellular and extracellular conductivities influences
stimulation of cardiac muscle. J Math Biol, 1992. 30: 633-646.

11.Luo, C.H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I.
Simulations of ionic currents and concentration changes. Circ Res, 1994. 74: 1071-1096.

12. Chudin, E., J. Goldhaber, A. Garfinkel, J. Weiss, and B. Kogan, Intracellular Ca(2+) dynamics
and the stability of ventricular tachycardia. Biophys J, 1999. 77: 2930-2941.

13.Huffaker, R.B., R. Samade, J.N. Weiss, and B. Kogan, Tachycardia-induced early
afterdepolarizations: Insights into potential ionic mechanisms from computer simulations.
Comput Biol Med, 2008. 38: 1140-1151.

14.Rudy, Y. and W. Quan, A model study of the effects of the discrete cellular structure on
electrical propagation in cardiac tissue. Circ.Res., 1987. 61: 815-823.

15.Leon, L.J., F.A. Roberge, and A. Vinet, Simulation of two-dimensional anisotropic cardiac
reentry: effects of the wavelength on the reentry characteristics. Ann Biomed Eng, 1994. 22:
592-609.

16.Leon, L.J. and F.A. Roberge, Structural complexity effects on transverse propagation in a two-
dimensional model of myocardium. IEEE Trans Biomed Eng, 1991. 38: 997-1009.

17.Drouhard, J.P. and F.A. Roberge, Revised formulation of the Hodgkin-Huxley representation of
the sodium current in cardiac cells. Comput Biomed Res, 1987. 20: 333-350.

18. Gulko, F.B. and A.A. Petrov, On a mathematical model of excitation processes in the Purkinje
fiber. Biofizika (USSR), 1970. 15: 513-520.

19.Kogan, B. and P. Vrbavatz, General structure of the hybrid computer system HCS-100. 1974,
Moscow Institute of Control Science: Moscow, Russia.

20. Wiener, N. and A. Rosenblueth, The mathematical formulation of the problem of conduction of
impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch.
Inst. Cardiol. Mexico, 1946. 16: 205-265.

21.Kogan, B.Y., WJ. Karplus, B.S. Billet, A.T. Pang, H.S. Karagueuzian, and S.S. Khan, The
simplified Fitzhugh-Nagumo model with action potential duration restitution: effects on 2D-
wave propagation. Physica D, 1991. 50: 327-340.

22.Fife, P.C., Mathematical Aspects of Reacting and Diffusing Systems. 1979, Berlin, Germany:
Springer-Verlag.

23.Keener, J.P., An eikonal-curvature equation for action potential propagation in myocardium. J
Math Biol, 1991. 29: 629-651.

24.Kogan, B.Y., W.J. Karplus, B.S. Billet, and W. Stevenson, Excitation wave propagation within
narrow pathways: geometric configurations facilitating unidirectional block and reentry.
Physica D, 1992. 59: 275-296.



Chapter 9. Theory and Simulation of Stationary
Wave Propagation

Stationary spiral wave phenomena, in simulated myocardium consisting of AP
models, and their associated characteristics (such as rotational angular velocity, core
radius, and wavefront morphology) are topics of major theoretical and practical
interest. These topics will be discussed in this chapter within the framework of
findings from Zykov [1], which are valid under the following assumptions:

a. an unrestricted domain of spiral wave propagation

b. only one spiral wave is initiated

c. spiral wave rotation is stationary and the resultant period of circulation,
T =27/, is constant.

Various examples of stationary and nonstationary spiral wave propagation that
are obtained from computer simulations are presented here. These examples serve to
illustrate several theoretical results, demonstrate the effect of different parameters in
AP and myocardium models on spiral wave initiation and propagation, and highlight
specific features of intracellular Ca dynamics incorporated in recent AP models. In
order to facilitate an understanding of these findings, a description of the kinematics
of stationary wave propagation and related relationships is presented in the following
section.

9.1. Kinematics of Stationary Spiral Wave Propagation

The kinematic characteristics of a stationary spiral wave can be derived using
Fig. 1, which summarizes a simulation result shown in the previous chapter.

Fig. 1. Geometry of a stationary propagating wave. In this figure, r, is the radius from point ¢ to the
edge of the rotating spiral wave, s is the location of a point on the spiral wave in reference to point g
or Q. When measured in reference to g, s = 0 at point ¢, s > 0 for points on the wavefront, and s < 0
for points on the wavetail. If measured in reference to Q, then s = 0 at point Q and s > 0 for all
points on the wavefront where r > rg.
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Fig. 1 provides the means to derive several mathematical relationships. In the
case of a stationary spiral wave, it will rotate around the center of the core as a solid
body with a constant angular velocity, o. The linear conduction velocity, u, for each
point s on the wavefront will then be given by u = wr, where r is the radius of
rotation from point g. The projections € (normal to the point s) and v (tangent to the
point s) of the velocity u are given by the expressions below

O=ucosf and v=usinf (1
where f is the angle between u and the unit normal. It is evident that u# and its
components vary with respect to r and wavefront curvature. Thus, in point g (s = 0):

u,=or,=v, and 6,=0. 2)

Stationary spiral waves also have the property that their curvature in an
unrestricted domain of propagation tends to zero and 6 tends to O, as the point s
becomes infinitely distant from the point g. In this circumstance, a point Q on the
wavefront always exists for which the following expression is true:

Uy =6, = Opy=0r, | (3)
Combining (2) and (3) produces
s 4)
r=r, .
q 9] 90R

Another characteristic of the spiral wave is the curvature of a curvilinear front,
K, and this may be defined via several relations:

K(s) =a—ﬁ, K(p) 1 ,and K(x,y)=
s Yo,

During stationary propagation, K is time independent.

9.1.1. Natural Equations and the Morphology of a Stationary Spiral
Wavefront

Fig. 1 indicates that two characteristic points on the wavefront exist: point Q,
where the velocities are described by the expressions v = 0 and u = € = fx; and point
g, where the analogous expressions for velocity are u =7v (7 is the unit tangent
vector) and 4 = 0.

It is worthwhile to introduce a curvilinear system of coordinates in relation to
the wavefront. The length of the arc s along the wavefront can be measured either
from the point ¢ or Q. In the former case, s = 0 at the tip of the spiral wave and s is
considered positive along the wavefront and negative along the wavetail. For the
second case, s = O at the point Q and s is positive when r > r, and negative when
r < ro. At each point s, the velocities 8 and v can be expressed, as an alternative to
(1), as scalar products: 8 =(u,n) and v=(u,7), where n is the unit normal

vector.
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By utilizing the Frenet formulas from differential geometry (see the Appendix)
and some basic rules of vector analysis (see [1] for details), one can finally transform
these expressions into the form

99 | K(syv(s)=w ®)
ds

D k(56 (5)=0, (6)
ds

with the boundary conditions 9(s]x=0=0m and v(s]FO: 0 and with s = 0 at the

point Q. The equation set of (5) and (6) constitute the Natural Equations.
If the relation u’(s) = 6%(s) + v’(s) is taken into consideration, then it is possible
to obtain the following relation (see Appendix for details) from (5) and (6):

o dz(w)z
K (s)=— 5 . @)
Za)_[ O(E)dE — 67 (5) +u*(0)
0

In (7), the parameters w and u(0) are constant. This expression determines the
curvature of the wavefront as a function of 6(s), namely K(s) = f(6(s)). This
functional dependence of K(s) may be determined either by computer simulation [2]
or its first approximation as a linear curvature expression (see Chapter 8).

9.1.2. Estimates of the Stationary Spiral Wave Angular Velocity o and
the Radius r,

The Natural Equations (5) and (6), along with the boundary conditions
K(0) = Kcg and v(0) = 0 (with s = 0 at the point Q) and the replacement of @ in (5)
and (6) by the linear curvature equation 8(s) = g, + viDK(s), give

%: K(sX8u + DK(5))  (v(0)=0) ®)
D, i,—f =w-K(sh(s)  (K(O0) = Ker), ®)

where D; = v{DK(s).

In the above set of equations, it is necessary to select a value of the parameter w
such that K > 0 when s > 0 and K — 0 when s — oo. It is straightforward to
demonstrate that @ does not depend on D,. In order to show this, the following

variables are rescaled: K = K4/D, ; \7:\//,/D1 ; 529/ D, ; and Ezs/,lDl .
Substitution of these rescaled variables in (5) and (6) does not alter the form of the
Natural Equations. It becomes evident that w is dependent on 6, and K, but not
D,.

Therefore, using the dimensional considerations proposed in [1], @ can be
expressed in the form
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w= _gRLKCRA(_%J . (10)
RL

In (10), the negative sign indicates that K < 0 and the function A(-KcrD1/6gy) is
obtained from numerical solutions of the system composed of (8) and (9) with
different values of 0y and constant values of K¢z = -1 (cm'l) and D; =1 (cm2/s).

Estimates for ry and r, can be found from the elementary kinematic properties of
a stationary wave:

Ock _ Op. + DK g Vg

p=—r=—r——— and r, =rp—. (11
® ® K Ocr

9.2 Propagation in Restricted Myocardium

Consider a tissue with a circular form, with finite radius rp (see Fig. 2), and a
boundary condition (0V/0n)g = 0. In this case, the Natural Equations (5) and (6) are
valid for this particular geometry. If we measure the arc length, s, from the point Q,
then the boundary conditions for (5) and (6) also remain unchanged. Therefore, the
Normal Equations are

406 | ksws)=w and ko5 =0 |
ds ds
with the initial conditions v(0) = 0 and 6(0) = 6Ocg. In addition, the relation
6 = Og, + D1K(s) holds when K > K. Since up = wrg = 0 and vg = 0 for all points
on the myocardial border, the boundary conditions in this region will be v(sp) = 0
and O(sp) = wrg = g, + D1K(sp). However, K(s) = 0 when s = sp; thus, the boundary
condition for O(sp) is simply equal to Og; and @ = Og,/ry,.

Fig. 2. Propagation of a stationary spiral wave in myocardium with a circular configuration and a
radius ry.

An inverse relationship exists between the radius r, of a circular area of the
myocardium and «; however, it is true only for comparatively large r, for which the
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period of circulation is sufficiently long that the effects of recovery processes can be
neglected. Computer simulation studies illustrate that decreasing the circular area of
the myocardium leads to significant alteration of the spiral wave morphology near
the core and smaller lengths for ry and r,. Taken together, these findings show that
myocardium configurations, as well as their sizes, play a significant role in
stationary propagation. As an example, a square myocardium configuration is
theoretically incapable of producing stationary spiral wave propagation, since the
distances from the center of circulation to the borders are not equal in all directions.

9.3. Propagation in Unrestricted Myocardium with a Central Hole

Spiral wave propagation around a hole (with radius #,) in the myocardium can
occur as one of two cases (see Fig. 3): (1) when r;, > ry (where ry corresponds to
myocardium without a hole); and (2) when r;, < ry. It is possible to utilize equations
(8) and (9), with the linear curvature expression, to analyze the first case. As a
consequence, the following relations hold as the distance s becomes infinitely far
from the hole: K(s —0) = 0 and f(s —0) = 6g;. The boundary conditions along the
wave-hole interface, at the intersection point sy, are obtained from the orthogonality
condition: v(s,) = 0 and O(K(s;)) = wry,.

Fig. 3. Two cases of stationary propagation of a spiral wave in myocardium with an unrestricted
size and a central hole: (@) when r;,> rg and (b) r,< ro.

In the second case (see Fig. 3b), stationary spiral wave propagation around the
hole is possible if a new core of rotation arises during the formation of the spiral
wave, with r, and r both exceeding r;,
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9.4. Propagation in 2D Myocardium with Simplified AP Models

9.4.1. General Considerations

The following examples presented here were selected in order to illustrate
several propagation characteristics: (a) the effects of characteristics within simplified
AP models on spiral wave initiation in 2D myocardium (after application of an
appropriate premature stimulation); (b) the method of fitting APD restitution curves,
obtained in real myocardium, into simplified AP models; and (c) distinctions
between the morphologies of spiral waves in actual myocardium and in computer
simulations with simplified AP models. Numerous publications regarding spiral
wave initiation and propagation in simulated myocardium, which consist of first
generation AP models, exist in the literature [3-5]. All these studies were primarily
concerned with proving the so-called APD restitution hypothesis, which attempts to
explain the drifting core of a meandering spiral wave and its subsequent breakup into
multiple spiral waves. However, none of these investigations resulted in a
formulation of the stability criteria for stationary spiral wave propagation in a 2D
model of myocardium (in a similar manner to the Courtemanche et al study [6] in a
1D ring of Beeler-Reuter AP models). Nevertheless, simulation results obtained
using first generation AP models demonstrate several important concepts and are
included in this section. Later, findings from simulations of spiral wave propagation
in 2D myocardium composed of second generation AP models are presented. These
latter studies present qualitatively different spiral wave propagation and permitted
the investigation of new phenomena, such as Ca and APD alternans during high
pacing rates [7], spiral wave regeneration in myocardium with a restricted size [8],
and the formation of EAD [9] and DAD [10] clusters during spiral wave rotation.

9.4.2. Simulations Using the FitzHugh-Nagumo Model

The results of computer simulations of stationary spiral waves in uniform
myocardium that are presented here utilized the Pushchino modification of the
FitzHugh-Nagumo (FHN) AP models (see details in Chapter 5), which were adopted
in order to reproduce the cardiac AP. The mathematical model for isotropic
myocardium (a, = a, = @) can be represented in the following dimensionless form:

oV, 9V, 9V,
Y (a)—cz az)+F(Vm) I+1, 12)

a—I.—S(f(V,,,) 7 (13)

Equatlons (12) and (13) consist of several dimensionless variables:
v, = 1=1]1 =t/7, ; S(V ) 7,/7,;and y = y/A. The functions

F=F(V )/ I, and I =1/1_, represent the total inward and outward membrane

m / m,max ; max

currents (in dimensionless form), respectively, and they are represented using a
piece-wise linear approximation. The function f (\7,n) reflects the value of the
outward current I as ¢ — oo. The small parameter E(Vm) defines the temporal

properties of membrane outward currents and thus controls the duration of the AP
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and associated recovery processes. In the original Pushchino model with so-called
standard parameters (see Chapter 5), the function &£(V,,) is presented as a two-part

piece-wise function.

1=
1.0 H=
3
a -
E{ 0.9
Q -4
E;
0.8
0.7 T T T T T T v 1
0 1 2 3 4

DIj.; /APD,,

Fig. 4. APD restitution curves in dimensionless coordinates for (a) the FHN model with the
standard set of parameters, (b) an actual cardiomyocyte (experimental results), and (c) the four-part
piece-wise linear approximation of ¢ in the FHN model. APD., denotes an AP duration occurring
after a previous DI with sufficient length to allow all gating recovery processes to come to
completion. The index i is the number of the excitation cycle.

The restitution curve obtained using this model in the course of computer
simulation is shown in Fig. 4a. A key feature of note is that APDs are nearly
constant except for small DIs. The restitution curve obtained from a real
cardiomyocyte in a physiological preparation (Fig. 4b) shows a significant decrease
of APD with shortening of the previous DI. In order to fit a desired restitution curve

into the FHN model, a proposal [11] based on representing the function &(V,)as a
four-part piece-wise linear approximation (see Chapter 5) was utilized:

g ifv, <0.0land%>0 £ =05

g, ifV, 20.01and%>0 £, =0.02

™|
Il

g, if I >1_ and %so £,=05
t

£, otherwise £,=0.018

The modified restitution curve for the FHN model with a four piece-wise linear
approximation of the function 8(\7,”) is shown in Fig. 4c and indicates that the
proposed method gives a satisfactory result.

Prior to the presentation of 2D simulation results, a color and greycode legend
for V,, (Fig. 5a) and I (Fig. 5b) is provided in order to facilitate understanding of
quantitative values in the figures. These codes will be used through entire book.
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Fig. 5. Schematic representation of color and greycode levels (the latter in parentheses) designating
the action potential (V,,) and outward current (/) phases.

Spiral wave initiation and subsequent propagation in a myocardium with a square
configuration and composed of FHN AP models with Pushchino modifications [12]
(with standard parameters) are shown in Fig. 6. In order to initiate the spiral wave,
the S;-S, protocol is utilized. This entails first providing S; stimulation to a group of
nodes located in the left upper corner of the grid

Action Potential  Outward Current

t=35 units t= 145 units

1= 85 units

t="165 units

1= 124 units t= 198 units|

Fig. 6: Example of computer simulation results with a premature stimulus application to a 2D
model of myocardium composed of FHN AP models with Pushchino modifications and standard
parameters [12]. S; designates the stimulus initiating the original wave propagation and S, denotes
the site of premature stimulation.

representing the myocardium, which leads to a semicircular wavefront arising after
t = 25 time units. When ¢ = 124 time units, the second (premature) stimulus, S,, is
applied as the wave begins to leave the myocardium from the corner opposite to the
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S; site. As a result, a new circular wave appears (t = 145 time units) and continue to
propagate until its radius reaches (t = 198 units) the grid borders and disappears. No
spiral waves were observed in this circumstance. It was observed that a spiral wave
can be initiated in these conditions only if the S, stimulus is applied to an area in
close vicinity to the tail of the previous wave.

If the almost instantaneous inactivation of the outward current following the
conclusion of the AP (which is present in the simulation shown in Fig. 6) is altered
so that inactivation occurs more slowly (which is shown in Fig. 7), it then becomes
possible to initiate spiral waves without changing the timing or location of the S,
stimulus. This alteration is accomplished by introducing the four-part piece-wise
linear approximation of the function &£(V,) [11] so that it fits more closely to the

APD restitution curve of a real cardiomyocyte (see Figs. 4a and 4b).

Action Potential  Outward Current

t=75 units t= 130 units

t= 85 units t= 162 units

t=124 units t= 190 units

Fig. 7: Time course of the generation and propagation of double spiral waves in simulated 2D
myocardium consisting of FHN AP models with the four piece-wise linear approximation of the
£(v,) function, which increases the inactivation time of the outward current under the effect of

quinidine. Initial wave propagation is concentric. Premature beats are applied at the far edge of the
central area of the window of vulnerability, which is shown in Fig. 8.

The window of vulnerability (WV) is defined as an area in the myocardium,
generated in the wake of a previous propagating wave, where application of an
appropriate premature stimulus can lead to the appearance of spiral waves. The
shape of the WV follows from the morphology of the previous wave and its
dimensions (see Fig. 8) depends on the restitution properties of membrane gate
recovery processes. As these recovery processes become more prolonged, the WV
will increase in size and facilitate spiral wave initiation. Moreover, recovery
processes underlie both stationary and nonstationary (including breakup) wave
propagation by generating stable or unstable functional heterogeneities, respectively,
in myocardium that was initially uniform.
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a) Concentric stimulation b) Rectilinear stimulation
[! 4
Ji e
/£ e 8
L T
/ D2
WQR:F% D3 =
@
&g * o :
> 3
| & e ) D3 £
Window of vulnerability it ;
Premature stimulus ; i /
V4 7
T P A Window of vulnerability Tail of previous wave

Premature stimulus

Window dimensions  Concentric stimulus  Rectilinear stimulus

Control simulation D1 - 20 Bl - %
D2 - 67 D2 - 67
D3 - 86 D3 - 89

Quinidine simulation D1 - 2 D1 -5
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Note: The tail (10x1) section of the premature stimulus must lic completely within the window of
vulnerability for a spiral wave to occur. The premature stimulus dimensions are 10x20 units.
All dimensions correspond Lo simulation grid dimentions (128 x 128 grid ).

Fig. 8: Geometry of the window of vulnerability following rectilinear and concentric stimulations.

Notable results were presented in [13] in relation to the initiation and study of
stationary and nonstationary spiral waves in physiological experiments in relatively
small (20 mm x 20mm x 0.5 mm) slices of sheep and dog epicardium. Spiral waves
were first initiated via crossfield stimulation and were visualized spiral waves with a
potentiometric dye in combination with charge coupled device (CCD) imaging
technology. The majority of spiral waves observed in their experiments were
anchored to small arteries or bands of connective tissue, which facilitate stationary
propagation. In Fig. 9 (which is an excerpt from [13]), a sample of their
physiological observations is provided with simulation results that utilized the FHN
AP model with Pushchino modifications [12].
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Fig. 9. (a) Clockwise-rotating spiral wave in canine epicardial muscle. White denotes maximal
depolarization, black denotes resting potential, and the numbers represent the time in ms. (b) Time
course of local activation on the upper left corner of the tissue during the last 10 cycles. Bar
indicates time of recording in the (c) snapshot of a spiral wave obtained in a computer simulation
using an AP model [12] in epicardium modeled as a grid of 96 x 96 nodes. The size of this grid is
larger than the heart preparation shown in (a). The dashed line in (c) reflects the size of the
preparation slices.

The analogy, even in a qualitative sense, between the physiological experiments
and the computer simulation study is very superficial. The major reasons are
threefold: (a) spiral wave rotation in the physiological experiment was observed to
be anchored to anatomical obstacles, whereas rotation in the simulation study
occurred in the center of unobstructed myocardium that only accounted for
anisotropy; (b) the simplified AP model in the simulation study did not possess
intracellular Ca dynamics and hence produced a shorter APD, especially during
spiral wave propagation, in comparison to that measured in real epicardium, which
experiences a potentiation of inward Ca-sensitive currents in response to intracellular
Ca accumulation; and (c) the size of the experimental heart preparation is smaller
than the corresponding grid utilized in the computer simulation, which itself
increases border effects on stationary propagation. I mention these considerations,
not to highlight the drawbacks of the presented results (which were highly reputable
at the time they were published), but to warn readers that in order to claim two
processes are analogous, it is first necessary to prove that they indeed satisfy certain
criteria for analogy.

9.4.3. Simulations Using the Van Capelle and Durrer Model

The FHN AP model used in the aforementioned studies of wave propagation in a
2D model of myocardium is not an ionic AP model in the common sense of the term.
Alternative simplified AP models (see Chapters 4 and 5) have been proposed that
more closely resemble ionic AP models, but do not require a significant increase in
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computational resources. Among them is the Van Capelle and Durrer (VCD)
simplified AP model [14], which has attracted wide attention [15, 16, 17]. In its
original form, the VCD model was intended for implementation on a PC, leading to
the imposition of certain restrictions on simulated AP and myocardium model
parameters. These restrictions prohibit accurate reproduction of the major
characteristics of the AP and hence create difficulties in the simulation of stationary
spiral wave and fibrillation-like phenomena. Later in this section is a presentation of
the results of computer simulations obtained with a VCD model that has modified
parameters and an elimination of the restriction on grid sizes [15]. The latter
accomplishment is achieved by replacing the PC with a parallel computer system
(CM-2).

The VCD mathematical model of excitation-propagation in 2D myocardium with
uniform anisotropy along the axes x and y incorporates two state variables: the
membrane action potential V,, and the generalized excitability function Y(¢, V,,). The
function Y varies between 0 (maximal excitability) and 1 (complete inexcitability).
The following system of partial differential equations (PDEs) describes the behavior
of these state variables in time and space:

Cn % ==(1-v)- 7v,)-i(v,) =i, (142)

Taa—l::Yw(Vm)—Y (14b)

rv,)=iv,)-i(v,) (14c)

i, =i, +i and i, :ax(aZVZm +A82V2'"J. (14d)
ox ox

In equations (14a)-(14d), C,, is the membrane capacitance, T is the time constant
of the variable Y, i(V,,) is the current-voltage relationship for a fully excitable
membrane, i(V,) is the current-voltage relationship for a fully unexcitable
membrane, Y,,(V,,) is a steady state value of the function of Y, A is the anisotropy
ratio (usually A = 1/4), i, is the stimulus current, and i, is the current from adjacent
nodes in the grid model of the myocardium. The current i, is also referred to as
diffusion or local current. The parameters and major characteristics of the original
and modified VCD models are presented in Table 1 and their associated APD
restitution curves are presented in Fig. 10.
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Table 1: Parameters and major characteristics of the VCD AP model and wave propagation in 2D
myocardium: the original version of the model [14] and after its modification [15].

Original After C ¢
omments
Version Modification
C (uF/em?) 10 1
As it was shown . .
T (ms) 0.5 . Time constant of variable Y(V,,)
in [18]

w
g
g A (unitless) 0.25 0.25 Anisotropy ratio: A = oy /o
g
< 0.00125-
B | o (kQ’l) 0.00133 Not changed ox = r/2R; (see Chapter 5)

nx X ny (unitless) 40 x 40 128 x 128 Grid size

K (unitless) 1 4 Ic(ia“}((gf)(v"‘iﬂv |

= m)mod m)orig
V.|, mV) 79.1 95.3
V.| (V) 6.8 398
max
5]
& | APDp,,.. (ms) 292 112
5
> ) AP relaxation  coefficient
g p (unitless) 253 467.7 p=APD_ (Vm )max /VmX
= R
o ¥V, 3 Solution Added logic | ¥(V,, )00 =0, OVi/r>0.01.
" of (14b) function Otherwise, Y(Vou, £)originat
(O (cs) 43 347 Post-modification data is
ong (C S . . .
Kt Jtong presented according to [15]
(OrL)trans (cT/8) 24 19
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Fig. 10. The normalize APD restitution curves obtained from (1) the Luo-Rudy 1 AP model, (2) the
original VCD AP model, and (3) the modified VCD AP model (3). APD; — APD,, is after an infinite
diastolic interval and APD; — APD is after the diastolic interval DI;_;.

Direct comparison of these data indicates that the original VCD model does not
reproduce the majority of important physiological characteristics of the cardiac AP:
gating recovery processes, the rate of depolarization, the relaxation coefficient value,
and the rectilinear conduction velocity in both directions. Since the size of the
myocardium is not sufficiently large to avoid border effects, a shortening of the WV
occurs and causes difficulties in the initiation and support of stationary and
nonstationary spiral wave propagation.

The aforementioned problems are rectified by modification of the characteristics
and parameters of the VCD AP model (as shown in Table 1) and the fitting the APD
restitution curves obtained from actual cardiomyocytes. These alterations facilitate
the initiation and propagation of stationary and nonstationary spiral waves and in the
presence of pacemaker activity or additional applied stimuli [19], spiral wave
breakup is observed (see Fig. 11).
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Fig. 11. Breakup of a spiral wave in 2D myocardium utilizing a modified VCD AP model [19].
(A) Generation of double spiral waves and application of two additional stimuli (stars).
(B)Temporary breakup of the double spiral waves. (C) Reformation of a nonstationary spiral wave.
(D)-(F) Progression to full breakup.
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9.5. Propagation in 2D Myocardium with 2"! Generation AP Models

9.5.1. General Considerations

An entire spectrum of second generation AP models exists (see Chapter 4), but
only two possess a complete representation of intracellular Ca dynamics (the
Luo-Rudy 2, or LR2, model of the guinea pig ventricular AP and its modification by
Chudin). As a result, these two AP models became the subject of a restricted set of
comparative studies of spiral wave propagation in 2D isotropic myocardium and the
associated findings are presented here. These simulations necessitated the computer
implementation of the following PDE:

a‘/ﬂl p— az‘/ﬂl az‘/ﬂl
o = D( " + P Y+ 1,0t 1, (15)

In (15), all transmembrane currents, such as I, and I, are in units of pA/uF.
The term D = 0.001 cm*/ms represents the diffusion coefficient. In order to convert
(15) into a closed form expression, it is necessary to include a system of ODEs
which describes the behavior of all components of 1,,,, and the corresponding
processes within intracellular compartments (see the appendix of chapter 4 for
details regarding both AP models).

9.5.2. Simulations Using the LR2 AP Model

In order to make computer simulation feasible, the operator splitting algorithm,
which facilitates the numerical solution of the PDEs on massively parallel
supercomputers (see details in Chapter 6.4), was implemented on a CRAY-T3D
[20]. This algorithm divides the integration of (15) into two portions: integration of
the diffusion component of (15); and integration of the remainder of the (15) (the
system of nonlinear ODEs), which can be performed at any point in space
independently of its neighbors. The domain of integration was approximated by a
256x256 grid of nodes connected by coupling resistors. The grid is divided into
strips along one axis and is subsequently divided among the parallel processors so
that each processor is integrating (15) only in its own portion of the grid.
Communication between processors is required only for the solution of the diffusion
component of (15) and is implemented using the Message Passing Interface
standard. An adaptive time step was utilized (varying between Az, = 0.1 ms and
Atguay = 0.005 ms) in order to integrate the system of ODEs during the overall
interval Ar = 0.1 ms. The integration of the diffusion equation is performed twice
during that interval with a time step Az, = At/2 by using the explicit Euler method
and a space step equal to Ax = 0.025 cm. The choice of the above parameters
resulted in a rectilinear conduction velocity of 55 cm/s.

Spiral wave initiation entailed the application of a premature stimulus S, (in the
form of a rectangular region) behind the tail of a propagating rectilinear wave (see
Fig. 12 at time f)). Since the premature excitation cannot propagate into the
unrecovered region, a point g (where the wavefront is adjacent to the wavetail)
appears.

As a result, the wavefront begins to circulate around this point and a spiral
wave becomes established after a transient phase. The spiral wave morphology
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remains unaltered and the period of rotation changes slowly (from an initial value of
120 ms to 140 ms after 5 s). This phase lasts for approximately 6 s, after which the
wave morphology begins to deform. The subsequent nonstationary circulation of the
spiral wave continues for another 6 s and is followed by spiral wave breakup. All of
these aforementioned processes are illustrated in Fig. 12.

Fig. 12. Spiral wave propagation in the LR2 AP model. Application of a premature stimulus (¢, =
250 ms). Spiral wave initiation (, = 307 ms and f3 = 507 ms) and the formation of a stationary
spiral wave (4 = 1000 ms). Nonstationary propagation of the spiral wave due to intracellular Ca
dynamics (s = 11266 ms) and subsequent spiral wave breakup (t5 = 15036 ms).

Results obtained from simulations using a solitary AP model suggested that the
transition from the stationary to the nonstationary regime may be a consequence of
gradual changes in complex intracellular Ca dynamics. Fig. 13 demonstrates that
intracellular Ca dynamics, recorded at a single node in the tissue model during spiral
wave circulation, is very similar to that observed in the solitary AP model
simulations.

It was hypothesized that spiral wave deformation and breakup are caused by
gradual changes in complex intracellular Ca dynamics during spiral wave rotation.
The accumulation of [Ca®*]; significantly increases the APD via amplification of the
Inac. and others Ca-dependent currents. This APD prolongation leads to shortening
of the diastolic interval and thus modifies wave propagation characteristics. The
critical step in this process is abnormally large spontaneous Ca release from SR as a
result of elevated Ca in the SR and myoplasm.
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Fig. 13. Effect of Ca transients on APD during 2D wave propagation (A and B). Membrane
potential and [Ca2+]i, respectively, recorded from a point with coordinates (x, y) = (0.4 cm, 4 cm),
where the origin is located at the upper left corner. Values of [Ca®]; higher than 1.9 uM were
indistinguishable in these 2D simulations, due to the employed coloring scheme (which explains
why the graph presented in B is discontinuous).

To further investigate this hypothesis, simulations were conducted in which the
L-type Ca channel was blocked. When the block was applied prior to the onset of
wavefront breakup, a stationary spiral wave was obtained (see Fig. 14).

Fig. 14. Effect of L-type Ca current block on wave propagation characteristics. (a) Time = 13000
ms. (b) Wave front 1200 ms after (a) with no blockage of the L-type Ca current. (c) Wave front
1200 ms after (a) when the L-type Ca current block was applied. All 2D simulations were
performed on a CRAY-T3D parallel supercomputer using the operator splitting algorithm, an
adaptive time step, and a fixed space step equal to 0.025 cm.
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However, if block was applied after wavefront breakup, multiple stationary
spiral waves were obtained. It is possible to argue that the block of the L-type Ca
channel not only affects intracellular Ca dynamics but also shortens the APD (by
shortening the plateau phase of the AP) and thus stabilizes the spiral wave. In order
to demonstrate that the change in intracellular Ca dynamics alone produced a
stabilization of the spiral wave, simulations employing a clamped Ca distribution
were performed. Although this distribution was spatially nonuniform, a stationary
spiral wave was obtained and this strongly supported the Ca-dependent scenario of
spiral wave breakup. In this respect, it is worthwhile to note that the APD restitution
curve of the LR2 AP model (see [21]) has a slope less than unity for almost all
diastolic intervals and is therefore unlikely to mediate spiral wave breakup.

In summary, intracellular Ca accumulation in the SR and myoplasm during high
frequency stimulation conditions, such as spiral wave rotation, leads to irregular
intracellular Ca dynamics when Ca in the overloaded SR is eventually released via
spontaneous Ca release.

Studies of the LR2 model reveal that intracellular compartments become
overloaded with Ca during conditions of rapid pacing. Spontaneous Ca release from
the SR induces irregular changes in [Ca®*]. As a consequence, APDs become
abnormally prolonged due to the effect of the Na-Ca exchanger.

In a 2D grid of LR2 AP models, intracellular Ca accumulation during rapid
spiral wave rotation causes spiral wave deformation and breakup. Wave breakup is
preceded by the onset of highly irregular intracellular Ca dynamics. However,
blockage of the L-type channel can restore stationary spiral wave propagation. The
transition from nearly stationary to nonstationary spiral wave propagation and
breakup is impossible to reproduce in 2D simulations with models that lack a
detailed description of intracellular Ca dynamics.

9.5.3. Simulations Using the Chudin AP Model

AP propagation using the Chudin AP model [22] in a 2D isotropic uniform
cardiac syncytium is described by the same PDE (15), with the corresponding initial
and boundary conditions mentioned in the previous section. Indeed, the Chudin AP
model reformulates only the intracellular Ca dynamics in the LR2 AP model (see the
appendix of chapter 4 for a description of both models).

In order to make (15) closed, equations governing intracellular Ca dynamics
and Hodgkin-Huxley-type gates are added. Computer simulation results illustrating
spiral wave initiation and propagation in 2D myocardium with these modifications
of intracellular Ca dynamics are shown in Fig. 15.

The diffusion coefficient D was chosen to provide a conduction velocity of ~55
cm/s for a solitary plane wave. As with the LR2 AP model, a premature S, stimulus
was applied in order to obtain a reentrant spiral wave. Since the resultant excitation
could not propagate into an unrecovered region, a point g (where the wavefront was
adjacent to the wavetail) appeared. This led to the circulation of the wavefront
around this point (see Fig. 15A), which formed the tip of the spiral wave (Fig. 15B
and 150C).
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Fig. 15. Ca dynamics cause spiral wave breakup in a simulated 2D model of the myocardium. (A)
Initiation of a spiral wave after application of a premature stimulus. (B) Appearance of transient
reentry prior to the establishment of a stationary spiral wave. (C) Establishment of a spiral wave
(t = 1275 ms). (D) Development of wavefront deformations (r = 4010 ms) leading to (E) breakup.
(F) After spontaneous Ca release was blocked, multiple reentrant wavefronts coalesced back into a
stationary spiral wave with a single wavefront.

The spiral wave rotated four times with a period of 170 ms and a diastolic
interval of 20 ms, and then became nonstationary, with the wavefront progressively
deteriorating for ~3000 ms (Fig. 15D). The breakup of the spiral wave was sensitive
to the “gain” in the [Ca2+]i sensitivity of various Ca-sensitive ionic currents. For
example, increasing the [Ca2+]i sensitivity of I,yc, by decreasing K, nycq from 1.2
uM to 0.9 uM facilitated breakup of the wavefront into a fibrillation-like state (Fig.
15E). During spiral wave rotation, each node located in the myocardium model is
subjected to rapid excitation (CL = 170 ms), which is enough to cause intracellular
Ca overload and spontaneous Ca release from SR (similar to the results observed in
simulation studies of the solitary AP model).

Analysis of APs and Ca transients recorded from a local site in the tissue
showed that the transition from the stationary to nonstationary regime started
abruptly with an unusually large Ca transient (see Fig. 164) due to spontaneous Ca
release. This caused substantial prolongation of the APD (Fig. 164, fop graph), due
to the increase in the inward components of Iy,c, and I, cq), Which led to marked
shortening of the subsequent diastolic interval.
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Fig. 16: Traces of transmembrane potential V,, (top), and [Ca2+]i (bottom) measured at a site
(N, = 100, Ny, = 100; origin at top left corner) in a simulated 2D myocardium. (A) V,, and [Ca2+]i
during the development of spiral wave breakup. (B) V,, and [Ca"]; after the block of spontaneous
Ca release. Quasiperiodic oscillations of V,, disappeared when Jy,0, Was blocked, as it is shown in
Fig. 15F.

The short diastolic interval dramatically decreased the depolarization rate of the
subsequent AP (by ~5-fold) due to the incomplete recovery of Iy, from inactivation,
which slowed the conduction velocity of the wavefront. The short diastolic interval
also shortened the subsequent APD due to its restitution properties, markedly
altering the wavelength (the product of APD and conduction velocity) in this region.
Conversely, the short diastolic interval and altered AP affected the intracellular Ca
transient of the next beat, which further modified the AP via its feedback on Ca-
sensitive currents.

If the interaction between [Ca2+]i and the Ca-sensitive currents affecting the AP
and conduction velocity is sufficiently strong, variations of restitution properties
along the arm of the spiral wave grow to the point where the excitation wave can no
longer propagate. Note particularly in Fig. 15E that wavebreaks occur at
wavefront/wavetail interactions (see arrows). This causes the spiral wave to breakup,
leading to a fibrillation-like state. In this scenario, spontaneous Ca release acts as a
gain-enhancing mechanism between [Ca2+]i and Ca-sensitive currents. As we
mentioned above, if this gain was decreased by reducing the Ca sensitivity of Ca-
sensitive currents (reducing the amplitudes of APD oscillations), then spiral wave
breakup was prevented. Likewise, if the gain was decreased by eliminating
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spontaneous Ca release, spiral wave breakup also did not occur. In fact, if spiral
wave breakup was allowed to develop with the spontaneous Ca release mechanism
intact, its subsequent elimination caused the multiple reentrant wavefronts to
coalesce back into a single stationary spiral wave (Figs. 15F and 16B). In this case,
the tip of the spiral wave that was reformed exhibited a shift with respect to its
original position (before start of nonstationary reentry), due to the redistribution of
recovery processes during the nonstationary regime.

When the modified LR2 AP model was used to simulate 2D myocardium, it was
found that intracellular Ca dynamics were directly responsible for causing the
transition from stationary to violently meandering spiral wave reentry promoting
wavebreak and a fibrillation-like state. This occurred because the complex temporal
intracellular Ca dynamics resulted in spatial heterogeneities in [Ca®*];, which
amplified the inward components of Iy,c, and I, to produce, in turn,
electrophysiological heterogeneities by prolonging the APD. These spatial regions of
prolonged repolarization interact with the wavefront during the next rotation of the
spiral wave, sharply decreasing conduction velocity and causing wavebreak. This is
illustrated in Fig. 15, in which the red color represents the points on the wavefront
where the absolute value of the I,,,,, current (see Eq. 15) is greater than 10 pA/pF
(the approximate threshold corresponding to significant participation of Iy, in
wavefront propagation). Breaks in the red line indicate slow propagation supported
by the L-type Ca current (where Iy, is highly inactivated) or conduction failure.

The qualitative nature of these results remain robust with respect to various
aspects of CICR current such as expressions for P(V,,), v, and the value of G,,.
Moreover, despite the different formulation of intracellular Ca dynamics and
different morphology of Ca transient, the original LR2 AP model gave qualitatively
similar results; that is, when its Ca dynamics were operational, spiral wave breakup
occurred due to the Ca instability [20].

These findings are generally consistent with studies implicating cardiac restitution
properties as key determinants of spiral wave instability and breakup. The effects of
intracellular Ca may operate dynamically by promoting functional
electrophysiological heterogeneities. By modulating various Ca-sensitive currents,
intracellular Ca levels locally alter cardiac restitution properties. If the “gain”
between intracellular Ca and Ca-sensitive currents affecting restitution is sufficiently
high, intracellular Ca dynamics may promote instability. Moreover, it was shown
that intracellular Ca dynamics under conditions of stationary spiral wave propagation
may cause such phenomena as Ca and APD alternans [7] and the appearance of
single point and clusters of EADs [8,9] and DADs [10] in tissue, which may
facilitate spiral wave instability.

9.6. Appendix: Derivation of Curvature for a Spiral Wave

The derivation for the Natural Equations provided below is based on the

expressions in (1) for 8 and v and the following Frenet formulas [23]: %—I = Kn and
A



9.6 Appendix: Derivation of Curvature for a Spiral Wave 195
on

— =—K7 . After performing the mathematical transformations described by Zykov
N

[1], the Natural Equations presented in (5) and (6) are obtained:

ﬁ-ﬁ- K()vis)=w
ds

%—K(s)& (s)=0,

with the boundary conditions 9(s]x=0=0m and v(s]FO: 0. In this circumstance,

s =0 at the point Q
The curvature of a stationary wavefront can be determined using the Natural
Equations. This is possible by multiplying (5) by (s), which yields

o062 (0K (5ls)= Ao (16)
s
A subsequent substitution of (6) into (16) produces the transformed expression

9(s)?+v(s)% = H(S)a). By inspection, it is evident that the left-hand side of the
s s

transformed equation is equivalent to %;[92 (s)+ Vz(s)]. Therefore, this equation
N
can be rewritten as
di[aZ(s)m(s)]: 26(s)w. (17)
s

Since it follows from (1) that 4, v, and u are all associated by the relation
Gz(s)+V2(s)=u2, (18)

the integration of (17) with respect to s and within the limits O to § gives

s 2 s

IMC{S = 2a)jt9(§ )d¢ . Evaluation of the left-hand side of this integral
0 § 0

expression produces the following equation:

*(s)=20[ (0 )¢ +u2(0). (19)

A substitution of (18) into (19) permits an integral expression for vz(s): from (17)
and (19) as:

V() =20[ (0L +12(0)-6(). o)

Rearrangement of (5) and appropriate substitutions of the transformed expression
of (16) and (20) yields an explicit expression for K*(s), the curvature of the spiral
wave:

%)
a)_i
K(s)= ds . 1)

2wj6(§’)d§’ +u*(0)-6°(s)
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Equation (21), together with the considerations of kinematic theory presented in
the beginning of this chapter, allows qualitative estimation of the overall spiral
wavefront morphology. Fig. 17, which is nearly unchanged from [1], illustrates the
dependence of the key determinants (8, v, K) of spiral wave morphology on s. It is
necessary to note that the point S=g (the origin of the plots) represents a distinct
point where the wavefront and wavetail of the stationary spiral wave are joined.

A +0
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-S +S
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-S Q +S
-V
C
+K

Fig. 17. Parameters that characterize the morphology of a stationary spiral wave Distribution of 6,
the normal component of the conduction velocity «. (B) Distribution of v, the tangential component
of u. (C) Distribution of K, the wavefront curvature.
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Chapter 10. Excitation Wave Propagation in
Narrow Passes

10.1. Introduction

Direct physiological evidence [1-4] exists that occurrences of arrhythmia are
commonplace in the presence of infarct scars, where regions of normal and excitable
myocardium are interspersed with regions of unexcitable myocardium. These
regions form narrow and wide pathways for wave propagation and each of these
pathways assumes a configuration that can be categorized into a particular type of
border geometry.

The concept of critical curvature of the wavefront (introduced in chapter 9)
provides a connection between pathway border geometry and the properties of
surviving myocardium within the pathway and the appearance of a unidirectional
conduction block. The conduction block facilitates the appearance of reentrant
arrhythmias, which can in turn, lead to ventricular fibrillation.

This concept proves valid, at least qualitatively, for any type of AP and
myocardium. Here, this discussion is restricted to wave propagation through narrow
pathways with three idealized geometric configurations (parallel borders, tapered
borders and combinations of parallel and tapered borders) and three types of
boundary conditions (impermeable, fully unexcitable, and ones with decreased
excitability). Special consideration is given for different sets of conditions that
facilitate the appearance of a unidirectional block and propagation reentry through
these pathways. The roles of anisotropy in normal myocardium and AP recovery
processes in reentry formation are illuminated.

The computer simulation results presented in the following sections were
obtained using a modified FHN simplified AP model in a model of 2D myocardium,
which was represented as a grid of 128x128 nodes, that was solved numerically on a
massively parallel supercomputer (the CM-2 from the Thinking Machine
Corporation).

10.2. Theoretical Considerations

Theoretical considerations are not dependent on the properties of a particular
model: their results have generalized significance and they illustrate the qualitative
characteristics of processes related to wave propagation, within the context of the
utilized assumptions. Computer simulations are employed in order to obtain the
quantitative characteristics of a particular choice of both the AP and myocardium
models, as well as to verify the assumptions used.

Three idealized types of border geometry in narrow pathways are encompassed
by theoretical considerations first presented by Kogan et al. [5]: parallel borders,
tapered borders, and combinations of parallel and tapered borders. For each
geometrical configuration, we consider the following three boundary conditions:

B.Ja. Kogan, Introduction to Computational Cardiology: Mathematical Modeling 199
and Computer Simulation, DOI 10.1007/978-0-387-76686-7 10,
© Springer Science+Business Media, LLC 2010
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v
1. 3 =0 Impermeable border zone (connective tissue)
n
" = grad V. -
2. W =graa’v, Fully unexcitable border zone (electrolytes

present with scarred myocardium)

Vm
3. 0< n <gradV,  Decreased excitability in the border zone (scars

with a mixture of viable and dead cardiomyocytes)

At an arbitrary point, s, on the wavefront, an expression given by a = f{(s) can be
formulated, where a is the angle between the tangent at a particular point s and the x
axis component of the V,, gradient. These relationships are illustrated in Fig. 1.

o,
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\ grad (V)

OV

S Jabﬁx

Fig. 1. Determination of the wavefront morphology by using components of the gradient of V.

The gradient components at each point s on the wavefront are determined via
calculation of the Laplacian during simulations, where they are computed as an
intermediate result. It follows from the expression for tan () that when the
components of grad (V,,) separately tend to zero for some point s, the angle of the
tangent at this point tends either to zero or 2z (when 0V,,/0x = 0) or to +z/2 (when
0V,,/ 0y = 0). Here, it is assumed that the dimensions of these narrow paths in
myocardium are considerably larger than those of a cardiomyocyte. This limits the
parameters of the study to macro processes.

The three types of boundary conditions mentioned above may be applied to
various types of excitable media; in the particular case of myocardium, they reflect
three possible situations. First, the current between myocardium in the excitable zone
and the border zone, within the narrow pathway, may be zero, analogous to the
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situation when the coupling resistors have infinite resistance (which is possible when
connective tissue is present). This situation is the impermeable, or zero-flux,
boundary condition. A second situation occurs when current does flow to the border
zone from the excitable zone, but fails to elicit a response since the border zone
myocardium is fully unexcitable there (the expression 0V, / on = grad (V,,)
represents the boundary condition). This can occur if the border zones consist of an
electrolyte solution, which decreases the coupling resistance between the excitable
and border zones. The third situation is characterized by a border zone consisting of
myocardium with markedly depressed excitability or a significant prolongation of
the time necessary to recover from inactivation. Cardiomyocytes exhibiting the latter
characteristics have been observed to coexist in the same infarct zone as
cardiomyocytes with relatively normal membrane characteristics [1, 5, 6, 7]. This
type of boundary condition represents decreased excitability of the border zone,
which is described the inequality O < 6V, /0On < grad (V,,).

Normal ventricular myocardium tissue is anisotropic, due to greater intercellular
resistance along the transverse axis of cardiomyocytes in comparison to the
longitudinal axis. When infarct scars are present, anisotropic wave propagation is
unaltered and can be accentuated [8]. Uniform anisotropy is modeled by
appropriately altering resistances between excitable elements (nodes) in the
transverse direction.

10.3. Propagation Inside Narrow Pathways

In this section, we discuss three idealized geometries of narrow pathways:
1. parallel borders
2. tapered borders
3. combinations of parallel and tapered borders.
Three types of boundary conditions that arise from the properties of the border
zone are considered for each geometry:
1. impermeable
2. unexcitable
3. with decreased excitability.

10.3.1. Propagation Inside Narrow Pathways with Parallel Borders

In a pathway with parallel borders and impermeable boundary conditions, the
component of grad (V,,) along the y-axis (0V,,/ 0y) is zero and the angle of the
tangent to the wavefront at all points of the border is # / 2. Assuming uniform
isotropy inside the pathway, the wavefront that propagates within it must be
rectilinear (see Fig. 2a) with a curvature K = 0.

For the boundary conditions 0V,,/ on = grad (V,,), it may be assumed that the
points along the border are held at rest potential; therefore, the grad (V,,) component
0V,,/ Ox and the angle a are equal to zero at all points along the border. Inside the
narrow pathway, the 0V,,/ 0x component of grad (V,,) and the angle o increase until
their maximum values (grad (V,,) = [grad (V,,)]nax and a = 7 / 2) are achieved at the
midpoint of the wavefront. It is therefore reasonable to approximate the wavefront
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inside a narrow path as a semi-circle with a radius equal to W/ 2 and a curvature K
=2/ W.

When the boundary conditions are 0 < 0V,,/ dn < grad (V,,), the angle of the
tangent at the border points is determined by the ratio of the corresponding
components of grad (V,). Since the pathway is narrow, the wavefront can be
approximated as a portion of a circle with a radius R, = (W / 2) - cos (o) and a
curvature given by

K, :lcos(ab)zlé, ey
w W1+ tanz(afb )
where
tana, =@V, /dx), [V, /dy), . )

Similarly, for any point i in Fig. 2 (except point O on the wavefront) the curvature
is found to be

K —gcos(a' )—E; 3
W TW J1+tan(e;)
where
tan(ai )= (an / ax)l. / (an / ay)i . 4

All geometric constructions that are necessary to derive these formulas are shown
in Fig. 2a, 2b, and 2c.

N AN\

b)

<)

Fig. 2. Wave propagation inside parallel narrow pathways with different border zone conditions: (a)
impermeable, (b) fully unexcitable, and (c) decreased excitability.
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10.3.2. Propagation Inside Narrow Pathways with Combinations of
Parallel and Tapered Borders

Simulated geometric configurations of narrow pathways possessing both parallel
and tapered borders are shown schematically in Fig. 3. By changing the value of the
angle f from zero to z / 2, it is possible to create a continuous transition from a
narrow pathway with parallel borders to one with a combination of parallel and
tapered borders. In this case f = 7 / 2 corresponds to the abrupt opening of the
narrow pathway to the unrestricted right half-plane of excitable myocardium.
Theoretical considerations and computer simulations with the FHN model show that
in a pathway with parallel borders, stationary waves propagate with a rectilinear
front.

The wavefront conduction velocity is constant regardless of channel width.
Since the propagating wavefront must be perpendicular to the borders at all points,
the wavefront at the points a-a of the expanding borders can be considered
(assuming that the excitable myocardium is isotropic everywhere), as a first

|

R

T

+K

Fig. 3. Propagation of wavefronts in narrow pathways with a combination of parallel and tapered
border geometries and an impermeable border. (a) Propagation from a pathway with parallel
borders to a tapered one. (b) In the same configuration as (a), but with propagation in the opposite
direction.
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approximation, to be a circular arc. The simple geometric drawing shown in Fig. 3a,

o R =W/(2sin(5) s
and
K =1/R=2sin(B))/W. ©)

where R is the radius of the wavefront at the pathway opening, W is the width of the
pathway with parallel borders, S is the angle of border inclination, and K is the
curvature of the wavefront at the points a-a.

Eq. (6) specifies a family of sinusoidal curves at an amplitude of A =2/ W and
is valid for all points x-x on the border of a tapered opening. It is only necessary to
substitute in (6) the value of W/ 2 by its corresponding value W,/ 2 at the points x-x
(see Fig. 3a). The geometry of this figure gives

W, /2=W/2)+(L-L)tan(B). (M)
where L is the full length of the tapered portion of the pathway and L, is the distance

from the wide end to the points "x-x" in the tapered portion. Thus, the curvature K,
will be

B sin(ﬂ)
K= W) (- Lan(p)

The signs + and - correspond to concave and convex morphologies in the
propagating wavefronts, respectively.

As discussed above, a critical value of the wavefront curvature exists such that
propagation becomes impossible above this value (i.e. there is a conduction block).
Physically, this represents that condition when the excitable cardiomyocytes
(sources) fail to transmit an electrical current sufficient to depolarize neighboring
cardiomyocytes (sinks) to the threshold of excitation. This critical value depends on
the selected AP model and its active and passive parameter values. Let us assume
that the value of K, is known; thus, we obtain from (6)

®

2
K =—sin 9
o= (8) ©)
and
b= arcsin( K‘EWJ ) (10)

When K, is constant, (10) gives the relation of j, to W,,. Fig. 4 shows the results of
computer simulations used to determine this dependency for the FHN model with
isotropic media. The results in Fig. 4 were used to test the assumption that when the
dimensions of a channel are close to critical, the wavefront in a tapered channel can
be approximated by a circular arc.
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Fig. 4: Critical angle f for propagation block at narrow pathways exits for various pathway widths
in isotropic media. A nonlinear curve fit to a sine curve, given by W/ 2 = 0.89 sin (f), is shown for
the data and produces a regression correlation R> = 0.939.

A non-linear regression fit of this computer simulation data to the predicted sine
function gives a sufficiently accurate regression correlation of R*= 0.939.

Fig. 5 shows the same phenomena for a wide range of anisotropy ratios. As the
anisotropy ratio (D, / D,) increases, the critical width of the pathway increases as
well. This phenomenon can be explained by a decrease in the current consumption of
the neighboring cardiomyocytes, located in the transverse direction, when tissue
anisotropy is increased. This leads to a decrease of wavefront curvature at the exit of
the narrow pathway, as if the effective width of the pathway opening has decreased.

Direct measurement of the critical wave curvature is very difficult in
physiological experiments. Determination of the critical curvature via computer
simulations
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Fig. 5. Relationship of critical width (f is held constant at 90°) to the anisotropic ratio, when
conduction block occurs in narrow paths with impermeable borders.
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requires a comparatively large amount of calculations, which increases with the
complexity of the model. Equation (6) permits a measurement of the width of a
narrow pathway instead of the wavefront curvature in order to obtain the critical
value of wavefront curvature. In isotropic media inside narrow pathways and f=7n
/ 2, the curvature is given by K = 2 / W. This formula does not account for variation
of the wavefront conduction velocity in the original rectilinear wave when it is
entering and exiting the narrow pathway; resultant effects are addressed below.

Methodical alterations of the narrow pathway width during a computer
simulation allows for the determination of the value W = W,,, at which propagation
through the opening becomes impossible. The values for K., obtained by Zykov [9]
for the FHN model, using an approximate formula and an iterative solution of the
original equation (K., = -0.79) and obtained in the above approach (K., = -0.83),
are in close agreement.

Let us return to the configuration shown in Fig. 3a, where W is chosen so that
W =W, and = n / 2 (left entrance to the narrow path). When the wave propagates
from left to right, its curvature remains equal to zero throughout the narrow pathway
until it reaches the flared opening. Here, the wavefront curvature abruptly changes
from K =0 to K = K., * sin (f) and the wave propagates out of the narrow pathway
without experiencing a conduction block. When the excitation wave is initiated from
the right side of Fig. 3b, it takes on a concave form in the tapered pathway and its
curvature abruptly changes from K = 0 to K = K., when the pathway borders become
parallel. At the left opening, when f = 7 / 2, the curvature is K = K., and a
conduction block occurs. When both ends of the narrow pathway have an opening
with f = 7 / 2, waves can enter the narrow pathway from either direction, but will be
blocked at the opposite end of the pathway.

When the pathway is tapered over its entire length, the wave propagating from
the wider end toward the narrow end experiences a variation of its curvature inside
the channel from positive values (see Eq. (8)) to K = -2/ W at the narrow end; if K =
K. = -2/ W, then a conduction block may occur. However, when a wave propagates
in the opposite direction, the curvature of the wavefront never exceeds the critical
value. Hence, the spatial configuration of the pathway is a sufficient determinant for
a unidirectional block.

When the excitable myocardium depicted in Fig. 3 has uniformly anisotropic
properties it therefore has a lower resistance and more rapid conduction between
elements i in the direction parallel to the longitudinal axis of the narrow pathway
(D, / Dy > 1). This type of creation of a unidirectional block is more difficult than
with isotropic conduction. This is a consequence of the gradient component (6V,, /
Oy) in anisotropic tissue being smaller than for isotropic tissue; therefore, the
wavefront curvature is smaller when it exits a narrow pathway.

It was shown earlier that the wavefront inside a narrow path with boundary
conditions 0V, / on = grad (V,,) and with isotropic tissue can be estimated as a
semicircle of radius R = W/ 2 and curvature K =2/ W.

If the width (W) of the narrow pathway is greater than the critical width (W),
propagation can occur in either direction. If W < W, waves entering from either
direction will not be able to exit from the opening in the opposite end of the
pathway; this is an example of a bidirectional block. Therefore, a unidirectional
block cannot occur in these pathways.
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10.3.3. Propagation Through Tapered Pathways

A unidirectional block can occur, however, when the narrow pathway has an
appropriate tapered border configuration. Waves propagating from the wide end of
the tapered pathway cease to exist when they reach the narrow end, while waves that
propagate from the narrow end are able to propagate through unhindered (this
phenomenon was observed in computer simulations by A. Pang and B. Billet [10]).
In order to explain this phenomenon, let us consider the geometry of a wavefront
inside a tapered pathway at points i-i and at the narrow end (Fig. 6A).

When the boundary conditions are dV,, / on = grad (V,,), the vector grad V,, is
perpendicular to the boundaries throughout the pathway. The boundaries effectively
serve in this case as a tangent to the wavefront.

Assuming as before, that the wavefront inside the narrow tapered pathway can
be approximated by a portion of a circle, an expression for wavefront curvature can
be obtained:

1
K = . 11
S Dm0
At the narrow end exit from the pathway, L = L; and (11) reduces to
2
K =—— . 12
"= cos(f3) 12)

n

Since it is evident that K, > K;, it follows that a unidirectional block is most likely to
occur in the narrow end of the tapered pathway. If we take into consideration the

o, < grad V,
on

Fig. 6. Wavefront curvatures inside pathways with tapered borders and in narrow exits with three
types of boundary conditions.
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transient processes of wavefront curvature formation that is associated with abrupt
changes in pathway geometry, we can assert that the curvature of the wavefronts
crossing the narrow end from left to right (in Fig. 6) is greater than when a wave
crosses the narrow opening in the opposite direction. Here, we observe directional
differences in propagation due to differences in the length of the wavefront arc
relative to the size of the excitable region into which the propagated wave must
penetrate. The source-sink concept leads to the same conclusion.

The same reasoning can be applied to the case of narrow pathways with
boundary conditions: 0 < 0V,, / dn < grad (V,,). A unidirectional block is possible
only in a tapered pathway with specific geometric parameters. The expression for the
curvature at any border points i inside the tapered path can be obtained by replacing
cos (f) in (11) by cos (a;):

K. = ! cos(a,)
"W, 2)+(L-L)an(p)
, (13)
_ 1 1
W, /2)+(L~L)tan(B) \/1 +tan*(e,)
where
tan(e,) = (0E/0x), /(9E/dy), (14)
At the narrow end exit, L = L; and the curvature K is equal to K,;:
2
=2 cos(a) 03

n
As in the previous case, a unidirectional block can occur when the wave
propagates from the wide end toward the narrow end of a tapered pathway. It follows
that geometric asymmetry is necessary for a unidirectional block to appear in a
narrow pathway when myocardial excitation properties are the same for either
direction.
Similar to the case of impermeable borders, certain pathways with border zones
exhibiting decreased excitability will cause conduction block when exiting to a
larger area of viable media.
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Fig. 7. Dependence of critical width, W,,, on the excitability (Gy) of the narrow pathway borders
providing unidirectional block. As Gy increases, the border zone current consumption decreases.
Pathway borders are parallel.

Fig. 7 shows computer simulation results where the critical width W,, is determined
for various levels of media excitability for the pathway borders.

Computer simulations using the FHN model reveal that for pathways bordered by
zones with decreased excitability, it is possible to find combinations of the model
parameters and tapered pathway geometric characteristics (Gy, §, and W,) in which a
unidirectional block occurs.

Fig. 8 shows computer simulation data demonstrating that conduction velocity
decreases with pathway width.
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Fig. 8. The relationship of wavefront conduction velocity (6), inside narrow pathways with border
zones of decreased excitability (Gr = 0.1), on pathway width (W) is shown for both isotropic and
anisotropic (D,/D, = 1/6) media (measured from computer simulation).

Data for isotropic and uniformly anisotropic (D,/D, = 1/6) myocardium shows that
for pathways of equal width, wave propagation is slower in isotropic media (Fig. 8).
Anisotropy also decreases the critical width of the narrow path, which allows for a
unidirectional block. This effect of anisotropy can be explained by a decrease in
current consumption along the transverse direction when a wave exits from the
narrow path into an open viable myocardium. In comparison to the case of isotropic
media, this leads to a decrease of wavefront curvature outside the narrow pathway.
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The dependence of wavefront conduction velocity on its curvature is an
important characteristic of excitable tissue, which cannot be determined by direct
experiments. This provided the impetus for the method based on (1) and (2) and
considered in detail in [5]. Equations (1) and (2) express the dependence of the
curvature K on pathway width W and the ratio of the components of grad (V,,) for
narrow pathways with parallel borders and border zones exhibiting decreased
excitability. The components of grad (V,,) at the intersection of the wavefront and the
pathway border can be determined in computer simulations by calculating the finite
difference approximation of the partial derivatives. Fig. 9 shows the results of
estimating the curvature for the same pathways as in Fig. 8.
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Fig. 9. The relationship of estimated wavefront curvature (K), inside narrow pathways with border
zones of decreased excitability (Gr= 0.1), on pathway width (W) is shown for computer simulations

of isotropic media.

As expected, the curvature decreases as the pathway width is enlarged. The critical
curvature K., is near the maximum value of K shown in this figure. Finally, by
combining data from Figs. 8 and 9 and eliminating the parameter W, a relationship
between the wavefront conduction velocity and the curvature is obtained (see Fig.

10).

a space units
time Wity

-1

space ity

Fig. 10. The relationship of measured wavefront conduction velocity (8) on estimated curvature (K)
for the modified FHN model [11], obtained using data presented in Figs. 8 and 9. In the figure, A
and I denote the anisotropic and isotropic cases, respectively.
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The relationship for isotropic media (curve I) in Fig. 10 is in good agreement with
data obtained for an FHN model with standard parameters [12].

10.3.4. Initiation of Reentry

The appearance of a unidirectional block for excitation wave propagation in
cardiac tissue may be initiated by several factors and lead to reentrant arrhythmias
[13]. It is possible to achieve such blocks when narrow paths are formed in
myocardium by post-infarct scars and the wavefront curvature in at least one of the
exits becomes equal to or more than the critical value. In order to obtain reentrant
wave propagation, it is necessary to have at least one additional channel which has
the ability to conduct waves in both directions. This idea is illustrated in Fig. 12
using the simplest configuration consisting of a narrow pathway with combined
parallel and tapered border geometries and impermeable borders.

Fig. 12. Effect of geometry in the myocardium on the appearance of a unidirectional block and
reentry when the borders are impermeable.

In Fig. 12, two phases of the reentry formation are illustrated: the appearance of
a unidirectional block on the upper half of the myocardium and the establishment of
reentry after a wave penetrates the lower wide pathway after the recovery processes
have ceased in the upper narrow path. In this situation, a proper length for the
reentrant path and recovery from inactivation are required for stable reentry to occur.
The more detailed explanations for this case and several others are given in
comments regarding computer simulation results (see Section 10.4.2).
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10.4. Computer Simulation Results

This section covers results of computer simulations concerned with changes in the
velocity and shape of rectilinear wavefront excitation through narrow paths with
parallel and tapered border geometry both for isotropic and anisotropic viable tissues
inside. The effects of viable tissue anisotropy and AP restitution property on reentry
appearance are treated using computer simulation. Finally, computer simulation data
are presented for the case when narrow path borders have a large current sink
property. The effect of this property on reentry is demonstrated.

10.4.1. Transient Phenomena at the Entrance and Exit of Narrow
Pathways

The wave front isochrones presented in Figs. 13A and 13B [14] demonstrate
that an originally rectilinear wavefront opposite to the narrow pathway entrance
becomes curvilinear (with positive curvature) as it moves closer to the pathway
opening both for isotropic and anisotropic properties of viable tissue. The difference
is that in the case of anisotropy (with the anisotropy ratio D,/ D, = 9), curvature
transients are more pronounced (Fig. 13B), but the resultant conduction velocities
are identical to isotropic tissue, except that the critical width of the pathway may be
much smaller.



10.4 Computer Simulation Results 213

T phak atys 10.6)
E ¥ Yo
=2 1 -
| A

E 128 T : 1 - H -
8 {. ; beerd oS
Som it i
é " = &'\9‘ ==
5 0z ! D
it i 5
@ H 7

0.25. ; +

4 5 8 10 12 14 16 18 20
 {space unis)

B y7s 0.7 (phakatiy= 10.6]
§ H
;e S RIS S S SR T
é 125 j !n
r i

5 o5 i 1 ;
@ T I e N i
5 B = 2 i
% o025 L S :}\"ab“___ et
n i i : B DN H H
=3 1 H % g d

025 T L T L}

4 & 8 0 16 18 20

12 4
x {space unis)

Fig. 13. Excitation wave propagation through a narrow pathway with impermeable parallel borders.
6, is the conduction velocity of the wavefront measured at a distance of 8 space units from the
pathway symmetry axis, 8, and 6, are the conduction velocities of the wavefront measured along the
pathway symmetry axis, and #; —fg designate wavefront isochrones. (A) Isotropic tissue, with 6,
given for W = 2.4 space units and 6, given for W = 2.1 space units (critical value). (B) Anisotropic
tissue (Dy/Dy = 9), with 6, given for W = 1.05 space units and . given for W = 0.9 space units
(critical value).

Wave propagation in tapered pathways with boundary conditions of decreased
excitability (0 < 0V,,/ on < grad (V,,)) shows that there exists a width at the narrow
end of the pathway such that propagation toward the wide end is possible while it is
blocked in the opposite direction. This can be explained by the different characters
of wavefront formation processes and corresponding changes in the wavefront
curvatures in regions near the narrow end of the tapered pathway for waves crossing
it in both directions (see Fig. 14A and B).
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Fig. 14. Excitation wave propagation through tapered pathways with border zones of decreased
excitability (Gy = 0.1). The wavefront isochrones at #; - #; are measured at a wavefront potential
Vin = 0.45 units. 6;., and 6,.; are the conduction velocities along the axis of symmetry. (a) Isotropic
tissue, W, = W, = 3 space units. (b) Anisotropic tissue (Dx/ Dy=9), W,= W, = 0.9 space units. (c)
Wavefront velocities.

The wavefront morphology measured at the level of V,, = 0.45 units at consecutive
moments in time are shown in Figs. 14a and 14b for waves moving left to right and
vice versa, respectively. The corresponding wavefront conduction velocities were
measured along the axis of symmetry in the pathways and are presented in Figs. 14c
for both directions of wave propagation. The effect of uniform anisotrop (D,/D, = 9)
is demonstrated in Fig. 14b. As theory predicts, the simulation results show elliptic
wavefront morphologies and permit propagation through smaller widths in
comparison to cases of isotropic tissue.
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10.4.2. Reentrant Propagation in a Myocardium Model with Narrow
Pathways

A potential reentry circuit consists of at least two interconnected pathways
located between myocardial scars. At least one pathway must provide a
unidirectional block, while another must be able to support bidirectional
propagation.

v I

tl =12 time units

4 =69

Fig. 15. Time series of reentry in homogeneous, isotropic tissue with fast recovery processes (short
APD restitution) and impermeable borders. The tapered pathway length is 48 space units, the width
of the narrow portion is 1.8 space units, and = 30°. ;- excitation begins on the right edge, , — the
wave enters the narrow parallel and tapered pathways, #; - continuation, f,4 - excitation in the tapered
pathway is blocked, #s - wave reentry occurs at the initial site of block, # — the wave is unblocked as
it leaves the tapered pathway, and #; — the wave reenters the parallel channel.

Three major cases are studied using a computer simulation: (1) all excitable media is
homogeneous, isotropic, and with fast recovery processes; (2) the same isotropic
media is utilized, but with slow recovery processes; and (3) all excitable media is
anisotropic with slow recovery processes.

This approach allows separate, simultaneous observations of the effects of
anisotropy and APD restitution on the appearance of reentry. Fig. 15 shows the
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sequence of wave propagation (left vertical column) and outward current (right
vertical column) for the first case after applying a rectilinear excitation along the
right side of the grid. In the absence of long APD restitution, reentry circuits of any
size are easily produced.

In the second case (Fig. 16), longer APD restitution is added to the conditions of
the first case. Here, it can be seen that the presence of residual outward current
(which determines the APD restitution properties) prevents the reentrant wave from
penetrating the narrow channel at the initial site of the block and completing the
reentry circuit. Thus, the additional delay in APD restitution results in a bidirectional
block at the narrow end of the pathway.

v I

t1 = 10 time units

t2=22

t3 =72

t4=131

Fig. 16. Time series of reentry in homogeneous, isotropic tissue with slow recovery properties and
impermeable borders. #; - initial excitation enters from the right edge, #, — the wave enters the
pathways, #; — the tapered pathway blocks propagation, whereas the wide channel is nonblocking,
t4 — the residual current in the tapered pathway blocks the reentrant wave at the initial site of the
block.
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In the final case with impermeable borders in the pathway, anisotropy (with an
anisotropy ratio D,/D, = 6) is added to the conditions of the previous case.
Anisotropy (Fig. 17), facilitates reentry by introducing an additional time delay for

v

t1 =13 time units

I

Fig. 17. Time series of reentry in uniform anisotropic tissue with slow recovery properties
(& = 0.022) and impermeable borderes. f; - initial excitation enters from right edge, f, — the wave
enters the pathways, 73 — the pathway with tapered borders blocks propagation, whereas the wide
pathway is nonblocking, 4 — the residual current in the tapered path is too small to block the
reentrant wave, fs - reentrant excitation continues through the tapered pathway, #c - wave reentry
occurs in the wide pathway with parallel borders.

the reentrant wave to propagate in the y direction, allowing more time for recovery at
the initial site of the block.

The speed of stationary wave propagation in the y direction is «/g times smaller
than in the x direction. Thus, the anisotropy of the tissue facilitates reentry in the
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presence of narrow paths with impermeable borders. Prolonged APD restitution has
the opposite effect.

10.4.3. Narrow Pathways with a Large Current Sink

The presence of border zones, which serve as a current sink, can potentially facilitate
reentry by slowing conduction or inhibit reentry by promoting a bidirectional block,
especially when APD restitution is prolonged. In the simplest case, where the tissue
is isotropic and with a shortened APD restitution, reentry can occur even with
closely spaced channels (see Fig. 18). When longer APD restitution is introduced
into the myocardium model, reentry is prevented due to the presence of a residual
outward current from the previous excitation of the tissue. This occurs even when
the spacing between the channels is increased (see Fig. 19).

vV I vV I

t1 =10 time units

t2=45 t5=187

3 =84

Fig. 18. Similar to Fig. 15, but with shorter APD restitution.
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vV I

t1 =12 time units

t2 =46

t3 =86

Fig. 19. Time series of failed reentry in media bordered by elements with decreased excitability.
Viable media is homogeneous, isotropic, and has prolonged APD restitution (&= 0.022). For border
tissue, G, = 0.1, the path length = 30 space units, = 20°, and the distance between pathway centers
is 52.5 space units. #; — initial excitation enters from the left edge, #, — the wave enters the pathways,
t3; — the tapered pathway blocks propagation, #4 — the residual current blocks propagation at the
initial site of the block, and #s — continuation.

In this simulation, anisotropy did not provide a sufficient delay for avoiding the
effects of residual current at the initial site of the block. A greater separation between
pathways or the slowing of the conduction would be required to allow reentry.
Tissue anisotropy also decreases the grad (V,,,) component in the direction transverse
to the fiber and increases it in the longitudinal direction. This increases the curvature
of the wavefront in the longitudinal direction, making it more difficult for the
reentering wave to penetrate the narrow end of the tapered pathway. Therefore, in
the case of narrow pathways with “large current sink” border tissue, tissue
anisotropy under certain conditions facilitates a bidirectional block and can impede
reentry.



220 Chapter 10 Excitation Wave Propagation in Narrow Passes
10.5. Discussion

The major topic of this chapter revolves around wave propagation through
excitable 2D narrow pathways with borders that are impermeable or have decreased
excitability. These theoretical considerations are based on knowledge of the
wavefront’s grad (V,,) components, and the assumption that the wavefront at the exit
from a narrow pathway (width ~ W,,) can be approximated as a circular arc. This
assumption was verified by computer simulations of the FHN equations, and was
shown to be sufficiently accurate. Pertsov et al. [16] reached the same conclusion
based on computer simulations of waves propagating through holes (with a diameter
close to critical) in thin and thick impermeable screens.

Theoretical considerations allow for a connection between the geometry of
narrow pathways and their boundary conditions to wavefront curvature. This
approach provided the means to estimate wavefront critical curvature.

Computer simulations show that these results are valid for the modified FHN
model. Simulations also illuminate the effects of tissue anisotropy and APD
restitution on wave propagation in narrow paths, and on the appearance of reentry:

- Reentry is possible for either border condition when a pathway with a
unidirectional block exists in parallel with at least one non-blocking
pathway.

- APD restitution tends to inhibit reentry. For reentry to occur, an increased
time delay for wave propagation in the reentry loop is required.

- For narrow paths with impermeable borders, myocardial anisotropy greatly
facilitates the development of reentry (introduces natural delay) and at the
same time expands the range of path width (in the direction of smaller
width) for which a unidirectional block and reentry are possible.

- For narrow paths bordered by tissue serving as an abnormal current sink,
tissue anisotropy can facilitate a unidirectional block by increasing the
arrival time of the excitation wave front at the initial site of the block, or it
can inhibit formation of a unidirectional block by promoting conduction out
from the narrow path.

10.6. Conclusion

The theoretical considerations and computer simulations results presented in this

chapter demonstrate that:

a. Specific geometric configurations of narrow pathways exist in 2D tissue,
which facilitate the appearance of a unidirectional block and reentry of
excitation. This remains true even when membrane properties of the viable
tissue are normal.

b. The effects of pathway geometry are strongly dependant on the boundary
conditions (between scars and viable tissue).

c. Computer simulations of excitation propagation in narrow paths permit a
determination of the curvature relation (8 = f(K)).

d. Recovery processes inhibit the reentry of excitation regardless of the type of
boundary conditions.

e. The uniform anisotropy of viable tissue can facilitate reentry in cases with
impermeable borders.
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The revision of the results for viable myocardium that incorporates an up-to-date
ionic AP model with developed intracellular Ca dynamics represents a topic of
significant theoretical and practical interest. More over the local reentrant circulation
in the presence of myocardial scars may cause ventricular fibrillation without
premature excitation.
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Concluding Remarks

This book has treated the fundamental problems of mathematical modeling of
electrophysiological processes responsible for generation of AP in cardiomyocytes
and their propagation through myocardium. These processes, together with cells’
ability to contract, are responsible for providing the primary heart function of
pumping blood through whole organism.

From a structural point of view, the myocardium represents a system of discrete
excitable and contractile elements, myocytes. Gap junctions provide one of the key
interconnects between these elements. The size of a myocyte is on the order 10
nanometers while the scale of cardiac tissue is incomparably bigger. Thus the
average cell properties of AP generation, concentrated at each point of the
myocardium and connected through intra- and extra-cellular liquid resistance are
usually assumed for investigation the wave processes in myocardium. The spatially
distributed intra-cellular properties are typically neglected. Under normal conditions,
the resistance of a gap junction is much smaller than the resistance of intra- cellular
liquid and it is possible to consider all cardiac tissue as syncytium, a continuous
system, where AP propagates according to diffusion properties.

Mathematical modeling of these systems is reduced to the solution of a special
type of nonlinear reaction-diffusion equations. Obtaining these solutions in
analytical form is very difficult, even for simplified cases, and is impossible for more
realistic cases. Moreover, some relationships are not known and are introduced into
models as analytical expressions obtained by fitting to results of particular
physiological experiments (semi-phenomenological models).

Therefore computer simulations are required to obtain qualitative and quantitative
results. Due to the enormous computational complexity, massively parallel
supercomputers are needed, even today, for most 2D and all 3D problems. Special
numerical algorithms, which include the application of adaptive time and space steps
for a given grid representation of tissue, are required to obtain computationally
tractable results.

When stimulus is applied to the extracellular domain of tissue (e.g. in a case of
defibrillation), it is necessary to introduce the bi-domain tissue representation.
Except for the case of fully uniform tissue, this representation requires an additional,
simultaneously, solution of an elliptic PDE for the same tissue grid. Experience
shows that an advanced multigrid sequential algorithm approximately doubles
computation time (R. Samade personal communication). Thus development of an
efficient version of the multigrid algorithm suitable for parallel execution remains an
outstanding problem.

Mathematical modeling and computer simulation of complex problems are a
powerful method for scientific investigation not only in physics, engineering, but in
biology and medicine as well. In order to obtain successful results the subject and
major goals of investigation must be precisely formulated. At the same time all
assumptions and restrictions must be mentioned, including the conditions under
which the experimental data used for the simulation were obtained. A good
mathematical model can predict new phenomena but this does not mean that the
results of simulation can be extrapolated to the cases not covered by the used model.
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For example, it is impossible to judge about results of Ca dynamics using models
where it is not represented or is represented in rudimentary form.

Validation of the modeling results is one of the important subjects. Even today,
direct comparison with physiological experiments is difficult if not impossible for
some cases because the shape and heterogeneity of a real heart are very different
from that using in simulation. For example, small blood vessels anchor the spiral
waves; cells change their directions and so on. Physiological experiments, especially
with a tissue, cannot measure the all internal variables of a mathematical model and
accuracy of measured values is not high enough. It is worthwhile to remember that
almost all mathematical models were developed to reproduce the heart functions
under normal conditions when all the processes are close to stationary or quasi-
stationary. These relate to obtaining the gated channel currents using constant clamp
voltages and use of stationary expression for C,IC,R processes from JSR (LRd and
Chudin models). New phenomena appeared during tachycardia and fibrillation
connected with Ca accumulation in SR and sarcoplasma, which lead to appearance
of EADs and DADs clusters on the pattern of cells, occurring under high pacing rate.
The latter also lead to changing the character of C,IC,R process in SR from static to
dynamic and under some conditions may cause Ca and AP alternance (see [22] in
chapter 4). Thus many questions are left unanswered about the correctness of
applying an AP model developed for normal conditions to pathological cases. Here
appropriately to compare at least the results obtain for membrane channel gates
controlled by AP under different pacing rates. Very little information is available
about mechanisms of Ca release from SR, especially, about spontaneous release
caused by overloading of SR and intracellular domain with Ca.

Results from physiological experiments for AP and wave propagation under
normal conditions were used to validate the mathematical model. Instead of
discarding and disregarding new phenomena observed using the model under
abnormal conditions (see chapter 4 and [28] where spontaneous release is not
presented) it is worthwhile to create a plausible hypothesis about the unknown
mechanism and continue the investigation further. As new experimental data
becomes available, the hypothesis may have to be reconsidered. It may be
recognized to be incorrect or to have restricted application. This approach is widely
used in physics and other branches of sciences connected with real world.

Application of mathematical models and computer simulations produced many
fruitful predictions. Spiral waves, discovered in the author’s lab (see [3] in chapter
8), in 2D cardiac tissue, were later observed in real tissue. Simulations results found
and explained the appearance of EAD and DAD clusters in 2D tissue during spiral
wave propagation, proved that EAD and DAD can appear in single cell not only in
case of long but also under short period of stimulation.

I hope that publication of this book will attract new researchers to the application
of mathematical modeling and computer simulation of biological system and, in
particular, generate more attention to cardiology problems.



Exercises

1. Prove that linear second order oscillator

2
CAUS YN wju=0

dt? dt

with initial conditions: u(O) =7, L't(O) =0 and parameters a =-1, & =10
produces oscillations with amplitude increasing over time. Explain why the
amplitude of oscillations will be finite in real systems.

2. lonic currents through a membrane can be expressed using two formulations:
a. the Hodgkin-Huxley (HH) formulation
b. and the Goldman-Hodgkin-Katz (GHK) formulation.
What formulation would you choose if the extracellular and intracellular
concentration of the considered ions are variable?
Show that both current formulations give the same results when V,, =V, s.

3. Calculate the rest potential using the GHK equations if Na*, K*, and CI ions
participate in the ionic currents. Use the data about ionic concentrations and ion
channel permeability ratios given in the previous chapter.

4. Derive the relationship between I, and 7, for a given V,,,. Explain the
restrictions applied to the values of T§,.

5. Given the definition of the length constant A. Write the relationship between the
length constant and the cardiac cell’s parameters. Calculate the length constant
for local propagation in a 1D fiber if the cardiac cell is considered to be a
cylinder with a radius a = 8 pm, R; = 200 Q-cm, and R,, = 6.25 kQ-cm’.

6. Calculate the diffusion coefficient using the values of A and R, from the
previous question. Assume that C,, = 1 pF/cm®.

7. To what category of mathematical models is it possible to relate action potential
(AP) models? Explain your reasoning.

8. Find the value of the length constant, A, for passive propagation in tissue with
the following parameters. (See chapter 7, page 128)
a=8-10uM
R;=0.2[kQ cm]
R,= 6.25 [kQ cm’]

9. Which case is excitation conduction velocity larger: for the monodomain or
bidomain approach?
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10. FitzHugh and Nagumo derived their simplified model from the van der Pol

equation.

Show on a phase-plane plot (w, v) the changes introduced by
FitzHugh in order to reproduce the nerve AP.

Investigate the stability of the steady state point on the phase-
plane plot.

11. The computational solution of mathematical models requires the selection of
effective numerical algorithms, adequate computer architectures, and
programming tools for visualizing data and calculating complex inherent
characteristics of the model, such as the conduction velocity, relaxation
coefficient, the AP duration restitution curve, etc.

a.

Explain the rationale for using the operator splitting algorithm
in the numerical solution of parabolic partial differential
equations.

Describe the hybrid method and compare it with the Euler
method for solving ordinary differential equations.

Explain the computer simulation approach for calculating
conduction velocity on a given point of a two-dimensional (2D)
wavefront.

Using the Noble AP model for propagation in 2D myocardium,
show that it is possible to reduce this model into dimensionless
form.

12. Stationary propagation of a spiral wave is considered to correspond to
ventricular tachycardia, the precursor to ventricular fibrillation.

a.

b.

Given the definitions of the points ¢ and Q on the front of wave
exhibiting stationary propagation.

Define the area that is termed the core of a spiral wave. What
geometric form does the core of the spiral wave have?

Explain why stationary propagation of a spiral wave is
impossible in a square-shaped section of myocardium with a
restricted size.

13. Excitation-propagation through narrow passes are frequently observed in
myocardium following an episode of myocardial infarction, when surviving
regions of tissue are surrounded by damaged or dead regions.

a.

What are the three types of boundary conditions characteristic
of narrow passes? Give their mathematical formulations and
physical meanings.

What geometrical configurations in narrow passes facilitate the
appearance of reentrant propagation? What are the necessary
conditions for reentry?

How does wavefront curvature inside a narrow path and at its
openings depend on the geometry, boundary conditions, and
properties of surviving regions of myocardium.
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14. According to Courtemanche and associates, the membrane capacitance for an
atrial cell with dimensions L = 100 um and D = 16 pm is equal to C,, = 100 pF.
What is the specific capacitance, expressed in puF/cm?, corresponding to this
value of C,,? Note that 1 ym = 10 cm and 1 pF = 10 uF.
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