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Preface

Quantum computation provides a new way of computation based on so-called
quantum bits (qubits). In contrast to the conventional bits used in Boolean logic,
qubits do not only allow to represent the basis states 0 and 1, but also superpositions
of both. By this, qubits can represent multiple states at the same time which enables
massive parallelism. Additionally, exploiting further quantum-mechanical phe-
nomena such as phase shifts or entanglement allows for the design of algorithms
with an asymptotic speed-up for many relevant computational problems such
database search, integer factorization, or graph and algebraic problems.

Motivated by these prospects, researchers from various domains investigated this
emerging technology. While, originally, the exploitation of quantum-mechanical
phenomena has been discussed in a purely theoretical fashion, in the past decade
also the consideration of physical realizations has gained significant interest. In fact,
building a quantum computer is a very challenging task. Nonetheless and despite
the severe physical challenges, suitable technologies for the modelling and design
of powerful, large-scale quantum computers composed of dozens of usable qubits
are in the range of vision.

However, for quantum systems of larger size, the manual design of quantum
circuits which realize a given (quantum) functionality in technology is no longer an
option. In order to keep up with the technological progress, methods need to be
provided which, similar to the design and synthesis of conventional circuits,
automatically generate a circuit description of the desired (quantum) functionality—
finally leading to Computer-Aided Design (CAD) of quantum circuits.

But in order to formalize the quantum-mechanical phenomena, states of qubits
are modelled as vectors in high-dimensional Hilbert spaces and are manipulated by
quantum operations which are described by unitary matrices—possibly including
complex numbers. This poses serious challenges to the representation, but even
more to the development of proper and efficient methods for quantum circuit
synthesis that would scale to quantum systems of considerable size. Hence, an
efficient representation of the desired quantum functionality is of the essence.

In this book, we provide a comprehensive analysis of the challenges for a
compact representation of quantum functionality, extensively review the
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state-of-the-art in this area as well as describe in detail a proper solution in terms of
Quantum Multiple-Valued Decision Diagrams (QMDDs). Based on QMDDs, we
demonstrate applications where this compact representation can be exploited in
order to develop scalable and automated methods for quantum circuit synthesis and
verification. The book is written in order to be comprehensible for computer sci-
entists as well as computer architects with little background in quantum logic and,
thus, does not require previous knowledge about the underlying physics. The
respective concepts as well as the used models are briefly introduced. All
approaches are described in a self-contained manner. The content of the book does
not only convey a coherent overview about current research results but also build
the basis for future work on quantum logic CAD.

This book is the result of several years of intensive research in the area of
quantum logic at the University of Bremen, Germany, and the Johannes Kepler
University Linz, Austria. During this time, we experienced broad support from
many people for which we would like to thank them very much.

Most importantly, we would like to thank Prof. Dr. Rolf Drechsler for his
continuous support in all these years and for providing a comfortable and inspi-
rational environment from which both authors benefit until today. We are also
indebted to thank Prof. D. Michael Miller from the University of Victoria, Canada
—one of the “fathers” of QMDDs—for many fruitful collaborations which laid the
foundation of his book. The numerous inspiring discussions, the helpful comments
and suggestions, and the thorough reading and review of this manuscript made this
book possible. In this context, the German Academic Exchange Service (DAAD)
earns our thanks for funding the close contact with Prof. Miller’s group. Beyond
that, we are very thankful for the support by the European Union through the COST
Action IC1405.

Many thanks also go to Prof. Mitch Thornton (Southern Methodist University,
Texas, USA) and Alwin Zulehner (Johannes Kepler University Linz, Austria) for
the very productive collaboration that resulted in some research papers which form
the basis of this book.

Finally, we would like to thank the many people who contributed in further,
more or less indirect ways to the completion of this book: In particular, the whole
Group for Computer Architecture at the University of Bremen as well as the
Institute for Integrated Circuits at the Johannes Kepler University earn many thanks
for providing a comfortable and inspirational environment. Particularly, very spe-
cial thanks go to Oliver Keszöcze with whom the first author of this book does not
only share the same wavelength, but also a rather green office. Finally, we would
like to thank Arne Grenzebach for proofreading the manuscript as well as for
establishing the contact to Sabine Lehr (Associate Editor at Springer).

Bremen, Germany Philipp Niemann
Linz, Austria Robert Wille
June 2017

vi Preface



Contents

Part I Introduction and Background

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Quantum Mechanics and Quantum Logic . . . . . . . . . . . . . . . . . . . . 4
1.2 Quantum Computation and Circuit Design . . . . . . . . . . . . . . . . . . . 6
1.3 Topics Covered in This Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Boolean Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Quantum Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Qubits and Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Quantum Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Quantum Circuits and Gate Libraries . . . . . . . . . . . . . . . . . . . . . . . 17

Part II Representation of Quantum Functionality

3 Challenges and Initial Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 From Conventional to Quantum Logic . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Decision Diagrams for Quantum Logic . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Basic Concepts: Binary Decision Diagrams (BDDs) . . . . . . 26
3.2.2 Still Boolean: Quantum Decision Diagrams (QDDs). . . . . . 29
3.2.3 Characteristic Functions: QuIDDs and XQDDs. . . . . . . . . . 31

4 Quantum Multiple-Valued Decision Diagrams . . . . . . . . . . . . . . . . . . 35
4.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Canonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Construction and Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



4.5 Changing the Variable Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.1 Shared Vertices and Skipped Variables . . . . . . . . . . . . . . . . 51
4.5.2 Local Modifications and Vertex Weights . . . . . . . . . . . . . . 53
4.5.3 Variable Interchange Scheme for QMDDs . . . . . . . . . . . . . 54

4.6 Efficiency of QMDDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Discussion and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Part III Design of Quantum Logic

6 Challenges and Initial Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Initial Synthesis Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Synthesis of Boolean Components . . . . . . . . . . . . . . . . . . . 72
6.2.2 Synthesis of Arbitrary Quantum Functionality . . . . . . . . . . 74

7 Synthesis of Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 Synthesis of Boolean Components . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 Embedding: Handling Irreversible Function
Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.2 Construction of QMDDs for Boolean Functions . . . . . . . . . 82
7.1.3 QMDD-Based Synthesis of Reversible Circuits . . . . . . . . . 86

7.2 Synthesis of Clifford Group Operations . . . . . . . . . . . . . . . . . . . . . 89
7.2.1 Main Concepts of the Synthesis Approach . . . . . . . . . . . . . 90
7.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2.4 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Correctness of Multiple-Valued Implementations . . . . . . . . . . . . . . . . 107
8.1 Multi-level Quantum Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2 Equivalence Checking in Multi-level Quantum Systems. . . . . . . . . 110

8.2.1 Functional Equivalence for Quantum Operations . . . . . . . . 111
8.2.2 Proposed Equivalence Checking Scheme . . . . . . . . . . . . . . 112
8.2.3 Implementation Using QMDDs. . . . . . . . . . . . . . . . . . . . . . 114

8.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Discussion and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii Contents



Part I
Introduction and Background



Chapter 1
Introduction

Quantumcomputation [NC00] provides a newwayof computation based on so-called
quantum bits (qubits). In contrast to the conventional bits used in Boolean logic,
qubits do not only allow to represent the basis states 0 and 1, but also superpositions
of both. By this, qubits can represent multiple states at the same time which enables
massive parallelism. Additionally exploiting further quantum-mechanical phenom-
ena such as phase shifts or entanglement allows for the design of algorithms with
an asymptotic speed-up for many relevant problems (e.g. database search [Gro96]
or integer factorization [Sho94]). In other words: quantum computers, i.e. physical
devices that operate at the atomic level and are able to exploit the above phenom-
ena, promise to solve important computational problems significantly faster than will
ever be possible on conventional computers. In addition, quantum logic offers new
methods for secure communication (e.g. quantum key distribution) and has several
other appealing applications.

Motivated by these prospects and by the fact that recent developments in con-
ventional computing technologies are approaching the level of atoms anyway,
researchers fromvarious domains have investigated this emerging technology.While,
originally, the exploitation of quantum-mechanical phenomena has been discussed
in a purely theoretical fashion (see e.g. [Deu85, Sho94, Gro96] for three well-known
quantum algorithms), in the past decade also the consideration of physical realiza-
tions (see e.g. [Gal07, OFV09, MSB+11]) has gained significant interest.

In fact, building a quantum computer is a very challenging task. As severe physical
obstacles have to be overcome, the devices proposed and used for quantumcomputing
so far are very prototypical in nature, operate on quantum systems consisting of
few particles, and have a low computational power. Consequently, until now it was
sufficient and easily possible to manually design the “programs” that realize the
desired (quantum) functionality on these devices. However, suitable technologies
for the modelling and design of powerful, large-scale quantum computers and other
information processing techniques that exploit quantum-mechanical principles are

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_1
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4 1 Introduction

in the range of vision. As a consequence, the manual design of quantum logic will
no longer be a feasible option in the future.

In order to keep up with this technological progress, there is a need to develop
methods that allow for Computer-Aided Design (CAD), i.e. methods that (1) auto-
matically generate an executable description of the desired quantum functionality,
(2) take into account the physical constraints of the target technology, and (3) scale
to quantum systems of considerable size.

In this book, we provide substantial improvements to the state-of-the-art in quan-
tum logic design, especially with respect to and based on the efficient representation
of quantum functionality. The presented approaches overcome several drawbacks
and limitations of previously proposed approaches and provide scalable, technology-
aware, and automated solutions for important sub-tasks of quantum logic design. To
this end, they constitute amajor step towardsCADfor quantum logic.Amore detailed
overview of the topics that are covered in this book is provided in Sect. 1.3.

Before that, we provide a comprehensive introduction to the field. More pre-
cisely, Sect. 1.1 first reviews the historic developments from the “birth” of quantum
mechanics to the evolution of a quantum logic. Based on that, the exploitation of
quantum-mechanical effects for quantum computing as well as the corresponding
design challenges are discussed in Sect. 1.2.

1.1 Quantum Mechanics and Quantum Logic

When the seminal works of Max Planck [Pla00] and Albert Einstein [Ein05] estab-
lished quantum mechanics as a new, fundamental branch of physics at the beginning
of the last century, no one was actually thinking of exploiting the corresponding
phenomena and effects for something like quantum computing, i.e. in order to obtain
solutions for classical computation problems. In fact, not even the foundations of
classical computation were laid at that time. Initially, the discovered phenomena and
implied predictions were subject to highly controversial discussions. To name a few
of them:

• Uncertainty Principle: Particles have particular properties (such as position,
momentum, spin, or polarization) that are not determined exactly. When these
are measured, the result is rather drawn randomly from a probability distribu-
tion. Moreover, complementary properties like position and momentum can not
be known precisely at the same time, i.e. the more precisely a particle’s position
is determined, the less precisely its momentum can be known.

• Quantum Entanglement: A group of particles can be connected to each other in
such a way that manipulations (measurements) of one of them has an effect on the
whole system.More precisely, any other of these particlesmight be affected—even
when separated by arbitrarily large distances. Einstein called this phenomenon
“spooky action at a distance”.
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M1

M2

|ψ 〉

|0〉

|0〉 |ψ 〉

H

H

Z

Fig. 1.1 Visualization of a quantum logic “formula” (cf. [NC00, p. 27]).

• Quantum Superposition: Particles can be in different (energy) states at the same
time. In other words, any two quantum states can be added together (“superposed”)
and the result will be another valid state.

While these counter-intuitive predictions of quantum mechanics could be exper-
imentally verified after all, for the time being numerous mathematically equivalent
formulations of quantummechanicswere developed e.g. byHeisenberg, Schrödinger,
Dirac, von Neumann, and Hilbert. The first complete formulation, known as the
Dirac—von Neumann axioms, was presented in 1932 [Neu32]. It is still widely
used today and also employed in this book. In this formulation, the state of a quan-
tum system—usually denoted as |ψ〉 using Dirac’s ket-notation [Dir39]—is repre-
sented by a unit vector in a high-dimensional Hilbert space, i.e. a special kind of
vector-space over the complex numbers. This state is manipulated by quantum oper-
ations that can be identified with generalized rotations of this space which preserve
lengths and angles—so-called unitary operators. The latter have a representation as
complex-valued unitary matrices which allow the manipulation of a quantum state
to be interpreted as a conventional matrix-vector multiplication.

From this abstract picture, however, it is still far from obvious to use quantum
mechanics for computation purposes. An important step on this way is to consider
quantummechanics from a logic perspective, i.e. constructing and evaluating formu-
las consisting of variables, logical connectives, predicates, and/or quantifiers. In fact,
it should take some decades to develop a logicmodel for quantummechanics.1 In this
model, quantum systems are interpreted as ensembles of qubits (or multiple-valued
quantum digits, so-called qudits) and complex quantum operations as a cascade of
elementary operations—so-called quantum gates—that are applied to a small subset
of qubits only rather than the entire system.2

Example 1.1 Consider the quantum logic “formula” shown in Fig. 1.1. This kind
of a visualization has been termed a quantum gate array by Deutsch [Deu89] and
later became popular under the name quantum circuit—in analogy to the circuit
representation of Boolean logic. However, the horizontal lines do not correspond

1Actually, the term quantum logicwas initially used byBirkhoff and vonNeumann for investigations
about logical anomalies of propositional logic that occur when reasoning about measurements of
quantum systems—mostly related with the uncertainty principle [BN36].
2Indeed, the term qubit first occurred in the 1990s and is credited to Ben Schumacher and William
Wootters [Sch95].



6 1 Introduction

to actual circuit wires, but rather represent the qubits of the considered quantum
system to which the quantum gates H , , etc. as well as measurements are
applied in a chronological order. Many quantum gates are conditional gates (like the
controlled NOT gate ) that are only applied to the target qubit if all controls
(denoted by solid dots ) are in the appropriate state.

For the purpose of this introductory chapter, it is completely sufficient to under-
stand the general semantics of quantum logic “formulas” or circuits, namely that they
describe a time-dependent process rather than some physical layout. However, note
that the circuit in Fig. 1.1 is not just an arbitrary sample circuit. It rather exploits the
interesting quantum-mechanical phenomenon of quantum entanglement and, thus,
allows for teleporting qubit states over potentially large distances. For this reason, we
will return to it later in Example2.9 on page 17 when we have introduced sufficient
background to understand the details of this amazing functionality.

For the time being, we continue by observing that the measurements used in
quantum logic are non-deterministic. In fact, recall that it is a general restriction of
quantum mechanics that a precise read-out of the state of a quantum system is not
possible anyway and the result of measurements is rather drawn randomly from a
probability distribution. These non-deterministic measurements play an important
role in quantum logic. On the one hand, they allow one to build non-deterministic
formulas by measuring individual qubits and using the result to control subsequent
gates (as in Example1.1). On the other hand, they offer the opportunity to evaluate
quantum logic “formulas” in terms of traditional logic (resulting in tuples of 0 and 1).
These potentially non-deterministic results are essentially the basis for quantum
computation.

1.2 Quantum Computation and Circuit Design

With the quantum logic model sketched above, it becomes possible to actually per-
form quantum computing, i.e. to employ quantum-mechanical effects in order to
obtain solutions for classical computation problems. However, the model is funda-
mentally different from that used in classical computing and, for a long time, there
has been only little interest in this area. Researchers were heavily busy with the
impressive progress in building more and more powerful classical computers and a
limit of this development was not in sight. This changed in the last decades of the
20th century, when first theoretical results regarding the power of quantum compu-
tation were published in terms of concrete algorithms. These showed a significant
asymptotic speed-up for many relevant problems. Most prominent examples include
Grover’s algorithm [Gro96] for the search in unstructured databases or Shor’s algo-
rithm [Sho94] for the factorization of integers with significant consequences for
state-of-the-art cryptography algorithms. Nowadays, there is a “quantum algorithm
zoo” [Jor16] with diverse quantum algorithms for diverse problems.

http://dx.doi.org/10.1007/978-3-319-63724-2_2
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|0〉

|1〉

f (0)⊕ f (1)

H

H Hx

y

x

y⊕ f (x)
Uf

Fig. 1.2 Deutsch-Algorithm (improved version, [NC00, p. 33])

A widely used pattern that many of these algorithms share is called quantum
parallelism and exploits that quantum superposition enables a quantum system to be
inmultiple basis states at the same time. This in principle allows a (Boolean) function
to be evaluated in parallel for all possible inputs at once. However, this alone does not
help much, as the results can not be read out directly. In fact, a clever post-processing
has to be applied, such that the final measurement yields a meaningful result.

Example 1.2 Using classical computation, a Boolean function f : {0, 1} → {0, 1}
needs to be evaluated twice in order to check whether it is constant or not. More
precisely, one has to compute f (0) and f (1) separately. With the quantum circuit
shown in Fig. 1.2, an improved version of the so-called Deutsch-Algorithm, this task
can be performed by a single evaluation of f . More precisely, the quantum system
is first brought into a superposition of the four basis states |00〉, |01〉, |10〉, and |11〉
using H gates. Then, the block in the center computes the mapping (x, y) �→
(x, y ⊕ f (x)) for all these basis states simultaneously, i.e. four evaluations of f at
once. After some post-processing in form of another H gate applied to the first
qubit, this qubit is in the state | f (0) ⊕ f (1)〉. Consequently, a measurement yields
0 if, and only if, f (0) = f (1), i.e. f is constant.

The Deutsch-Algorithmwas historically the first well-defined quantum algorithm
achieving a speed-up over classical computation. As a special characteristic of this
algorithm, the measurement yields the desired result in a deterministic fashion. How-
ever, in general this is not the case in quantum logic. Hence, quantum algorithms
take this uncertainty into account by conducting the same quantum computation sev-
eral times and deducing the final result from the measurements recorded after each
execution.

Besides these difficulties concerning the transfer of results from the quantum to a
discrete, conventional logic level, there are various other obstacles for the design of
quantum algorithms and circuits. Actually, the term quantum “circuit” is a bit mis-
leading since what it describes has little in common with conventional, electronic
circuits. In fact, there are no circuit wires carrying information from the inputs to
the outputs, such that the input and output “values” are present at different places at
the same time. A quantum circuit is more like a register on which computations are
executed in-place, i.e. immediately replacing the original values. However, accord-
ing to quantum-mechanical principles, the operations are performed in a reversible
manner (except measurements), such that always the preceding state could possibly
be restored. This inherent reversibility poses severe challenges, especially since the
(Boolean) functions that have to be implemented in a reversible fashion are usually
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far frombeing reversible.Moreover, in conventional circuit realizations of these func-
tions, bits correspond to signals, i.e. electrical currents, that can easily be “cloned”
physically by splitting up (fan-out). In contrast, the state of a qubit can not be cloned.
More precisely, the well-known no-cloning theorem states that there is no quantum
circuit that can clone an arbitrary state of a qubit [NC00, p. 532].

While rather satisfactory solutions to these structural problems could be obtained
at the theoretical level, the practical realization of quantum circuits is still subject
to fundamental physical problems. For instance, since the implementations have to
be conducted at an atomic scale, they are very sensitive to environmental noise and
dedicated error-correcting schemes have to be applied. Despite the severe challenges,
several promising technologies that support quantum computation in principle have
been proposed in the past decade. A broad survey of these quantum technologies
has been conducted in the ARDA quantum computing roadmap [ARD]. Although
qubits are a heavily limited resource in each of these technologies, quantum systems
consisting of dozens of usable qubits are in the range of vision [MSB+11].

For quantum systems of this size, the manual design of quantum circuits real-
izing a given quantum functionality is no longer an option. In fact, the underlying
complex-valued matrices that are used to precisely describe quantum functionality
grow exponentially with the size of the quantum system. Beyond that, the set of quan-
tum gates that correspond to physical operations (e.g. laser beams) and can, thus,
be executed directly is in general rather small and largely depends on the targeted
technology. As a consequence, most quantum gates can not be realized exactly, but
rather have to be approximated—accepting a small amount of error.3

Overall, in order to keep up with the technological progress, there is an essential
need for significant improvements at the design level that address these challenges—
finally aiming at CAD for quantum circuits. More precisely, the underlying problems
have to be considered from a logic design and logic synthesis perspective with the
overall goal to provide methods which, similar to the design and synthesis of con-
ventional circuits, (1) automatically generate a circuit description of the desired
(quantum) functionality, (2) take into account the physical constraints of the target
technology, and (3) scale to (quantum) systems of considerable size.

While this general scheme is perfectly in line with established design flows for
conventional circuits (where electro-technical devices are abstracted and eventually
designed on a Boolean logic level), how to design quantum circuits significantly
differs from established CAD methods and flows:

• First of all, approaches for the efficient representationof the desired functionality—
which are an essential tool in conventional CAD—are not applicable to the unitary
operators considered in the quantum domain.

• Besides these serious challenges to the representation, the structural discrepancy
between the quantumand conventional circuitmodel has fundamental implications
that are not compatible with conventional design methods—first and foremost the
inherent reversibility of quantum logic realizations.

3Fortunately, this approximation is to some extent compensated by the robust design of quantum
algorithms due to the non-deterministic measurements, anyway.
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• Finally, the actual physical realization of the circuits enforce the consideration of
further constraints that are not present or of significantly less importance for con-
ventional circuits. For instance, in certain possible technologies, only physically
adjacent qubitsmay interact (this leads to so-called nearest neighbour constraints).
Moreover, the quantum gates have to be implemented in a fault-tolerant fashion
in order to cope with environmental perturbations. Above that, the available gates
often only allow for an approximation rather than an exact realization of the desired
functionality—a problem that does not have to be covered in conventional CAD
at all.4

Overall, these constraints require the development of completely new methods for
two central tasks of quantum logic design, namely synthesis and verification. By this,
wemeanmethods that generate a circuit description of the desired quantum function-
ality (synthesis) and ensure the correctness of the generated circuits that result from
the transformations and optimizationswhich are applied in this context (verification).
However, without having an efficient representation of the targeted functionality in
the first place, there is hardly any chance of success for the development of a quantum
logic CAD.

1.3 Topics Covered in This Book

With the prospect of manageable quantum systems of considerable size, the interest
in applications like quantum computation increased and preliminary investigations
towards the development of methods for quantum logic CAD were conducted. Due
to severe obstacles resulting from the complex theoretical foundations and extremely
difficult physical realizations, most of these methods consider quantum logic design
from a rather theoretical point of view. More precisely, the majority of approaches
takes into account physical limitations and constraints as well as special charac-
teristics of the targeted technology only to a minor degree. Moreover, in absence
of efficient representations, many synthesis approaches provide theoretical upper
bounds rather than algorithms that would scale to quantum systems consisting of
dozens of usable qubits.

Addressing this central role of efficient representations for the development of a
quantum logic CAD in general and for synthesis in particular, we extensively attend
to the domain of representing quantum functionality in Part II of this book. Most
previous approaches aiming at an efficient representation of quantum functional-
ity tried to apply the same concepts that were beneficial in the conventional logic
setting to the quantum logic domain in a rather straight-forward way—despite the
fundamental differences between the two logic worlds. In contrast, a complementary
approach is given byQuantumMultiple-ValuedDecisionDiagrams (QMDDs)which

4Nonetheless, approximation has recently also become a trend in classical computing, since
approximate results are sometimes sufficient and realizable in shorter time or using fewer
resources [GMP+11].
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explicitly take into account the challenges and characteristics of quantum logic. How-
ever, the initial proposal [MT06] had some shortcomings that significantly restricted
its applicability to general quantum logic. To this end, we provide a revised version
of QMDDs that overcomes these limitations and, thus, may serve as a very promising
basis for quantum logic CAD.

Having this powerful tool at hand, we demonstrate the application of these rep-
resentations in the design of quantum circuits in Part III. To this end, we present
dedicated synthesis approaches for two important classes of quantum functionality,
namely Boolean components and Clifford group operations. In either case, we put
a strong focus on a good scalability of the approaches. Additionally, we consider
one of the most obvious applications of decision diagrams for logic design, namely
design verification. More precisely, one frequently needs to verify whether differ-
ent functional descriptions that are generated during the design process (e.g. before
and after performing an optimization step or moving to a lower level of abstraction)
indeed describe an equivalent functionality. To this end, we develop a scheme for
checking whether different (circuit) descriptions of the same functionality are indeed
equivalent.

Before that, however, in the next chapter we provide themathematical foundations
that are needed to understand the following investigations and make this book self-
contained.



Chapter 2
Background

In this chapter, we present the mathematical foundations of quantum logic and
computation which are required to make this book self-contained.1 The respective
descriptions are kept brief; readers wishing an in-depth introduction are referred to
the respective literature containing more comprehensive descriptions such as e.g.
[NC00, Mer07].

We begin in Sect. 2.1 by providing an introduction to Boolean logic with a par-
ticular focus on reversible logic, i.e. reversible Boolean functions. The latter play an
important role for quantum computation. Afterwards, the basics of quantum logic
and circuits are provided in Sects. 2.2 and 2.3, respectively.

2.1 Boolean Logic

Logic computations can be defined as functions over Boolean variables. More pre-
cisely:

Definition 2.1 A Boolean function over the standard Boolean algebra B = {0, 1}
is a mapping f : Bn → B with n ∈ N, where Bn is the n-fold Cartesian product of
B, i.e. Bn = B × . . . × B. A function f is defined over its primary input variables
X = {x1, x2, . . . , xn} and, hence, is also denoted by f (x1, x2, . . . , xn).

Definition 2.2 A multi-output Boolean function is a mapping f : Bn → B
m with

n,m ∈ N. More precisely, it is a system of Boolean functions fi (x1, x2, . . . , xn).

1The reader is assumed to be familiar with basic concepts of set theory and linear algebra. Addi-
tionally, some basic knowledge about group theory is required to completely understand the proofs
in Sect. 7.2.3.

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_2
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The respective functions fi (1 ≤ i ≤ m) are also denoted as component functions or
primary outputs. The set of all Boolean functions with n inputs and m outputs is
denoted by Bn,m = { f | f : Bn → B

m}.
Multi-output functions can also be denoted as n-input, m-output functions or

n × m functions. The precise mapping defining a Boolean function or multi-output
Boolean function can be described by a truth table or in terms of Boolean algebra
with expressions formed over the variables from X and operations like ∧ (AND),
∨ (OR), ⊕ (XOR), and · (NOT ).

An important subset ofmulti-output Boolean functions highly relevant to quantum
computing is constituted by reversible functions which are defined as follows:

Definition 2.3 Amulti-output function f ∈ Bn,m is termed reversible if it is a bijec-
tion, i.e.

• its number of inputs is equal to the number of outputs (i.e. n = m) and
• it maps each input pattern to a unique output pattern (i.e. performs a permutation
of the set of input patterns).

A Boolean function that is not reversible is termed irreversible.

Example 2.1 Table2.1(a) shows the truth table of a 3-input, 2-output function rep-
resenting a 1-bit adder. This function is irreversible, since n �= m. The function in
Table2.1(b) is also irreversible since, although the number n of inputs is equal to
the number m of outputs, the mapping is not a permutation; e.g. both inputs 000
and 001 map to the output 000. In contrast, the 3 × 3 function shown in Table2.1(c)
is reversible, since each input pattern maps to a unique output pattern.

The input/output mapping of a (reversible) Boolean function can also be repre-
sented in terms of a characteristic function.

Definition 2.4 The characteristic function for a Boolean function f ∈ Bn,m is
defined as χ f : Bn × B

m → B where χ f (x, y) = 1 if, and only if, f maps the input
pattern determined by the first n inputs of χ f to the output pattern determined by the
remaining m inputs, i.e. f (x) = y.

Table 2.1 Sample Boolean functions
(a) Irrev. (Adder)

x1 x2 x3 f1 f2
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(b) Irreversible

x1 x2 x3 f1 f2 f3
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(c) Reversible

x1 x2 x3 f1 f2 f3
0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 0 0 1
1 0 1 0 0 0
1 1 0 1 1 0
1 1 1 1 1 1
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Fig. 2.1 Matrix representation of the reversible function from Table2.1(c)

Finally, permutationmatrices are a common representation for reversible Boolean
functions, especially in the context of quantum computation.

Definition 2.5 A reversible Boolean function with n variables describes a permu-
tation σ of the set {0, . . . , 2n − 1}. This permutation can also be described using a
permutation matrix, i.e. a 2n × 2n matrix P = [pi, j ]2n×2n with pi, j = 1 if i = σ( j)
and 0 otherwise, for all i, j = 0, . . . , 2n − 1. Each column (row) of the matrix repre-
sents one possible input pattern (output pattern) of the function. If pi, j = 1, then the
input pattern corresponding to column j maps to the output pattern corresponding
to row i .

Example 2.2 The reversible Boolean function defined by the truth table from
Table2.1(c) is also represented by the permutation matrix shown in Fig. 2.1.

The above concepts can readily be extended from the Boolean domain to the
multiple-valued case. Here, variables can take values in {0, . . . , r − 1}, where r is
called the radix. Then, a truth table for a multiple-valued function over n variables
has rn rows. The concept of reversibility remains the same, i.e. a multiple-output
multiple-valued function is reversible if it has the same number of inputs and outputs
and each input pattern maps to a unique output pattern. Such a function can be
represented by an rn × rn permutation matrix. The entries of the matrix are 0’s and
1’s since they denote correspondence in the mapping and not logical values.

2.2 Quantum Logic

Next we consider the preliminaries on quantum logic. We begin by introducing the
means for describing andmeasuring quantum systems in Sect. 2.2.1. This is followed
by an introduction of the mathematical description of quantum operations and their
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effect on quantum systems in Sect. 2.2.2. Finally, we consider the realization of
complex quantum operations in terms of quantum circuits and review gate libraries
proposed for this purpose in Sect. 2.3.

2.2.1 Qubits and Measurement

Quantum systems are composed of qubits. Analogously to conventional bits, a qubit
can represent a (Boolean) 0 or 1, but also superpositions of the two. More formally:

Definition 2.6 A qubit is a two-level quantum system, described by a two-
dimen-sional Hilbert space. A basis of this state space is given by the two orthogo-
nal quantum states |0〉 ≡ (

1
0

)
and |1〉 ≡ (

0
1

)
which are used to represent the Boolean

values 0 and 1. Thus, the state of a qubit may always be written as

|ψ〉 = α0|0〉 + α1|1〉,

where α0 and α1 are complex numbers with |α0|2 + |α1|2 = 1, i.e. as a so-called
superposition of the (computational) basis states |0〉 and |1〉.
The quantum state of a single qubit is denoted by the vector

(
α0
α1

)
. The state space

of larger quantum systems composed of n > 1 qubits is given by the tensor product
of the state spaces of the individual qubits. Accordingly, there are 2n basis states
(|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉), and the system can be in an arbitrary superpo-
sition2 of these states

|ψ〉 =
2n−1∑

k=0

αk |k〉

for complex numbers α0, . . . , α2n−1 with
∑2n−1

k=0 |αk |2 = 1. The corresponding state
vector (αk)0≤k≤2n−1 has dimension 2n . Note, that two states |ψ1〉 and |ψ2〉 actually
represent the same physical state of a quantum system if, and only if, there is a
complex number φ �= 0, such that |ψ1〉 = eiφ · |ψ2〉. In this case, we say that |ψ1〉
and |ψ2〉 differ by a global phase shift.3

Due to physical limitations there is no possibility to precisely read-out the state
of a quantum system, i.e. to obtain the so-called amplitudes αk . In fact, it is only
possible to perform a measurement which destroys the quantum state of the system
and causes it to collapse to some basis state where the probability for measuring
basis state |k〉 is given by |αk |2.

2More precisely, we say that a system is in superposition if more than one αk is non-zero.
3Strictly speaking, the state spaces are projectiveHilbert spaces where each state |ψ〉 is represented
by a ray of vectors, i.e. a set {c · |ψ〉 | c ∈ C, |c| = 1}.
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Example 2.3 Consider the following three different states of a qubit: |ψ1〉 = 1√
2

(
1
1

)
,

|ψ2〉 = 1√
2

(
1−1

)
, |ψ3〉 = 1√

2

(
i
i

)
. For all three states, the probability of measuring |0〉

is the same as measuring |1〉: |α0|2 = |α1|2 = 1
2 .

In this regard, the amplitudes are often represented in polar coordinates by αk =
pk · eiθk , i.e. as a decomposition into themodulus pk = |αk | ∈ [0, 1] (determining the
probability of measuring the corresponding basis state |k〉) and the so-called phase
(factor) θk ∈ [0, 2π).

Example 2.4 Consider again the three qubit states from Example2.3. While the
modulus is always the same ( 1√

2
), we observe the three different phases 0 (ei ·0 = 1),

π
2 (ei ·π/2 = i), and π (ei ·π = −1). Moreover, |ψ3〉 = i · |ψ1〉 which means that |ψ1〉
and |ψ3〉 are equal up to global phase and, thus, there is no way to find out which of
them is actually present. In contrast, |ψ2〉—though having the same moduli—can in
principle be distinguished from these states as shown later on in Example2.6.

2.2.2 Quantum Operations

According to the postulates of quantummechanics, the time-dependent evolution of a
quantum system (so-called Hamiltonians) can be described by linear transformation
operations on the state space satisfying the following

Definition 2.7 A quantum operation over n qubits can be represented by a unitary
transformation matrix, i.e. a 2n × 2n matrix U = [ui, j ]2n×2n with

• each entry ui, j assuming a complex value and
• the inverseU−1 ofU being the adjoint U†, i.e. the conjugate transpose matrix ofU,
such that U · U† = U† · U yields the identity matrix.

According to this definition, every quantum operation is reversible since the matrix
U defining any quantum operation is invertible and U−1 = U† describes the inverse
quantum operation.

Commonly used quantum operations include theHadamard operation H (setting
a qubit into a balanced superposition) as well as the rotation operations Rx , Ry , and
Rz (parametrized by a rotation angle θ ). Important special cases of the latter are the
NOT operation X = Rx (π) which flips the basis states |0〉 and |1〉, and the phase
shift operations T , S = T 2, and Z = S2 = T 4 which correspond to Rz(θ) rotations
with the rotation angles θ = π

4 ,
π
2 , and π , respectively.4

4More precisely, the equalities only hold up to global phase, i.e. a multiplicative scalar factor.
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The corresponding transformation matrices are defined as

H = 1√
2

(
1 1
1 −1

)
, Rx(θ) =

(
cos θ

2 −i sin θ
2−i sin θ

2 cos θ
2

)
,

Ry(θ) =
(

cos θ
2 − sin θ

2+ sin θ
2 cos θ

2

)
, Rz(θ) =

(
e−iθ/2 0
0 eiθ/2

)
, and

X =
(
0 1
1 0

)
, T =

(
1 0
0 e

π i
4

)
, S =

(
1 0
0 i

)
, Z =

(
1 0
0 −1

)
.

In any case, the columns of the transformation matrix correspond to the output
state vectors that result when applying the respective operation to basis states as
inputs. Thus, the entry ui, j in the i th row and j th column of the matrix describes the
amplitude mapping from the input basis state | j〉 to the output basis state |i〉.
Example 2.5 Applying theHadamard operation H to the input basis state |1〉 = (

0
1

)
,

i.e. computing H · |1〉 yields a new quantum state

|ψ ′〉 = H · |1〉 = 1√
2

(
1 1
1 −1

)(
0

1

)
= 1√

2

(
1

−1

)
= 1√

2
(|0〉 − |1〉)

for which α0 = −α1 = 1√
2
, i.e. the input amplitude of |1〉 is split up equally to the

output amplitude of |0〉 and |1〉. Measuring the qubit would either lead to a Boolean 0
or a Boolean 1 with a probability of | 1√

2
|2 = 1

2 each. This computation represents
one of the simplest quantum computers—a single-qubit random number generator.

Example 2.6 Applying H to the basis state |0〉 = (
1
0

)
, i.e. computing H · |0〉 yields

the state |ψ1〉 = 1√
2

(
1
1

)
from Example2.3. Similarly, we obtain that H · |ψ1〉 = |0〉

andH · |ψ2〉 = |1〉. This means that we can apply the Hadamard operation in order to
distinguish between |ψ1〉 and |ψ2〉 which is not possible with a direct measurement
(cf. Example2.4).

Besides these operations thatworkon a single target qubit, there are also controlled
operations on multiple qubits. The state of the additional control qubits determines
which operation is performed on the target qubit. More precisely, the operation on
the target qubit is executed if, and only if, the control qubits with a positive control
are in the |1〉-state and the ones with a negative control are in the |0〉-state.
Example 2.7 A very prominent example for multiple-qubit operations is the con-
trolled NOT (CNOT) operation on two qubits which applies the NOT operation to
the target if, and only if, the control qubit is in the |1〉-state (positive control). On the
matrix level, it is defined by

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠ ,
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which can be expressed as I ⊕ X using the direct matrix product notation “⊕”.

The above concepts can readily be extended to the multiple-valued case of so-
called qudits where there are r basis states |0〉, . . . , |r − 1〉 and the state of a qudit
can be written as |x〉 = Σr−1

i=0 αi |i〉 with Σr−1
i=0 |αi |2 = 1. The transformations in this

case are described by rn × rn unitary matrices.

2.3 Quantum Circuits and Gate Libraries

Complex quantum operations (e.g. described by a quantum algorithm) are usually
realized by a set of elementary, low-level quantum operations or quantum computa-
tional instructions (e.g. represented in terms of quantum gates gi ) that are performed
in a predetermined serial fashion as a quantum circuit G = g1 . . . gl with 1 ≤ i ≤ l.
On the matrix level, such a composition of quantum gates can be expressed by a
direct matrix multiplication of the corresponding gate matrices.

Example 2.8 Consider the 3-qubit quantum circuit shown in Fig. 2.2. It realizes a
2-controlled NOT operation known as the Toffoli gate (depicted in Fig. 2.3). More
precisely, the basis states of the third qubit are swapped if, and only if, the first and sec-
ond qubits are in the |1〉-state. Following the established conventions, horizontal lines
represent qubits. Quantum operations H (Hadamard operation, cf. Example2.5),

T (phase shift by π
4 ), (CNOT with a positive control), etc. are applied

successively from left to right.

Example 2.9 With the concepts introduced above, we are now able to understand
the details of the circuit from Fig. 1.1 (cf. Example 1.1 on page 5). Recall, that it

H T

T

T

T †

T †

T †

T H

Fig. 2.2 A quantum circuit

Fig. 2.3 The Toffoli gate

http://dx.doi.org/10.1007/978-3-319-63724-2_1
http://dx.doi.org/10.1007/978-3-319-63724-2_1
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allows for teleporting qubit states over potentially large distances. Let us follow the
precise evolution of the quantum state.

The first two gates transform the lower pair of qubits from |00〉 to 1√
2
(|00〉 +

|10〉) and finally to 1√
2
(|00〉 + |11〉). Note that this state has an important property:

measuring a |0〉 on one qubit enforces a |0〉 on the other one (and analogously for |1〉).
Thus, the two gates create entanglement between the two qubits, since measuring
one of it completely determines the state of the other. The third gate of the circuit
encodes the information of the first qubit on the entangled pair (thereby entangling
all qubits of the system). More precisely, if |ψ〉 = α0|0〉 + α1|1〉, we obtain for the
state of the entire system:

α0|0〉 · 1√
2
(|00〉 + |11〉) + α1|1〉 · 1√

2
(|10〉 + |01〉)

Applying the final Hadamard gate to this state yields

α0

2
(|0〉 + |1〉) · (|00〉 + |11〉) + α1

2
(|0〉 − |1〉) · (|10〉 + |01〉).

Now, in order to establish ψ on the third qubit, we have to destroy the entanglement
by measuring the other qubits. More precisely, measuring the first qubit results in
the quantum state

α0√
2

· (|00〉 + |11〉) ± α1√
2

· (|10〉 + |01〉),

where the minus occurs only for the case that M1 = |1〉 is measured. This possible
phase shift is taken care of with the final controlled Z gate. Finally, we observe that
measuring a |0〉 on the second qubit yields the desired state on the third qubit (modulo
the phase shift), while measuring a |1〉 leads to α0|1〉 ± α1|0〉. In the latter case, the
basis states |0〉 and |1〉 have to be swapped. This is achieved by the controlled NOT
that is applied depending on the result of M2. Overall, the circuit demonstrates how
to transfer the state of one qubit to another qubit without a direct interaction between
them. Even more, the third qubit could have possibly been separated from the others
after applying the first two gates and only the measurement results M1 and M2, i.e.
two classical bits (indicated by double lines), are required to establish the desired
state on the distant qubit. In fact, the two controlled quantum gates that are applied
for this purpose do not depend on |ψ〉, but only (!) on the measurement results.

Note that inverting a given quantum circuit is a relatively easy task in most cases.
In fact, most quantum gates are self-inverse (like the Hadamard, NOT, and CNOT
gate) or determining the inverse is straight-forward (e.g. for rotations by taking the
negated rotation angle). Consequently, the inverse quantum circuit is obtained by
(1) reversing the gate order and (2) replacing each gate by its inverse.

An important sub-class of quantum circuits is constituted by reversible cir-
cuits. These circuits are composed of (classical) reversible gates, such that the
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Fig. 2.4 A reversible circuit

transformation matrix for each gate and the entire circuit is a permutation matrix.
The most established type of reversible gate is themultiple-controlled Toffoli (MCT)
gate. MCT gates consist of a possibly empty set of control qubits and a single target
qubit on which a NOT gate is performed if, and only if, all control qubits carry the
appropriate value. Note that the MCT gate library also includes the special cases of
NOT (empty set of controls) and controlled NOT (CNOT) gates (singleton set of
controls). For historical reasons and for brevity, we simply use the term Toffoli gate
to refer to the 2-controlled Toffoli gate.

Example 2.10 Consider the reversible circuit shown inFig. 2.4 that realizes amodulo
10 counter. More precisely, if the input (taken as a binary number dcba2) is less than
the (decimal) number 10, then the output is incremented and taken modulo 10, i.e.
the output is ((dcba + 1)%10)2. For binary numbers greater than or equal to 10, the
circuit does not behave according to this formula. However, it is clear that—due to
reversibility—the output also has to be greater than or equal to 10.

It is a common phenomenon that, as in the previous example, reversible circuits
have a meaningful output only for a subset of the input patterns. This is because
many reversible functions are obtained from irreversible functions by adding extra
inputs/outputs in order to ensure a bijective mapping, as already seen in Example2.1.
This process is called embedding and is discussed in more detail later in Sect. 7.1.1.

Several libraries of elementary quantum operations have been proposed in the lit-
erature. From a theoretical point of view, the set of arbitrary one-qubit gates (unitary
2 × 2matrices) and a single 2-qubit gate, namely the controlledNOT (CNOT) gate, is
sufficient to approximate any quantum operation to an arbitrary precision [BBC+95].
Libraries with this property are called universal. To this end, it has been shown that
a much smaller set of operations, comprising only CNOT, H , and T operations
(forming the so-called Clifford+T library), is also universal [BMP+00]. Moreover,
these quantum operations can in principle be implemented in a fault-tolerant fash-
ion [BMP+00]—a crucial property since quantum computing is inherently very sen-
sitive to environmental factors such as radiation and, hence, fault-tolerance is even
more important than for conventional systems. However, the technologies that are
actually used for the physical realization of quantum circuits support a small subset
of quantum operations only. This is discussed in more detail in Sect. 6.1.

http://dx.doi.org/10.1007/978-3-319-63724-2_7
http://dx.doi.org/10.1007/978-3-319-63724-2_6
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Chapter 3
Challenges and Initial Approaches

Efficient representations of the desired functionality were crucial for the develop-
ment of conventional logic CAD, and they are likely to play an equivalent role for
quantum logic CAD as well. In this part, we thus consider the state-of-the-art in
representing quantum functionality. In the present chapter, we first argue in Sect. 3.1
why approaches used in conventional logic are insufficient and what major chal-
lenges have to be overcome in order to develop efficient representations of quantum
logic. In Sect. 3.2, we then discuss initial approaches to address these challenges in
terms of decision diagrams and illustrate their particular shortcomings. Afterwards,
in Chap.4, we present a promising solution to these shortcomings, namelyQuantum
Multiple-Valued Decision Diagrams (QMDDs), a decision diagram kind that explic-
itly supports many quantum-mechanical properties and is a dedicated data-structure
for the efficient representation and manipulation of quantum functionality as con-
firmed by an experimental evaluation. We finally conclude this part in Chap.5 with a
comparisonofQMDDs to previously proposed approaches and illustrate the superior-
ity of this dedicated data-structure also from a theoretical perspective. Moreover, we
discuss why graphical representations and especially QMDDs are rarely employed
in state-of-the-art quantum logic design and which potential benefits have therefore
remained unused so far.

3.1 From Conventional to Quantum Logic

In conventional logic, a large body of research has focused on the unique and efficient
representation of Boolean functions f : Bn → B. More precisely:

• The naive way to represent a Boolean function in a unique fashion is in terms
of a truth table, i.e. a complete, enumerative list of all input/output mappings.

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_3
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However, this representation is only feasible for functions with a small number of
primary inputs n as truth tables always have an exponential complexity.

• Many Boolean functions can be represented more efficiently by using algebraic
representations to characterize their ON-set, i.e. the set of inputs for which
f evaluates to true: ON f = {(x1, . . . , xn) | f (x1, . . . , xn) = 1}. The most
established representatives of this class are the Disjunctive/Conjunctive Normal
Form (DNF/CNF) which are also called Sum of Products and Product of Sums rep-
resentations as they represent f as a disjunction of conjunctions and conjunction
of disjunctions, respectively. While these representations can be rather compact,
they share the drawback of not being canonic, i.e. the same Boolean function may
be represented by different DNFs or CNFs. In order to achieve uniqueness and
canonicity, all conjunctions (disjunctions) in fact have to beminterms (maxterms),
thus, comprising all n variables either as a positive or negative literal. By this,
however, the advantage over truth tables reduces dramatically. Overall, algebraic
representations can either be unique—at the cost of being rather inefficient—or
compact—at the cost of not being unique.

• To this end, a compact representation which is—at the same time—also unique
can be achieved using graphical representations like decision diagrams. The most
prominent representative of this class is the Binary Decision Diagram (BDD)
which essentially is a directed acyclic graph whose vertices represent the Shannon
decomposition of f (a more precise definition is given in Sect. 3.2.1). Moreover,
BDDs do not only tend to be even more compact than CNFs or DNFs (and, of
course, their canonic versions), they can also be evaluated and manipulated very
efficiently. For instance, the value of f for a given assignment of the n input
variables can always be computed in at most n steps, while for CNFs/DNFs all
disjunctions/conjunctions have to be considered in the worst case.

The three approaches outlined above are illustrated by means of the following

Example 3.1 Consider the Boolean function f : B3 → Bwith n = 3 primary inputs
given by the Boolean formula f (x1, x2, x3) = (x1 ∧ x2) ⊕ x3.

• The truth table of f is shown in Fig. 3.1a. Here, the first three columns list all
possible assignments to the input variables x1 to x3, while the last column shows
the corresponding values of f .

• In Fig. 3.1b, algebraic representations characterizing the ON-set of f are shown.
For both CNF andDNF, the canonic representation consisting of min-/maxterms is
given. Note that f could also be described more compactly in DNF as (x1 ∧ x3)∨
(x2 ∧ x3)∨ (x1 ∧ x2 ∧ x3) or in CNF as (x1 ∨ x3)∧ (x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)which
can be more adequate if uniqueness is not of primary importance. This is e.g. the
case when the value of f shall be determined for a particular assignment of the
input variables and one, thus, has to check whether at least one conjunction (DNF)
or all disjunctions (CNF) evaluate to true.

• Finally, Fig. 3.1c shows the graphical BDD representation of f . There are two
terminal vertices (labelled 0 and 1) which represent the possible outcomes of f .
The labels of the remaining vertices represent the input variables of f . Each path
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x1 x2 x3 f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(a) Truth table

DNF / Sum of Products:

(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ x3)∨
(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ x3)

CNF / Product of Sums:

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)

(b) Canonic CNF/DNF

x1

x2

x3 x3

0 1

(c) BDD

Fig. 3.1 Unique representations of a Boolean function

from the root vertex (labelledby x1) down to a terminal vertex represents a set of one
or more assignments to the input variables x1, x2, x3 leading to the same outcome
of f . More precisely, solid edges indicate an assignment xi = 1, while dashed
edges represent the case xi = 0. For instance, the path on the very left following
the solid lines to the 0-terminal represents the assignment x1 = x2 = x3 = 1 for
which f evaluates to 0. In contrast, the path on the very right represents the two
assignments with x1 = 0, x3 = 1 (x2 can be chosen arbitrarily).

The availability of unique, efficient and easily manipulable representations of
Boolean functions played a vital role for the rapid progress in conventional logic
design in the past decades and it would, thus, be highly desirable to exploit such
representations in the quantum domain as well. However, although many quantum
algorithms contain a substantial Boolean component, i.e. a part or module that real-
izes a Boolean function (e.g. the modular exponentiation in Shor’s algorithm or the
oracle in Grover’s algorithm), none of the so far mentioned representations is suit-
able to represent quantum functionality in general—including the whole range of
quantum-mechanical effects which makes quantum computation so powerful like
superposition, entanglement, or phase shifts.

More precisely, the objects of interest which have to be represented in quantum
logic are Hamiltonians of a quantum system. These are linear, unitary mappings
C

2n → C
2n that describe the system’s evolution over time (where n is the number

of qubits). The most natural way to represent such an Hamiltonian is to choose a
basis of the Hilbert space C2n and then consider the corresponding transformation
matrix—the counterpart to truth tables in conventional logic—, which is a 2n × 2n

complex-valued unitarymatrix.As for truth tables, thesematrices grow exponentially
with the size of the quantum systems. For instance, a transformation matrix for a 20-
qubit system has 220 × 220 ≈ 1.0995116 · 1012 (around a trillion!) entries.

State-of-the-art approaches to handle these matrices, i.e. to perform required
matrix operations and cope with the complex values are often based on computer
algebra software like MatLab/Octave or other generic math libraries. Consequently,
they scale very poorly when it comes to unitary matrices and are, thus, only applica-
ble to rather small quantum systems. In order to deal with larger quantum systems,
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there is a need to derive more compact representations of the transformation matri-
ces. In fact, they should exploit structural similarities of the matrices which result
from quantum-mechanical properties like superposition or phase shifts, and, at the
same time, should be able to handle complex values. Initial attempts to address these
challenges in terms of decision diagrams are reviewed in the following section.

3.2 Decision Diagrams for Quantum Logic

Graphical representations were a break-through in the domain of conventional circuit
design in the 1990s—first and foremost Binary Decision Diagrams (BDDs, [Ake78,
Bry86]) as themost prominent example. As a consequence, with the prospect of large
quantumcomputers becoming amore andmore realistic vision, researchers have tried
to transfer this approach to quantum logic in order to enable a similar improvement for
quantum logic design. In this section, we describe the most established approaches
that have been proposed in this context and also discuss their particular shortcomings.

3.2.1 Basic Concepts: Binary Decision Diagrams (BDDs)

To begin with and to review basic concepts of decision diagrams, we consider the
conventional logic setting in which BDDs are employed to describe the desired
functionality in a compact and easily manipulable fashion.

Definition 3.1 A Binary Decision Diagram (BDD) is a directed, acyclic graph
(V, E) with the following properties:

• There are two terminal vertices t0, t1 ⊂ V, t0 �= t1 representing the Boolean values
0 and 1.

• Each non-terminal vertex v ∈ V \ {t0, t1} is labelled by a decision variable xi with
1 ≤ i ≤ n and has exactly two outgoing edges. These edges are called high and
low edge. Accordingly, the vertices to which these edges point are called high/low
child and are denoted by high(v) and low(v), respectively.

• There is a unique root vertex v0 that has no incoming edges.
• A BDD is called reduced when there are no redundant vertices for which both the
high edge and the low edge point to the same child vertex high(v) = low(v) and
when there is no pair of vertices with the same variable label, the same high child,
and the same low child. It is called ordered if the decision variables appear in the
same, fixed order on each path from the root to the terminals.

Interpretation and Construction

Each non-terminal vertex v of a BDD represents a Boolean function. This function
is constructed recursively using the functions represented by the child vertices of v.
More precisely, the following composition formula is applied for this purpose:
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f = (
xi ∧ fhigh(v)

) ∨
(
xai · flow(v)

)
, (3.1)

where “+/·” denote the logical OR/AND operation, xi denotes the decision variable
by which v is labelled, and fhigh(v) and flow(v) denote the functions given by the high
and low child, respectively. This formula corresponds to the well-known Shannon
decomposition

fv = xi · fxi=1 + xai · fxi=0 (3.2)

by setting fhigh(v) = fxi=1 and flow(v) = fxi=0, i.e. by using the positive and negative
co-factors of f . Thus, using the above (de-)composition formulas, a corresponding
BDD can be constructed for any given Boolean function and vice versa.

Example 3.2 Consider again the Boolean function f : B3 → B from Example3.1
on page 24 given by f (x1, x2, x3) = (x1 ∧ x2) ⊕ x3. Assuming the variable order
x1 � x2 � x3, we first apply Eq. (3.2) for i = 1, i.e. we perform the Shannon
decomposition for x1. This yields

f = x1 · (x2 ⊕ x3) + x1 · x3,

as the positive/negative co-factors of f are fx1=1 = x2 ⊕ x3 and fx1=0 = x3. Now,
decomposing fx1=1 likewise w.r.t. x2 yields

fx1=1 = x2 · x3 + x2 · x3
with the co-factors being f x2=1

x1=1 = x3 and f x2=0
x1=1 = x3. Using this set of co-factors,

the BDD representation of f can be constructed as shown in Fig. 3.2 where the
co-factors are annotated to the corresponding edges. As in Fig. 3.1c, we use the
established notation for distinguishing between high and low edges by representing
them as solid and dashed lines, respectively.

Fig. 3.2 BDD construction
using Shannon decomposition

x1

x2

x3 x3

0 1

x1 · (x2 ⊕ x3)+ x1 · x3 = f

x2 · x3 + x2 · x3 = fx1=1

x3 ·0+ x3 ·1= f x2=1
x1=1

f x2=0
x1=1 = fx1=0 = x3 ·1+ x3 ·0
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Manipulation and Skipped Variables

Moreover, the applied composition formula also allows one to apply operations of
Boolean logic likeAND,OR, etc. (denoted byOP in the following) as recursive graph
operations. More precisely, we make use of the fact that constructing co-factors is
compatible with applying logic operations. This means that it yields the same result
to (a) first apply a Boolean operation to the operand functions and then consider the
co-factor of the result or to (b) first restrict attention to the respective co-factors and
then apply the Boolean operation directly on them. In terms of a formula, this means
( f OP g)xi=k = (

fxi=k OP gxi=k
)
for k = 0, 1. To intuitively verify this formula,

observe that it obviously does not make a difference for the result whether OP is
first calculated on the whole part of f/g before one half of the results is dropped
or whether at first the same half of the original functions is dropped and OP is
only computed on the remaining part. Consequently, the Shannon decomposition for
f OP g can be rewritten as

f OP g = xi · (
fxi=1 OP gxi=1

) + xi · (
fxi=0 OP gxi=0

)
. (3.3)

Transferring this to BDD vertices v,w representing the functions fv and fw, respec-
tively, the formula becomes

fv OP fw = xi · (
fhigh(v) OP fhigh(w)

) + xi · (
flow(v) OP flow(w)

)
, (3.4)

which means that OP can be computed for two BDD vertices recursively by com-
puting it on the high and low children separately.

However, a close look reveals that Eq. (3.4) is only correct if both vertices v andw

are labelled by the same variable xi . More precisely, in the case thatw is not labelled
by xi it is not necessarily true that fhigh(w) = ( fw)xi=1 and flow(w) = ( fw)xi=0.
Special care has to be taken for the case that the vertices are labelled by different
variables. This case can happen when a BDD is not ordered, i.e. the variables may
occur in different orders on different paths. In addition, even if the BDD is ordered,
some variables may not occur at all on some paths, e.g. x2 does not occur on the
rightmost path in Fig. 3.2. This phenomenon of so-called skipped variables occurs
when the (sub-)function does not depend on these variables, i.e. the positive and
negative co-factors are equivalent fxi=0 = fxi=1. In this case, a vertex w′ labelled by
xi would point with both edges to the same vertex high(w′) = low(w′) = w.1

As this implies f ′
w = fw, the vertexw′ is redundant and can therefore be removed.

However, by assuming w′ to be present and using the above identities f ′
w = fw as

well as high(w′) = low(w′) = w, we can rewrite Eq. (3.4) as follows:

1Without loss of generality, we assume that xi (the decision variable of v) precedes the decision
variable of w in the variable order. Otherwise, v and w can simply be swapped.
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fv OP fw = fv OP f ′
w

= xi · (
fhigh(v) OP fhigh(w′)

) + xi · (
flow(v) OP flow(w′)

)

= xi · (
fhigh(v) OP fw

) + xi · (
flow(v) OP fw

)
(3.5)

Thus, by usingw itself instead ofw’s children (as in the original Eq. (3.4)), fv OP fw
can be computed also in case of skipped variables.

Overall, logic operations on Boolean functions can be computed efficiently on
the corresponding BDDs if they are ordered w.r.t. the same variable order.

Canonicity and Variable Orders

In this book, BDDs are always assumed to be reduced and ordered (cf. Definition3.1).
These Reduced Ordered BDDs (ROBDDs, [Bry86]) have been shown to be unique
representations of Boolean functions, i.e. different BDDs represent different Boolean
functions such that there is exactly one BDD representing a particular Boolean func-
tion.More precisely, the representation is unique up to the order of decision variables
that is applied. This property which is also called canonicity is highly desirable as it
can be exploited for many purposes, e.g. for efficiently checking the equivalence of
two Boolean functions by comparing their corresponding BDD representation.

For different variable orders, however, the size of the BDDs representing the same
Boolean function, i.e. their number of vertices, can vary significantly (from linear to
exponential w.r.t. the number of variables) and a large body of research has focused
on methodologies for finding a “good” variable order [Rud93, EFD05].

Overall, BDDs are an important representative for a compact and at the same
time unique representation of Boolean functions which can easily be manipulated
as well and, thus, have become an indispensable tool in conventional logic design.
However, BDDs are not directly applicable for the representation of the complex-
valued transformation matrices that occur in the quantum logic setting. Before we
see how the above concepts can nevertheless be utilized to represent those matrices,
we shortly visit another interesting decision diagram construction that—as BDDs—
is also only applicable to Boolean functions, but is still worth to be reviewed as it
explicitly aims for a realization of the respective functionality in the quantum logic
domain.

3.2.2 Still Boolean: Quantum Decision Diagrams (QDDs)

Though their name may raise higher expectations, Quantum Decision Diagrams
(QDD, [AP06]) were proposed as a means to represent Boolean functions, even if
their main purpose is to represent a given Boolean function in a fashion that allows
for an efficient quantum logic synthesis using controlled Rx (θ) rotations.
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x1

x2

x3

|0〉

0

π

π

Fig. 3.3 QDD representation

Definition 3.2 A Quantum Decision Diagram (QDD) is a BDD with the following
enhancements:

• The two non-terminal vertices represent the qubit basis states |0〉 and |1〉.
• Each high edge has an annotated weight θ ∈ (−π, π ].
Instead of the Shannon decomposition, a so-called functional bi-decomposition

f = xi · Rx (θ) · fhigh(v) + xai · flow(v) (3.6)

is applied where the rotation angle θ ∈ (−π, π ] corresponds to the high edge weight
and flow(v), fhigh(v) again denote the (Boolean) functions that are given by the low
and high child, respectively. More precisely, the co-domain of all these functions
is given by the range of qubit states that can be reached from |0〉 by arbitrary Rx

rotations: {Rx(θ) · |0〉 | θ ∈ (−π, π ]}. Consequently, in Eq. (3.6) the “+” denotes
component-wise addition and “·” denotes scalar and matrix-vector multiplication,
respectively. Moreover, the Boolean variables xi ∈ {0, 1} ⊂ C are interpreted as
scalar values (with xi = 1 − xi ).

Example 3.3 The QDD representation of the Boolean function from Example3.2 is
shown in Fig. 3.3. Note that there is only one terminal vertex representing |0〉. In fact,
as Rx (π) swaps the basis states |0〉 and |1〉, the latter is achieved here using rotation
angles θ = π on the high edges. From a Boolean logic perspective, a logical NOT
is performed on all paths going through a high edge with this rotation angle. This
essentially corresponds to the concept of complemented edges for BDDs [Ake78].

Overall, QDDs are a very close adaption of BDDs for the quantum domain.
However, QDDs are only applicable for a small sub-class of quantum functionality—
especially for (reversible) Boolean functions. While Boolean components
constitute important parts of many quantum algorithms, the whole range of quantum-
mechanical effects like superposition, entanglement, or phase shifts can not be cov-
ered with decision diagrams like BDDs or QDDs. Indeed, as we can see in the
following, a quite different approach is necessary.
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3.2.3 Characteristic Functions: QuIDDs and XQDDs

Instead of Boolean functions, unitary mappings within a 2n-dimensional Hilbert
space have to be considered in the general quantum logic setting. Thus, complex-
valued transformation matrices need to be represented which may contain arbitrary
complex values α with |α| ≤ 1. So, which (Boolean) variables can be taken as
decision variables in order to represent these matrices as decision diagrams? While
for classical BDDs, the input variables of the Boolean function can be used in a
natural way for this purpose, the input of the unitary mapping is a state vector,
i.e. a complex-valued column vector with 2n entries, which is not suitable at all.
Instead, it has been proposed to introduce decision variables x1, . . . , xn, y1, . . . , yn
according to the input-output mapping that is induced by transformation matrices
(cf. Sect. 2.2.2). More precisely: each possible assignment to the xi or yi variables
represents a particular input basis state |x1 . . . xn〉 or output basis state |y1 . . . yn〉 and,
thus, determines a column or row of the matrix, respectively. As a consequence, each
single cell/entry of the matrix can be addressed by a particular combination of the
xi and yi variables.

Example 3.4 Consider the transformation matrix in Fig. 3.4 which represents the
reversible Boolean function f : B3 → B

3 whose components are given by f1 ≡
x1, f2 ≡ x2, and f3 ≡ (x1 ∧ x2) ⊕ x3. Each column and row is labelled by the
corresponding assignment to the index variables xi , yi (i = 1, 2, 3). For instance,
the highlighted cell in the bottommost row can be addressed with the assignment
(x1, x2, x3) = (1, 1, 0) and (y1, y2, y3) = (1, 1, 1).

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0

x1 x2 x3

y1
y2
y3

Inputs

O
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pu
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(a) Transformation matrixM

x1

y1 y1

x2 x2

y2 y2 y2

x3 x3

y3 y3

1 0

0 0

0 0 0

(b) BDD for χM (QuIDD for M)

Fig. 3.4 Transformation matrix and its characteristic function

http://dx.doi.org/10.1007/978-3-319-63724-2_2
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In order to use these Boolean index variables for representing a complex-valued
transformationmatrixM = [mi, j ] in terms of a decision diagram, thematrix needs to
be represented as a function over these variables. Such a function that representsM
can be constructed by defining χM(x, y) = mx,y . This definition induces a function
χM that returns the particular matrix entry which is determined by the assignment of
the xi and yi variables.

Example 3.5 For the permutation matrixM shown in Fig. 3.4, χM is a conventional
Boolean functionB6 → B as all matrix entries are from the set {0, 1}.More precisely,
we have

(χM(x, y) = 1) ⇔ ∀i ∈ {1, 2, 3} : yi = fi (x1, x2, x3)

where the fi are the component functions of f from Example3.4. Consequently, in
this particular case χM can be represented as a conventional BDD shown in Fig. 3.4b.
For the sake of a better readability, several edges pointing to the 0-terminal are
indicated by stubs.

However, a general unitary transformationmatrixmay contain an arbitrary number
of different complex values such that χM is a genuine complex-valued function
χM : B2n → C. From a quantum logic perspective, χM returns the output amplitude
of |y1 . . . yn〉 given that the input was the basis state |x1 . . . xn〉 and, thus, describes the
corresponding quantum operation in terms of a (generalized) characteristic function
of M with multiple possible outcomes. In order to represent this function—and, thus,
a complex-valued transformation matrix—in terms of a BDD, the main idea is to use
multiple terminal vertices, one for each different outcome of χM , i.e. each different
value that occurs in the matrix. More precisely [VMH04, VMH07]:

Definition 3.3 AQuantum Information Decision Diagram (QuIDD) is a BDD with
the following enhancement:

• There is an arbitrary number of terminal vertices—each representing a complex
value α with |α| ≤ 1. There are no two redundant terminal vertices that represent
the same complex value.

• The range of decision variables is extended to {xi , yi | 1 ≤ i ≤ n} such that each
xi is succeeded by yi in the variable order (interleaved structure).

In order to represent a transformation matrix, each path in the diagram has to lead
to the appropriate terminal vertex, i.e. to the terminal vertex representing the value
of the particular matrix entry which is determined by the assignment of the xi and yi
variables on that path.

As QuIDDs are essentially BDDs, also the composition formula for QuIDDs is
basically the same as reviewed before for BDDs in Eq. (3.1). However, as we are
representing complex-valued (characteristic) functions, note that the “+” has to be
interpreted as scalar addition and the “·” as scalar multiplication while the decision
variables xi , yi ∈ {0, 1} ⊂ C are interpreted as scalar values like in Eq. (3.6).

Example 3.6 The QuIDD for the transformation matrix shown in Fig. 3.4a
(cf. Example3.4 on page 31) is essentially isomorphic to the BDD in Fig. 3.4b.
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(a) QuIDD
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(b) Variable assignment for XQDD
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(c) XQDD

Fig. 3.5 Decision diagram representations of the 2 × 2 Hadamard matrix

A particular matrix entry is represented by the path determined by the corresponding
assignment of the index variables and its complex value is represented by the termi-
nal vertex at the end of the path. For instance, the matrix entry highlighted in grey
in Fig. 3.4a is represented by the path highlighted in bold in Fig. 3.4b.

While the BDD/QuIDD in Fig. 3.4a represents a permutation matrix, i.e. a
reversible Boolean function, the QuIDD in Fig. 3.5a represents the true quantum
Hadamard matrix H = 1√

2

(
1 1
1 −1

)
and, thus, uses multiple terminals to represent the

real-valued matrix entries 1√
2
and − 1√

2
.

A very similar approach is given by X-decomposition Quantum Decision Dia-
grams (XQDDs, [WLTK08]),which basically differ fromQuIDDs only in the seman-
tics of the xi and yi variables as shown in Table3.1 on page 33. More precisely, the
xi variables still specify columns, while the yi variables are used to specify diago-
nal blocks. The underlying working hypothesis for XQDDs is that it is more likely
to have identical blocks, especially non-zero blocks, on the diagonal (and on the
off-diagonal) of a matrix than in the same rows or columns.

Example 3.7 The variable assignment of the XQDD decision variables is illustrated
by means of Fig. 3.5b for the 2 × 2 Hadamard matrix H. The resulting XQDD
representation is shown in Fig. 3.5c. The only difference in comparison to the cor-
responding QuIDD representation in Fig. 3.5a is that the high and low edge of the
y1-vertex swap their targets.

Table 3.1 Assignment to decision variables for QuIDDs and XQDDs

QuIDD XQDD
xi yi xi yi
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

column row column diagonal
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Overall, QuIDDs andXQDDs apply aBDD-based approach to quantum logic and,
therefore, benefit from existing methodologies for BDDs—especially algorithms for
efficient function manipulation and optimization in terms of variable reordering.
However, this approach to quantum logic is lacking a dedicated consideration of
quantum-mechanical properties like phase shifts and is also ignoring the fact that
quantum logic is potentially multiple-valued and employs qudits, i.e. multi-level
quantum systems with more than two basis states. While the latter can in principle
be overcome bymoving fromBinary toMultiple-ValuedDecisionDiagrams (MDDs)
as the underlying data structure (as demonstrated in [LWK11]), a complementary
approach is needed to take into account the special characteristics of quantum logic
and overcome the shortcomings of the previous approaches. Such a complementary
approach is presented in the next chapter.



Chapter 4
Quantum Multiple-Valued Decision
Diagrams

In this chapter, we introduce a data-structure termedQuantumMultiple-valued Deci-
sion Diagram (QMDD, [NWM+16]) which can represent both binary and multiple-
valued quantum functionality, i.e. quantum systems composed of qubits and/or qudits
with more than two basis states, in a compact and efficient manner.1 We first intu-
itively motivate basic concepts of the QMDD structure in Sect. 4.1. Afterwards,
we provide a formal definition of QMDDs in Sect. 4.2 and argue why QMDDs are
not only a compact, but also a canonic representation of quantum functionality in
Sect. 4.3. As QMDDs are complementary to the BDD-based approaches reviewed in
the previous chapter, dedicated algorithms have to be employed for their construction
and manipulation. In addition, the established scheme for variable ordering of BDDs
has also to be modified for the use with QMDDs. We present such algorithms for
efficiently performing several matrix operations essential to quantum logic directly
on QMDDs in Sect. 4.4. These allow for computing the QMDD representations of
complex quantum functionality—quantum circuits—from the QMDDs for elemen-
tary quantum operations, which in turn can be derived rather easily. Moreover, in
Sect. 4.5 we present a dedicated scheme for efficiently changing the variable order in
QMDDs which can effectively reduce the size of the representation in terms of the
number of vertices. An evaluation of the overall efficiency of QMDDs is afterwards
presented in Sect. 4.6.

1In this book, we describe the revised version of QMDDs according to [NWM+16]. In comparison
to the first proposal of QMDDs [MT06], the most significant improvements are the increased focus
on a formal description from a quantum logic perspective, especially regarding the decomposition
scheme, and the possibility for optimization through variable re-ordering.
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4.1 Basic Concepts

As argued above, quantum operations are commonly represented by unitary trans-
formation matrices, i.e. complex-valued rn ×rn matrices where r is the radix and n is
the number of variables (inputs and outputs). These matrices exponentially grow in
size which is why conventional matrix representation and manipulation techniques
are applicable for rather small instances only. However, two observations can be
made which build the basis for a compact representation:

Observation 4.1 Elementary quantum operations typically affect only a small num-
ber of qudits of a quantum system. The transformation matrix for the whole system,
which is the Kronecker/tensor product of the respective (smaller) operation matrix
and identity matrices, often contains the same pattern repeatedly throughout the
matrix. These similar structures which may be identical or equal up to a constant
multiplier can be exploited in reducing the representation of a matrix.

Observation 4.2 Transformation matrices are often sparse with many zero entries
frequently appearing in blocks. Blocks of zeros can be represented very compactly
leading to operation efficiencies particularly in matrix multiplication which is cen-
tral to dealing with quantum logic where this operation is required very often for
concatenating multiple quantum operations.

Tomakeuse of these possible reductions, the fundamental idea ofQMDDs is to use
a partitioning of the original matrix into sub-matrices which in turn are partitioned in
the same manner. These decomposition steps are represented by vertices eventually
forming a decision diagram. Then, the redundancies following from the observations
above can be avoided by using shared structures. More precisely, we observe—
starting with r = 2—that a 2n × 2n matrix can be partitioned into 4 sub-matrices of
dimension 2n−1 × 2n−1 as follows:

U =
[
U00 U01

U10 U11

]
(4.1)

This partitioning is relative to the most significant row and column variable.

Example 4.1 Consider again the matrix shown in Fig. 3.4a on page 31. This matrix
is partitioned with respect to variable x1. Note that, in contrast to QuIDDs, the
same variable is used for labelling both rows and columns. The sub-matrices are
identified by subscripts giving the row (output) and column (input) value for that
variable identifying the position of the sub-matrix within the matrix. For instance,
U01 corresponds to the top-right sub-matrix which describes the mapping of the
remaining variables when x1 is mapped from input value 1 to output value 0. Using
this partition, amatrix can be represented as a graphwith vertices as shown in Fig. 4.1.
The vertex is labelled by the variable associated with the partition and has directional
edges pointing to vertices corresponding to the sub-matrices.

http://dx.doi.org/10.1007/978-3-319-63724-2_3
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xi

U00 U01 U10 U11

|0〉 → |0〉 |1〉 → |0〉 |0〉 → |1〉 |1〉 → |1〉

Sub-matrix:

I/O mapping of xi:

Fig. 4.1 Vertex representing the matrix partitioning (for r = 2)

The partitioning process can be applied recursively to each of the sub-matrices
and to each of the subsequent levels of sub-matrices until one reaches the terminal
case where each sub-matrix is a single value. The result is that the initial matrix
is represented by a tree. By traversing the tree, one can access the successively
partitioned sub-matrices of the original matrix down to the individual elements.

The partitioning in Eq. (4.1) can readily be extended to the multiple-valued case
as

U =

⎡
⎢⎢⎢⎣

U00 U01 · · · U0,r−1

U10 U11 · · · U1,r−1
...

...
. . .

...

Ur−1,0 Ur−1,1 · · · Ur−1,r−1

⎤
⎥⎥⎥⎦ (4.2)

where matrix U has dimension rn × rn and the r2 sub-matrices each have dimension
rn−1 × rn−1.

This structure allows for representing equal sub-matrices by shared parts of the
diagram. However, further vertex sharing and, thus, reduction is possible by extract-
ing common multipliers as illustrated in the following

Example 4.2 Consider the matrix in Fig. 4.2a. Applying the recursive partitioning
above would yield a tree as depicted in Fig. 4.2b: with a root labelled x1, three
internal vertices labelled x2 (the two zero blocks sharing the same vertex), and four
terminal vertices (one for each value 0, 1, i,−i). By extracting common multipliers

00 01 10 11

00 0 0 1 0
01 0 0 0

10 i 0 0 0
11 0 1 0 0

−i

x2x1

(a) Transformation matrix

x1

x2 x2 x2

1 −i 0 i

(b) DD, multiple terminals

x1

x2 x2

1

0 0

0 0 −i i 0 0

(c) DD, edge weights

x1

x2

1

0

i
0

0 0 −i

(d) QMDD

Fig. 4.2 Representations of a 2-qubit quantum operation
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and using them as edge weights, we can reduce the tree to the graph in Fig. 4.2c.
Then, the four terminal vertices in the tree can be collapsed to a single terminal vertex
with value 1. The actual value of a matrix entry is the product of the weights on the
path corresponding to the sub-matrix partitioning through the matrix that leads to
the entry. For example, the highlighted matrix entry −i in Fig. 4.2a corresponds to
the path highlighted in bold in Fig. 4.2c. Since we are taking the product of weights,
edges with 0 weight can point directly to the terminal vertex. For the sake of better
readability, we show 0 weight edges as stubs and do not extend them to the terminal.
For the same reason, we do not explicitly indicate the edge weight if it is equal to 1.

However, even more reduction is possible: The matrix in Fig. 4.2a has two struc-
turally equivalent sub-matrices (highlighted in grey) which differ only by a common
multiplier. These correspond to the two vertices labelled x2 in Fig. 4.2c. By fac-
toring out i from the lower left sub-matrix as a weight, we can represent the two
sub-matrices by one shared structure as shown in Fig. 4.2d.

Clearly, the choice of the edge weights is not unique, though it is central for our
objective to share commonmatrix structures and to efficiently deal with sub-matrices
entirely composed of 0’s. To this end, we introduce the concept of normalizing a
(sub-)matrix:

• To achieve an optimal structure sharing, we want to store only normalized forms
of the sub-matrices. For this purpose, the normalized form M̂ of a matrixM shall
be the same for any (non-zero) multiple ofM, i.e.

M̂ =̂αM for all α �= 0. (4.3)

• Moreover, as the terminal vertex represents the matrix [1]1×1, this matrix shall be
the normalized form of any 1 × 1 matrix, i.e.

[̂α]1×1 = [1]1×1 for all α ∈ C. (4.4)

To obtain normalized forms we need a normalization scheme to determine which
common multiplier N (M) (normalization factor) is extracted from a matrixM, such
that

M = N (M) · M̂. (4.5)

Formally, interpreting the normalization scheme as a mapping N from the set of
matrices to the set of normalization factors (complex numbers), we require the fol-
lowing properties:

1. N (αM) = αN (M) for any complex-valued matrix M and any complex-valued
number α.

2. N ([α]1×1) = α for any complex number α.
3. N (M) = 0 ⇔ all entries in M are zero.

Example 4.3 A very simple normalization scheme is obtained by defining the nor-
malization factor of a matrix to be (1) the first non-zero entry of the matrix that is
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found when scanning the matrix row by row and entry by entry or (2) zero if no
non-zero entry is found. It is readily observed that this scheme indeed satisfies the
required properties.

Note that property (3) allows us to directly compute the normalized form of non-
zero matrices from Eq. (4.5) as

M̂ = 1

N (M)
· M (M �= 0) (4.6)

and one can easily check that this definition satisfies the desired properties of nor-
malized forms given in Eqs. (4.3) and (4.4). For M = [0]k×k we could choose the
normalized form arbitrarily according to Eq. (4.5), but for consistency with the case
k = 1 we set

[̂0]k×k = [1]k×k for any k. (4.7)

Recall that our aimwas to identify structurally equivalent sub-matrices and extract
commonmultipliers in order to obtain as much structure sharing as possible by using
normalized forms of the sub-matrices. For a formal description of how the above nor-
malization is integrated into the decomposition process, we make use of the Khatri-
Rao product (introduced in [KR68, ZYC02]). The Khatri-Rao product provides for
a mathematical description of the QMDD vertex decomposition in analogy to the
Shannon decomposition for BDDs (cf. Eq.3.2) and other BDD-like structures such
as the QDD, XQDD or QuIDD. It is defined as follows:

Definition 4.1 The Khatri-Rao (KR) product ∗ is a particular type of matrix mul-
tiplication that operates over matrix partitions and can be described in terms of the
tensor product, denoted by ⊗, as A ∗ B = [

Ai j ⊗ Bi j
]
i j .

Example 4.4 Assume two matrices A and B are of the form

A =
[
A00 A01

A10 A11

]
2k×2k

B =
[
B00 B01

B10 B11

]
2l×2l

.

Then, the KR product A ∗ B becomes

A ∗ B =
[
A00 ⊗ B00 A01 ⊗ B01

A10 ⊗ B10 A11 ⊗ B11

]
2(k·l)×2(k·l)

.

Note that, according to the definition of the tensor product, the block Ai j ⊗ Bi j has
dimension k · l × k · l assuming that Ai j and Bi j have dimensions k × k and l × l,
respectively.

Conceptually, the proposed normalization from Eq. (4.5) is to be applied to each
sub-matrix separately in the course of the partitioning and the extracted normal-
ization factors (edge weights) are to be applied only to the particular sub-matrix.

http://dx.doi.org/10.1007/978-3-319-63724-2_3
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This can be formally described using the KRmatrix product by the following decom-
position relationship:

M = W(M) ∗ M̂ (4.8)

In this central equation,

• M is the original rn × rn matrix to be decomposed,
• W(M) = [N (Mi j )]0≤i, j<r is the r×r matrix containing all scalar factors (weights)
which are extracted from the sub-matrices Mi j , and

• M̂ has dimension rn × rn , partitioned into the r2 normalized sub-matrices M̂i j of
dimension rn−1 × rn−1.

Here, the KR product essentially ensures that the extracted weights will be asso-
ciated with the appropriate sub-matrix.

Example 4.5 For r = 2, the decomposition is given by the equation

U =
[
N (U00) N (U01)

N (U10) N (U11)

]
∗

[
Û00 Û01

Û10 Û11

]
.

The decomposition is represented by a vertex labelled by the corresponding par-
tition variable and, as shown in Fig. 4.2c on page 37, the extracted normalization
factors are attached to the edges that point to the vertices representing the decompo-
sition of the corresponding sub-matrices. Note, however, that the diagram in Fig. 4.2c
does not correspond to a proper decomposition since the same weight is extracted
for the two non-zero sub-matrices though they differ by a constant multiplier only.
Conversely, the diagram in Fig. 4.2d results from a proper decomposition using nor-
malized forms as they would result from using the normalization scheme outlined in
Example4.3.

4.2 Formal Definition

Based on the concepts described above, we now present a formal definition.

Definition 4.2 A Quantum Multiple-Valued Decision Diagram (QMDD) is a rep-
resentation of an rn × rn complex matrix as a rooted directed acyclic graph with
a set V containing two types of vertices: a single terminal vertex and zero or more
non-terminal vertices. The terminal vertex, labelled 1, represents the matrix [1]1×1. It
has no outgoing edges. Each non-terminal vertex is labelled by an r -valued variable
and has r2 outgoing edges, each pointing to a vertex in V . Each non-terminal vertex
denotes the partitioning of a matrix by the application of Eq. (4.8) and, thus, has r2

outgoing edges ep, 0 ≤ p < r2, which are labelled 00, 01, · · · , r − 1r − 1 and have
associated complexweightsw(e00), w(e01), . . . , w(er−1,r−1). There is an initial edge
with no source vertex which points to the root vertex and has an associated complex
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weight representing the normalization factor of the represented matrix according to
Eq. (4.5). We term this the root edge.

A QMDD has the following properties:

1. The non-terminal vertex labels (variables) are ordered which means that if a
non-terminal vertex with label xi has an edge pointing to a non-terminal vertex
labelled x j , xi is the more significant variable in the row and column labelling of
the matrix represented by the QMDD.

2. A QMDD is reduced which means (a) there is no non-terminal vertex where all
outgoing edges point to the same vertex and have the same weight, and (b) all
vertices are unique and no two non-terminal vertices represent the same sub-
matrix, i.e. are labelled by the same variable and have all corresponding edges
pointing to the same vertex with the same weight.

3. Anyconstant (sub-)matrix, regardless of its size, is represented as an edgepointing
directly to the terminal vertex.

It is important to note that a QMDD is a recursive representation as every edge in
the QMDD can be seen as the root edge of the QMDD representation of a sub-matrix.
This is a key observation used to describe how matrix operations are implemented
with QMDDs.

Another key factor in interpreting QMDDs concerns the variables labelling the
non-terminal vertices. Each non-terminal vertex is labelled by an r -valued variable
and that variable labels both the rows and columns of the matrix. The corresponding
matrix partitioning divides the rows into r sections and the columns into r sections
for a total of r2 sub-matrices, see Eq. (4.8).

The notion of variable ordering introduced in Definition4.2 means that if the
matrix row and column variables are ordered by a function index() such that
index(xi ) < index(x j ) if, and only if, xi precedes x j , then the QMDD satisfies
the following two properties:

• Each variable appears atmost once on each path from the root vertex to the terminal
vertex.

• An edge from a non-terminal vertex labelled xi points to a non-terminal vertex
labelled x j , index(x j ) > index(xi ) or to the terminal vertex. Hence, the variable
indices along any path from the root to the terminal satisfy the order imposed
by index() and that order corresponds to the variables order for the matrix and
column labelling from most to least significant.

Another important observation is that all edges with weight 0 (also called 0-
edges in the following) point directly to the terminal vertex. This is because they
represent the normalization factor 0 which, by definition, may only occur if the edge
represents a sub-matrix [0]k×k . Consequently, the edge points to a vertex representing
the normalized form, which is [1]k×k by Eq. (4.7). However, since the QMDD is
reduced, there may not be a non-terminal vertex representing this matrix, because all
its outgoing edgeswould point to the samevertexwith the sameweight. Similarly, any
constant sub-matrix is represented by an edge directly pointing to the terminal vertex
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with the appropriate weight, as stated in property 3 of Definition4.2. In summary,
these structural sharings allow for a compact representation of the corresponding
quantum functionality.

4.3 Canonicity

In addition to the desired feature of allowing for a compact representation of function-
ality, the uniqueness of a function representation is also of interest. In particular, this
is of significant importance for many application areas such as equivalence checking.
QMDDs satisfy this criteria, i.e. any normalized QMDD is canonic with respect to
a given variable order and normalization scheme as is proven next.

Theorem 4.1 Given a normalization scheme N, the corresponding QMDD repre-
sentation of any complex-valued rn × rn matrix is unique up to variable order. �	
Proof The proof is by contradiction, i.e. we assume there exists a matrix M that
has two different QMDD representations G1 and G2 which adhere to the same
normalization scheme and variable order, and show that such a matrix may not
exist. Recall that, according to the decomposition in Eq. (4.8), any non-terminal
vertex of a QMDD represents the normalized form of the corresponding sub-matrix.
Consequently, each vertex in G1 has an equivalent in G2 and vice versa. Roughly
speaking, both representations employ the same set of vertices. Since G1 and G2

are different, one representation must include an edge e1 that is not present in the
other representation. This edge must have a different weight or a different target
compared to the corresponding edge e2 in the other representation. However, both
cases may not happen as e1 and e2 have the same source and, thus, represent the
same sub-matrix for which the normalization factor (edge weight) and normalized
form (target vertex) are uniquely defined. This contradicts the assumption that there
are two representations for M .

Clearly, QMDD representations may be different for different variable orders.
Moreover, even for a fixed order, the resulting QMDDs may differ for different nor-
malization schemes as well. However, the following theorem shows that the resulting
diagram structure is always the same.

Theorem 4.2 Given a complex-valued rn × rn matrix and a fixed variable order,
the corresponding QMDD representations are isomorphic for any two normalization
schemes. �	
Proof Consider two QMDD representations of the same matrix corresponding to
different normalization schemes. Again, the non-terminal vertices in both represen-
tations represent normalized formsof the corresponding sub-matrices. SinceQMDDs
are reduced, a single vertex exists for each occurrence of a sub-matrix and its multi-
ples. Consequently, there is a bijection between the vertex sets of both representations
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that identifies vertices representing the same class of multiples of a sub-matrix. We
want to show that this map is indeed a graph isomorphism, i.e. it also preserves edges.
To do that, we have to show that (each pair of) corresponding edges indeed point to
corresponding vertices. For this purpose, consider an arbitrary pair of correspond-
ing edges, i.e. two outgoing edges ei j and e

′
i j (both labelled i j) from corresponding

vertices from both representations. Since the source vertices correspond to the same
class of multiples of a sub-matrix M , both vertices represent a multiple of M : its
respective normalized form. Consequently, both edges represent multiples of the
same sub-matrix Mi j of M and, thus, point to corresponding vertices (representing
the respective normalized forms of Mi j ). Overall, the bijection between the vertex
sets preserves edges and is, therefore, a graph isomorphism.

The two theorems proven in this section indeed show that QMDDs provide unique
representations (up to variable order) while the resulting structure does not depend
on which normalization scheme is actually used. This is beneficial since it ensures
the highest possible structure sharing and, hence, the most compact representation
regardless of how exactly the weights are determined. Thus, even simple normaliza-
tion schemes as the one discussed in Example4.3 are sufficient. This is even more
important as it is infeasible for largematrices to compute sophisticated normalization
factors in a top-down fashion and, as a consequence, normalization of QMDDs is
practically performed in a bottom-up fashion as we can see in the following section.

4.4 Construction and Manipulation

Thus far, we showed that the proposedQMDDs provide a compact and canonic repre-
sentation of arbitrary quantum functionality. However, to be of practical use, QMDDs
must additionally allow for an efficient construction and manipulation. These issues
are covered in this section. More precisely, we discuss how essential matrix opera-
tions can efficiently be performed on QMDDs and show that QMDD representations
for elementary quantum operations can easily be derived. These issues are exemplar-
ily illustrated by means of constructing a QMDD for a given quantum circuit.

4.4.1 Normalization

Before we describe how essential matrix operations can efficiently be performed
directly on the QMDD structure, we first need to consider how normalization, the
key for QMDDs being canonic representations, is achieved in practice. For larger
matrices it is infeasible to determine the edgeweights, i.e. the normalization factors as
they arise from the partitioning of amatrix as given inEq. (4.8), in a top-down fashion.
As the QMDD is rather built bottom-up, also the edge weights have to be determined
this way. More precisely, by performing vertex normalization of each non-terminal
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vertex when it is constructed, edge weights are determined subsequently, finally
making the QMDD a canonic representation.

Consider a QMDD non-terminal vertex v with outgoing edges ep (where p ≥ 0
and p ≤ rn − 1) that are pointing to sub-matrices U00,U01, . . . ,Ur−1,r−1, respec-
tively, and let w(ep) denote the weight on edge ep.

Definition 4.3 The non-terminal vertex v is normalized if w(e j ) = 1 for the lowest
j for which w(e j ) �= 0.

It is straightforward to normalize a given QMDD non-terminal vertex v according
to the above definition: a single normalization factor equal to thew(e j ) for the lowest
j for which w(e j ) �= 0 is identified and the weights on all edges leading from the
vertex are divided by that factor. Note that the existence of at least one edge with
non-zero weight is for sure as we have shown earlier that edges with weight 0 point
directly to the terminal vertex and, since the QMDD is reduced, there may not be a
vertex with all edges pointing to the same vertex with the same weight.

The vertices that v points to are not affected, but the edges pointing to v have to
be adjusted by multiplying their weights by the normalization factor. An example
for the binary case is shown in Fig. 4.3: normalizing the vertex on the left leads to
the vertex shown on the right. In this case the normalization factor is −i .

Note that, as QMDDs are built and normalized bottom-up, this propagation of
normalization factors to the top can easily be performed without possibly destroying
the normalization of existing vertices. Finally, note that this procedure indeed estab-
lishes a normalization scheme similar to the one defined in Example4.3, though now
the matrix is scanned for non-zero entries in a more elaborate fashion.

Example 4.6 For vertex normalization, the order in which a 4 × 4 matrix is being
scanned for non-zero entries is given by

(a)

⎡
⎢⎢⎣

1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

⎤
⎥⎥⎦ and (b)

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎥⎥⎦

for (a) vertex normalization and (b) the normalization scheme from Example4.3 on
page 48, respectively.

Fig. 4.3 Normalizing a vertex

xi xi

−1 −i i

0

−i
0 0 0

i
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4.4.2 Matrix Operations

Knowing how a normalized representation is actually achieved, we can now describe
how matrix operations can be computed directly on a QMDD. We do this for the
three common operations addition, direct multiplication, and tensor or Kronecker
multiplication. It is noted that the calculation of the tensor product and the Kronecker
product are identical multiplicative operations over the class of unitary matrices used
to represent quantum system evolutions. Other operations are readily implemented
using the methods described in the following.

Implementing these operations uses the fact that a QMDD is a recursive repre-
sentation that represents a matrix as a composition of sub-matrices which are in turn
represented by smaller sub-matrices. This allows the operations to be expressed in
terms of operations on sub-matrices. For example, matrix addition for the binary case
can be expressed as the addition of sub-matrices:

[
A00 A01

A10 A11

]
+

[
B00 B01

B10 B11

]
=

[
A00 + B00 A01 + B01

A10 + B10 A11 + B11

]
.

Likewise, matrix multiplication for the binary case is expressible as

[
A00 A01

A10 A11

] [
B00 B01

B10 B11

]
=

[
A00B00 + A01B10 A00B01 + A01B11

A10B00 + A11B10 A10B01 + A11B11

]
.

In order to formalize these operations on the QMDD, the following definitions
are applied.

Definition 4.4 Given an edge e, we use w(e) to denote the weight on e, v(e) to
denote the vertex e points to, x(e) to denote the variable that labels the vertex e
points to (not defined for the terminal vertex), Ei (e) to denote the i th edge out of the
vertex that e points to, and T (e) to denote a Boolean test that is true if e points to the
terminal vertex.

Furthermore, we assume that the variables adhere to the same order in all considered
QMDDs and we shall use ≺ to denote the fact that one variable precedes another
and, hence, appears closer to the terminal vertex in the QMDD. For generality, we
consider the multiple-valued case where r is the radix, i.e. every non-terminal vertex
has r2 outgoing edges (for the Boolean case, r can simply be set to r = 2).

Having that, matrix operations can be conducted on QMDDs as follows noting
that a matrix is uniquely identified by the root edge for the QMDD.
Matrix Addition: Let e0 and e1 be the root edges of two QMDD (matrices) to be
added. The procedure is recursive and involves the following steps:
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1. If T (e1), swap e0 and e1.
2. If T (e0),

a. if w(e0) = 0, the result is e1;
b. if T (e1), the result is an edge pointing to the terminal vertex with weight

w(e0) + w(e1).

3. If x(e0) ≺ x(e1), swap e0 and e1.
4. For i = 0, 1, . . . , r2 − 1

a. Create an edge p pointing to v(Ei (e0)) with weight w(e0) · w(Ei (e0)).
b. If x(e0) = x(e1), create an edge q pointing to v(Ei (e1))with weightw(e1) ·

w(Ei (e1)), else set q = e1.
c. Recursively invoke this procedure to add p and q giving zi .

5. The result is an edge pointing to a vertex labelled x(e0) with outgoing edges
zi , i = 0, 1, . . . , r2 − 1. This vertex and the edge pointing to it are normalized.

Matrix Multiplication: Let e0 and e1 be the root edges of two QMDD (matrices) to
be multiplied. The procedure is recursive and involves the following steps:

1. If T (e1), swap e0 and e1.
2. If T (e0), then

a. if w(e0) = 0, the result is e0;
b. if w(e0) = 1, the result is e1;
c. otherwise, the result is an edge pointing to v(e1) with weight w(e0) · w(e1).

3. If x(e0) ≺ x(e1), swap e0 and e1.
4. For i = 0, r, 2r, . . . , (r − 1)r

For j = 0, 1, . . . , r − 1
Set zi+ j to be a 0-edge.
For k = 0, 1, . . . , r − 1
(i) Create an edge p pointing to v(Ei+k(e0))

with weight w(e0) · w(Ei+k(e0)).
(ii) If x(e0) = x(e1), create an edge q

pointing to v(E j+r ·k(e1)) with weight w(e1) · w(E j+r ·k(e1)),
else set q = e1.

(iii) Recursively invoke this procedure to multiply the QMDD pointed to
by p and q and then use the procedure above to add
the result to the QMDD pointed to by zi+ j .
The result of the addition replaces zi+ j .

5. The result is an edge pointing to a vertex labelled x(e0) with outgoing edges
zi , i = 0, 1, . . . , r2 − 1. This vertex and the edge pointing to it are normalized.

Kronecker Product: Let e0 and e1 be the root edges of two QMDD (matrices) for
which we want to compute the Kronecker product A ⊗ B (note that this operation
is not commutative). For the application considered here, the selection variables for
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B precede the selection variables for A. This greatly reduces the complexity of the
algorithm for computing the Kronecker product of two QMDD.

The procedure is recursive and involves the following steps:

1. If T (e0) then

a. if w(e0) = 0, the result is e0;
b. if w(e0) = 1, the result is e1;
c. otherwise, the result is an edge pointing to v(e1) with weight w(e0) · w(e1).

2. For i = 0, 1, . . . , r2 − 1
Recursively invoke this procedure to find the Kronecker product of Ei (e0) and
e1 setting zi to the result.

3. The result is an edge pointing to a vertex labelled x(e0) with outgoing edges
zi , i = 0, 1, . . . , r2 − 1. This vertex and the edge pointing to it are normalized.

Performing these matrix operations directly on the QMDD structure makes them
very effective which we exemplarily illustrate in the next section by means of con-
structing a QMDD for a given quantum circuit.

4.4.3 Construction

For actually using QMDDs in quantum logic design it is important to be able to
efficiently construct a QMDD representing the desired quantum functionality. Gen-
eral quantum functionality is usually either given (a) in terms of an abstract quantum
algorithmwhich describes a series of computational steps or complex quantum oper-
ations (modules) to be conducted or (b) in terms of a quantum circuit consisting of
a cascade of elementary quantum operations (so-called quantum gates) that form a
more complex operation.

For quantum algorithms as well as circuits, the representation/description of the
overall functionality is successively built from functional descriptions/representations
of the individual parts (modules or gates). More precisely, for a cascade of mod-
ules/gates g1g2 . . . gl where the transformation for module/gate gi is defined by
matrix Mi , the transformation for the complete algorithm/circuit is given by the
direct matrix productMl ·Ml−1 · . . . ·M1. Note that the order of the matrices has to
be reversed to achieve the correct order of applying the modules/gates (first g1, then
g2, etc.). To construct this matrix product, the QMDDs for the single modules/gates
simply have to be multiplied using the QMDD-based algorithm for matrix multipli-
cation presented above. Consequently, for the remainder of this section we focus on
how the QMDD representations for elementary quantum gates can be constructed
efficiently.

Again for generality, we consider the multiple-valued case. Assume, as above,
the variable order x1 
 x2 
 . . . 
 xn from the root vertex towards the terminal
vertex. A gate g is specified by the r × r base transition matrix B, the target qudit xt
and a possible empty set of control qudits C ⊂ {x1, . . . , xn} (with xt /∈ C) together
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with a map α : C → {|0〉, . . . , |r − 1〉} which describes the activating values, i.e.
basis states, of each control qudit. The QMDD for a quantum gate is built variable
by variable (qudit by qudit) in a bottom-up fashion from the terminal to the root
vertex. In order to indicate which set of variables has been processed so far, we
use the notation M{xk ,...,xn}. Moreover, for the sake of an easier reference, we term
those edges of a QMDD vertex diagonal that correspond to a |i〉 → |i〉 mapping
(i = 0, . . . , r − 1) and the remaining edges off-diagonal.

Although it is possible to construct the QMDD for the gate in a single run (as
roughly sketched in [MT06]), for a better understanding we construct two QMDDs
representing the cases that the gate is active (all control qudits are in their activating
state) or inactive (at least one control qudit is not).2 By adding these QMDDs, the
actual QMDD for the gate results.

Case “gate is active”, i.e. the base transition B is performed on qudit xt if, and
only if, all controls are in their activating state. All other qudits preserve their
original state.

Consequently, the QMDD for the active case contains all (non-zero) paths of the
final QMDD for which all decision variables (qudits) except for the target have an
activating assignment.

In order to have a valid starting point, we begin at the terminal level with an edge
pointing to the terminal vertex with weight 1, i.e. M∅ = [1]1×1.3 Afterwards, the
qudits are processed bottom-up. If the current qudit xc

• is neither a control nor the target, i.e. xc �= xt , xc /∈ C , the gate is active
regardless of the qudit’s state. Consequently, at the matrix level the result is
idr×r ⊗M{xc+1,...,xn} which corresponds to a QMDD vertex labelled xc where all
diagonal edges point to the existingQMDDand all remaining edges are 0-edges.

• is a control, i.e. xc ∈ C , the gate is only active for one control value |i〉 = α(xc).
Consequently, the result is a vertex labelled xc with only 0-edges except for the
edge |i〉 → |i〉 which is pointing to the existing QMDD.

• is the target, i.e. xc = xt , the base transition is performed. Consequently, the
result is B ⊗ M{xc+1,...,xn}, i.e. a vertex labelled xt with all edges pointing to
the existing QMDD with the corresponding edge weight taken from the base
transition matrix B (if a weight is zero, the corresponding edge is a 0-edge
directly pointing to the terminal).

During this construction, the QMDD is normalized as described in Sect. 4.4.1.

2Without loss of generality, we consider only basis states of the underlying quantum system, i.e.
each qudit is assumed to be in one of its basis states. Due to the linearity of quantum operations,
these are sufficient to construct the corresponding transformation matrix which yields the correct
behaviour also for the case of superposed input states.
3The appropriate weights of the base transition will be incorporated later.
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Fig. 4.4 A quantum circuit built from elementary quantum gates

Example 4.7 Consider the QMDD in Fig. 4.4b which represents the first gate of the
quantum circuit (r = 2) shown in Fig. 4.4a. As this gate does not have any controls, it
is always active and, thus, it suffices to build the QMDD representing the active part.
We start with an edge to the terminal vertex with weight 1. As the bottommost qubit
is already the target qubit, all edges of the x3-vertex point directly to this terminal
with the appropriate weight of the Hadamard transformation matrix H = 1√

2

(
1 1
1 −1

)
.

Note that normalization will propagate the common multiplier 1√
2
of this matrix to

the root edge. The remaining qubits are neither control nor target. Thus, vertices
representing an identity mapping of these qubits are inserted.

The QMDD for the inactive case is constructed similarly.

Case “gate is inactive”, i.e. the identity transition is performed on qudit xt since
at least one control is not in its activating state. All qudits preserve their original
state, i.e. none but diagonal edges are populated at all.
Consequently, the QMDD for the inactive case contains all (non-zero) paths of
the final QMDD for which at least one decision variable (qudit) does not have an
activating assignment.
However, when constructing the QMDD in a bottom-up fashion, we always use
the hypothesis that all controls above the current qudit are in their activating states
and at least one control below is not.
To make sure that this hypothesis gives the correct result even for the bottommost
control (for which no inactive control may exist below), we start at the terminal
level with an edge pointing to the terminal vertex with weight 0, i.e.M∅ = [0]1×1.
This ensures that all edges corresponding to the activating value of this bottommost
control are 0-edges.
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The remaining qudits are processed as follows. If the current qudit xc

• is neither a control nor the target, i.e. xc �= xt , xc /∈ C , the gate is inactive
regardless of the qudit’s state. Consequently, the result at the matrix level is
idr×r ⊗M{xc+1,...,xn} which corresponds to a QMDD vertex labelled xc where all
diagonal edges point to the existingQMDDand all remaining edges are 0-edges.

• is a control, i.e. xc ∈ C , the gate is definitely inactive for all but one control value
|i〉 = α(xc). For the latter, the activity of the gate depends on the remaining
qudits. Consequently, the result is a vertex with all diagonal edges pointing to
the k-fold tensor product idr×r

⊗k (nothing happens to all k qudits below the
current one) except for the edge |i〉 → |i〉. The latter handles the case that the
qudit is in its activating state and is pointing to the existing QMDDM{xc+1,...,xn}.4
All off-diagonal edges are 0-edges.

• is the target, i.e. xc = xt , the identity transformation is performed on the target.
Consequently, the result is idr×r ⊗ M{xc+1,...,xn} like in the unconnected case.

Example 4.8 The QMDDs for the circuit’s second gate is shown in Fig. 4.4c.
For the inactive part, we start with a 0-edge. For the control on x3, we construct

a vertex which uses this 0-edge as e11 and for which the other diagonal edge e00
represents the identity id2×2

⊗0 = [1]1×1, i.e. it points to the terminal vertex with
weight 1. As x3 is the only control, we simply add vertices representing an identity
mapping for the remaining qubits.

For the active part, we start with an edge to the terminal vertex which becomes
the e11 edge of the x3-vertex, as the activating state of x3 is |1〉. For the target qubit
x2 with the base transition matrix X = (

0 1
1 0

)
, an x2-vertex is added. For this vertex,

both off-diagonal edges point to the x3-vertex constructed before (with weight 1
as the corresponding entry in X is 1) and both diagonal edges are 0-edges (as the
corresponding entry in X is 0). Last, but not least, for the unconnected qubit x1 a
vertex representing its identity mapping is added. Finally, by adding the QMDDs for
the inactive and active part, we obtain the actual QMDD for the CNOT gate.

Overall, the resulting QMDDs for the active as well as the inactive part of the gate
are linear in the number of variables—regardless of the complexity of the gate under
consideration.BothQMDDs can be constructed in parallelwhile iterating through the
variables in a bottom-up fashion. In addition, they describe disjoint parts of the gate
matrix, while they are paddedwith zeros outside of that particular part. Consequently,
their sum can be computed in linear time and will also be linear in size. In fact, there
are only trivial additions where at least one of the summands is a 0-matrix and, as
already recognized in [MT06], the addition could be saved entirely, such that the
whole construction could be performed in a single pass from the terminal to the root
vertex with no backtracking or recursion. Either way, QMDD representations for
single gates can be computed very efficiently and the potentially rather expensive
part of constructing a QMDD representation for quantum algorithms or quantum

4If there is no further control below the current qudit, the gate inactivity is ensured by choosing a
0-edge as the initial QMDD.
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circuits (as well as any other quantum logic representation) is given by the (QMDD-
based) matrix multiplication that is required to concatenate the representations of
single modules/gates.

4.5 Changing the Variable Order

As we have seen so far, QMDDs offer a compact and canonic representation of
quantum logic and promise an efficient handling and manipulation of quantum func-
tionality. However, it is a common observation for decision diagrams that the variable
order may have a large impact on the size of the representation and, hence, is cru-
cial for the overall efficiency. In this section, we will first analyze in which way
variable re-ordering can possibly reduce the vertex count of QMDDs. After that, we
illustrate which obstacles arise when performing local modifications (like variable
interchanges) on QMDDs, provide a solution to this problem and, finally, present
the resulting interchange scheme for adjacent variables in QMDDs. This scheme
enables to use many established re-ordering techniques for decision diagrams that
rely on interchanges of adjacent variables like, e.g. sifting or window permutation
[Rud93]. An experimental evaluation how variable re-ordering affects the diagram
size is presented later in Sect. 4.6.

4.5.1 Shared Vertices and Skipped Variables

Changing the variable order of a QMDD can be interpreted as permuting rows and
columns of the corresponding matrix. In fact, this change can have a significant
impact on structural equivalence and, hence, on shared vertices. In some cases it
allows one to join identical blocks which leads to redundant vertices for which all
outgoing edges would point to the same vertex with the same weight. However,
redundant vertices are, by definition, not allowed in QMDDs and will be represented
by an edge that skips the particular variable (say x j ) and points to a vertex which is
labelled by a variable that succeeds x j in the variable order. Both are illustrated by
means of the following:

Example 4.9 Consider the matrices in Fig. 4.5. Suppose A, . . . ,G are mutually dif-
ferent sub-matrices of the same size 2k × 2k . Both matrices represent the same
functionality (though employing a different variable order where x1 and x2 change
places) and each matrix can be obtained from the other by variable interchange, i.e.
by swapping the 01 and 10 rows and columns. The matrix on the left has three iden-
tical blocks which can be represented by a shared x2-vertex. The matrix on the right
does not offer shared vertex compression, but the top-left sub-matrix consists of four
identical blocks which gives rise to a skipped variable.
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00 01 10 11

00 A B A B
01 C D C D
10 A E A B
11 F G C D

x2x1 00 01 10 11

00 A A B B
01 A A E B
10 C C D D
11 F C G D

x1x2

x1

x2 x2

x2

x1 x1 x1

A B C D A E F G A B B E B C C F C D D G D

Fig. 4.5 Variable interchange: structural equivalence and skipped variables

A special case of skipped variables are blocks of zero which result in a 0-edge
that directly points to the terminal vertex and skips all succeeding variables. It can be
shown that 0-edges are the only type of skipped variables that can occur for QMDDs
which represent a reversible Boolean function (permutation matrix) [MFT07]. This
is because skipped variables always indicate identical sub-matrices and since in
permutation matrices there is a single non-zero entry in each row and column, the
identical sub-matrices can only be blocks of zeros. From this perspective, the aim of
QMDD minimization for reversible operations can hence be described as changing
the position of the non-terminal vertices such that those vertices that have more
outgoing 0-edges are closer to the root vertex. Corresponding metrics for guiding the
re-ordering process, based upon the ratio of the number of non-zero weight edges
versus the total number of vertices, are reported in [FTM09].

However, in general quantum logic there are also functions whose transformation
matrices are completely populated, i.e. which do not contain a single zero entry. For
instance, this is the case forQuantum Fourier Transforms (QFT) which occur as part
of Shor’s factorization algorithm [Sho94, VSB+01]. In fact, these illustrate nicely
how skipped variables and a high rate of shared vertices can reduce the QMDD size.
More precisely, the corresponding QMDD representations do not show any shared
vertices in standard variable order as there are no structurally equivalent sub-matrices.
Hence, they have the maximum QMDD size with respect to the matrix size, i.e. 4n−1

3
non-terminal vertices in the binary case r = 2. However, when applying the inverse
variable order as shown in Fig. 4.6, the QMDD size is reduced significantly, e.g. from
21 to 8 non-terminal vertices for n = 3.

The existence of skipped variables, excluding the special case of 0-edges, seems to
be a rare phenomenon for unitarymatrices representing arbitrary quantumoperations.
However, it is possible to construct such matrices with edges that skip an arbitrary
number of variable levels [FT11]. Therefore, skipped variables have to be taken into
account carefully in the design of algorithms for QMDDs.
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Fig. 4.6 QFT for n = 3 qubits
and inverse variable orders
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4.5.2 Local Modifications and Vertex Weights

We have already seen that large effort is put on normalization (of edge weights) in
order to ensure canonical representations. Local modifications within a QMDD, e.g.
due to a variable interchange, may lead to changes of edge weights which destroy
normalization and, hence, require a rework of a large part of the QMDD in order to
restore the normalization.

Example 4.10 Consider the QMDD shown in Fig. 4.7a which was built using ver-
tex normalization. Assume that, as part of a re-ordering process, we interchange
variables x2 and x3. This leads to a QMDD structure as shown in Fig. 4.7b, i.e. the
weight of the leftmost edge of the x1-vertex changes from 1 to i . Thus, this vertex is
not normalized anymore according to Definition4.3. In the worst case, changes like
this propagate through the entire QMDD structure. As a result, variable interchanges
(and local modifications in general) are no longer local operations which can have a
significant effect on the overall efficiency.

The basic idea to overcome this problem is to store weight changes (as they result
from local modifications) within the vertices as vertex weights instead of propagating
them to incoming edges. The advantage of this approach is that we easily maintain
a normalized structure. More precisely, vertex weights can be interpreted as the
normalization factors of the respective (sub-)matrices. So far, these were aimed to
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be equal to 1, i.e. all vertices were supposed to represent a normalized matrix with
a normalization factor of 1. In this case, vertex weights do not have any effect.
Otherwise, they can be removed by simply applying them to the weights of all
outgoing edges and then performing vertex normalization. However, we are not
actually performing these multiplications. This is because they would only affect
the weights of certain edges, but the whole QMDD would still be normalized—
w.r.t. a slightly different normalization scheme, for which the normalization factor
of that particular sub-matrix is adjusted. In short, the change or introduction of vertex
weights is just a small change to the applied normalization scheme, but maintains the
normalized structure. Consequently, the use of vertexweights preserves the (optimal)
structure sharing according to Theorem4.2 and, hence, enables local operations to
be performed efficiently. This is outlined in detail in the following section for the
purpose of variable interchange.

4.5.3 Variable Interchange Scheme for QMDDs

As discussed above, achieving normalization can be a severe obstacle when perform-
ingmodifications onQMDDs such as adjacent variable interchanges. However, using
the concept of vertex weights, this problem is solved, i.e. a local modification such
as a variable interchange can be performed without ramifications to other parts of the
QMDD structure. The particular way of employing vertex weights is demonstrated
in this section.

Weuse an interchange schemewhich is similarly applied in other decision diagram
types, e.g. BDDs:

Example 4.11 Consider a BDD where two adjacent variables x1 and x2 shall be
interchanged. Then, each x1-vertex is replaced by an x2-vertex which shall represent
the same Boolean function in order to make the swap a local operation. This is done
by interchanging the labels of the vertices and permuting the sub-trees representing
the respective co-factors [Bry86] as sketched in Fig. 4.8.

Analogously, for QMDDs each x1-vertex is replaced by an x2-vertex which shall
represent the same functionality. By doing so, an interchange of variables x1 and x2
for a givenmatrix leads to a permutation of sub-matrices as illustrated in Fig. 4.9a, i.e.
the swapping of certain rows and columns. This accordingly needs to be conducted

Fig. 4.8 Variable
interchange in a BDD

x1

x2 x2

f00 f01 f10 f11

⇒
x2

x1 x1

f00 f10 f01 f11
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Fig. 4.9 Sketch of the variable interchange procedure for QMDDs (r = 2)

in the QMDD structure in which each of the affected sub-matrices is represented by
a vertex as well as weighted edges.

That is, to interchange two adjacent variables x1 and x2 in a QMDD (where
variable x1 precedes x2 in the variable order), we process all vertices that are labelled
by x1. We skip all such vertices that do not point to any x2-vertex. For each of the
remaining x1-vertices v with outgoing edges ev

i (i = 0, . . . , r2 − 1), from which at
least one edge points to an x2-vertex, we perform the following three steps:

1. Create an r2 × r2 square matrix T = (ti j ) and set ti j to be the j th outgoing edge
of the x2-vertex pointed to by ev

i and multiply the weight of ti j with the weight of
ev
i and the (vertex) weight of the x2-vertex. If the destination of e

v
i is not labelled

with x2, set ti j = eVi instead.
2. From each column j of T create a vertex labelled x1 with outgoing edges ei = ti j

and let eVj point to this vertex. Relabel v to x2.
3. Apply the normalization scheme and store the normalization factor of v by mul-

tiplying it to the current vertex weight τv .

This procedure is illustrated by the following

Example 4.12 Consider the case of a binary QMDD (r = 2) in which two adjacent
variables x1 and x2 are to be interchanged. At the matrix level, this corresponds to a
permutation of rows and columns as illustrated in Fig. 4.9a. According to Step 1, a
matrix containing all sub-trees representing the sub-matrices m0 until m15 is created
first (see Fig. 4.9b). Then, these sub-trees are re-arranged in Step 2 eventually leading
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to the structure shown in Fig. 4.9c. Finally, the respective vertices are normalized in
Step 3. This is illustrated in Fig. 4.9d for the sub-tree m8. First, this sub-tree is
relocated (according to the previous steps). Then, the product of the corresponding
edge and vertex weights is concentrated at the bottom level. The final factorization
of this product (highlighted in grey) is achieved by applying vertex normalization to
the new structure.

The interchange procedure operates in the same fashion on each sub-matrix of the
particular partitioning level that corresponds to the interchanged variables. Thus, it
preserves structural equivalence. This guarantees that (an optimal) vertex sharing is
maintained and we will not create vertices that only differ by their vertex weight.
By using vertex weights, a normalized structure can be achieved without the need to
correct ramifications in possibly large parts of the QMDD. The potentially expensive
transformation to a QMDD with trivial vertex weights (canonical representation)
has to be performed at most once, after we have arrived at the final variable order.
However, most effective vertex weights ( �= 1) can be expected to vanish through
further variable interchanges.

Overall, this enables us to perform variable interchanges efficiently as local oper-
ations and to use these interchanges as building blocks for variable re-ordering tech-
niques. The effectiveness of using variable re-ordering for reducing the QMDD size
is evaluated in the following.

4.6 Efficiency of QMDDs

In order to demonstrate the overall efficiency of QMDDs in terms of (a) the com-
pactness that is achieved by QMDD representations as well as (b) the efficiency of
constructing and manipulating these representations, we performed an experimen-
tal evaluation. To this end, we built QMDD representations for a set of important
quantum algorithms and, afterwards, performed two complementary approaches for
optimizing the QMDDs by applying different variable orders, one heuristic and one
exact approach. The results are summarized in Table4.1. Here, the respective QMDD
sizes (i.e. the number of non-terminal vertices; denoted by Size) are presented for
a selection of benchmark functions. As benchmarks we applied circuits realizing
Grover algorithms (Grover-N), error correction functionality (k-qubit-code, taken
from [Mer07]), and Quantum Fourier Transforms (QFT-N) where N denotes the
number of qubits. We distinguish between (1) the original approach which uses the
variable order given from the initial description of the quantum functionality, (2) an
improved approach which applies changes to the variable order following a sifting
scheme [Rud93], and (3) an exact method which establishes the optimal variable
order with respect to the size of the resulting QMDD. In addition to the absolute size
values, we also provide the percentaged improvements w.r.t. the number of vertices
(denoted by Improvement) as well as the run-time (in CPU seconds) required to
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generate the QMDDs (denoted by Time). All experiments have been conducted on a
2.8GHz Intel Core i7 machine with 8GB of main memory running Linux.

It can be seen that the initial representations which were built from the original
description are already rather compact—given the fact that the corresponding trans-
formation matrices are of dimension 2N × 2N . Moreover, these representations can
be established in negligible run-time. Much better results in terms of QMDD sizes,
however, can be achieved when changes in the variable order are allowed. These
changes are enabled by the scheme for interchanging adjacent variables presented in
Sect. 4.5.3 and were not possible with the initial proposal of QMDDs (as introduced
in [MT06, MT08]). By employing this interchange scheme, reductions of up to two
orders of magnitude can be observed. A comparison of the sifting and the exact
approach shows that near-to-optimal results can already be achieved in almost no
run-time by the heuristic approach. Overall, these evaluations show that QMDDs—
which rely on a decomposition scheme that models quantum systems more naturally
than the (Shannon) decomposition used in QuIDDs or XQDDs [AP06]—offer a very
compact representation of quantum functionality. The proposed concepts allow for an
efficient construction and manipulation of practically relevant quantum circuits. Due
to fundamental improvements, different variable orders can efficiently be applied
which has a significant impact on the resulting QMDD size and, thus, on the overall
efficiency of the representation.

In order to allow for a reproduction of the above results in particular and to
promote the use of QMDDs in academia and beyond in general, the implementation
of QMDDs used for the above evaluation—based on the original QMDD package by
Miller et al. presented in [MTG06]—has been made available to the public at http://
www.informatik.uni-bremen.de/agra/eng/qmdd.php.

http://www.informatik.uni-bremen.de/agra/eng/qmdd.php
http://www.informatik.uni-bremen.de/agra/eng/qmdd.php
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In quantum logic, one considers unitary mappings of quantum systems (so-called
Hamiltonians). These can be identifiedwith complex-valued transformationmatrices
describing the evolution of the system in terms of its rn basis states. In this part
of the book, we discussed that—due to the exponential growth of those matrices—
there is an evident need for dedicated, compact representations that exploit structural
similarities within these matrices. As argued in Sect. 3.1, techniques for the compact
representation of conventional (Boolean) logic, e.g. BDDs, are not applicable to
quantum logic at all. Nonetheless, as reviewed in Sect. 3.2, several initial proposals
for the representation of quantum functionality are based on BDDs, such as QDDs,
XQDDs, or QuIDDs. However, as summarized in Table5.1, these initial approaches
have substantial shortcomings:

• QDDs, a very direct adaption ofBDDs for the quantumdomain, are only applicable
for a small sub-class of quantum functionality—essentially they are limited to
(reversible) Boolean functions. While Boolean components constitute important
parts ofmany quantumalgorithms, thewhole range of quantum-mechanical effects
like superposition, entanglement, or phase shifts can not be covered with decision
diagrams like BDDs or QDDs.

• QuIDDs andXQDDs are in principle able to represent arbitrary quantum function-
ality, but they rely on a decomposition scheme which is not natural for quantum
logic and are essentially BDDs with multiple terminals. While they benefit from
existing BDD algorithms for efficient function manipulation and optimization,
they are not able to exploit quantum-mechanical properties like phase shifts and
do not natively support multiple-valued quantum logic.

A complementary approach is needed to take into account the special character-
istics of quantum logic and overcome the shortcomings of the previous approaches.
To this end, we presented Quantum Multiple-Valued Decision Diagrams (QMDDs,
[NWM+16]). QMDDs employ a decomposition scheme that more naturally models
quantumsystems andexplicitly supports quantum-mechanical effects like phase shifts.

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_5
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62 5 Discussion and Outlook

This already becomes apparent when considering the representation of general-
ized Hadamard operations H⊗n which are commonly used in quantum logic. The
QuIDD and QMDD representations for the case n = 2, i.e. the 4 × 4 matrix

H ⊗ H = 1√
2

(H H
H −H

)

, are shown in Table5.1. While QuIDDs can not take advan-

tage from the fact that the lower right block is a phase-shifted copy of the other blocks,
this property allows for a QMDD representation with a single vertex at each level.
This effect can in the worst case lead to situations where QMDD representations are
linear in size while the corresponding QuIDD/XQDD is always exponential in size
(for arbitrary variable orders).

Example 5.1 An example for this case is given by combined Rz rotations onmultiple
qubits such that the elementary rotation Rz(π/2k) is applied to the kth qubit. As in
the case of generalized Hadamard operations, the corresponding QMDD represen-
tations require a single vertex per qubit and are, thus, linear in size. In contrast, any
QuIDD/XQDD representation requires an exponential number of terminal vertices,
since it can be shown that all 2n powers of eπ/2n occur in the corresponding matrix.
Consequently, the QuIDD/XQDD is exponential in size regardless which variable
order is applied.

On the contrary, under no circumstances can QMDD representations be significantly
larger than the corresponding QuIDD/XQDD representations. In fact, due to the
interleavedness of x and y variables in QuIDDs/XQDDs it is always possible to
construct a QMDD with a corresponding variable order, such that each xk-vertex
of the QuIDD/XQDD (together with its yk-children) can be represented by a single
QMDD xk-vertex. In addition,QMDDshave another notable advantage:matrices that
are equivalent up to global phase are represented by QMDDs that only differ in the
root edge weight, while the corresponding QuIDDs/XQDDs may exhibit completely
disjoint sets of terminal vertices. This property can be become very advantageous
when it comes to the verification of quantum logic designs (cf. Chap. 8).

Because of that and as also demonstrated by an experimental evaluation showing
their overall efficiency and practical usefulness (cf. Sect. 4.6), QMDDs are a very
promising representation to be used for the design of quantum logic. In fact, unitary
transformation matrices that describe quantum operations are vital for the design
and analysis of quantum systems, e.g. for synthesis, simulation, or verification of
quantum circuits. The availability of an efficient representation of these matrices is
essential, as the absence of such representations significantly limits the development
and applicability of automated methods for the design of quantum logic. With large-
scale quantum computers coming to the range of vision, such solutions becomemore
andmore essential for quantum logic design in order to keep upwith the technological
progress.

With QDDs, QuIDDs, and XQDDs, as well as the initial QMDD proposal, several
approaches for employing decision diagrams as an efficient representation of quan-
tum functionality have already been around for a while. In fact, they have shown
their benefits in various applications such as synthesis (see e.g. [AP06, SWH+12]),

http://dx.doi.org/10.1007/978-3-319-63724-2_8
http://dx.doi.org/10.1007/978-3-319-63724-2_4
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simulation (see e.g. [VRMH03, GTFM07, VMH09]), and verification (see e.g.
[VMH07, WLTK08, WGMD09]) of quantum circuits. In these scenarios, they have
proven to be very effective for speeding up matrix-based approaches that operate on
transformation matrices or exploit properties of those.

However, significant shortcomings have limited their applicability for a long time.
As a consequence, the full potential of QMDDs or decision diagrams for quantum
functionality in general has hardly been exploited yet and they have not found adop-
tion in state-of-the-art approaches for the design of arbitrary quantum functionality
so far. We believe that the revised version of QMDDs presented in this book provides
the basis for a more sophisticated application of decision diagrams in the domain of
quantum computation including solutions for synthesis, simulation and verification.
To this end, several methods aiming at this goal and relying on efficient represen-
tations of the desired quantum functionality, especially in terms of QMDDs, are
presented in the following.



Part III
Design of Quantum Logic



Chapter 6
Challenges and Initial Approaches

Motivated by its superiority compared to conventional solutions for many com-
putational problems, quantum computation has been intensely investigated from a
theoretical perspective in the past decades. Rapid advancements have been made in
the area of quantum algorithms. In fact, algorithms exploiting quantum-mechanical
effects and promising significant improvements over any known classical solution
have been developed for many practically relevant problems such as factorization
(and its application in cryptography), database search, graph/algebraic problems,
and many more [Jor16]. Due to these prospects, the—very challenging—physical
realization of quantum functionality, i.e. the development of physical devices which
can be employed to actually conduct quantum computation, has also received signif-
icant attention in recent years. In fact, despite severe physical challenges, a variety of
technologies has been found to be promising for this purpose and the implementation
of important quantum operations has been successfully demonstrated.

The prospects of actually working quantum computers give rise to investigations
of the design of quantum circuits, i.e. the construction of circuits realizing a given
quantum functionality in terms of a series of elementary quantum operations that are
executed sequentially or in parallel. In fact, this domain has become a prospering field
of study and several approaches for the realization of arbitrary quantum functionality
have been proposed. However, most of these methods tackle the problem from a
rather theoretical point of view, e.g. make very simplified assumptions about the set
of available quantum operations, and often provide theoretical upper bounds rather
than algorithms that would scale to quantum systems consisting of dozens of usable
qubits. As the latter are expected to be available sooner or later, there is a need for
developing methods for Computer-Aided Design (CAD) of quantum circuits, i.e.
methods that (1) automatically generate a circuit description of the desired quantum
functionality, (2) take into account the physical constraints of the target technology,
and (3) scale to quantum systems of considerable size.

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_6
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In this part, we present several approaches that contribute to achieving this objec-
tive especially by exploiting efficient representations of quantum functionality as
they were discussed above.

More precisely, in the present chapter we first review the major design challenges
to be addressed and which technologies have been proposed for the actual physical
realization of quantum functionality in Sect. 6.1. In Sect. 6.2, we then review the
state-of-the-art in the design of quantum logic. Based on these discussions, we show
how compact representations of quantum functionality (as reviewed in the previous
part) can be employed to develop more scalable solutions for important design tasks,
namely synthesis and verification, in Chaps. 7 and 8, respectively. Last, but not least,
the book is concluded in Chap.9 with a discussion of the significance of compact
representations and adequate design algorithms as an important step towards CAD
for quantum logic.

6.1 Design Challenges

The implementation of quantum functionality on a physical machine, i.e. building a
quantumcomputer, is a very challenging task. It requires a physical system that allows
forwell-formedqubit states aswell as their controlled transformation according to the
time-dependent Hamiltonians of quantum operations. Regardless of which particular
technology is chosen, various physical limitations have to be taken into account:

• QuantumDecoherence:The computation time, i.e. the time available between the
initial preparation of a quantum system which brings all qubits into a well-defined
state and the final read-out (measurement), is rather short due to the fact that
quantum systems in an “excited state” may spontaneously decay to a ground/basis
state such that the computation result is lost and destroyed irretrievably.

• Environmental factors: As quantum systems are operated at an atomic scale,
they are prone to environmental perturbation caused e.g. by radiation—muchmore
than classical computation technologies like CMOS or alike. Large effort has to
be made to cope with these effects and enable computations to be performed in a
fault-tolerant fashion. As a consequence, individual logical particles (qubits) have
to be realized by an ensemble of multiple physical particles and error-correcting
codes have to be applied which require additional computations [NC00, p. 425].

• Topological/functional restrictions: The capability of modifying individual par-
ticles is restricted to applying a few physical operations (e.g. a laser beam or alike)
with a limited precision. In addition, even if an operation that involves multiple
particles is realizable in principle, in most technologies considered so far the par-
ticles have to be adjacent in order to actually conduct the operation (this induces
so-called nearest neighbour constraints). Consequently, additional efforts are nec-
essary to create adjacency of the respective particles, e.g. by pairwise swapping
of particles.

http://dx.doi.org/10.1007/978-3-319-63724-2_7
http://dx.doi.org/10.1007/978-3-319-63724-2_8
http://dx.doi.org/10.1007/978-3-319-63724-2_9
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Despite these challenges, several technologies that support quantum computa-
tion in principle have been successfully explored in the past. A quantum technology
describes a physical system which allows for the realization of qubits together with
a set of supported quantum operations for realizing Hamiltonians and is summa-
rized in form of a Physical Machine Description (PMD) [LCJ13]. A broad survey
of these quantum technologies has been conducted in the ARDA quantum comput-
ing roadmap [ARD]. Each PMD is different in terms of its quantum-mechanical
properties. This leads to different Hamiltonians and, hence, a different set of sup-
ported operations (often also denoted as primitive or elementary operations). In the
following, we provide a brief review of six popular quantum technologies, namely:

• Quantum Dots (QD)
In this system, a qubit is defined by the spin state of a single-electron quan-
tum dot, which is confined by electrostatic potential. The desired quantum oper-
ations are implemented by gating of the tunneling barrier between neighbouring
dots [TPJ+07].

• Superconducting Qubits (SC)
In a superconducting system, a qubit is simply represented by the two rotation
directions of the persistent super-current of Cooper pairs in a superconducting ring
containing Josephson tunnel junctions [SJD+03]. The state of a qubit is defined
by a distribution of voltages or currents, each characterized by an amplitude and
phase, which are functions of time.

• Ion Traps (IT)
Ion-trapquantumcomputation canbe implementedby confining a stringof ions in a
single trap, exploiting their electronic states as qubit logic levels, and using mutual
Coulomb interaction for transferring quantum information between ions [CZ95].

• Neutral Atoms (NA)
A system of trapped neutral atoms is a good candidate for implementing scalable
quantum computing [DBJ00, BCJ+00]. That the atoms are neutral means that they
are feebly coupled to the environment. Hence, decoherence is minimized. Trapped
atoms can be cooled to the motional ground state of the quantized potential wells,
and the initialization of the internal atomic states can be performed using standard
techniques of laser spectroscopy. The different qubit levels can be described by
various motional and internal states of the neutral atoms.

• Linear Photonics (LP)
In linear photonics, the qubits are represented by the quantum state of single pho-
tons. Quantum logic gates can be constructed using only linear optical elements,
such as mirrors and beamsplitters, additional resource photons, and triggering
signals from a single-photon detector [KLM01].

• Non-Linear Photonics (NP)
In non-linear photonics, quantum logic gates are implemented using interactions
of photons with non-linear photonic crystals. The photonic crystals include layers
of a Kerr medium [IA05] and, thus, perform a non-linear shift of the photonic
wave function.



70 6 Challenges and Initial Approaches

Table 6.1 Primitive quantum operations supported by different PMDs

PMD One-qubit operations Two-qubit operations

QD Rx , Rz , σx , σz , S, T Controlled Z

SC Rx , Ry , Rz i SW AP , Controlled Z

IT Rxy , Rz G

NA Rxy Controlled Z

LP Rx , Ry , Rz , σx , σy , σz , S, T , H CNOT , Controlled Z , SW AP , Z ENO

NP Asqu , Rx , Ry , Rz , H CNOT

Each of the quantum systems described above relies on a different quantum-
mechanical property and, hence, a different set of supported (primitive) quantum
operations. These are listed in Table6.1 [LCJ13]. While many of these operations
have already been considered in Sect. 2.2, it is not necessary for the purpose of this
book to understand all operations in detail. However, it is important to note that the
set of primitive operations which indeed have a direct physical counterpart, e.g. a
laser beam, largely depends on the considered technology. Moreover, this set is in
general rather small and only contains one- and two-qubit gates. This poses severe
obstacles to the design of quantum circuits that realize a given quantum functionality
by means of a series of primitive quantum operations that are available on a physical
machine.

Probably, the most severe implication is that exact quantum computation, i.e. the
precise implementation of a Hamiltonian, is not possible in general and the desired
quantum functionality rather needs to be approximated using the small set of physical
operations that is available. To this end, the approximation itself is not the crucial
point. The state of quantum systems can not be precisely read-out anyway and, thus,
approximations up to some small amount of error are usually acceptable and taken
into account for the robust design of quantum algorithms. Much more severe is the
fact that the desired quantum functionality is initially given in terms of e.g. a quantum
algorithm, a transformationmatrix describing the unitary operator of theHamiltonian
or a quantum circuit consisting of high-level quantum gates or modules that can not
be mapped to some atomic physical operation. Nonetheless, this functionality has
to be realized in terms of a cascade of primitive quantum operations that do have a
direct physical counterpart. This set of primitive operations differs significantly for
different quantum technologies and—in each case—only contains a small set of one-
and two-qubit operations.

Moreover, in order to incorporate the requirements of physical implementations
regarding fault-tolerance, the use of dedicated gate libraries was suggested. More
precisely, each (non fault-tolerant) gate is approximated by a cascade of gates that
can be implemented in a fault-tolerant fashion. This process is called quantum compi-
lation. Initially, the universal (and discrete) Clifford +T library consisting of CNOT,
H , and T operations (where T = Rz(π/4)) has been proposed for this purpose as
fault-tolerant constructions of these gates could be provided—at least at a theoretical

http://dx.doi.org/10.1007/978-3-319-63724-2_2
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level [BMP+00]. Indeed, the synthesis of arbitrary one-qubit operations in this library
has become rather well understood [KMM12, AMMR13].

More recently, increasing knowledge about promising technologies for quantum
computation led to another approach namedFault-Tolerant QuantumLogic Synthesis
(FTQLS, [LCJ14a]) that performs the compilation in a technology-aware fashion,
i.e. taking into account information about primitive gates as well as fault-tolerant
implementations. For instance, if Rx (θ) rotations are supported in principle in some
technology, they are only employed for a small set of rotation angles, i.e. θ = k · π

4
(for k = 0, 1, . . . , 7). Moreover, multiple optimization steps are conducted using an
elaborated ruleset [LCJ14b].

Overall,while several approaches exist that aimat the actual physical realization of
a quantum circuit, in most cases a corresponding circuit for the desired functionality
is not given initially, but rather needs to be generated from the original description
first. This design task is called synthesis and is considered in more detail in the
following.

6.2 Initial Synthesis Approaches

It was recognized very early that arbitrary (multi-qubit) operations would be hard
to implement directly due to the above mentioned physical constraints and due to
the fact that, as in conventional logic, the quantum functionality needs to be decom-
posed into a cascade of primitive/elementary operations. In contrast to conventional
logic, however, where there is only one unary (NOT) and several binary operations
(AND, OR, etc.), the focus here was—initially—put on a realization in terms of a
rather large set of one-qubit operations together with a rather small set of two-qubit
operations. This working hypothesis was supported by theoretical investigations on
so-called universal quantum gate libraries. In this context, the attribute universal
means that an arbitrary quantum operation can be approximated to an arbitrary pre-
cision using only operations (gates) from the library.1 In fact, it was shown that the
precise shape of the used gate library can be considered secondary, as any universal
library would allow for efficient approximations. More precisely, the well-known
Solovay-Kitaev theorem [DN06] states that a precision up to an error of ε can be
achieved with O(logc(1/ε)) gates for unitary one-qubit operations. Here the con-
stant c < 4 depends on which particular library is used.

As a consequence, a lot of research has focused on the decomposition of (arbitrary)
quantum functionality and synthesis of corresponding quantum circuits. Tradition-
ally, themost popular gate library used for this purpose consists of arbitrary one-qubit
operations together with a single, distinguished two-qubit operation, namely the con-
trolled NOT (CNOT) which was considered most promising for a physical realiza-
tion. This library, however, hardly takes into account the requirements of physical

1From a mathematical perspective, a universal quantum gate library is a dense subset of the set of
all quantum operations.
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realizations, namely the need for fault-tolerant implementations and a realization in
terms of primitive operations supported by the respective technology. Consequently,
in order to comply with these requirements the research focus has recently been
put on the compilation of single qubit operations by means of fault-tolerant and/or
technology-specific gate libraries (as reviewed above).

As we will see, the proposed approaches for synthesizing arbitrary quantum func-
tionality apply matrix decompositions that require a very high computational effort.
In fact, their complexity is only polynomial in terms of the matrix’ size, but the lat-
ter grows exponentially with respect to the size of the considered quantum system.
As a consequence, dedicated approaches have been developed for the synthesis of
Boolean components. These constitute important parts of many quantum algorithms
and applying a specialized scheme can significantly reduce the synthesis complexity.
This scheme is reviewed in Sect. 6.2.1. After this, we consider in detail the state-of-
the-art approaches for synthesizing arbitrary quantum functionality in Sect. 6.2.2.

6.2.1 Synthesis of Boolean Components

Many quantum algorithms contain a considerable Boolean component, e.g. the oracle
in Grover’s database search algorithm [Gro96] or the modular exponentiation used
in Shor’s factorization algorithm [Sho94]. Applying synthesis approaches dedicated
to realizing Boolean components has shown to be promising in order to significantly
reduce the complexity compared to generic approaches. But still, the synthesis of
Boolean components is a complex task due to the following major challenges:

• Non-reversibility: The underlying Boolean functions are often not reversible and,
thus, can not be implemented directly as a quantum operation since the latter are
inherently reversible.

• Adequate gate library: In addition, the logic operations commonly used to
describe and realize Boolean functionality in conventional logic are not available
in quantum logic (again due to their non-reversibility). In fact, the functionality
has to be realized in terms of quantum gates which can finally be executed on the
targeted quantum device.

As a consequence, most state-of-the-art methods follow a synthesis flow that does
not directly realize the given quantum functionality in one step. Instead, they employ a
multiple-step approach that addresses the twomajor challenges, i.e. non-reversibility
of the original functionality and the use of a dedicated quantum gate library, sep-
arately. More precisely, as shown in Fig. 6.1, the desired quantum functionality of
Boolean components is

• first realized as a reversible circuit (cf. Sect. 2.3) which provides a reversible
description of the original functionality. To this end, two complementary
approaches have been introduced in the past.

http://dx.doi.org/10.1007/978-3-319-63724-2_2


6.2 Initial Synthesis Approaches 73

Desired Functionality

Reversible Circuit

Quantum Circuit

f : Bn → B
m

H T
T
T

T †
T †

T †

T H

f ′ : Bn′ → B
n′

Embedding

Hierarchical
SynthesisLine-aware Synthesis

Reversible Circuit Synthesis

Mapping to Quantum Gate Library

technology-aware
fault-tolerant
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Fig. 6.1 Synthesis flow for Boolean components

– One set of line-aware solutions requires a fully reversible function as input (see
e.g. [SPMH03, MMD03, GAJ06, GWDD09, SZSS10] or [SWH+12]). In order
to enable support for non-reversible functionality, a pre-synthesis process called
embedding is conducted before (see e.g. [WKD11, SWK+15]).

– As an alternative, hierarchical solutions e.g. based on decision diagrams or
two-level representations have been proposed in [WD09, LJ14] or [FTR07],
respectively. Here, large functionality—regardless of its (non-)reversibility—is
decomposed into smaller sub-functions for which corresponding sub-circuits
can be derived.

However, the circuits resulting from any of these approaches consist of multiple-
control Toffoli (MCT) gates which are not directly realizable on any so far known
quantum device.

• Consequently, to comply with the gate library restrictions of the targeted technol-
ogy, the reversible circuit is afterwards mapped to an equivalent cascade of prim-
itive quantum operations (see e.g. [BBC+95, MYDM05, MWS11, WSOD13])
which can be executed directly on the quantum device. This mapping of the MCT
gates to primitive quantum operations can be conducted with respect to various
design paradigms such as cost-aware, fault-tolerant, and technology-aware.

The numerous, promising opportunities to exploit compact representation of the
corresponding functionality for synthesis are discussed in detail in Sect. 7.1.

http://dx.doi.org/10.1007/978-3-319-63724-2_7
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6.2.2 Synthesis of Arbitrary Quantum Functionality

As stated above, the most prominent universal gate library used for the synthesis of
arbitrary quantum functionality is constituted by the CNOT gate together with the
set of arbitrary one qubit gates (denoted by one-qubit + CNOT in the following).
The success of this library is actually not due to the fact that it was (one of) the
first universal gate libraries that have ever been proposed. More precisely, already
in 1989—6 years before the 1995 seminal paper by Barenco et al. [BBC+95]—
David Deutsch proposed a single, parameterized 3-qubit gate which he could prove
to be universal [Deu89] and following investigations even showed that in fact almost
any multiple-qubit gate is universal [DBE95]. The success of the one-qubit+CNOT
library is rather founded on the fact that the Barenco et al. paper [BBC+95] contains
explicit constructions for the realization of arbitrary quantum functionality in terms
of the library.

This constructiveness already becomes apparent when considering the proof of
universality which is conducted in three steps:

1. It is shown that any one-controlled gate is realizable by a cascade of four one-
qubit and two CNOT gates (cf. [BBC+95, Corollary5.3]). More precisely, for any
one-qubit gate W there exist four one-qubits gates A, B,C, D with ABC = I
such that the equality in Fig. 6.2 holds.

2. It is shown that any two-controlled gate is realizable by a cascade of three
one-controlled gates (from the first step) and two CNOT gates (cf. [BBC+95,
Lemma6.1]). More precisely, for any one-qubit gate U there exists a gate W
applying a rotation along the same axis asU , but with half of the original rotation
angle, such that W 2 = U and the equality in Fig. 6.3 holds.

3. From this, the universality follows from the fact that the above constructions
allow for a realization of the 2-controlled i Rx (θ) gate (the so-called Deutsch
gate) which is known to be universal [Deu89].

These constructions are generalized to controlled gates with arbitrarily many con-
trols and, finally, to arbitrary quantum functionality—thereby providing

=
W A B C

D

Fig. 6.2 Construction of 1-controlled unitary operators (ABC = I )

=

U W W W †

Fig. 6.3 Construction of 2-controlled unitary operators (W 2 = U )
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theoretical upper bounds for their realization in terms of the one-qubit+CNOT library.
These bounds essentially motivated a research competition that aimed at improv-
ing the bounds further and further (see e.g. [VMS04, BVMS05, NKS06, SBM06,
SAZS11]).

The most notable constructions in this context are given by the Cosine-Sine-
Decomposition (CSD, [PW94]) as well as the Quantum Shannon Decomposition
(QSD, [SBM06]). These two approaches constitute state-of-the-art solutions for the
synthesis of arbitrary quantum functionality. In the following, they are reviewed in
more detail in order to illustrate the complexity of the underlying decompositions
which lead to poor scalability as well as the drawbacks of the resulting circuits.

6.2.2.1 Cosine-Sine-Decomposition

Using the CS-Decomposition (CSD), a unitary matrix U ∈ U (2n) of dimension
2n × 2n can be decomposed into four unitary matrices L1,L2,R1,R2 ∈ U (2n−1)

of dimension 2n−1 × 2n−1 and two real-valued diagonal matrices C,S of the same
dimension with C2 + S2 = I (where I is the identity matrix) as follows:

U =
(
L1 0
0 L2

)
·
(
C S
−S C

)
·
(
R1 0
0 R2

)
(6.1)

For the purpose of quantum circuit synthesis, the CS-Decomposition has the
advantage that the central matrix in Eq. (6.1) can be realized by a special structure of
uniformly controlled Ry rotations which can be realized in terms of 2n−1 CNOT and
uncontrolled Ry gates (more details on this construction can be found in [BVMS05]).
Moreover, by applying it recursively to L1 ⊕ I, I ⊕ L2,R1 ⊕ I, I ⊕ R2, the entire
matrix can be decomposed. While CSD is a standard decomposition technique that
can in principle be computed using computer algebra software like MatLab, the
problem with this approach is, however, that the matrices used in the recursion
essentially have the samedimension as the initialmatrix (see the circuit representation
in Fig. 6.4 where a backslash denotes a circuit “wire” carrying an arbitrary number
of qubits an d an empty square represents a uniform control).

U =
\ \ L1 L2

Ry

R1 R2

Fig. 6.4 Cosine-Sine-decomposition (adapted from [SBM06])
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6.2.2.2 Quantum Shannon Decomposition

A decomposition that overcomes this problem is given by the Quantum Shannon
Decomposition (QSD). To this end, note that a matrix U1 ⊕ U2 ∈ U (2n) can be
decomposed as (

U1 0
0 U2

)
=

(
V 0
0 V

)
·
(
D 0
0 D†

)
·
(
W 0
0 W

)
(6.2)

for unitaryV,W ∈ U (2n−1) and a complex-valued diagonal matrixD. The particular
matrices can be obtained by diagonalizing U1U

†
2. More precisely, by using the sub-

equations U1 = VDW and U2 = VD†W that can be computed from Eq. (6.2), we
obtain U1U

†
2 = VDWW†DV† = VD2V−1. Thus, D and V can be computed directly

from the diagonalization of U1U
†
2, and W as W = DV†U2. By applying this to the

left- and rightmost matrix in Eq. (6.1), we obtain the QSD. More precisely,

U =
(
Vl 0
0 Vl

) (
Dl 0

0 D†
l

) (
Wl 0
0 Wl

)
·
(
C S
−S C

)
·
(
Vr 0
0 Vr

)(
Dr 0

0 D†
r

) (
Wr 0
0 Wr

)

(6.3)
where the diagonal matrices Dl ⊕ D†

l and Dr ⊕ D†
r can be implemented using the

construction of uniformly controlled Rz rotations as above (see the circuit repre-
sentation in Fig. 6.5). With this construction, the matrices occurring in the recursive
decomposition actually become smaller with each recursive step. This allows for
stopping the recursion at some level where the matrices are small enough such that
dedicated approaches can be applied.

The overall complexity of computing these decompositions is polynomial in the
size of the matrices (diagonalization, matrix multiplication), but as the latter grow
exponentially in the number of qubits, the computation becomes infeasible in practice
for rather small quantum systems. Moreover, they lead to a significant number of
gates and additionally rely on (at least) arbitrary Ry, Rz rotations.However, in general
these can not be realized in a fault-tolerant fashion and, beyond that, may not even
be supported by the targeted physical device (i.e. they are not contained in the set
of primitive operations as listed before in Table6.1) such that a computationally
expensive compilation to an adequate gate library has to be conducted.

Overall, the drawback of these generic synthesis approaches that aim at the syn-
thesis of arbitrary quantum functionality is that they (a) lead to a significant number
of gates even for a small number of qubits and (b) use decomposition techniques
that do not scale to larger quantum systems. However, many design objectives can

U =
\ \ Vl Wl Vr Wr

Rz Ry Rz

Fig. 6.5 Quantum shannon decomposition (adapted from [SBM06])
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be realized without employing the full power of arbitrary quantum operations. To
this end, it has shown promise to consider essential sub-problems of quantum logic
design separately. One of these is the synthesis of Boolean components which has
already been outlined above and is discussed in more detail in Sect. 7.1. In addition
to that, in Sect. 7.2 we focus on the synthesis of quantum circuits that implement
Clifford Group operations (based on the initial description in [NWD14a]). These
circuits are essential for many quantum applications and can be realized in terms of a
dedicated, fault-tolerant gate library. The proposed approach exploits specific prop-
erties of the associated transformation matrices that have a direct counterpart in the
corresponding QMDDs (cf. Chap. 4) which are employed for their efficient represen-
tation. Therefore, it strikingly shows the potential of using compact representations
for quantum circuit synthesis.

Regardless of which particular approach is taken to generate the quantum circuits
or to compile individual gates to the targeted gate library, it is vital to ensure the
correctness of the transformations, optimizations and technology mappings that are
conducted throughout this process.More precisely, different descriptions of quantum
functionality need to be checked for equivalence, i.e. it has to be verified that they
indeed describe the same or an equivalent functionality. In Chap.8, we present a
scheme that addresses this need and explicitly relies on efficient representations
of the corresponding transformation matrices. As a further benefit, it also covers
implementations in multi-level quantum systems (with r > 2 basis states).

http://dx.doi.org/10.1007/978-3-319-63724-2_7
http://dx.doi.org/10.1007/978-3-319-63724-2_7
http://dx.doi.org/10.1007/978-3-319-63724-2_4
http://dx.doi.org/10.1007/978-3-319-63724-2_8


Chapter 7
Synthesis of Quantum Circuits

In this chapter, we demonstrate the importance of compact representations and their
applicability for the synthesis of quantum circuits. To this end, we consider the syn-
thesis problem for two important classes of quantum functionality, namely Boolean
components as well as Clifford group operations, and present corresponding algo-
rithms in Sects. 7.1 and 7.2, respectively. While the algorithms are conceptually
presented by means of transformation matrices, they natively allow for the use with
compact representations (especiallyQMDDs) and, by actually doing so, they become
very scalable state-of-the-art solutions for the respective synthesis task. To conclude
the chapter, we provide an outlook on the generalization of the presented techniques
to arbitrary quantum functionality in Sect. 7.3.

7.1 Synthesis of Boolean Components

As discussed in the previous chapter, the synthesis of Boolean components is an
important sub-task of quantum logic synthesis and is commonly conducted in two
steps (cf. Sect. 6.2.1). More precisely, the original functionality is first realized in
terms of a reversible circuit which is afterwards mapped to an equivalent cascade
of quantum gates. The latter of these steps usually employs a gate-wise mapping
scheme in combination with optimizations at the circuit level like gate reordering
and rewriting and other simplifications [Sas12]. Especially, this step does not rely on
an efficient functional representation (e.g. by means of QMDDs). Hence, we focus
on the first step, i.e. reversible circuit synthesis, in the following.

There are two complementary approaches to this task: On the one hand, there are
hierarchical solutions like [FTR07, WD09, LJ14] that decompose large functional-
ity into smaller sub-functions for which corresponding sub-circuits can be derived.
While these solutions can be applied regardless of the (non-)reversibility of the
objective function, they usually lead to a high number of additional (unnecessary)

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_7
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qubits/circuit lines.1 As these are a very rare resource in actual physical implemen-
tations, the corresponding approaches are not considered in more detail here.

On the other hand, there are many design methods (termed line-aware solu-
tions) which are able to realize the desired functionality without adding further
qubits/circuit lines, e.g. those proposed in [MMD03, GWDD09, SZSS10, SWH+12].
However, the drawback of all these approaches is that they require a fully reversible
function as input, while frequently also irreversible functionality is to be realized.

Consequently, in Sect. 7.1.1 we first discuss how irreversible function descrip-
tions have to be pre-processed in order to be applicable to such methods. Then,
in Sect. 7.1.2 we describe how corresponding QMDD representations can be con-
structed in order to use them for reversible circuit synthesis (the description is based
on [NZWD17]), before the actual synthesis algorithm that is able to take advantage
of these representations is presented in Sect. 7.1.3.

7.1.1 Embedding: Handling Irreversible Function Descriptions

In order to realize irreversible Boolean functions in a reversible fashion (as it is
inherently required in quantum logic), a pre-synthesis process called embedding
needs to be conducted (see e.g. [WKD11, SWK+15]).

To this end, additional outputs (so-called garbage outputs) are added to the con-
sidered function f ∈ Bn,m . More precisely, �log2(μ( f ))� additional outputs are
required, whereby μ( f ) is the maximal number of times an output pattern is gener-
ated by f , i.e.

μ( f ) = max
y∈Bm

(|{x | y = f (x)}|).

In order to keep the number of inputs and outputs equal, this may also result in the
addition of further inputs. That is, an irreversible function f : Bn → B

m is embedded
into a function f ′ : Bm+�log2(μ( f ))� → B

m+�log2(μ( f ))�. While f ′ is to be specified in a
fully reversible fashion, i.e. f ′ is a bijection, the desired target functionality can be
employed by setting the additionally added inputs to a constant value and recognizing
only the non-garbage outputs. An example illustrates the idea.

Example 7.1 Consider the Boolean function f : B2 → B
1 with f (x1, x2) = x1 ∧ x2

to be synthesized as a reversible circuit. Obviously, f is irreversible. The maximal
number of times an output pattern is generated by f is μ( f ) = 3 (namely 0 for the
input patterns 00, 01, and 10). Hence, in order to realize f in quantum logic, the
function has to be embedded into a function f ′ : B2+1 → B

1+2 with �log2(3)� =
2 additional outputs and 1 + �log2(3)� − 2 = 1 additional input. The resulting
function f ′ : B3 → B

3 can be specified as f ′
1(x1, x2, x3) = x1, f ′

2(x1, x2, x3) = x2,

1As the design of reversible circuits does not exclusively aim for a realization on quantum devices,
the more generic notion of (circuit) line is used for what is represented by a qubit.



7.1 Synthesis of Boolean Components 81

f ′
3(x1, x2, x3) = (x1 ∧ x2) ⊕ x3. This function is reversible (as can be checked by

applying all 23 = 8 possible input assignments) and realizes the target functionality f
by setting x3 to a constant zero value (as the calculation f = x1∧x2 = (x1∧x2)⊕0 =
f ′
3(x1, x2, 0) shows).

However, generating an embedding as sketched above is an exponentially complex
task: In order to determine μ( f ), all 2n output patterns generated by the inputs have
to be inspected. Hence, it has been tried to avoid this complexity by not aiming for
a minimal result with respect to the number of additionally required outputs. In fact,
since μ( f ) can never exceed 2n , at most �log2(2n)� = n additional garbage outputs
are required [WKD11], i.e. any irreversible function can be embedded into a function
f ′ : Bn+m → B

m+n . But, the question remains how to specify the functionality of the
newly added garbage outputs. Although heuristics assigning the additional outputs
with a dedicated functionality as e.g. done in Example7.1 are very promising, for a
long time no solutions have been available which would guarantee that the resulting
function f ′ is indeed reversible. Consequently, synthesis approaches relying on a
reversible function description were applicable to small functions only.

Recently, however, a method has been proposed that employs QMDDs to a) deter-
mine μ( f ) and b) compute an actual embedding of f , i.e. a reversible function f ′
with the minimal number of in-/outputs m + �log2(μ)� that embeds f [ZW17].

The basic idea of this approach is to construct (the QMDD of) the correspond-
ing function matrix Mf where mi, j = 1 if, and only if, f maps the input pattern
corresponding to column j to the output pattern corresponding to row i . Other-
wise mi, j = 0. Having the function matrix Mf , the number of input patterns that
are mapped to a particular output pattern can be determined as the row sum of the
corresponding column inMf .

Example 7.2 A half adder can be described by the multi-output Boolean function
f : B2 → B

2 with component functions f1(x1, x2) = x1 ∧ x2 (usually denoted
as carry) and f2(x1, x2) = x1 ⊕ x2 = x1x2 ∨ x1 x2 (usually denoted as sum). The
corresponding truth table and functionmatrix representations are shown in Figs. 7.1a,
b, respectively. Each line of the truth table is represented by a single 1 entry in the

x1 x2 f1 f2
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) Truth table

00 01 10 11

00 1 0 0 0

01 0 1 1 0

10 0 0 0 1

11 0 0 0 0

x1 x2

f1/y1
f2/y2

Inputs

O
ut
pu
ts

(b) Function matrix

x1 x2 y1 y2 χ f

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
...

...
...

...
...

1 1 1 1 0

(c) Char. function

Fig. 7.1 Representations of a half adder
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function matrix. For instance, the third line stating that (1, 0) is mapped to (0, 1) is
represented by the 1 in the third column (10), second row (01). By considering the
row sums of the matrix, it can be seen that μ( f ) = 2.

In order to compute the row sums ofMf , thematrix is multiplied with its transpose
(i.e.Mf ·Mf

T is computed). Then, the row sums occur on the diagonal of the resulting
matrix and μ( f ) can easily be determined as the maximum of these. Moreover, the
above computation (which can be performed very efficiently using QMDDs) also
serves as a necessary and sufficient check for reversibility: if, and only if, the result
is the identity matrix, i.e. μ( f ) = 1, each input pattern is mapped to a unique output
pattern and the original function is proven to be reversible.

It can be observed that the proposed algorithm for determining an actual (minimal)
embedding has a strong similarity to the actual synthesis approach presented later
in this section and can simply be modified in order to determine a corresponding
reversible circuit as a “by-product”, i.e. without significant overhead. Thus, in order
to determine μ( f ) and actually conduct the embedding, it only remains open how
to construct a compact representation of the function matrix of f . This is covered in
the following.

7.1.2 Construction of QMDDs for Boolean Functions

In order to exploit compact QMDD representations for the synthesis of Boolean
components, the desired functionality (regardless of whether it is reversible or not)
first of all needs to be represented in terms of a QMDD. A multi-output Boolean
function f : Bn → B

m is commonly given in terms of descriptions of its primary
outputs f1, . . . , fm (also termed component functions). These single-output Boolean
functions Bn → B are commonly described in terms of Boolean Algebra, i.e. as
Sums of Products (SOP), Products of Sums (POS), or alike.

While all these representations are essentially more compact representation of the
truth table of f , we aim for aQMDD representation that is essentially amore compact
representation of the functionmatrix of f . In order to bridge this gap, themain idea is
to employ the characteristic function χ f of f , i.e. a Boolean function Bn ×B

m → B

with n inputs labelled x = x1, . . . , xn and m inputs labelled y = y1, . . . , ym , where
χ f (x, y) = 1 if, and only if, f (x) = y. In other words, χ f evaluates to true if, and
only if, the backmost m inputs represent the correct output pattern that is generated
when applying f to the input pattern specified by the first n inputs. Thus, the entries
of the function matrix can be interpreted as the outcomes of χ f .

Example 7.3 The characteristic function of the half adder fromExample7.2 is shown
inFig. 7.1c in termsof its truth table.Each line corresponds to one entry of the function
matrix. More precisely, writing all columns of the function matrix on top of each
other would yield the χ f column of the truth table.

As it is infeasible to construct and store the whole function matrix at once due
to its exponential complexity, we rather employ compact, graphical representations
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BDD of fi BDD of hi BDD of χ f QMDD of f

Fig. 7.2 Construction of the QMDD for the half adder

of Boolean functions (especially of the characteristic functions) in terms of BDDs
from which the desired QMDD representation can then be derived directly without
explicitly considering the function matrix.

Actually, there is a large body of research on how to derive BDD representations
from various other, algebraic or net-list based, representations of Boolean func-
tions [Som01].

Example 7.4 The BDDs for the component functions of the half adder reviewed in
Examples7.2 and 7.3 are shown on the left-hand side of Fig. 7.2.

Overall, there is a well-developed methodology for constructing the BDD repre-
sentation of the component functions of f . These BDDs have then to be composed
in a second step to obtain the BDD of the characteristic function χ f . Since the
outcomes of χ f essentially describe the entries of the desired function matrix, the
resulting BDD can eventually be transformed to a QMDD. In the following, these
steps are described in more detail.

7.1.2.1 Generating the BDD of the Characteristic Function

In order to derive the BDD representing the characteristic function χ f of a multi-
output function f : Bn → B

m , we first introduce new variables yi for the primary
outputs of f (referred to as output variables in the following). While the original
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(input) variables are used to encode the column index of the function matrix, the
output variables encode rows. Then, we construct the characteristic function for
each output. More precisely, we construct the helper functions hi given by

hi (x1, . . . , xn, yi ) = fi (x1, . . . , xn)
yi ,

where 
 denotes the XNOR-operation. This logical operation—and, thus, the
entire function hi—evaluates to true if, and only if, both operands are equal, i.e.
fi (x1, . . . , xn) = yi . Consequently, the hi -function can be interpreted as character-
istic functions of the primary outputs of f .

Afterwards, the BDD of χ f can be constructed by AND-ing the BDDs rep-
resenting the hi -functions as the following calculation shows (for an arbitrary
(x1, . . . , xn, y1, . . . , ym) ∈ B

n+m):

χ f (x1, . . . , xn, y1, . . . , ym) = 1

⇔ f (x1, . . . , xn) = (y1, . . . , ym)

⇔∀i ∈ {1, . . . ,m} : fi (x1, . . . , xn) = yi
⇔∀i ∈ {1, . . . ,m} : hi (x1, . . . , xn, yi ) = 1

⇔h1(x1, . . . , xn, y1) ∧ h2(x1, . . . , xn, y2) ∧ . . . ∧ hm(x1, . . . , xn, ym) = 1

Remark 7.1 If n > m, i.e. if f has more primary inputs than outputs, we pad the
function with zeros in order to obtain a Boolean function with the same number of
inputs and outputs, such that the resulting function matrix is square. More precisely,
we add n−m additional constant outputs/component functions f j ≡ 0. While these
can, in principle, be added at any position, we add them in front of the original
outputs/component functions. If, in contrast,m > n, we add m − n additional inputs
that have no impact on the functionality of f . Again, these inputs can, in principle,
be added at any position, but we add them in front of the original inputs. Overall, this
ensures that the original functionality is represented by the sub-matrix of dimension
2m × 2n in the top-left corner of the square function matrix. Moreover, this allows
us to assume in the following that n = m without restriction.

As theBDD representingχ f is guaranteed to be exponential in size for the variable
order x1 � . . . � xn � y1 � . . . � ym (at least for reversible functions), we enforce
an interleaved variable order x1 � y1 � x2 � y2 � . . . � xn � yn when constructing
the BDD for χ f .

Example 7.5 Consider again the half adder example. The BDDs representing the
helper functions h1 = f1
y1 and h2 = f2
y2 are computed using the BDD equiva-
lent of the logical XNOR operation and are shown in Fig. 7.2 on page 83 (next to the
BDDs representing f1 and f2). By AND-ing these BDDs, we obtain the BDD repre-
senting χ f which is shown in the center of Fig. 7.2. In this BDD, all edges pointing
to the zero-terminal are indicated by stubs for the sake of a better readability and to
emphasize the similarity to the targeted QMDD.
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7.1.2.2 Transforming the BDD into a QMDD

With a BDD in interleaved variable order representing χ f , the matrix partitioning
employed by QMDDs is already laid out implicitly. In fact, corresponding bits of
the column and row indices are represented by different, but adjacent variables (xi
and yi ), while QMDDs combine these in a single variable. Consequently, the BDD
of χ f can be transformed into the QMDD for f using the general transformation
rule shown in Fig. 7.3. However, there are two special cases that have to be treated
separately:

• If an input variable xi is skipped (more precisely: a vertex labelled by yi is the
child of a vertex not labelled by xi ), this implies the xi vertex would be redundant,
i.e. high and low edge point to the same vertex. This case can easily be handled
by setting f00 = f10 = f0 or f01 = f11 = f1, respectively, as illustrated on the
left-hand side of Fig. 7.4a. If, however, xi is not an original input of the function,
but has been introduced later in order obtain the same number of in- and outputs,
we set f10 = f11 = 0 instead to ensure that the original functionality occurs only
once in the final function matrix (as illustrated on the right-hand side of Fig. 7.4b).

• If an output variable level yi is skipped (more precisely: the high or low edge
of a vertex labelled by xi point to a vertex labelled by l �= yi ), this implies the
skipped yi vertex would be redundant (both children would be the same). This case
can easily be handled by setting f00 = f01 = f0 or f10 = f11 = f1, respectively,
before applying the general transformation rule. For instance, the case of a skipped
variable on the low edge is illustrated in Fig. 7.4b.
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f00 f01 f10 f11

⇒ xi

f00 f10 f01 f11

Fig. 7.3 General transformation rule from characteristic BDDs to QMDDs

l

yi

f0 f1

(l �= xi)

⇒⇐

xi primary input xi add. input

xi

f0 f0 f1 f1

xi

f0
0

f1

0

(a) Skipped input variables

xi

l

f0

(l �= yi)

⇒
xi

f0 ? f0 ?

(b) Skipped output variables

Fig. 7.4 Handling skipped variables
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Example 7.6 Consider again the characteristic BDD shown in the center of Fig. 7.2
on page 83. Here, the single x1 vertex and the leftmost x2 vertex can be transformed to
their QMDD equivalent by applying the general transformation rule. For the remain-
ing x2 vertices, the methodology for skipped y2 output variables is to be applied.
Overall, this yields the QMDD shown on the right-hand side of Fig. 7.2.

Overall, the procedure yields a QMDD representing the function matrix of any
Boolean function f (which, in case of a reversible function, is a permutation matrix).
In fact, as demonstrated in [NZWD17], corresponding representations for functions
with around 100 in- and outputs can be determined within few CPU seconds on an
ordinary machine.

7.1.3 QMDD-Based Synthesis of Reversible Circuits

Most line-aware synthesis approaches are based on an inefficient representation of
the objective function (e.g. the transformation-based synthesis approach presented
in [MMD03] is based on truth tables) and do not scale well. However, it turned out
that the use of dedicated data-structures like QMDDs can significantly improve the
scalability and one of the most scalable line-aware synthesis approaches is based on
QMDDs [SWH+12].

Regardless of the underlying data-structure, there are two main ideas that most
line-aware synthesis approaches have in common:

(1) they successively synthesize the component functions of f and
(2) they perform the synthesis in a reverse fashion.

More precisely, a cascade of gates is determined that transforms the original func-
tion f to the identity, i.e. the component functions are projections onto the input
variables ( f1 = x1, f2 = x2 and so on). As all gates are self-inverse, the desired
circuit can afterwards be obtained by simply reversing the order of the gates. In the
following, we outline the general scheme of QMDD-based synthesis by means of a
matrix representation of the objective function. For this purpose, we use the running
example shown in Fig. 7.5. For the sake of brevity and in order to be comparable
with other line-aware approaches, we assume a reversible Boolean objective func-
tion for which the (transformation/function) matrix is in fact a permutation matrix
(cf. Sect. 2.1). However, as discussed earlier, only small adjustments are required to
make the presented technique applicable to irreversible functions, too [ZW17].

7.1.3.1 General Scheme

For a given Boolean function f : Bn → B
n , we begin with the first component

function f1. In order to achieve an identity mapping, i.e. a projection on x1, the
approach aims to turn all 0 �→ 1 into 0 �→ 0 mappings and all 1 �→ 0 into 1 �→ 1

http://dx.doi.org/10.1007/978-3-319-63724-2_2
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Fig. 7.5 Line-aware synthesis at the matrix level

mappings. At the level of transformation matrices, this corresponds to moving all
non-zero entries from the off-diagonal blocksU01 andU10 to theU00 andU11 blocks
on the diagonal, respectively, as shown in the top-left part of Fig. 7.5. The following
Lemma tells us that we may even concentrate on only one of these blocks, as the
other one is cleared automatically.

Lemma 7.1 LetM be a 2n×2n permutationmatrix, i.e.M ∈ {0, 1}2n×2n , partitioned
into four sub-matrices U00,U01,U10,U11 of dimension 2n−1 × 2n−1 as follows:

M =
[
U00 U01

U10 U11

]

Then U01 = [0]2n−1×2n−1 if, and only if, U10 = [0]2n−1×2n−1 .

Proof SinceM is a permutation matrix with a single 1 in each row and column, there
must be exactly k non-zero entries in the leftmost k columns as well as in the topmost
k rows (for 1 ≤ k ≤ 2n). If U01 is “empty”, all non-zero entries of the topmost 2n−1

rows (blocks U00 and U01) are gathered in the leftmost 2n−1 columns, i.e. block U00.
Consequently there can not be any single non-zero entry in the lower halves of these
columns, i.e. block U10 is also “empty”. The converse is proven in an analogous
fashion.
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So, howdowe clear blockU01 and turn all 0 �→ 1mappings into 0 �→ 0mappings?
The main idea for this purpose is to swap entire columns which corresponds to
applying appropriate multiple-controlled Toffoli (MCT) gates. To this end, recall that
each column corresponds to a particular input pattern x1 . . . xn (called its signature
in the following). Now, in order to swap exactly two columns whose signatures differ
in one position xk only (called xk-partner), we apply an MCT gate with the target
on xk and positive/negative controls on the remaining lines corresponding to the
columns’ signature. If some of these controls are dropped, a larger set of columns
will be swapped.

Example 7.7 Consider again the matrix in the upper left part of Fig. 7.5. Applying
an MCT gate with the target on x2 and a positive control on x1 (i.e. the controlled
NOT gate which is the first gate of the circuit shown in the center of Fig. 7.5) will
swap the columns 10 and 11. The resulting matrix is shown in the upper right part.

This relation between applying MCT gates and swapping columns can be
employed for clearing block U01. More precisely, the following two phases are car-
ried out in rotation unless all non-zero entries from block U01 have been moved to
block U00.

Swapping Phase Determine all columns in block U01 which contain a 1 while their
x1-partner in blockU00 is empty. These columns can be swapped directly by applying
an MCT gate with the target on x1 and controls corresponding to the columns’
signatures.

Moving Phase Determine those x1-partners which are empty in both blocks and
move a non-zero entry within block U01 to such an empty column. This is done by
applying MCT gates with a positive control on x1 (which ensures that the column
movement is only performed in block U01 and not also in block U00) and targets on
all lines where the signatures of source and target column differ.

After performing the swapping phase, i.e. after moving all currently movable
entries to block U00, or if no directly movable entry can be found in the first place,
new movable entries in block U01 are created in the moving phase. This guarantees
the creation of at least one new movable column which can be moved in the next
switching phase.

Example 7.8 Consider again the matrix in the upper left part of Fig. 7.5. In the first
swapping phase nothing can be done as there is no directly movable entry inU01 (the
x1-partner of column 11 is already occupied in U00). However, the x1-partners 00
and 10 are both empty, such that by applying an MCT gate with a target on x2 and
positive control on x1 in the moving phase (cf. Example7.7), we obtain a directly
movable column 10. The corresponding matrix is shown in the upper right part. In
the following swapping phase, this column 10 can be swapped with column 00 using
an MCT gate with a target on x1 and a negative control on x2. The corresponding
gate is shown as the second gate of the circuit in the center of the figure; the negative
control is indicated by a white dot . By applying this gate, block U01 is cleared and
the synthesis for f1 is complete. The resulting matrix is shown in the lower right part
of Fig. 7.5.
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After this process is completed for f1, it is iteratively performed for all remaining
component functions. On the matrix level, this means that we have to consider the
two blocksU00 andU11 separately; more general, the number of blocks doubles with
every step. In order to address a particular block within the matrix, the MCT gates
need to be equipped with additional controls that limit the column movement to the
respective block.

Example 7.9 Consider again the matrix in the lower right part of Fig. 7.5. As blocks
U01 andU10 are empty, we can continue with the diagonal blocks, i.e. we perform the
synthesis for f2. SinceU11 is already an identitymatrix, we only need to considerU00.
Here, both columns 00 and 01 need to be swapped. This is done by the MCT gate
with a target on x2 shown as the rightmost gate of the circuit in the center. Here,
a negative control on x1 limits the swapping to U00. Finally, we obtain an identity
matrix (shown in the lower left part of Fig. 7.5) and the synthesis is complete.

Overall, the entire approach could be performed directly on the matrices, but then
we would quickly face severe scalability issues as permutation matrices scale even
worse than truth tables. It is QMDDs what makes the approach actually scalable:
QMDDs offer an efficient way to represent permutation matrices, to find the signa-
tures of empty or occupied columns, and to apply Toffoli gates—used for moving
columnswithinU01 or fromU01 toU00—to the entirematrix. Indeed, as demonstrated
in [SWH+12], the approach could be applied to functions with up to 100 inputs
and additionally improved the quantum cost significantly in comparison to previous
approaches.

7.2 Synthesis of Clifford Group Operations

In the previous section, we considered the synthesis of Boolean components which
is an important sub-task in the design of quantum logic. However, the corresponding
approaches do not allow for the realization of more general quantum functionality.
For this matter, several approaches have been proposed, all of which rely on the fact
that one-qubit gates together with the controlled NOT (CNOT) gate form a universal
gate library that is sufficient to realize any given unitary matrix. In fact, determining
corresponding quantum circuits has a rich history (cf. Sect. 6.2.2). The drawback
of these generic approaches is, however, that they lead to a significant number of
gates (even for a small number of qubits) and that they rely on a set of arbitrarily
parameterized one-qubit gates. The latter poses a severe obstacle since, in physical
realizations, these must be approximated by a restricted set of gates, in particular
when fault-tolerant methods are applied.

In this section, we provide an alternative synthesis approach (based on the descrip-
tion in [NWD14a]) that considers synthesis of quantum circuits implementing Clif-
ford Group operations.2 It has been shown in [Got97] that each Clifford Group

2The term Clifford group for this set of operations has been introduced by Bolt et al. [BRW61].

http://dx.doi.org/10.1007/978-3-319-63724-2_6
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operation can be realized by a cascade composed of justHadamard, Phase, andCNOT
gates, i.e. from a group-theoretical viewpoint these gates are the generators of the
Clifford Group. Thus, we avoid relying on a generic gate library and, instead, can
realize quantum functionality with a precise and established set of gates which can be
implemented in a fault-tolerant fashion [BMP+00]. At the same time, this restricts the
applicability of the approach (arbitrary unitarymatrices are not supported). However,
Clifford group circuits are essential for many quantum applications and cover core
aspects of quantum functionality such as superposition, entanglement, and phase
shifts [KMM12]. Moreover, their functionality is sufficient for various quantum
applications, particularly as stabilizer circuits for error-correcting codes [Mer07], but
also for the realization of the Greenberger-Horne-Zeilinger experiment [GHZ89], for
quantum teleportation [BBC+93], or dense quantum coding [BW92].

This compromise on applicability enables a synthesis methodology allowing for
the realization of considerably more compact quantum circuits. We explicitly exploit
the effects of the clearly defined gate library in order to directly modify the given uni-
tarymatrices to be synthesized. These effects are discussed inSect. 7.2.1.2. In contrast
to the previously proposed (generic) approaches and as confirmed by an experimental
evaluation, this enables a reduction of the circuit sizes by several orders of magni-
tude. By additionally using a compact data-structure, namely QMDDs (cf. Chap. 4),
our approach enables an efficient processing of the respective unitary matrices.

The remainder of the section is structured as follows. Section7.2.1 introduces
the main concepts of the proposed synthesis scheme, before the resulting synthesis
algorithm is described in detail in Sect. 7.2.2. A theoretical analysis of the algorithm
is carried out in Sect. 7.2.3 and experimental results are presented in Sect. 7.2.4.

7.2.1 Main Concepts of the Synthesis Approach

In this section, we introduce the general idea of the proposed synthesis approach.
Furthermore, we describe the effect of the Clifford Group generators (Hadamard,
Phase, CNOT) to a given transformation matrix. Based on that, the actual synthesis
algorithm is afterwards described in Sect. 7.2.2.

7.2.1.1 General Idea

The task of synthesis is to determine a quantum circuit representing the desired
quantum functionality F given in terms of a transformation matrix. We already know
that all circuits considered here can be realized by a cascade composed of Hadamard,
Phase, and CNOT gates. Therefore, applying transformation matrices representing
these gates modifies F and for a distinct choice of these matrices we will eventually
reach the identity matrix. Hence, the main goal of the proposed synthesis approach
is to determine a sequence of quantum gates g1 . . . gl with this property. For this
purpose, we identify the following three steps that are also illustrated in Fig. 7.6.

http://dx.doi.org/10.1007/978-3-319-63724-2_4
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Fig. 7.6 General scheme of the synthesis procedure

1. Eliminate superposition, i.e. apply quantum gates so that all multiple non-zero
matrix entries in rows/columns are removed. This leads to a matrix that has a
single non-zero entry per row/column (as illustrated in Fig. 7.6b), each of which
has magnitude 1. Thus, the matrix is structurally equivalent to a permutation
matrix. The corresponding circuit maps basis states to (possibly different) basis
states and potentially applies phase shifts.

2. Diagonalize, i.e. establish the structure of a diagonal matrix as shown in Fig. 7.6c.
By this, the structure of the transformation matrix is already equal to the structure
of the identity matrix, i.e. each basis state is mapped onto itself. However, phase
shifts still might be applied.

2. Eliminate phase shifts to eventually reach the identity matrix (Fig. 7.6d).

All gates applied in order to perform these steps lead to a circuit realizing the
inverse of the given transformation matrix F. Since Hadamard and CNOT gates are
self-inverse and the inverse of the Phase gate is S3 = S · Z, the actually desired
circuit can then be derived by simply reversing the order of all gates and replacing
Phase gates by their inverses. Alternatively, we can convertF to its inverse in advance
which can be performed efficiently using a dedicated data-structure like QMDDs.

7.2.1.2 Effect of the Clifford Group Generators

All synthesis steps sketched above can be accomplished by a clever sequential appli-
cation of Hadamard, Phase, and CNOT gates, the generators of the Clifford Group.
But before the respective algorithm is described in detail, we briefly investigate the
effect of these gates to a transformation matrix F.

For simplicity, we illustrate all operations on a 4 × 4 transformation matrix F
over two qubits x1 and x2. The generalization to larger matrices with more qubits is
straightforward. In the following, we write Utarget for the transformation matrix that
represents the (uncontrolled)U operation applied to a target qubit. Similarly, we use
Ucontrol

target for a controlled U-gate, i.e. Xx1
x2 denotes the CNOT gate with control qubit x1

and target x2.
Figure7.7 summarizes how the application of important Clifford operations

affects a given 4 × 4 transformation matrix F with columns 00, 01, 10, and 11,
i.e. F = (00, 01, 10, 11). For our purposes, three main effects are important:
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Fig. 7.7 Operation scheme of gate matrices

7.2.1.3 Permutation of Columns

The CNOT gates Xx1
x2 and X

x2
x1 lead to matrices with columns 10 and 11 or 01 and 11

being interchanged, respectively. To additionally interchange column00with another
one, an (uncontrolled) NOT gate (X) can be applied. This gate can be generated
with Hadamard and Phase gates, more precisely X = H · S · S · H. Hence, by
composing gates Xx1

x2 , X
x2
x1 , and Xx2 , the columns of F can be re-arranged until any

desired permutation is achieved. Note that for larger matrices we are no longer able
to achieve any desired permutation of the columns, but we can still move a (single)
column to any desired place.

7.2.1.4 Reducing Superposition

Hadamard gatesHx1 andHx2 link together pairs of columns as illustrated in Fig. 7.7,
thereby allowing to create or reduce superposition. Hence, this operation is important
for the first step of the synthesis approach sketched above. However, reduction of
superposition is only possible for suitable pairs of columns (i.e. for 00 and 10 or 01
and 01) and only if the columns differ by no more than signs of the entries. If other
pairs need to be linked together (e.g. 00 and 11), the corresponding columns have to
be re-arranged before. For this purpose, permutation of columns as described above
can be applied.
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7.2.1.5 Eliminating Phase Shifts

Finally, Fig. 7.7 shows that Phase gates Sx1 and Sx2 apply a phase shift of i to a
particular subset of columns of F. Beyond that, they do not alter the order of the
columns. Applied again, they change this phase shift to−1 and−i successively and,
finally, remove the phase shift completely. Obviously, this is relevant for the third
step of the synthesis approach sketched above. As Phase gates also only work on
pairs of columns, we additionally might need controlled Z gates defined by

Zx1
x2 = Zx2

x1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

These apply a phase shift by −1 to a more restricted set of columns than Phase gates
(here: a single column). This gate type can readily be constructed using Hadamard
and CNOT gates, more precisely Zx1

x2 = Hx1 · Xx2
x1 · Hx1 .

Exploiting these effects of the Clifford group generators, the sketched synthesis
approach can be realized as described next.

7.2.2 Algorithm

Based on the main concepts introduced in the previous section, we now describe
the resulting synthesis approach in detail. The approach follows the three steps from
Fig. 7.6. Furthermore, we employ QMDDs as reviewed in Chap. 4 as an efficient
representation of transformation matrices on which all steps are conducted. All steps
are illustrated by a running example, namely the transformation matrix depicted in
Fig. 7.8a and the corresponding QMDD depicted in Fig. 7.8b. We will exploit the
specific property of Clifford group transformation matrices that all non-zero entries
are multiples of a basis weight. More precisely, there is a complex number ω such
that each non-zero entry is of the form u ·ω for u ∈ {±1,±i}. This property follows
from the theory of stabilizer circuits as discussed in [Got98] and will be proved in
Sect. 7.2.3.

7.2.2.1 Eliminating Superposition

Asdiscussed in the previous section, superposition canbe eliminatedusingHadamard
gates. More precisely, superposition involving a suitable pair of columns with no
phase shifts can straightforwardly be tackled using a single Hadamard gate applied
to the corresponding qubit.

http://dx.doi.org/10.1007/978-3-319-63724-2_4
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Fig. 7.8 Matrix and QMDD representation of a 3-qubit quantum circuit
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Fig. 7.9 Running example after applying Hx2

Example 7.10 In the running example from Fig. 7.8a, it can be seen that column 001
matches pairwise to column 011 (i.e. the entries differ only by sign). Hence, applying
a Hadamard gate on qubit x2 reduces the superposition of the matrix and leads to a
matrix as shown in Fig. 7.9a.

However, cases might be encountered where no Hadamard gates can be applied
directly. Then, the columns have to be re-arranged using CNOT gates and possible
phase shifts have to be removed using Phase gates. This is illustrated by the following
example before the actually applied elimination scheme is described next.

Example 7.11 The resulting matrix from Fig. 7.9a still includes superposition. In
order to eliminate this, we need to derive a “valid” pair of columns for which a
Hadamard gate can be applied. We choose columns 001 and 111 and first use a
CNOT gateXx1

x2 to move column 111 to 101. Then, we perform a Phase gate on qubit
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Fig. 7.10 Running example after eliminating superposition

x1 to remove the phase shift to column 001. Finally, the application of a Hadamard
gate at qubit x1 eventually eliminates all superposition in this matrix. The resulting
matrix is shown in Fig. 7.10a and the corresponding QMDD in Fig. 7.10b.

Overall, superposition can gradually be eliminated by repeating the following steps.

1. Determine the first two non-zero entries α1, α2 in the first row of the matrix and
store their quotient q = α1

α2
.

2. Rearrange the columns in such a way that their column index only differs in one
place xd . This can be done by choosing a place xd where the indices initially
differ and applying controlled NOT gates (controlled by xd ) on any other place
where the indices differ.

3. If q = ±i , perform a Phase gate on xd .
4. Afterwards, perform a Hadamard gate on xd .

Using QMDDs, these steps can be conducted efficiently. Since the basis weight ω
of a matrix can be obtained through the weight of the root edge of its QMDD, it is
easy to check whether there is superposition in the matrix or not. Moreover, for each
QMDD vertex, it can be stored whether there is a non-zero entry in the first row in
the left/right half of the represented sub-matrix. This information can be computed
by a single depth-first-traversal of the QMDD and needs a very small amount of
additional memory, but can accelerate the search for non-zero entries dramatically.

7.2.2.2 Diagonalization

Once superposition has been removed from the matrix, there is a single non-zero
entry per row and column (as in Fig. 7.10a). By unitarity, all of these entries and,
hence, also the basis weight must have magnitude 1, i.e. the matrix is structurally
equivalent to a permutation matrix and the corresponding circuit maps basis states to
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Fig. 7.11 Running example after diagonalization

other basis states—possibly with phase shifts. Hence, in order to derive the structure
of a diagonal matrix, the columns have to be permuted only. This can be done by
applying suitable NOT and CNOT gates. In order to determine which gates to apply,
we compute line functions fxi for each qubit xi . These denote the (logic) formula that
expresses for which inputs (columns) we get an output |1〉 on the respective qubit.

Example 7.12 We read from the current matrix in Fig. 7.10a that

fx1 = 001 ∨ 011 ∨ 100 ∨ 110 = x1 ⊕ x3
fx2 = 010 ∨ 011 ∨ 110 ∨ 111 = x2
fx3 = 000 ∨ 011 ∨ 100 ∨ 111 = x2 ⊕ x3

In order to achieve a diagonal structure, we need fxi = xi . To establish this for
x1, we need to XOR x3 by applying Xx3

x1 . For x3, this can similarly be accomplished
by applying Xx2

x3 and Xx3 . This leads to a matrix as shown in Fig. 7.11a.

It can be shown, that the line functions are always such XOR products of the
qubits (in fact, the proof will be provided in Sect. 7.2.3.2). However it may happen
that xi does not appear in fxi (but x j �= xi does). In this case, we firstly need to swap
the qubits by applying Xxi

x j
,Xx j

xi , and Xxi
x j
.

Thus, the respective gates to be applied are derived by computing the line function
for each qubit and, based on it, successively applying NOT/CNOT gates until the
desired diagonal structure results. Using QMDDs, the line functions can easily be
computed in a compressed form (as a Binary Decision Diagram) if the respective
qubit is on the top level of the diagram.

More precisely, the following algorithm is applied (all variables are initially
marked unvisited):

1. Pick an unvisited variable x and move it to the top of the QMDD by variable
interchange.
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2. Compute the output function fx of x .
3. If fx does not depend on x , i.e. if the top vertex of its compressed representation

is not labelled by x (but by y), perform the CNOT gates Xx
y,X

y
x , and Xx

y .
4. For each variable y �= x on which fx depends, perform a CNOT gate with

target x and controlled by y, i.e. Xy
x .

5. Mark x as visited.

After all variables have been visited, each basis state is mapped onto itself and,
thus, a diagonal matrix structure has been achieved. For the running example, this
leads to the QMDD as shown in Fig. 7.11b.

7.2.2.3 Eliminating Phase Shifts

Finally, possible phase shifts are eliminated, i.e. all diagonal entries of the matrix are
equalized. This is conducted by Phase gates (performing shifts by±i) and controlled
Z gates (performing partial shifts by −1).

Example 7.13 The phase shifts in the current matrix shown in Fig. 7.11a can be
eliminated by applying a Phase gate at qubit x1 (Sx1 ). This transforms the values ±i
to ±1. To remove the phase shift −1 of |011〉, a controlled Z gate with target x3 and
controlled by x2 (Zx2

x3 ) is applied. This eventually leads to the identity matrix and,
hence, terminates the synthesis.

Note that we do not require the first entry of the diagonal (first row, first column)
to have value +1. Any complex value of magnitude 1 is acceptable and all other
diagonal entries are transformed to the same value. This leads to a matrix that might
not be the identity matrix itself, but that is equivalent up to global phase and, hence,
physically indistinguishable (cf. Sect. 2.2.1).

Since phase shifts are indicated by edge weights ±i and −1 in the QMDD, they
can easily be eliminated by applying the corresponding gate to qubits as illustrated
in Fig. 7.12. In order to address edges on lower levels, re-ordering of the QMDD

xi xi

x j x j

0 0 ±i 0 0 ∓1

0 0 0 0

Sxi

(a)

xi xi

x j x j

xk xk xk xk

0 0 0 0

0 0 −1 0 0

0 0 0 0 0 0 0 0

Zxi
x j

(b)

Fig. 7.12 Removing non-trivial edge weights from a QMDD

http://dx.doi.org/10.1007/978-3-319-63724-2_2
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Fig. 7.13 Resulting
quantum circuit

x1

x2

x3

H

S H S

Z

Step 1 Step 2 Step 3

structure is applied. Eventually, all phase shifts can be eliminated by “moving” the
respective qubit variable to the root level and applying the gates as shown in Fig. 7.12.

Overall, performing the respective steps as described above eventually leads to
the quantum gate cascade depicted in Fig. 7.13. As explained in Sect. 7.2.1.1, this
realizes the inverse of the given unitary matrix of our running example (see Fig. 7.8).
Before an experimental evaluation of the algorithm is presented in Sect. 7.2.4, in
the following section we provide a theoretical analysis and detailed proof for the
algorithm’s convergence.

7.2.3 Theoretical Analysis

In this section, we provide a theoretical analysis of the proposed synthesis scheme.
More precisely, it is shown that, given a Clifford group operation, the approach
always terminates and leads to the desired circuit. In addition, we provide an upper
bound for the size of the resulting circuits, i.e. the maximum number of quantum
gates that may result from applying the proposed approach.

For this purpose it is helpful to consider a formal, mathematical definition of the
Clifford group. The matrices X, Z, Y = −iXZ, and the identity matrix I generate
the so-called Pauli group P1. Higher-dimensional Pauli groups Pn consists of all
n-qubit tensor products of these matrices. These correspond to circuits where there
is either none or a single X,Y, or Z gate applied to each qubit. Additionally, each
tensor product may appear with an overall global phase of ±1 and ±i and, hence,
|Pn| = 4 · 4n . In this context, the Clifford group Cn is defined to be the (group-
theoretical) stabilizer of the Pauli group Pn , i.e.

Cn := {M ∈ U (2n) | MPM† ∈ Pn for all P ∈ Pn}

whereU (2n) denotes the set of unitary 2n × 2n matrices andM† denotes the adjoint
(complex conjugate of the transpose) ofM. In otherwords, theClifford group consists
of all circuits that map operators from the Pauli group onto each other. For this reason
these circuits are also called stabilizer circuits. Thus, applying an n-qubit Clifford
group circuitM, the Pauli group operators Xxi and Zxi evolve to Xi = MXxiM

† and
Zi = MZxiM

† (i = 1, . . . , n) which are also Pauli group operators by the above
definition of Cn . Moreover, since the basis state |0 . . . 0〉 has the unique property that
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it is a simultaneous (λ = 1)-eigenvector of all operators Zx1 , . . . ,Zxn , the circuit
will map it to the unique (λ = 1)-eigenvector of the operators Z1, . . . ,Zn . This
results from the fact thatM (andM†) map eigenvectors of any Pauli group operator
P to eigenvectors of P = MPM† with the same eigenvalue (and vice versa). More
precisely, if v is an eigenvector of P with eigenvalue α (i.e. Pv = αv), then

P(Mv) = (MPM†)(Mv) = MP(M†M)v = MPv = α(Mv),

i.e. Mv is an eigenvector of P with the same eigenvalue α. Now, from the image
of |0 . . . 0〉 under M (which corresponds to the first column of the transformation
matrix), the image of any other basis state, i.e. any other column of the matrix, can
easily be computed by using X1, . . . ,Xn as the following example shows.

Example 7.14 Letψ be the image of |0 . . . 0〉 underM, i.e.ψ := M(|0 . . . 0〉). From
this, the image of |10 . . . 0〉 = Xx1(|0 . . . 0〉) can be obtained by computing

M(|10 . . . 0〉) = MXx1(|0 . . . 0〉)
= MXx1(M

†M)(|0 . . . 0〉) |M†M = I
= (MXx1M

†)M(|0 . . . 0〉)
= X1(ψ).

Overall, any column of the transformation matrix differs from the first column (rep-
resenting the image of |0 . . . 0〉) only by the application of a particular Pauli matrix,
i.e. by permutation and phase shifting of the entries.

We refer to [Got98] for more information about the theory of stabilizer circuits
and proceed by applying this theory to each step of the synthesis algorithm—thereby
obtaining worst case estimations about the number of required gates.

7.2.3.1 Eliminating Superposition

The first step of the synthesis algorithm heavily relies on the fact that Clifford group
matrices have a basis weight. More precisely, there is a complex number ω such that
each non-zero entry is of the form u · ω for u ∈ {±1,±i}.

We first proof the existence of such a number for the first column of the matrix,
i.e. the image of |0 . . . 0〉. More precisely, we proof the following

Theorem 7.1 Let M be a Clifford group operation on n qubits and

|ψ〉 := M|0 . . . 0〉 =
2n−1∑
k=0

αk |k〉.

Then, the set N = {|k〉 | αk �= 0} contains 2l basis states for some l ∈ {0, . . . , n}.
Moreover, for any two such basis states |k1〉, |k2〉 ∈ N the corresponding amplitudes
satisfy αk1 = u · αk2 for u ∈ {±1,±i}.
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Proof The operatorsZ1, . . . ,Zn generate a subgroup S ≤ Pn . As all generators com-
mute pairwise, S is abelian. Moreover, as |ψ〉 is a simultaneous (λ = 1)-eigenvector
for all generators, it is a (λ = 1)-eigenvector for all operators T ∈ S. Consequently,
any operator T ∈ S maps basis states from N onto each other (up to a phase shift
of ±i or −1) and, thus, acts on N as a permutation (ignoring possible phase shifts).
More precisely, as T is a Pauli matrix, it performs a bit flip on a specific set of qubits,
i.e. its action on basis states can be described as |x〉 �→ |x ⊕ t〉 for some t ∈ B

n .
These vectors span a linear sub-space L of Bn . Any such sub-space has dimension 2l

for some l ∈ {0, . . . , n}. This can be seen as follows: given a vector v ∈ L , the sum
v + t is also L if, and only if, t = v + (v + t) is in L . Thus, adding a vector to the
span either does nothing to the spanned sub-space (if the vector is already contained)
or doubles its size.

Consequently, the S-orbit of any |k〉 ∈ N , i.e. the set of elements in N that can
be reached by applying an arbitrary operator from S, contains 2l elements for some
0 ≤ l ≤ n. Now, the restriction of |ψ〉 on those basis states contained in an S-
orbit yields a vector |ψ ′〉. This vector is a simultaneous (λ = 1)-eigenvector of all
operators in S, as with each basis state |x〉 also |x ⊕ t〉 is contained in |ψ ′〉 (with
the correct amplitude). As the simultaneous (λ = 1)-eigenvector of Z1, . . . ,Zn is
uniquely defined, we must have |ψ〉 = |ψ ′〉. This implies that there is only one
S-orbit in N (S is a transitive group operation on N ) and finally shows that |N | = 2l .

Moreover, for arbitrary |k1〉, |k2〉 ∈ N there is a Pauli matrix Tk1,k2 ∈ S which
maps these basis state onto each other. As Pauli matrices only apply bit flips and/or
phase shifts by ±1 or ±i , the corresponding amplitudes αk1 and αk2 only differ by a
factor u ∈ {±1,±i}.

From this, the existence of a basis weight immediately follows using the fact that
the remaining columns differ from the first column only by permutation and phase-
shifting of the entries (cf. Example7.14). Thus, it is sufficient to consider only the
first two non-zero entries in the first row of the matrix, since, if we manage to link
these together with a Hadamard gate, the basis weight is increased by a factor of

√
2.

Moreover, if there are initially 2l non-zero entries in each column (by unitarity the
basis weight has magnitude 2−l/2) we need to apply l Hadamard gates and for each
of these at most one Phase and n CNOT gates. Since l ≤ n, we overall need at most
n Hadamard and Phase gates, and n2 CNOT gates for the first synthesis step.

7.2.3.2 Diagonalization

In the second step of the synthesis algorithm, we employ the fact that Clifford group
matrices with a permutation matrix structure have line functions that are XOR prod-
ucts of the qubits. An equivalent formulation is that flipping a fixed bit of any input
basis state always flips the same set of output bits. We have seen that flipping a fixed
input bit corresponds to applying a particular Pauli matrix to the image (in Exam-
ple7.14: X1). This matrix actually does not depend on the assignment of the other
bits, and, since Pauli matrices correspond to circuits with either none or a single
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X,Y, or Z gate on each qubit, it actually flips an output bit if, and only if, there is an
X or Y on the corresponding line. This shows that flipping a fixed input bit always
flips the same set of output bits. Thus, the line functions are XOR products of the
inputs and diagonalization can be performed as outlined in Sect. 7.2.2.2. In doing so,
we need at most one NOT gate (equivalently two Hadamard and Phase gates each)
and n CNOT gates for each qubit.

7.2.3.3 Removing Phase Shifts

In the last step of the synthesis algorithm, phase shifts have to be removed. Since
we have already reached a diagonal form, when flipping an input bit only the same
output bit is flipped. Thus, the Pauli matrices X1, . . . ,Xn (to which the bit-flipping
Pauli operators Xx1 , . . . ,Xxn evolve) ensure to have a bit-flipping gate (X or Y) on
the designated qubit and none or Z gates on the other qubits.

For the identity circuit we need Xxi = Xi for all i = 1, . . . , n. In other words,
the Xi need to be composed of a single X (on the respective line) and no other gates,
with an overall positive sign.

To ensure Xs (instead of Ys) and positive signs, it is sufficient to remove possible
phase shifts between |0 . . . 0〉 and basis states where a single bit is set to 1 (first level
phase shifts). Similarly, to ensure that there is no Z gate remaining, we must remove
possible phase shifts for basis states with exactly two bits set to 1 (second level phase
shifts), as demonstrated in the following

Example 7.15 If there is a Z gate remaining on the qubit x j in Xi , then this shows
in a phase shift between the images of |0 . . . 0〉 and the basis state where exactly
bits i and j are set to 1. This can be seen as follows: we can reach the image of the
latter state from the image of |0 . . . 0〉 by applying X j and Xi (cf. Example7.14).
By applying X j (which has a positive sign and X on line x j ) bit j is flipped, but the
phase is not changed. Now, by applying Xi not only bit i flips, but since bit j is set
we obtain a phase shift of −1 (from the Z gate on qubit x j ).

Overall, it is sufficient to ensure that there is no phase shift between any two basis
states with at most two bits set to 1. Clearly, Phase and controlled Z gates can be
used to eliminate phase shifts between |0 . . . 0〉 and basis states which have at most
two bits set to 1. To eliminate all first level phase shifts we need at most 3 Phase gates
per qubit (S4 = I ). Second level phase shifts are eliminated by at most n2 controlled
Z gates which translate to 2n2 Hadamard and n2 CNOT gates.

In total, our algorithm is capable of realizing each Clifford group functionality as
a quantum circuit with at most 3n2 CNOT gates and 9n+ 2n2 single qubit gates (i.e.
Hadamard and Phase gates). This is only slightly larger than the (theoretical) upper
bound derived in [AG04].
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7.2.4 Experimental Results

The synthesis approach discussed above has been implemented on top of the QMDD
package. In this section,we evaluate the results obtained by the approach and compare
them to synthesis schemes previously proposed in [SBM06, SAZS11]. To this end,
arbitrary transformation matrices with up to 20 qubits (denoted arbitrary) as well
as established quantum functionality taken from [Mer07] and realizing Shor’s 9-
qubit error-correcting code (denoted by 9qubitN1 and 9qubitN2), a 7-qubit encoding
(denoted by 7qubitcode), as well as an error syndrome measurement circuit for a
5-qubit code (denoted by 5qubitcode) have been used.

The results are summarized in Table7.1. The first column provides the identifiers
of the respective benchmarks followed by its number of qubits. In the remaining
columns, the costs, i.e. the number of gates, of the resulting circuits are provided.
It is a common understanding that (physical) implementations of CNOT gates are
more error-prone and have greater delays than one-qubit gates. Therefore and in
accordance with the evaluation of [SBM06, SAZS11], we distinguish between the
number of one-qubit gates and the number of CNOTs in Table7.1. Furthermore, the
best available results from [SBM06, SAZS11] are provided for comparison. Finally,
the run-time of the proposed synthesis approach is provided in the last column. All
experiments have been conducted on a 2.8 GHz Intel Core i7 machine with 8 GB of
main memory running Linux.

First of all, we emphasize again that the approaches proposed in [SBM06,
SAZS11] rely on a gate library composed of arbitrarily parameterized one-qubit
gates together with the CNOT gate. This poses a severe obstacle since physical real-
izations and particularly fault-tolerant methods impose limitations on the set of gates
that may be used. In contrast, the approach presented here can realize the consid-
ered quantum functionality with a precise and established set of gates including only
Hadamard, Phase, and CNOT gates.3

Table7.1 clearly shows that, by using the proposed method, much more efficient
quantum circuits can be realized for Clifford Group functionality compared to the
more generic approaches presented before. In fact, reductions of several orders of
magnitudes of CNOT gates can easily be obtained.

3Note again that the controlled Z gates applied e.g. for eliminating phase shifts are eventually
realized by a Hadamard–CNOT–Hadamard cascade.



7.2 Synthesis of Clifford Group Operations 103

Ta
bl
e
7.
1

E
xp
er
im

en
ta
le
va
lu
at
io
n
of

th
e
C
lif
fo
rd

gr
ou
p
sy
nt
he
si
s
ap
pr
oa
ch

B
en
ch
m
ar
k

#Q
ub
its

Pr
ev
.a
pp
ro
ac
h
[S
B
M
06

]
Pr
ev
.a
pp
ro
ac
h
[S
A
Z
S1

1]
Pr
op
os
ed

ap
pr
oa
ch

#C
N
O
T
s

#C
N
O
T
s

#o
ne
-q
ub
it
ga
te
s

#C
N
O
T
s

#o
ne
-q
ub
it
ga
te
s

T
im

e
(s
)

A
rb
itr
ar
y
tr
an
sf
or
m
at
io
n
m
at
ri
ce
s

ar
bi
tr
ar
y4

4
10
0

11
2

13
8

15
33

<
0.
01

ar
bi
tr
ar
y5

5
44
4

48
0

53
7

26
43

<
0.
01

ar
bi
tr
ar
y6

6
1,
86
8

1,
97
6

2,
20
9

36
46

<
0.
01

ar
bi
tr
ar
y7

7
7,
66
0

8,
04
0

8,
52
8

45
55

0.
02

ar
bi
tr
ar
y8

8
31
,0
20

32
,4
56

33
,4
55

61
72

<
0.
01

ar
bi
tr
ar
y9

9
12
4,
84
4

13
0,
40
8

13
4,
41
5

68
61

0.
03

ar
bi
tr
ar
y1
0

10
50
0,
90
8

52
2,
92
0

53
1,
02
2

87
89

0.
05

ar
bi
tr
ar
y1
1

11
2,
00
6,
70
0

2,
09
4,
37
6

2,
11
0,
66
9

10
2

98
0.
10

ar
bi
tr
ar
y1
2

12
8,
03
2,
94
0

8,
38
2,
88
8

8,
44
8,
07
7

14
4

13
5

0.
28

ar
bi
tr
ar
y1
5

15
≈

5.
14

·1
08

–
–

20
3

17
3

2.
37

ar
bi
tr
ar
y2
0

20
≈

5.
27

·1
01

1
–

–
21
7

22
2

26
.4
0

Q
ua
nt
um

fu
nc
tio

na
lit
y
ta
ke
n
fr
om

[M
er
07

]

5q
ub
itc
od
e

9
12
4,
84
4

–
–

28
28

<
0.
01

7q
ub
itc
od
e

7
7,
66
0

–
–

11
19

<
0.
01

9q
ub
itN

1
9

12
4,
84
4

–
–

8
3

<
0.
01

9q
ub
itN

2
17

≈
8.
23

·1
09

–
–

34
4

<
0.
01

B
en
ch
m
ar
k:

N
am

e
of

be
nc
hm

ar
k
–
#Q

ub
its
:N

um
be
r
of

qu
bi
ts
–
#C

N
O
T
s:
N
um

be
r
of

C
N
O
T
ga
te
s
–
#o
ne
-q
ub
it
ga
te
s:
N
um

be
r
of

on
e-
qu
bi
tg

at
es



104 7 Synthesis of Quantum Circuits

7.3 Conclusions

In this chapter, we considered the synthesis of quantum circuits which is a major task
in the design of quantum logic. More precisely, we considered two important classes
of quantum functionality, namely Boolean components as well as Clifford group
circuits. While Boolean components are a vital part of many quantum algorithms,
Clifford group circuits are essential for many quantum applications such as stabi-
lizer circuits, quantum teleportation, and more. In contrast to previous approaches
for the synthesis of arbitrary quantum functionality, we avoid relying on a generic
gate library and, instead, exploit the specific effects of the Clifford Group generators
to the unitary matrix to be synthesized. Experiments confirmed that, compared to
the generic approaches presented before, quantum circuits with several orders of
magnitude less gates can be realized using the proposed approach. Both presented
synthesis algorithms natively allow for the use with compact representations (espe-
cially QMDDs). In fact, experimental evaluations confirm that, by actually doing so,
these algorithms become themost scalable state-of-the-art solutions for the respective
synthesis tasks. Overall, this demonstrates the importance of compact representations
for the synthesis of quantum circuits as well as their practical applicability.

Probably the most challenging question is whether the proposed synthesis
approach for Clifford group operations can somehow be extended to more gen-
eral functionality. To this end, it can be shown that adding a single, arbitrary external
gate to the Clifford group library allows for universal quantum computation [NRS01,
Theorem 6.5]. In most cases, the T gate (Rz(π/4)) is employed for this purpose.

In order to extend the proposed synthesis scheme, it seems, however, more appro-
priate to use the Toffoli gate instead. In fact, this would allow for arbitrary column
permutations in the first phase of the algorithm (removing superposition) and the use
of the QMDD-based synthesis approach [SWH+12] in the diagonalization phase.
However, in the general case, unitary transformation matrices do not exhibit a basis
weight. Nonetheless, one may try to adapt the general idea of step-wise increas-
ing the minimal moduli of all matrix entries. By using a dedicated normalization
scheme that propagates smallestmoduli to the top, thematrix entrieswith theminimal
modulus could easily be located and selected. For this purpose, the usually applied
normalization—which can illustratively be described as a “leftmost non-zero value”
normalization—may be replaced with the “leftmost smallest magnitude” normaliza-
tion described in [NWD13]. Then, all edge weights in the resulting QMDD (except
the root edge) have a magnitude ≥ 1 and after removing all edges with a weight
larger than 1 only the desired entries with the minimal modulus remain. Preliminary
investigations in this direction have yielded promising results. In fact, the modified
algorithmwas able to successfully synthesize several instances ofGrover’s algorithm.
However, in many other cases it got stuck and was not able to establish a permutation
matrix structure. Overall, this approach deserves amore thorough investigation given
that the synthesis of arbitrary quantum functionality is a considerably ambitious task
and no really satisfying approaches exist so far. Nonetheless, the sketched extension
still relies to a quite large extent on properties of the corresponding transformation
matrices.
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Clearly, it would be more desirable to have an approach that predominantly oper-
ates on more efficient representations like decision diagrams, especially QMDDs.
Ideally, one would like to have a direct mapping that relates (the size of) a decision
diagram with a corresponding quantum circuit as it is e.g. possible in conventional
logic for the multiplexer circuits which can be derived directly from BDDs. Unfor-
tunately, sub-structures (sub-matrices) of unitary matrices do not have to be unitary
and it is completely open how to deal with this problem in order to derive a circuit
mapping for QMDDs or a similar structure.



Chapter 8
Correctness of Multiple-Valued
Implementations

In conventional logic CAD and in equal measure also in quantum logic CAD, it is
vital to ensure the correctness of the transformations and mappings throughout the
design flow. More precisely, the desired functionality is realized at different levels of
abstraction and several optimization steps are conducted at each level. Consequently,
in order to ensure a consistent design, different (circuit) descriptions of the same
functionality need to be checked for equivalence.

The major problem to this is that equivalence has to be verified for all possible
inputs. As quantum operations are linear, it actually suffices to check whether both
descriptions yield the same output for all basis states only. However, as there are
still exponentially many of those (with respect to the size of the considered quantum
system), it quickly becomes infeasible to perform all these checks e.g. by simulating
the (circuit) behavior for each of the basis states. In contrast, decision diagrams are
very promising candidates for this task and have been employed for this purpose in
conventional logic design, as they describe the entire functionality in a compact and
unique manner. In fact, once the corresponding representations are built, the com-
parison can be conducted for all possible inputs (basis states) at once. Moreover, if
standard techniques like unique tables are used in the implementation of the decision
diagram, the final comparison can be performed in constant time by simply checking
whether the root edges are identical.1

In fact, several methods for equivalence checking of quantum functionality
have been proposed in the past (e.g. based on simulation with QuIDDs [VMH07],
combined with a pre-processing using Boolean satisfiability [YM10], based on
XQDDs [WLTK08] or QMDDs [WGMD09]). However, all of these only support

1Note that only for QMDDs this is even true if the descriptions are not perfectly equal, i.e. they lead
to identical transformation matrices, but are equal up to a global phase, i.e. the matrices are equal
up to a multiplicative factor eiθ . All other decision diagrams reviewed in Chap.3 require much
more effort to determine equivalence up to global phase—a phenomenon which frequently occurs
in quantum logic design.

© The Author(s) 2017
P. Niemann and R. Wille, Compact Representations for the Design
of Quantum Logic, SpringerBriefs in Physics, DOI 10.1007/978-3-319-63724-2_8
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two-level quantum systems composed of qubits. But, the considered quantum sys-
tems offer multiple levels to be exploited. These levels are readily accessible and
using them for state preparation and read-out has been demonstrated [NAB+09].
As a result, computations can be performed on so-called qudits rather than qubits.
Researchers have investigated possible exploitation of these additional levels e.g.
for matters of simplified implementation or improved design of quantum operations.
They were able to show that multi-level systems are useful for many promising appli-
cations and provide several practical advantages in the design of particular operations
(see e.g. [CDNS11, LBA+08]). This is discussed in detail later in Sect. 8.1. As a con-
sequence, several approaches for representing and realizing quantum functionality
in various quantum systems exist. This raises the question of how to ensure the cor-
rectness of such multiple-valued implementations, which essentially comes down to
verifying whether or not two quantum operations given in different quantum systems
indeed realize the same functionality.

In this chapter, we address the problem of checking functional equivalence
between operations that are realized in multi-level quantum systems. This explic-
itly includes comparisons between realizations in different dimensions, i.e. quantum
systemswith a different number of levels. For this purpose, we first discuss and define
functional equivalence in this context in Sect. 8.2.1. Afterwards, in Sect. 8.2.2, a ver-
ification scheme based on the formal representation of quantum functionality by uni-
tary matrices is proposed. Since these matrices grow exponentially with the number
of considered qubits, we additionally demonstrate how the proposed scheme can be
incorporated into data-structures such as QMDDs (cf. Chap.4) which are explicitly
suited for the compact representation of quantum functionality. By this, an equiva-
lence checker formulti-level quantum systems results. The efficiency of the proposed
scheme is confirmed by an experimental evaluation in Sect. 8.3—considering a wide
range of operations realized in different quantum systems. The following description
is based on [NWD14b].

8.1 Multi-level Quantum Systems

Research on quantum computation is considered in numerous facets. Originally, the
exploitation of quantum.mechanical phenomena e.g. for database search [Gro96],
factorization [Sho94], and other applications has been discussed in a purely the-
oretical fashion. But in the past decades several physical realizations have been
proposed—including prototypical implementations based on trapped ions [CZ95],
superconducting qubits [Gal07], and photons [OFV09]. However, most of these con-
siderations and implementations focused on two-level quantum systems, i.e. systems
based on qubits with the two basis states |0〉 and |1〉.

But, as a matter of fact, quantum computation allows for multiple basis states.
Instead of qubits, d-levelled qudits are then used as basic building blocks. These do
not rely on only two orthogonal basis states (cf. Definition2.6 in Sect 2.2.1) but a
total of d basis states |0〉, |1〉, . . . , |d − 1〉. More precisely, a qudit is described by a

http://dx.doi.org/10.1007/978-3-319-63724-2_4
http://dx.doi.org/10.1007/978-3-319-63724-2_2
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d-dimensional Hilbert space, where the state space is formed by all superpositions
|ψ〉 = ∑d−1

i=0 αi |i〉 for complex-valued αi with
∑d−1

i=0 |αi |2 = 1. Prominent examples
of qudits are qutrits (d = 3) and ququarts (d = 4) which received most attention so
far [KGRS03, MHT05, GSG+04, MMSK06, CDNS11].

Multiple qudits with levels d0, . . . , dn−1 form a d̂-level quantum system where d̂
is the maximum of the di . The underlying Hilbert space is the tensor product of the
respective spaces of the single qudits. Accordingly, the state of such systems can be
expressed by a state vector of length

∏n−1
i=0 di and is given by a linear combination of

the tensor states |x1 . . . xn〉 where 0 ≤ xi < di for 1 ≤ i ≤ n. Note that tensor states
are the tensor products of basis/ground states of the individual qudits. As they also
form a basis of the entire state space, in the previous chapters we simply used the
term basis states when referring to them. In this chapter, however, we often require
to refer to one of the di basis/ground states of individual qudits and, thus, use the
term basis state solely in this context.

Operations over qudits are described by extended transformation matrices.

Example 8.1 The qutrit operation X which exchanges the basis states |0〉 and |2〉
can be described by the matrix

X0,2 =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ , while H0,1 = 1√
2

⎛

⎜
⎜
⎝

1 1 0 0
1 −1 0 0
0 0

√
2 0

0 0 0
√
2

⎞

⎟
⎟
⎠

represents the ququart operation that performs theHadamard operation on basis states
|0〉 and |1〉, leaving the remaining basis states untouched.

Multi-level systems are not only of theoretical interest [GSG+04], but also prove
to be useful for promising applications of quantum computation (see e.g. [CDNS11,
LBA+08]).Moreover, the use of multi-level quantum systems offers several practical
advantages compared to qubit systems. More precisely:

• Multi-level quantum systems allow for much more efficient realizations of multi-
qubit operations [LBA+08]. For example, Fig. 8.1a shows a minimal imple-
mentation (in terms of T -depth, i.e. the number of sequential T operations) of
a Toffoli gate within the Clifford+T library, i.e. based on a two-level system
(taken from [AMMR13]). The same functionality can be realized with signifi-
cantly less operations in a multi-level system (qutrit) as shown in Fig. 8.1b (taken
from [LBA+08]).

• A theoretical analysis showed that ququart operations may have a general advan-
tage over qubit operations when it comes to the realization of generalized Toffoli
gates. In fact, mapping these Toffoli gates to quantum operations using qubit-
based techniques (e.g. [BBC+95]) requires an exponential effort. In contrast, a
recently proposed four-valued approach can realize each Toffoli operation with
linear complexity [SWM12].
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H T

T

T

T †

T †

T †

T H
(a) Using the (two-level) Clifford+T library.

|2〉 |0〉 |2〉
H

X0,1

X0,2 H H X0,2

X0,1

H

(b) Using a multi-level system.

Fig. 8.1 Realizations of the Toffoli gate

These advantages lead to an increased interest in multi-level quantum systems
and the implementation of quantum operations in various dimensions. Consequently,
as for qubit systems, the synthesis of general quantum functionality has also been
studied for multi-level systems [MS00, BOB05, DW13]. In [DW13], a generalized
CNOT operation is suggested that reacts on an arbitrary control state and swaps
an arbitrary pair of states on the target qudit. The advantage of this approach is
that it is physically realizable by using standard CNOT operations and certain laser
beams (Rabi oscillations) to swap basis states. By this, synthesis of many important
multi-level circuits becomes possible with established technology.

Overall, various representations and realizations of quantum functionality for dif-
ferent quantum systems exist. But whether or not two given quantum operations in
different dimensions indeed realize the same functionality has hardly been consid-
ered yet. This issue is addressed in the following, i.e. we present a scheme which
automatically checks for the equivalence of operations in multi-level systems.

8.2 Equivalence Checking in Multi-level Quantum Systems

While, thus far, equivalence checking for quantum functionality has intensely been
considered in the past (e.g. based on simulation with QuIDDs [VMH07], com-
bined with a pre-processing using Boolean satisfiability [YM10], or based on
XQDDs [WLTK08]), usually only operations in the same dimension have been com-
pared. In contrast, we propose a verification scheme which is capable of proving
the functional equivalence between quantum operations even if they are realized
in different dimensions. For this purpose, this section first discusses fundamental
preconditions and provides a precise definition of the functional equivalence that
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Fig. 8.2 Possible mapping of basis
states between quantum systems |0〉 |1〉 |0〉 |1〉 |0〉 |1〉

|0〉 |1〉 |0〉 |1〉 |0〉 |1〉 |2〉

U1

U2

we are going to address. Afterwards, the proposed equivalence checking scheme is
introduced. Based on these concepts, we illustrate an efficient implementation of the
proposed scheme.

8.2.1 Functional Equivalence for Quantum Operations

The purpose of equivalence checking is to verify whether two quantum operations
realize the same functionality. In the following, we denote the two quantum oper-
ations to be compared by U1 and U2. The underlying quantum systems may have
different dimensions d1 and d2 (for U1 and U2, respectively), where we assume
d2 ≥ d1 (without loss of generality). In order to check for equivalence between U1

andU2, it is important to have a precise definition ofwhich basis states of the quantum
systems actually correspond to each other. Basis states can either be shared states, if
there is a corresponding basis state in the other system, or don’t-care states, if there
is no counterpart.

Example 8.2 Consider two quantum operations U1 and U2, which are realized in a
2-level and 3-level quantum system, respectively. More precisely, the 2-level system
consists of three qubits whereas the 3-level system is a hybrid system composed of
two qubits and a single qutrit. A possible mapping between basis states is shown
in Fig. 8.2. Here, all basis states are shared states except the |1〉 state of the qutrit in
U2, which has no counterpart in U1 and, thus, is a don’t-care state.

In the following, the correspondence of basis states is represented by a func-
tion ψ . It is assumed that ψ is either derived from the specification of the respective
technology mapping or directly provided by the designer.

In addition, we require that both quantum systems are composed of the same
number of qudits and do not consider corner cases in which e.g. a ququart is realized
by two qubits or even more scattered mappings. Although the proposed approach
could be extended in order to support also these cases, our simplification is strongly
motivated by the following facts:

• It is a natural requirement to enable the same set of measurements for U1 and
U2. Since only entire qudits can be measured, this is only possible if there is a
one-to-one relation between qudits in both systems.
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• In order to interpret a measurement result correctly, there may not be cross-
mappings between basis states that do not belong to corresponding qudits.

Don’t-care states may be employed during the operation, like e.g. in the multi-
level realization of the Toffoli operation shown in Fig. 8.1b. But, we assume that
neither input nor corresponding output states carry a don’t-care component.

Having these definitions and assumptions, two quantum operationsU1 andU2 are
functionally equivalent (U1 ≡ U2) if they perform an equivalent transformation on
shared states. The behaviour on don’t-care states, however, may be arbitrary.

Example 8.3 Consider the matrix H0,1 from Example8.1 describing a Hadamard
operation on a ququart. Assuming the trivial mapping of shared states ψ(|i〉) = |i〉
(for i = 0, 1), H0,1 is equivalent to the standard Hadamard operation H on qubits.
However, with the same mapping, this is not the case for

H0,2 = 1√
2

⎛

⎜
⎜
⎝

1 0 1 0
0

√
2 0 0

1 0 −1 0
0 0 0

√
2

⎞

⎟
⎟
⎠ ,

which also performs a Hadamard operation on a ququart, but on different basis states.

8.2.2 Proposed Equivalence Checking Scheme

Assume twoquantumoperationsU1 andU2 (realized in quantumsystemswith dimen-
sions d2 ≥ d1) together with amappingψ and the corresponding distinction in shared
states and don’t-care states. Then, functional equivalence of these operations can be
verified in two steps:

1. Checkwhether the sub-matrices ofU1 andU2 representing themapping of shared
input states to shared output states are equivalent.

2. Checkwhether the sub-matrices ofU1 andU2 representing themapping of don’t-
care input states to shared output states (and vice versa) are zero matrices.

If both checks evaluate to true, then U1 and U2 are equivalent. This scheme is
illustrated by means of Fig. 8.3 on the basis of single qudit systems. More pre-
cisely, Fig. 8.3 shows the matrix representing the quantum operation U2, i.e. within
the higher level system. Without loss of generality, assume that the basis states
|0〉, . . . , |s〉 of the U1-system are shared states (s < d1) and that ψ maps them to
the basis states |0〉, …, |s〉 of theU2-system. The remaining states are assumed to be
don’t-cares. Then, the top-left (s + 1) × (s + 1) sub-matrix of U2 in Fig. 8.3 repre-
sents the mapping of shared input to shared output states. If U1 ≡ U2, this mapping
obviously has to be equivalent to the corresponding mapping described in U1. This
is checked in Step 1.
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Fig. 8.3 Matrix of U2 to be compared against U1
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Next, we exploit the fact that, as discussed in Sect. 8.2.1, only superpositions of
shared basis states are applied to U2, i.e. the basis states |s + 1〉, …, |di − 1〉 are
always prepared (expected) with zero amplitude for input (output) states. As a result
and in order to keep the overall matrix unitary, no further mappings from don’t-care
states to shared states (represented in the top-right sub-matrix) and from shared states
to don’t-care states (represented in the bottom-left sub-matrix) can exist. That is, the
corresponding matrices have to be zero matrices. This is checked in Step 2. Note that
we do not need to consider the bottom-right sub-matrix representing the mapping
from don’t-care input to don’t-care output states, since arbitrary behaviour is allowed
for those mappings.

Example 8.4 Once again, consider the usual Hadamard operation H as well as the
operation H0,1 from Example8.1. together with the trivial mapping of shared states
between the underlying 2- and 4-level quantum systems, i.e.ψ(|i〉) = |i〉 for i = 0, 1.

The 4-level operation H0,1 is equivalent to the 2-level operation H , because (1) the
mappings of shared states are equivalent and (2) no mappings from don’t-care states
to shared states and vice versa exist. In contrast, these properties do not hold for
the operation H0,2 (from Example8.3), showing its non-equivalence to the other two
operations.

This scheme can be extended to quantum systems composed of an arbitrary num-
ber of qudits. However, the checks have to consider the more scattered distribution
of the respective sub-matrices. This is sketched in Fig. 8.4, whereU1 (realized in a 2-
level quantum system) is to be compared toU2 (realized in a 4-level quantum system
composed of two ququarts). Here we assume that there are no don’t-care states in
the U1-system and again, without loss of generality, that ψ maps the basis states |0〉
and |1〉 of the U1-system to the shared basis states |0〉 and |1〉 of the U2-system. As
can be seen, all (shared and don’t-care) basis states are considered separately for
each qudit. Accordingly, the sub-matrices to be checked against U1, the zero matri-
ces, and don’t-care matrices (∗) are scattered throughout the whole transformation
matrix. This, however, does not restrict the applicability of the proposed equivalence
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Fig. 8.4 Equivalence of operations in multi-qudit systems

checking scheme, but of course harms the efficiency of the checks. Note that this is
even more the case for more complex mappings of shared states. Then, the matrices
under consideration can be in a more dispersed shape and the scheme might result
in checking the equivalence of many small non-adjacent sub-matrices. An efficient
implementation of this scheme even in these cases is essential and described next.

8.2.3 Implementation Using QMDDs

While the concepts introduced above are sufficient to check equivalence between
arbitrary quantum operations, the matrix representations used above for illustration
constitute a serious hurdle to the applicability of the proposed scheme. In fact, matrix
descriptions grow exponentiallywith the number of qudits in a system.Hence, a naive
implementation based on matrices is infeasible for quantum systems of all but small
size.

In order to address this issue, we implemented the proposed scheme by means of
the QMDD data-structure (cf. Chap.4). In this data-structure, each vertex represents
a matrix which is partitioned into four sub-matrices (for qubit systems). Each sub-
matrix is then represented by a successor of the current vertex. In case of multi-level
quantum systems, the number of successors grows accordingly with the number of
basis states.

Example 8.5 Figure8.5 sketches the QMDD representations of the quantum oper-
ations already discussed in Fig. 8.4. As U1 assumes a two-level quantum system,
the overall matrix is partitioned into four sub-matrices. In contrast, the four-level
system ofU2 is composed of 4 · 4 = 16 sub-matrices. Hence, the respective vertices
have four and 16 successors, respectively. The x1-vertices in Fig. 8.5a represent the

http://dx.doi.org/10.1007/978-3-319-63724-2_4
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Fig. 8.5 QMDDs for the quantum operations sketched in Fig. 8.4

sub-matrices U 0
1 and U 3

1 , respectively (as indicated in brackets). The x1-vertex in
Fig. 8.5b sketches the second-top-right sub-matrix. Its sub-blocks U 3

1 and ∗ are rep-
resented by distinct sets of edges (which are indicated by a correspondingly labelled
M , but are not part of the original QMDD).

Due to efficient techniques like shared vertices and unique tables, QMDDs are
capable of representing quantum functionality for several dozens of qubits and/or
qudits. Moreover, computed tables enable a very efficient implementation of the
equivalence checking scheme outlined above.

For the purpose of equivalence checking, the QMDD representations of the oper-
ations have to be aligned. More precisely, we

• align the number of don’t-care states for corresponding qudits by “blowing up”
vertices with additional successors (e.g. to introduce two additional don’t-care
states for each qubit, all vertices in Fig. 8.5a are equipped with 12 additional 0-
edges),

• align basis states (if the mapping of shared states is non-trivial) by re-arranging
edges appropriately, and

• align possibly different don’t-care to don’t-care mappings (∗) by setting the cor-
responding edges to zero.

This transformation can be done in a single traversal of each QMDD and leads to
representations of two matrices (of equal size), which are identical if, and only if, the
operations are functionally equivalent. The latter can be verified in constant time by
a single unique table look-up, since QMDDs provide canonical representations (cf.
Sect. 4.3). By this, equivalence checking can be conducted efficiently even for large
quantum systems. This has been confirmed by an experimental evaluation whose
results are summarized and discussed in the next section.

http://dx.doi.org/10.1007/978-3-319-63724-2_4


116 8 Correctness of Multiple-Valued Implementations

8.3 Experimental Results

The equivalence checking scheme described above has been implemented on top of
the QMDD package and evaluated on a wide range of operations realized in different
quantum systems. More precisely, we considered

• 2-level and 4-level representations of various quantum operations including Shor’s
9-qubit error-correcting code (denoted by 9qubitN1 and 9qubitN2), as well as
a 7-qubit encoding (denoted by 7qubitcode) taken from [Mer07] and instances
of Grover’s algorithm (denoted by Grover-k) and Quantum Fourier Transforms
(denoted by QFT-k) taken from [NC00] (k is the number of qubits),

• multi-qubit operations taken from RevLib [WGT+08], mainly realizing Boolean
functionality for 2-level systems (denoted by their respective RevLib identifier),
that additionally have beenmapped to 4-level representations based on themethods
described in [SWM12], and

• randomly generated quantum operations with up to 25 qubits (denoted arbitrary).

In total, 296 benchmarks have been considered. For each of them, the 2-level
representation has been compared against the respective 4-level representation. In
order to additionally evaluate the performance of the proposed approach for non-
equivalent operations, for each pair of representations we introduced an error through
random changes (to one of them) and compared this to the original operation. All
experiments have been conducted on a 2.8GHz Intel Core i7 machine with 8GB of
main memory running Linux. The timeout was set to 500 CPU seconds.

The results are summarized in Table8.1 for a representative selection of the con-
ducted experiments. The first two columns provide the identifiers of the respective
benchmarks followed by its number of qudits. Afterwards, the run-time (in CPU
seconds) for building up the data-structure (QMDD) as well as performing the actual
equivalence check (EC) is provided for both cases, i.e. when both operations are
equivalent and when they are not equivalent. As can be seen, the proposed scheme
is able to efficiently check the equivalence of two quantum operations for the major-
ity of all benchmarks. In fact, for 224 out of the 296 benchmarks, we were able to
check their equivalence in less than a minute. While the actual equivalence check
can always be conducted in almost no time, the limiting factor is the time needed for
the construction of the representation of the respective quantum functionality, i.e.
the QMDD in this case. Hence, the efficiency of the proposed scheme only relies
on the chosen description. As improving those is an active research area and the
proposed scheme can easily be adapted to other representations, further benefits can
be expected in the future.
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Table 8.1 Experimental evaluation

Benchmark #Qudits Run-times (s)

Equivalence Non-equivalence

QMDD EC QMDD EC

7qbitcode 7 <0.01 <0.01 <0.01 <0.01

9qubitN1 9 <0.01 <0.01 <0.01 <0.01

9qubitN2 17 0.04 <0.01 0.04 <0.01

Grover-5 11 0.41 <0.01 0.38 <0.01

Grover-6 13 0.04 <0.01 0.05 <0.01

QFT-5 5 <0.01 <0.01 0.01 <0.01

QFT-7 7 0.01 0.01 0.02 <0.01

add16_174 49 0.03 <0.01 0.02 <0.01

add32_183 97 0.08 <0.01 0.08 <0.01

alu2_199 16 117.84 0.01 115.94 0.02

alu3_200 18 224.42 0.04 217.3 0.04

apla_203 22 14.77 0.02 15.3 0.02

bw_291 87 >500 – >500 –

cm163a_213 29 1.63 <0.01 1.74 0.03

cu_219 25 4.36 <0.01 4.59 0.02

cycle10_293 39 22.91 <0.01 25.29 <0.01

ham15_107 15 103.77 0.31 88.6 0.25

hwb7_61 7 3.24 <0.01 2.94 <0.01

lu_326 299 >500 – >500 –

mod5add_306 32 326.98 0.4 307.95 0.36

arbitrary10 10 0.7 <0.01 0.73 <0.01

arbitrary15 15 15.04 0.2 25.41 0.55

arbitrary20 20 26.76 0.15 41.34 0.35

arbitrary25 25 >500 – >500 –

8.4 Conclusions

In this chapter, we presented a scheme for checking the equivalence between two
quantum operations working in quantum systems with potentially different numbers
of levels. By this, the recent developments showing the advantages and benefits of
multi-level quantum systems are taken into account and the correctness of the design
can be verified even in these settings. The proposed scheme can be incorporated into
data-structures particularly suited for the representation of quantum functionality. An
experimental evaluation confirmed that this enabled an efficient and fast equivalence
checking which is mainly limited by the representation of the considered quantum
functionality.



Chapter 9
Discussion and Outlook

Quantum computations are changing the way how certain problems will be tackled
in the near future. By exploiting quantum-mechanical phenomena such as super-
position, phase shifts or entanglement, they allow for algorithms with asymptotic
speed-ups for many relevant problems such as database search, integer factorization,
and more. While only considered theoretically for a long time, the past decade also
showed first physical realizations—with further to come. Hence, quantum computers
with dozens of qubits seem to be a realistic vision for the future [MSB+11].

This more and more raises the question how the respective quantum circuits can
be designed efficiently. In order to keep up with the technological progress, there is
a need for significant improvements—particularly with respect to Computer-Aided
Design of quantum circuits. More precisely, methods have to be developed that
(1) automatically generate a circuit description of the desired quantum functionality
(2) take into account the physical constraints of the target technology, and (3) scale
to quantum systems of considerable size.

Generic approaches that aim for the synthesis of arbitrary quantum functionality
are hardly applicable in practice as they are neither efficient nor effective. More
precisely, they employ decomposition schemes that do not scale to large quantum
systems and, even worse, lead to considerably large circuits and rely on a huge gate
library that is not compatible with the needs of actual physical implementations.
Consequently, in order to develop methods that meet the above requirements, the
design of quantum circuits is not to be considered as a single design step, but as a
separation of concerns. To this end, we presented extensions to the state-of-the-art
in quantum logic design in various areas:

• We discussed the application of QMDDs in the synthesis of Boolean components.
The latter constitute important parts in many quantum algorithms and applying a
dedicated synthesis scheme promises to reduce the overall synthesis complexity.
Often, the function to be realized is not reversible and needs to be embedded
prior to synthesis. For both steps, determining a (minimal) embedding as well

© The Author(s) 2017
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as performing the actual synthesis, QMDDs enable very powerful and scalable
solutions.

• We presented an automatic synthesis scheme for Clifford group operations,
an important sub-class of quantum operations. In contrast to generic synthesis
approaches, the approach employs a dedicated, fault-tolerant gate library and leads
to significantly smaller circuits.

• We presented a scheme for automatically checking whether two different real-
izations of (the same) quantum functionality are equivalent—an important tool
for ensuring the correctness of the transformations and optimizations applied in
the design flow. Taking into account recent developments in multi-level quantum
systems, the scheme especially covers multiple-valued implementations.

These applications of QMDDs, especially the synthesis approach for Clifford
group operations, illustrate nicely that compact and efficient representations of quan-
tum functionality like QMDDs are the key to significantly improve the scalability of
design solutions and additionally also offer inherent characteristics that are ready to
be exploited for sophisticated applications in quantum logicCAD like e.g. specialized
synthesis approaches.

Certainly, the full potential of QMDDs has not completely been utilized yet. The
presented applications for synthesis and verification are just the beginning. Decision
diagrams in general became a vital and indispensable tool for the design of conven-
tional circuits and systems—with applications in synthesis, optimization, verifica-
tion, test, and many more. In a similar fashion, QMDDs may be utilized in the near
future. In this sense, this book may provide one basis towards this.
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