
Free/Open Source
Software Development

Stefan Koch

IDEA GROUP PUBLISHING
TLFeBOOK

Hershey • London • Melbourne • Singapore
IDEA GROUP PUBLISHING

Free/Open Source
Software Development

Stefan Koch
Vienna University of Economics and Business Administration, Austria

TLFeBOOK

Acquisitions Editor: Mehdi Khosrow-Pour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Development Editor: Michele Rossi
Copy Editor: Jane Conley
Typesetter: Sara Reed
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2005 by Idea Group Inc. All rights reserved. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopy-
ing, without written permission from the publisher.

 Library of Congress Cataloging-in-Publication Data

Free/open source software development / Stefan Koch, Editor.
 p. cm.
 ISBN 1-59140-369-3 -- ISBN 1-59140-370-7 (pbk.) -- ISBN 1-59140-371-5 (ebook)
 1. Computer software--Development. 2. Open source software. I. Koch, Stefan.
 QA76.76.S46F74 2004
 005.1--dc22
 2004003748

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views
expressed in this book are those of the authors, but not necessarily of the publisher.

TLFeBOOK

Free/Open Source
Software Development

Table of Contents

Preface ... vii

Section I: F/OSS Development - “Intensive Analysis”

Chapter I
Do Not Check in on Red: Control Meets Anarchy in Two Open Source
Projects .. 1
 Jesper Holck, Copenhagen Business School, Denmark
 Niels Jørgensen, Roskilde University, Denmark

Chapter II
Analyzing the Anatomy of GNU/Linux Distributions: Methodology and
Case Studies (Red Hat and Debian) ... 27
 Jesús M. González-Barahona, Universidad Rey Juan Carlos, Spain
 Gregorio Robles, Universidad Rey Juan Carlos, Spain
 Miguel Ortuño-Pérez, Universidad Rey Juan Carlos, Spain
 Luis Rodero-Merino, Universidad Rey Juan Carlos, Spain
 José Centeno-González, Universidad Rey Juan Carlos, Spain
 Vicente Matellán-Olivera, Universidad Rey Juan Carlos, Spain
 Eva Castro-Barbero, Universidad Rey Juan Carlos, Spain
 Pedro de-las-Heras-Quirós, Universidad Rey Juan Carlos, Spain

TLFeBOOK

Chapter III
The Co-Evolution of Systems and Communities in Free and Open
Source Software Development .. 59
 Yuwen Ye, University of Colorado at Boulder, USA and
 SRA Key Technology Lab, Japan
 Kumiyo Nakakoji, University of Tokyo, Japan
 Yasuhiro Yamamoto, University of Tokyo, Japan
 Kouichi Kishida, SRA Key Technology Lab, Japan

Section II: F/OSS Development and Software
Engineering Practices - “Extensive Analysis”

Chapter IV
The Role of Modularity in Free/Open Source Software Development 84
 Alessandro Narduzzo, Universitá di Bologna, Italy
 Alessandro Rossi, Universitá di Trento, Italy

Chapter V
A Quantitative Study of the Adoption of Design Patterns by Open
Source Software Developers .. 103
 Michael Hahsler, Vienna University of Economics and Business
 Administration, Austria

Section III: F/OSS Projects as Social Constructs

Chapter VI
Coordination and Social Structures in an Open Source Project:
VideoLAN ... 125
 Thomas Basset, Centre de Sociologie des Organisations, France and
 Ecole Normale Superieure de Chachan, France

Chapter VII
Free Software Development: Cooperation and Conflict in a Virtual
Organizational Culture ... 152
 Margaret S. Elliott, University of California, Irvine, USA
 Walt Scacchi, University of California, Irvine, USA

TLFeBOOK

Section IV: Simulating F/OSS Development - “Dynamic Swarms”

Chapter VIII
Dynamical Simulation Models of the Open Source Development
Process ... 174
 I.P. Antoniades, Aristotle University of Thessaloniki, Greece
 I. Samoladas, Aristotle University of Thessaloniki, Greece
 I. Stamelos, Aristotle University of Thessaloniki, Greece
 L. Angelis, Aristotle University of Thessaloniki, Greece
 G.L. Bleris, Aristotle University of Thessaloniki, Greece

Chapter IX
Modeling the Free/Open Source Software Community: A Quantitative
Investigation ... 203
 Gregory Madey, University of Notre Dame, USA
 Vincent Freeh, North Carolina University, USA
 Renee Tynan, University of Notre Dame, USA

Section V: F/OSS Development Interacting
with Commercial and Public Organizations

Chapter X
Benefits and Pitfalls of Open Source in Commercial Contexts 222
 Jiayin Hang, Siemens Business Services GmbH & Co. OHG, Germany
 Heidi Hohensohn, Siemens Business Services GmbH & Co. OHG,
 Germany
 Klaus Mayr, IFS IT GmbH, Germany
 Thomas Wieland, University of Applied Sciences Coburg, Germany

Chapter XI
Experiences Enhancing Open Source Security in the POSSE
Project ... 242
 Jonathan M. Smith, University of Pennsylvania, USA
 Michael B. Greenwald, University of Pennsylvania, USA
 Sotiris Ioannidis, University of Pennsylvania, USA
 Angelos D. Keromytis, Columbia University, USA
 Ben Laurie, AL Digital, Ltd., USA
 Douglas Maughan, Defense Advanced Research Projects Agency, USA
 Dale Rahn, University of Pennsylvania, USA
 Jason Wright, University of Pennsylvania, USA

TLFeBOOK

Section VI: Implications of the F/OSS
Development Model - “The Broad Picture”

Chapter XII
The Impact of Open Source Development on the Social Construction
of Intellectual Property .. 259
 Bernd Carsten Stahl, De Montfort University, UK

Chapter XIII
The Social Production of Ethics in Debian and Free Software
Communities: Anthropological Lessons for Vocational Ethics 273
 E. Gabriella Coleman, University of Chicago, USA
 Benjamin Hill, Debian Project, USA

About the Editor .. 296

About the Authors .. 297

Index .. 306

TLFeBOOK

Preface

vii

In the last few years, free and open source software has gathered increasing
interest, both from the business and the academic worlds. As some projects in dif-
ferent application domains, like Linux together with the suite of GNU utilities,
GNOME, KDE, Apache, sendmail, bind, and several programming languages, have
achieved huge success in their respective markets, they have demonstrated that this
new development paradigm can produce output of considerable quality. This has
led to massive business interest, has given rise to new corporations like RedHat or
VA Software (formerly having achieved a record-breaking IPO 1999 with a 700
percent gain on its first day of trading under the name of VA Linux), and has spurred
organizations both small and large (like IBM, Sun Microsystems or Netscape) to
invest in one way or the other into this new field.

Academic interest in this new form of collaborative software development has
also grown, arising from very different backgrounds including software engineering,
sociology, management, and psychology, and has gained increasing prominence, as
can be deduced from the number of international journals like Management Science,
Information Systems Journal, Electronic Markets or Research Policy, and confer-
ences like ICSE dedicating special issues, workshops, and tracks to this new field of
research. As diverse as the background of researchers are their approaches and the
issues tackled. The current research that can be attributed to this field ranges from
quantitative analysis of source code or other artifacts of the software development
to uncover programming practices and the efficiency of this development model, to
sociological field work soliciting information in interviews about the ways in which
coordination and communication in these virtual teams are accomplished. This book
will try to give an overview of current research. It aims to be an up-to-date inventory
of research approaches and outlooks. As yet, an edited volume of academic papers
dealing with free and open source software development has not been available,
and it is hoped that this book will provide a first step towards attributing this line of
research the prominence and credibility it so richly deserves, given the high-quality
output produced, as can now be witnessed by any interested reader.

A note is in order about the title of this book. In a first version, the proposed
title was Open Source Software Development, the announcement of which led to an
e-mail response from Richard Stallman, founder of the GNU project, in which he

TLFeBOOK

viii

argued that by using this title all relevant and important work of the Free Software
community would be subsumed by the Open Source movement (which of course
was never intended), and its very existence denied. Following his reasoning, the title
was changed, not going further into ideological differences in the outlook of both
communities, but explicitly acknowledging the inspiring work done by both. An
additional term often used in this context, especially in Europe, libre software was
not included to maintain readability and because it constitutes more of an artificial
term with which no larger group of developers identifies.

ORGANIZATION OF THE BOOK
The organization of this book is intended to reflect the very different research

approaches taken in the field of free and open source software development. There-
fore, the chapters have been grouped into no less than six parts, each one dealing
with a slightly different focus or outlook. With this, the book provides an overview
of this very active field of research, and an interested reader or researcher might be
able to identify the approach or focus he or she would like to take in future reading
or work. Although there are many different possibilities for classifying the chapters
presented here, and even more for all the research currently done, the organization
presented here tries to constitute a starting point for discussing and developing a
coherent framework for the diverse activities in the field of free and open source
software development.

Section I: F/OSS Development - “Intensive Analysis”
Section I contains three chapters that provide what seems to constitute the

heart and most important first step of current research. They all deal with a small
number of projects and detail several facets of these. Therefore, the term intensive
analysis is used here, to be distinguished from the extensive analyses performed in
the chapters forming Section II. The first chapter, “Do Not Check in on Red: Control
Meets Anarchy in Two Open Source Projects” by Jesper Holck and Niels Jørgensen,
is a prototypical example in which the authors describe the most important elements
of the software development process in the Mozilla and FreeBSD projects. For each
of these elements, the struggle for optimal balance between control—supposedly
necessary for producing high-quality software—and anarchy—supposedly neces-
sary for attracting and keeping voluntary developers—is discussed. The authors
give a superb picture of the free and open source software development process,
documenting and analyzing similarities between free and open source projects and
commercial software development.

The second chapter, “Analyzing the Anatomy of GNU/Linux Distributions:
Methodology and Case Studies (Red Hat and Debian)” by Jesús M. González-Bara-
hona, Gregorio Robles, and colleagues, presents a quantitative and longitudinal study
of one of the most important and visible aspects of free and open source software:
GNU/Linux distributions. Using a total of nine different versions of the Red Hat

TLFeBOOK

and Debian distributions, the authors base their analysis on the source code itself,
and also include a detailed description of the methodology applied. This approach
allows the study of the evolution of parameters like total distribution size, size and
version of different packages, or usage of different programming languages, thus
offering insights into the free and open source projects providing the foundation for
these distributions, as well as the process of producing a distribution, which poses
an enormous integration task and therefore a large project in itself.

Chapter III is titled “The Co-Evolution of Systems and Communities in Free
and Open Source Software Development” and is written by Yunwen Ye, Kumiyo
Nakakoji, Yasuhiro Yamamoto, and Kouichi Kishida. In this chapter, the authors
see beyond the software product and document its relationship to the development
community, analyzing the co-evolution that results. Using four projects in which
the authors are involved as case studies, they find that projects co-evolve differently
depending on the goal of the system and the structure of the community. This leads
to a proposed classification scheme for free and open source projects and practical
implications of recognizing the co-evolution and the type of project.

Section II: F/OSS Development and Software Engineering
Practices - “Extensive Analysis”

The two chapters forming Section II have both their focus on the role of a
single concept from “traditional” software engineering literature in free and open
source software development and their analysis of several projects in common,
therefore providing an example of extensive research. The first chapter in this
part is by Alessandro Narduzzo and Alessandro Rossi and is titled “The Role of
Modularity in Free/Open Source Software Development,” which very adequately
describes its theme. The authors discuss especially the development of different free
and open Unix-systems using the theory of modularity applied to both the software
architecture and the organization of the projects.

Chapter V, “A Quantitative Study of the Adoption of Design Patterns by Open
Source Software Developers” by Michael Hahsler, describes a large-scale quantita-
tive analysis of the usage of design patterns. The analysis is based on data extracted
from the version-control system of the SourceForge hosting site and encompasses
almost 1,000 projects. Results indicate that design patterns, as proposed by software
engineering literature, are indeed used as a practice to improve communication, as
larger projects tend towards increased adoption rates and more productive com-
munity members. In addition to these results, this chapter serves as an excellent
example of the “testbed” function that free and open source software projects might
provide for software engineering researchers because their publicly available data
allows for large-scale studies.

Section III: F/OSS Projects as Social Constructs
Section III of this book, “F/OSS Projects as Social Constructs,” contains two

chapters that take a distinctly sociological position and foremost view free and open

ix

TLFeBOOK

source projects as social constructs. The first of these, “Coordination and Social
Structures in an Open Source Project: VideoLAN” by Thomas Basset, presents
a mixture of sociological research approaches including social network analysis
based on observation and a questionnaire, and quantitative data derived from source
code. An analysis of the VideoLAN project is presented, detailing the influence of
social relationships between developers on the distribution of work. Face-to-face
relationships are found to have great importance as well as friendship that can favor
the circulation of advice. In addition to technical expertise, a second kind of exper-
tise—the ability to be aware of who is working on what—determines the hierarchy
within the project that is found to be similar to a collegial organization.

The second chapter, Chapter VII, is written by Margaret S. Elliott and Walt
Scacchi and has the title “Free Software Development: Cooperation and Conflict in
a Virtual Organizational Culture.” Using the GNUenterprise project as a case study,
this chapter details an ongoing ethnography of this virtual organization using the
grounded theory approach with participant-observer techniques. Several examples
are used to demonstrate how beliefs, values, and norms interact in this virtual or-
ganizational culture to result in community building, resolution of conflicts, and
strengthened teamwork.

Section IV: Simulating F/OSS Development -
“Dynamic Swarms”

Section IV of this book combines two chapters that both provide simulation
models for free and open source software development. The potential impact of
such models can not be understated, as they can be used to predict project variables,
for example by project coordinators, or even the evolution of whole project com-
munities. The first chapter, Chapter VIII, “Dynamical Simulation Models of the
Open Source Development Process” by I.P. Antoniades, I. Samoladas, I. Stamelos,
L. Angelis, and G.L. Bleris, first describes a general framework for dynamical
simulation models for free and open source software projects and then introduces
a specific simulation model. This model is applied to the Apache Project and the
gtk+ module of the GNOME project, and simulation outputs are compared to real
data. The second chapter in this part, “Modeling the Free/Open Source Software
Community: A Quantitative Investigation,” takes a slightly different viewpoint and
provides a simulation model for the community level, using data on developers’
participation from project hosting sites. The authors, Gregory Madey, Vincent Freeh,
and Renee Tynan, then proceed to develop a model of this community as a collec-
tion of ad hoc, social networks consisting of heterogeneous agents, self-organizing
into projects and clusters of projects. A computer simulation of this model using an
agent-based simulation toolkit is presented.

x

TLFeBOOK

Section V: F/OSS Development Interacting with
Commercial and Public Organizations

While many free and open source software projects work away in splendid
isolation, the increased commercial and public interest in this form of software has
led to more and more interactions with “traditional” organizations. These interactions
are the common theme of the Chapters X and XI found in Section V of this book.
The first of these, “Benefits and Pitfalls of Open Source in Commercial Contexts”
by Jiayin Hang, Heidi Hohensohn, Klaus Mayr, and Thomas Wieland, deals with
commercial ventures and describes a case study in which an open source framework
was used to build a commercial product. The process followed leads to some les-
sons, particularly for companies that offer projects instead of products. The second
part of this chapter offers a classification of the different players in the software
business such as distributors, system integrators, and software or hardware vendors,
their roles, motivations and restraints, partially based on a survey. Chapter XI, “Ex-
periences Enhancing Open Source Security in the POSSE Project” by Jonathan M.
Smith, Michael B. Greenwald and colleagues, deals with interactions with public
organizations—in this case, the U.S. Department of Defense. The authors describe
the project goals, including increasing security in open source systems and more
broadly disseminating security knowledge, the organization created to manage this
project, and the results produced.

Section VI: Implications of the F/OSS Development
Model - “The Broad Picture”

The last section of this book is devoted to two chapters that deal with the
implications that free and open source software development might have on fields
other than software development. The first of these is titled “The Impact of Open
Source Development on the Social Construction of Intellectual Property,” written
by Bernd Carsten Stahl, and it argues from the constructionist theoretical foundation
that intellectual property is a social construction that is created and legitimized by
narratives. After discussing the narratives justifying the creation and protection of
intellectual property, the influences of the use of information and communication
technology and open source software on these narratives are presented. It is argued
that open source software, while partly based on ownership of intellectual artefacts,
changes the perception of intellectual property because it offers evidence that some
of the classical narratives are simplistic; potential changes to institutions, laws and
regulations of intellectual property due to this change are then discussed. The last
chapter, “The Social Production of Ethics in Debian and Free Software Communi-
ties: Anthropological Lessons for Vocational Ethics” by E. Gabriella Coleman and
Benjamin Hill, goes beyond the realm of software and intellectual property and, by
describing the Debian project and its new maintainer process as an ethnographic case
study, argues that ethics are reinforced through sustained collaborative development

xi

TLFeBOOK

in free and open source software communities, and that a similar model of ethical
volunteerism based on institutional independence, volunteer labor, and networks of
trust might be applicable to a range of vocations, for example medicine.

Stefan Koch
Vienna, October 2003

xii

TLFeBOOK

Acknowledgments

As is usual for such a large piece of work, many people have contributed
to it (in the best tradition of free/open source development). First and foremost
among these are the authors themselves and the reviewers who devoted their time
to help in selecting and improving the submissions. Overall, 76 distinct authors
from 16 countries spanning America, Asia, Australia, and Europe have contributed
submissions, and 51 people have provided valuable feedback and assistance in the
review process. Contrary to common practice, but in the spirit of free/open source
development, we want to list those reviewers (with their permission) to especially
recognize their contribution:

Ioannis P. Antoniades (Department of Informatics, Aristotle University of
Thessaloniki), Cornelia Boldyreff (University of Durham), Terry Anthony Byrd
(Auburn University), Kevin Crowston (Syracuse University School of Information
Studies), Margaret S. Elliott (Institute for Software Research, School of Informa-
tion and Computer Science, University of California, Irvine), Nikolaus Franke and
Reinhard Prügl (Department of Entrepreneurship, Vienna University of Economics
and BA), Giampaolo Garzarelli (Dipartimento di Teoria Economica e Metodi Quan-
titativi per le Scelte Politiche, University of Rome, “La Sapienza”), Rishab Aiyer
Ghosh (MERIT/Infonomics, University of Maastricht), Jesús M. González-Bara-
hona (Universidad Rey Juan Carlos, Madrid, Spain), Stefan Haefliger (University
of St. Gallen), PD Dr. Guido Hertel (University of Kiel), Francis Hunt (University
of Cambridge), Dr. Till Jaeger (ifrOSS), Christopher M. Kelty (Rice University),
Sandeep Krishnamurthy (University of Washington), Selahattin Kuru (Isik Univer-
sity, Istanbul, Turkey), Karim R. Lakhani (MIT Sloan School of Management), Jan
Ljungberg (Dept. of Informatics, Gothenburg University), Greg Madey (University
of Notre Dame), Nikhil Metha (Auburn University), Martin Michlmayr (Department
of Computer Science and Software Engineering, University of Melbourne), Johann
Mitloehner (Vienna University of Economics and BA), Audris Mockus (Avaya
Labs), Jae Yun Moon (Hong Kong University of Science and Technology), Mogens
Kühn Pedersen (Informatics, Copenhagen Business School), Stephen Rank (Univer-
sity of Durham), Alan I Rea, Jr. (Western Michigan University), Gregorio Robles
(Universidad Rey Juan Carlos), Georg Schneider (Vienna University of Economics
and BA), Barbara Scozzi (Politecnico of Bari, Italy), Srinarayan Sharma (Oakland
University), Bernd Simon (Vienna University of Economics and BA), Jonathan

xiii

TLFeBOOK

M. Smith (University of Pennsylvania), Haggen So (Royal Melbourne Institute of
Technology), Sebastian Spaeth (University of St. Gallen), Ioannis Stamelos (Dept.
of Informatics, Aristotle University of Thessaloniki, Greece), Susanne Strahringer
(Department of Information Systems, European Business School), Giancarlo Succi
(Center for Applied Software Engineering, Free University of Bolzano-Bozen), Dr.
Thomas Wieland (University of Applied Sciences, Coburg, Germany), Yunwen Ye
(University of Colorado at Boulder, USA & SRA Key Technology Laboratory, Inc.,
Japan), Huseyin Yildirim (Duke University), and an additional ten reviewers who
prefer to remain anonymous.

Many thanks also go to the people at Idea Group Publishing, especially to
Medhi Khosrow-Pour, Michele Rossi, Jan Travers, and Amanda Appicello who
have been a great help through the whole process.

Also, last but not least, I would like to thank my family, especially my wife
Lale, for support, encouragement, and patience during the time of preparing this
book.

Stefan Koch
Vienna, October 2003

xiv

TLFeBOOK

SECTION I:

F/OSS Development –
“Intensive Analysis”

TLFeBOOK

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 1

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter I

Do Not Check in on Red:
Control Meets Anarchy in Two

Open Source Projects
Jesper Holck, Copenhagen Business School, Denmark

Niels Jørgensen, Roskilde University, Denmark

ABSTRACT
For two Free/Open Source Software projects, Mozilla and FreeBSD, we describe
the central elements in the software development processes: the technological in-
frastructure, the work organization, and the software process models. For each of
these elements we discuss how the projects try to find an optimal balance between
control (supposedly necessary for producing high-quality software) and anarchy
(supposedly necessary for attracting and keeping voluntary developers). Several
important considerations are identified: most importantly, control of access to bug-
tracking systems and source code repositories, quality control of both individual
contributions and production releases, the importance of the development branch,
and control of developers’ prioritization of work tasks and availability. The results
show that the two projects, even though they produce very different kinds of soft-
ware (a web-browser suite and an operating system), are similar in many respects.
However, they also show how difficult the balance between anarchy and control
may be and that it is likely to shift over time.

TLFeBOOK

2 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

INTRODUCTION
The statement “Do Not Check in on Red” can be found in red, capital letters

on the website of Mozilla, a well-known F/OSS (Free/Open Source Software1)
web browser. Mozilla, like many F/OSS and some commercial projects, employs
the principle of continuous integration, where a number of developers individually
and in parallel add source code to a central repository. The statement is a request
for developers not to check in new changes to the repository if severe errors have
been found in the present source code, a situation announced with unmistakable
red boxes on the website. Taken literally, the statement would have the unfortunate
consequence of also barring possible fixes to these errors, effectively blocking all
further progress; rather, it should be interpreted as a strong request for developers
to only check in changes necessary to fix the detected errors while the tree is red.
In this way, the statement “Do Not Check in on Red” conveys a fundamental ten-
sion in the project: allowing a continuous flow of changes and improvements to the
software on one hand, and assuring quality by minimizing the problems resulting
from deficient contributions on the other.

As discussed by O’Mahony (2003), it is generally assumed that F/OSS devel-
opers (“hackers”) don’t “embrace centralized modes of governance” and are “less
likely to welcome formal organizing mechanisms,” instead believing “in the value
of challenging work, technical autonomy, self-management, and freedom from a
positional basis of power.” These assumptions indicate that F/OSS developers would
prefer rather loosely controlled projects with a flat hierarchy, relying on individual
autonomy, tacit norms, and self-organization rather than commands, control, and
explicit rules. This is important for a F/OSS project facing the challenge of attract-
ing and retaining voluntary, competent developers; even though some developers
are paid for their work, typically this salary does not come from the project as such,
but from companies or organizations volunteering for the project.

It is, however, also generally assumed that software project success is dependent
on diligent project management, “planning, organizing, directing, and controlling …
company resources … to complete specific goals and objectives” (Kerzner, 1989,
as cited in Jurison, 1999), and tight control of the software development process is
a key element in Software Process Improvement (Paulk, Curtis, Chrissis, & Weber,
1993).

The theme of this chapter will be the tension between these two, apparently
conflicting demands on a F/OSS project: how are successful F/OSS projects able to
find a reasonable balance between anarchy (supposedly necessary for attracting and
keeping voluntary developers) and control (supposedly necessary for the effective
production of high-quality software). In this context we will construe anarchism
positively as “holding all forms of government authority to be unnecessary and
undesirable and advocating a society based on voluntary cooperation and free as-
sociation of individuals and groups” rather than “a state of lawlessness or political
disorder due to the absence of governmental authority” (Anarchism, 2003).

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

We will illustrate this balance through case studies of Mozilla and FreeBSD,
two rather large and well-established F/OSS projects of comparable size, but pro-
ducing very different software products: the Mozilla web browser suite and the
FreeBSD operating system. Both projects have been able to both attract develop-
ers and produce reasonably successful and long-lived software, so we believe it is
interesting to examine how they have managed to find a middle ground between the
two apparent opposites. The focus will be on the production of source code, so we
will not go into details regarding how the projects handle tasks like infrastructure
maintenance, public relations, and user documentation.

Several previous studies have looked into how F/OSS is developed, often as-
suming the existence of a generic F/OSS development process. Feller and Fitzgerald
(2002) identify a number of characteristics “common to most OSS [open source
software] projects”: parallel development; large, globally distributed development
communities; truly independent peer review; prompt feedback; highly talented,
highly motivated developers; actively involved users; and rapid release schedule.
This picture is, however, questioned by Healy and Schussman (2003) who, based
on analysis of a large number of F/OSS projects, suggest that “generalizations
about ‘the OSS approach’… may be much too broad.” In their view there is a gap
between theory and data, as “the typical project has one developer, no discussion
or bug reports, and is not downloaded by anyone.”

Some case studies of F/OSS projects have also been published. Mockus, Field-
ing and Herbsleb (2002) describe central aspects of the development processes used
in the Apache and Mozilla projects and present many quantitative data from these
(size of communities, distribution of work, defect density, etc.). The evolution of
Linux (Godfrey & Tu, 2000), configuration management in KDE, Mozilla, and
Linux (Asklund & Bendix, 2002), and support in Apache (Lakhani & von Hippel,
2003) have also been studied. Finally, we have previously published studies of
coordination and motivation in FreeBSD and Mozilla (Holck & Jørgensen, 2003a;
Holck & Jørgensen, 2003b; Jørgensen, 2001).

We believe that there is still a need for detailed case studies of the develop-
ment of F/OSS, and even though this chapter neither establishes new theory nor
tests existing theories, we hope it can contribute to the understanding of the “inner
workings” of F/OSS projects. The results should be interesting, not only in relation
to the F/OSS communities, but also in relation to commercial software companies,
as these increasingly are becoming engaged in F/OSS development (Henkel, 2003).
FreeBSD and Mozilla have been chosen as our objects of study because they both
have quite open organizations, where a large group of developers have the rights
to update and change files in the repositories, unlike, e.g., Linux, where Linus
Torvalds often is referred to as a “benevolent dictator,” having the final decision
in all questions.

Our study is a multiple, explorative case study in the sense of Yin (1998). We
have pulled statistical data from software repositories, studied mailing lists and

TLFeBOOK

4 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

newsgroups, read through much of the documentation available on the projects’
websites, and finally drawn on a survey of 72 FreeBSD developers performed in
November 2000 that was also the basis for Jørgensen (2001).

SHORT DESCRIPTION
OF THE TWO PROJECTS

Before we go any further, we believe some general knowledge of the two
projects will be relevant, so we will briefly mention some data for each (see Table 1
for basic facts).

Mozilla is a web browser, or rather a web suite consisting of a browser, a mail
and newsreader client, a HTML editor, and a chat client. The F/OSS project was
created when Netscape decided to free the source of its proprietary Navigator web
browser in 1998 (Hamerly, Paquin, & Walton, 1999). New versions of Netscape
Navigator are almost entirely based on Mozilla, which is developed for a number
of different operating system platforms, including Windows, MacOS X, Linux,
FreeBSD, and AIX (Mozilla Release FAQ, 2002).

Table 1: Key data for FreeBSD and Mozilla.

Name FreeBSD Mozilla
Main product Operating system Web browser suite

Major product qualities Robustness, security Platform independence,
open interfaces, user inter-
face

Major platforms Intel x86, Alpha,
SPARC64, PC-98

Windows, Linux, MacOS

Approximate size of devel-
opment version

29,000 files,
11 million lines

40,000 files,
6 million lines

Activity on development
version in October 2002

118 persons committed
2,063 changes

107 persons committed
2,856 changes

50% of these commits
made by

12 developers 7 developers

Project management 9 person elected Core
Team

11 person Mozilla.org Staff

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

FreeBSD is an operating system of the Unix-family (like GNU/Linux), but
with a special focus on robustness and security, and so it is mainly used as a server
operating system. In addition to the operating system itself, the project also includes
ports, a large number of application programs ported to the FreeBSD operating
system. The project was born in 1993 as one of a long line of descendants from the
legendary Berkeley Software Distribution from 1977. FreeBSD runs on a number of
different hardware platforms, most importantly Intel x86 processors, but also Alpha,
PowerPC, Sparc64, NEC PC-98, and IA-64 (Supported Platforms, 2003).

The two projects are of comparable size, but differ in most other aspects. The
Mozilla suite is a typical end-user product; the FreeBSD operating system is of
most interest to server administrators and advanced, professional users. Backwards
compatibility is not a big issue for Mozilla, but is certainly important for FreeBSD.
Mozilla has a relatively short history as F/OSS, compared to FreeBSD’s 25 years.
The Mozilla project was created by and for a long time maintained tight connections
with Netscape, who supported the project with both technology and developers.
FreeBSD has had no similar relation to a single company. On the basis of these
differences we find it surprising that – as we shall later see – the two projects have
remarkably similar infrastructures and process models.

THE TECHNOLOGICAL INFRASTRUCTURE
In this section we will present major elements from the two projects’ techno-

logical infrastructures. We will focus on the elements that are most important in
relation to the software development processes, described in more detail later in
this chapter. Along with the major human responsibilities, these elements are il-
lustrated in Figure 1.

For each element in the infrastructure there are a number of rules regarding its
use in the software development process. These rules may either be implemented in
the technology (e.g., as password-controlled access to the repository) or be publi-
cized regulations (e.g., disallowing changes to the repository at certain times). We
will describe the most important of these along with the elements.

Repository
Both projects feature central source code repositories under CVS control (Fogel

& Bar, 2001) and reachable via the Internet. Developers contribute to the projects
by continually and in parallel updating (changing, adding, and deleting) repository
files. The CVS-controlled source code repositories guarantee that:

• Each file change (called a commit or check in) creates a new file version. All
previous versions remain accessible, thereby making it possible to go back to
any older file version if problems or errors are introduced.

TLFeBOOK

6 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

• Each file change is logged, making it possible to see who made the commit,
when it was made, which lines were changed, and what comments the com-
mitter supplied.

• Conflicting changes to a file (as when two developers want to change the same
lines) are handled gracefully; the last committer will have to explicitly accept
or reject the changes made by earlier committers.

• For each file version, there is always only one official copy – the one in the
repository.

Everyone is allowed to download files from the repositories. This can be done
one file at a time, but is more often done by using the command CVSup, causing
all files on the local machine to be updated to the newest versions. The software
product that results from building with the newest versions of all files is called the
development version. Because files are updated continuously, the development
version will also be constantly evolving. The aggregation of all files related to the
development version is called the trunk (or CURRENT in FreeBSD). In addition
to the trunk, the repository contains branches for production releases, making it
possible to isolate new development on a file from file versions part of (previous)
production releases.

Figure 1: Key elements in the software development processes.

Developer

Reviewer

Tinderboxes
and verification

machines

Downloadtrunk

Download
trunk

Download trunkTest results

Receive

review

Choose
task

Change bug status

Report
bug

Co
nt

rib
ut

io
n

Commit

Contribution

Bug-
tracking

Reposi-
tory

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Because it is only superficially tested, there are obvious risks involved when
building and running the development version, but nonetheless many people do this
frequently. Developers do this to test their own changes, not yet committed, with the
files from the development version, in order to be sure that no problems arise once
the changes are committed. Also, many users want to test-drive the newest version,
weighing the chance of trying new features and avoiding old bugs over the risks
involved in running virtually untested software. For both projects this community
testing is essential for finding and removing bugs.

Only developers with special privileges, committers, are allowed to make changes
to the files in the repositories. A developer without these privileges will have to go
through a committer in order to get contributions added to the repository.

Bug-Tracking System
Very much in line with what Raymond (2000) has entitled Linus’ Law, “Given

enough eyeballs, all bugs are shallow,” in both projects everyone can report bugs,
and everyone is actively encouraged to do this. A “bug” doesn’t have to be an er-
ror; rather, it should be understood as a pending work task. FreeBSD uses the term
“problem report”:

A FreeBSD problem report (PR) is not necessarily a bug with FreeBSD itself. In
some cases it may be reporting a mistake in the documentation … In other cases
it may be a “wish list” item that the submitter would like to see incorporated in to
FreeBSD (Support, n.d.).

Mozilla goes a step further in this direction. All on-going work should be related
to one or more bugs (bugs, 2003):

Not all “bugs” are bugs. Some items in the database are known as Enhancement
Requests or Requests for Enhancement (RFE for short). An RFE is a bug whose
severity field is set to “enhancement” … Enter the tasks you’re planning to work
on as enhancement requests and Bugzilla will help you track them and allow others
to see what you plan to work on.

Also, when committing changes to the repository in Mozilla, the committer
must assign the commit to one or more bugs.

Because of the large number of reported bugs2, both projects rely heavily on
central defect-tracking systems, which register all information in relation to every
reported bug. Mozilla uses its own Bugzilla system for this; the FreeBSD project
uses Gnu Problem Report Management System (GNATS) instead.

These systems make it possible to record and browse information for every
bug regarding3: Description (synopsis, affected product and version, possible fix
…), state (open, analyzed, suspended, closed …), severity (critical, trivial, enhance-

TLFeBOOK

8 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

ment …), priority (high, medium, low), originator (person reporting this bug),
and responsible (person assigned to this bug). It is also possible to associate a bug
with a mailing list, causing people on this list to automatically be notified when
information regarding the bug is updated. The Bugzilla system has some additional
features, most importantly:

• Bugs can be marked as blocking an upcoming release; i.e., they have to be
closed before release.

• It is possible to organize bugs hierarchically. For each bug, it is possible to
point to other bugs that this bug:

 - Depends on: “sub-bugs” that have to be closed in order for this bug to
 be closed; or
 - Blocks: “super-bugs” that cannot be closed before this bug is closed.

The hierarchy of bugs in Mozilla leads to “meta bugs,” e.g., bug 163993
“tracking those bugs that appear to be of substantially greater interest to the Mozilla
community than the ‘average’ bug.”

The two bug-tracking systems can be seen as dynamic requirement specifica-
tions, each bug identifying a requirement to a new version of the software. Further,
the hierarchical organization of bugs and the option of assigning bugs to releases
make Mozilla’s Bugzilla system also function as a dynamic work breakdown
structure, which, according to Jurison (1999), in a software project is “the basis for
all planning activities … it decomposes the project into hierarchically structured
well-defined, manageable tasks or activities.”

Tinderboxes
In order to be able to discover errors in newly committed code as fast as pos-

sible, Mozilla has around 20 machines running as tinderboxes. These are computers
with different hardware and operating systems that constantly and automatically
are repeating the following cycle:

1. Download newest version from repository.
2. Build.
3. Perform tests.
4. Report results.

The cycle may take from 20 minutes to several hours, depending on the number
of tests and the hardware and operating system of the tinderbox. All machines perform
a rudimentary run-test of the newly built browser; some machines also run various
performance tests, measuring startup time, window open time, memory usage and
leak, etc. The results are automatically shown on a number of tinderbox web pages.
If the build fails, it is called a broken-build situation; this is marked with red color

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

on the tinderbox pages, which also in capital letters shows the message “DO NOT
CHECK IN ON RED” (tinderbox, n.d.).

Tinderboxes are also used in FreeBSD, but not as heavily as in Mozilla. They
run twice a day on three different systems (one for STABLE, one for CURRENT
except PowerPC, and one for CURRENT for PowerPC), and the results are shown
on a dedicated web page (FreeBSD tinderbox logs, n.d.).

Verification Machines
Supplementing the automatic and continuous tests performed by the tinderboxes,

Mozilla follows a rather strict procedure in which the source code in the trunk is
tested on a daily basis. The tests follow this scheme, according to Yeh (1999) and
our own observations:

• At 8 AM (PST) each working day, the tree closes, which means that further
updates to the source code are forbidden. Technically it is still possible to
update the tree, but doing so is strongly denounced.

• At 8:05, a number of verification machines (12 as of October 2002) begin to
download the trunk source code, build it, and test it. These smoke tests are
similar to the tests performed by the tinderboxes.

• If one of these tests fail and the appointed release engineer is not able to
determine and fix the problem, he or she will contact developers who have
checked in source code changes since the last successful build, and together
they will try to solve the problem; even though the tree is officially closed,
changes directly related to solving the problems are allowed.

• If the failed tests relate to one of the “reference platforms (Linux, Macintosh,
Win32)” (Yeh, 1999), the tree remains closed until all tests have passed on each
of these platforms, or “it is determined that the regressions have a workaround
or are not critical features.” (Yeh, 1999)

• When all tests are passed successfully, the tree is opened; this is announced
in the netscape.public.mozilla.builds newsgroup.

This schedule causes the tree to be closed for check-ins for quite long periods;
in the first three weeks of October 2002 (arbitrarily chosen), the tree was closed for
periods ranging from one to 10 hours, adding up to a total of 94 hours or almost
20% of the time.

FreeBSD has no verification machines like Mozilla, and does not have a daily
routine for opening and closing the tree.

Mailing Lists and Newsgroups
In addition to the communication taking place through bug reports and commits

to the repository, the two projects make heavy use of more informal communication
channels, including mailing lists and newsgroups.

TLFeBOOK

10 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Although there are several newsgroups related to discussion of FreeBSD,
mailing lists are the recommended communication forums in FreeBSD (FreeBSD
Handbook, 2003):

By addressing your questions to the appropriate mailing list you will reach both
us and a concentrated FreeBSD audience, invariably assuring a better (or at least
faster) response [than by posting to one of the comp.unix.bsd.freebsd.* groups] .

There are around 70 of these mailing lists with very different purposes, from
announcing job opportunities to discussing the SCSI subsystem. For developers
working on CURRENT, the mailing list freebsd-current is particularly important, as
this is where all announcements of important changes to CURRENT will be given.
Also, problems in building or running CURRENT will be posted to and discussed
in this forum; these seem to account for around 75% of the list threads.

Most lists are public and can be both searched and browsed on the FreeBSD
website, but several closed lists exist, including lists for the core team security team,
release engineer, etc.

Mozilla relies on a number of newsgroups (netscape.public.mozilla.*, e.g.,
netscape.public.mozilla.builds), but these don’t seem to be as active as FreeBSD’s
mailing lists. Most of these newsgroups are public, though some are moderated.

Website
The projects’ websites have several important functions. They present both

the projects and the products (the software) to the outside world, and they act as
portals, making it possible for developers (and everyone else) to locate and down-
load all existing information (project documentation, manuals, and news) related
to the projects.

Balancing Anarchy with Control
The infrastructures described above show only few and minor differences

between the two projects. It seems apparent that, for both projects, openness is a
very important principle; only very little information seems to be kept secret, as
illustrated by the following:

• Everyone can download every version of every file;
• Everyone can monitor each file for who made which changes;
• Test results are free for everyone to see; and
• Nearly all newsgroups and mailing lists can be read by everyone.

But there is also a large amount of openness in contributing to the projects:

• Everyone can report bugs;

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Only few newsgroups and mailing lists are moderated; and
• Once you have commit rights, it is technically possible to update any file in

the repository.

The disadvantage of this openness may be the risk that contributions are not
always of a sufficient quality: bug reports may be erroneous, newsgroup postings
may be misleading or irrelevant, and file changes may introduce new bugs. As an
illustrative example, during the week from April 2 to April 9, 2003 (arbitrarily
chosen), a total of 828 bugs related to the Mozilla browser changed their resolution
status as follows:

• 282 (34%) were marked as duplicate, i.e., identical to previously reported
bugs;

• 110 (13%) were marked as invalid, i.e., not a bug;
• 104 (13%) were marked as works for me, i.e., not reproducible; and
• 330 (40%) were marked as fixed.

So, during this week, as many as 60% of the resolved bugs appeared to have
been mis-reported.

But the projects have taken several measures to reduce the risks associated
with poor quality contributions:

• Every change to the repository is logged and reversible; and
• A considerable effort is put into detecting and correcting broken-build situa-

tions as quickly as possible.

In the next sections we will see how the projects’ work organization and process
models also influence the balance between openness and quality control.

WORK ORGANIZATION
Most of the work in both projects takes place in one-man projects; i.e., indi-

vidual developers working on bug-fixes or improvements to the source code in the
repositories. In effect, anyone can contribute to the projects with bug reports or
suggestions for changes; they can do this just once or on a regular basis, and thus
it is not obvious whether these contributors should be considered to belong to the
organization. But both projects also employ several staff and management func-
tions, i.e., people with more permanent positions, including formal authority and
obligations. According to Saers (2003), the FreeBSD project has 18 of these “official
hats,” covering everything from Public Relations to Standards.

In this section, we will only outline the positions that are most important in
relation to our focus on the development models in the two projects.

TLFeBOOK

12 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Top-Level Management
Both Mozilla and FreeBSD are headed by groups comparable to the board of

directors found in traditional organizations. In Mozilla, this group is the Mozilla.org
staff of 11 persons (Mozilla Roles and Responsibilities, 2002): “Mozilla.org staff
members provide the overall guidance for the project. This includes the development
of Mozilla itself, … maintaining a development infrastructure, building community,
assisting potential new developers and creating overall policies and procedures for
the project.” You don’t apply to join the staff, you are asked to join (Mozilla Roles
and Responsibilities): “We anticipate that future staff members will have been
Staff Associate members and probably a Module Owner or Activity Owner as well
before being asked to join mozilla.org staff.”

The FreeBSD project is headed by a 9 person Core Team (The FreeBSD Core
Team, n.d.): “The FreeBSD core team constitutes the project’s ‘Board of Directors,’
responsible for deciding the project’s overall goals and direction as well as manag-
ing specific areas of the FreeBSD project landscape.” In contrast to the Mozilla.
org staff, the FreeBSD Core Team is democratically elected. Election is conducted
every second year by and from the active committers (the ones who have commit-
ted to the tree within 12 months of the election start date), and there is considerable
competition. For example, for the 2002 election, 22 candidates were running for
the nine places.

Release Management
Focusing on the software development process models, the next lower level

in the hierarchy of the two projects is the group of people managing the release
processes.

In Mozilla, this is a team of 13 Drivers that “provide project management for
mozilla.org milestone releases.” Before milestone releases, all check-ins should be
reviewed by one of the drivers, focusing “on the importance of that particular fix
to the milestone release” (Mozilla Roles and Responsibilities, 2002).

In FreeBSD the Release Engineering Team (six persons) is “responsible for
setting release deadlines and controlling the release process” (Committer’s Guide,
2003).

Module Owners
In the Mozilla project, module owners are also part of the formal organizational

hierarchy. A module owner is “… someone to whom mozilla.org staff delegates
leadership of the module’s development …A module owner’s OK is required to
check code into that module” (Mozilla Modules and Module Ownership, 2003). It
can be hard to find a qualified module owner, especially for modules with a low
level of activity, and so these modules may for some time be without an owner.
Module ownership can be shared among several people.

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 13

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

FreeBSD employs module maintainers, in many ways comparable to the Mozilla
module owners (FreeBSD Developers’ Handbook, 2003):

“The maintainer … is responsible for fixing bugs and answering problem reports
pertaining to that piece of the code …Changes to directories which have a maintainer
defined shall be sent to the maintainer for review before being committed.”

FreeBSD seems, however, to have a more relaxed attitude to module owner-
ship. There is an accepted risk that the maintainer may not be active (FreeBSD
Developers’ Handbook):

“Only if the maintainer does not respond for an unacceptable period of time, to
several emails, will it be acceptable to commit changes without review by the
maintainer.”

And it seems to be more like a duty and less like a privilege, compared to
Mozilla (FreeBSD Developers’ Handbook):

“It is of course not acceptable to add a person or group as maintainer unless they
agree to assume this duty. On the other hand it does not have to be a committer and
it can easily be a group of people.”

However, it is suggested that you have the changes reviewed by someone else
if at all possible.

Reviewers
In Mozilla, 29 persons are appointed as super reviewers; one of these must

review most code in-process, i.e., “built with the Mozilla browser/mail/news/editor
application suite” (Eich & Baker, 2002), before it is committed.

In FreeBSD, there seems to be no specially appointed reviewers. Usually the
maintainer, if present, is expected to review code before check-in. As an alternative,
it is recommended to ask for review on the mailing lists.

Committers
A committer is a developer with the right to add or change code in the reposi-

tory. In both projects, you have to demonstrate your competence first, typically by
adding high-quality contributions for some time, before being given CVS write
access. Mozilla has a formal bureaucratic procedure for this, involving a formal
application, acceptance from a voucher (person who already has CVS write access),
and written acceptance from three super reviewers (Getting CVS Write Access to
Mozilla, 2003).

TLFeBOOK

14 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

In FreeBSD, the right to commit to the source code repository is given by the
Core Team. The team does this on the initiative from one or more committers, but
the procedure for this doesn’t seem to be as formal as for Mozilla. A new commit-
ter will be appointed a mentor, i.e., “an experienced committer … responsible for
everything you do in the FreeBSD project … answers your questions, reviews your
patches …” (Lucas, 2002).

Contributors
In contrast to the categories above, there are no formal procedures involved

in becoming a contributor. A contributor is simply someone who in some way has
contributed to the project. You don’t “resign” as contributor, you simply stop con-
tributing. As only committers have access rights to the repositories, a committer
must always approve the work of a contributor and perform the actual changes to
the repository. Historically, more than 1,700 persons have contributed to FreeBSD
(Contributors to FreeBSD, 2003), and approximately 850 persons to Mozilla (Our
Contributors, 2003).

A contributor is free to choose the tasks (i.e., bugs) that seem most attractive
to work on, and websites and documentation in the two projects actively encourage
people to do this. It is also emphasized that you can contribute in many other ways
than through programming, e.g., reporting bugs or writing documentation.

Balancing Anarchy with Control
As Siobhán O’Mahony recently put it (Stark, 2003):

Several projects … are experimenting with this tension now - ‘How much structure
can we impose on volunteers?’ People are intimately aware of the fact that too much
structure will disenfranchise the very people who make the most successful open
source projects possible.

Mozilla and FreeBSD also face this tension, and both have chosen organizations
of work that make it easy for new developers to join the projects. No authorization
is needed in order to read documents and source code, read and post to most mailing
lists and newsgroups, submit bugs, or suggest changes to the repositories.

But both projects also feature a “core” of more formal work organization,
including several levels of hierarchy, a number of staff functions, and a certain
amount of bureaucracy. As a new developer, you have to “work your way up” in
the hierarchy; for example, before becoming a committer or a maintainer, you first
have to show your interest and qualifications by working for some time as a con-
tributor. The degree of formalization seems highest in Mozilla, with more detailed
and extensive rules in relation to review, module ownership, and obtaining com-
mitter status. An important difference between the two organizations can also be
found in their top-level management: the Mozilla.org staff is self-elective, but the

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 15

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

FreeBSD Core Team is democratically elected by and from the committers. These
differences may be related to the Mozilla project’s tight connection with Netscape;
if most developers are employed by the same company, it is probably easier to
mandate strict methods and procedures, and less attractive to perform democratic
election of the top-level management.

RELEASE LEVEL PROCESS MODELS
After having described some of the most important structural elements in the

two projects, namely the technological infrastructure and the organizational hier-
archy, we will now focus on the software process models employed in Mozilla and
FreeBSD. Even though these models are different from, and in some ways more
relaxed than, traditional process models, we will see that the projects are in no way
just letting things go. They put a lot of effort into carefully planning and controlling
the development processes.

In accordance with Sommerville (2001), we will define a software process as
a “set of activities and associated results which lead to the production of a software
product,” and a software process model as an “abstract representation of a software
process.” We will focus on the guidelines, routines, rules, etc., that the projects have
for software development, but also supplement our description with examples from
actual software processes.

In our case studies of FreeBSD and Mozilla, we have been able to identify
process models on two different levels: a release level and a contribution level. The
release level model is used to control and coordinate the process of producing a
new software release on a general level, not describing the work of the individual
developers. The contribution level model, in contrast, is the rather sketchy model for
the development process leading to a new contribution to the software repository.

We will first look at the process models for the “release projects,” i.e., the
projects of producing a new release of the two software products.

Release Model in Mozilla
In Mozilla, these release projects are expected to go through a set of distinct

phases, as illustrated in Figure 2.

1. A six-week period, where even risky changes to the source code are allowed,
leading to an Alpha version of the coming release.

2. A four-week period of stabilization, leading to the Beta version.
3. A three-week period in which only “stop-ship” bugs are found and fixed. From

the start of this period, all changes must be accepted by drivers. After two
weeks, a release branch is made, separating final work on the coming release
from work on the trunk, and effectively marking the start of the next release

TLFeBOOK

16 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

project. If drivers don’t think the release is of satisfactory quality, this branch
may be postponed.

4. It is possible to make changes to a release even after the release date, but this
seldom happens. When it does happen, it is most often when a bug-fix from the
trunk leads to a similar bug-fix in the release branch (called merging). These
changes must still be accepted by drivers.

Figure 2 indicates that Mozilla has only two long-lived branches: the trunk (also
called HEAD) and the 1.0 branch. According to the Mozilla 1.0 manifesto (Eich,
2002), the idea behind the 1.0 branch is to provide a “stable, long-lived, branded
branch,” preferably with near-zero bugs. But, effectively, not much work is going on
in this branch. At present (April 2003), no commits have been made to this branch
during the last three months, so all work is now focused on the trunk.

Release Model in FreeBSD
In FreeBSD, major releases (e.g., going from 4.x to 5.0) are treated differently

from minor releases (e.g., going from 5.0 to 5.1). Major releases are expected to go
through the following timetable, also illustrated in Figure 3.

1. Some months before the expected release date the head branch (CURRENT)
enters a state of slush or feature freeze. From this point, all significant new
features should be discussed with the release engineers before being commit-
ted.

2. One month later, CURRENT enters a state of code freeze. From here on, every
commit must be accepted by the release engineers.

Figure 2: Mozilla’s Spring 2003 milestone schedule (Eich & Hyatt, 2003).

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 17

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

3. After one more month, several important things happen, almost simultane-
ously:

 a. A new branch, eventually leading to the new major release, is made
from CURRENT. Source code in this branch is frozen even harder than
before.

 b. The first release candidate is made as a snapshot of CURRENT.
 c. The source code in CURRENT is thawed, but is still in slush state where

significant changes must be accepted by the release engineers.
4. During the following month, several more release candidates may be re-

leased.
5. Finally, the major release is made as a snapshot of the release branch. After

this release, the source code in the release branch will be somewhat thawed,
but still under control from the release engineers.

6. Eventually, a new RELENG branch is made from CURRENT. This will cause
the source code in CURRENT to become unfrozen and on its way to the next
major release. The new branch, also known as STABLE will lead to the next
minor releases.

Minor releases follow a similar, but simpler timetable.

Comparing the Two Release Models
The project models in the two projects are very similar. One of the key principles

seems to be that new releases should be made as simple snapshots of development
branches. But, in order to do this, it is necessary to put several restrictions on changes
to the development branch in the weeks or months before the release.

During its lifetime, the Mozilla-project has only made one major release
(1.0), but produces minor releases on a regular basis. Each minor release is given
its own branch, but development in this branch is sporadic to non-existent after the
release.

Figure 3: Model for major releases in FreeBSD.

Head branch:

5.0 current Code slush Code freeze

5.0 preview
 2

 5.0 preview
 1

5.0 RC 1

5.0 RC 2

5.0 Release

Code slush

Hard freeze

6.0 current (leading to 6.0)
Releng 5 (leading to 5.1, 5.2 etc.)

Time

Releng 5.0 (leading to 5.0.1, 5.0.2 etc.)

TLFeBOOK

18 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

This is in contrast to FreeBSD, which regularly releases both major and minor
(and even sub-minor, e.g., 4.6.2) releases, and where development in the release
branches will go on for years, merging bug-fixes from CURRENT back into the
release branches. The difference between Mozilla and FreeBSD in this respect is
almost certainly due to the different products. Most users will be able to update
their browsers to a new version very easily and with very little risk, but updating
the operating system on a crucial server is a major, risk-prone task. Therefore, it is
important for system administrators to be able to make, e.g., security updates also
to older versions of the operating system.

Balancing Anarchy with Control
The release models followed in the two projects are based on several years’

experience and try to establish an optimal balance between opposing interests.
Tight control of the source code in the trunk (long and hard freeze periods) will
severely slow down new development and will probably also make contributors
lose motivation, because:

• According to Jørgensen (2001), a key motivational factor for contributors is
to quickly see the results of their work; a frozen tree will inhibit this.

• When the trunk is finally thawed, there will be a large, accumulated need for
commits to the trunk. This will make integration more difficult because many
people will be committing many and large changes in a very short time, thus
resembling “big bang integration,” generally deprecated in software engineer-
ing (Pressman, 1992).

On the other hand, very relaxed control of the source code (short or no freeze
periods) may lead to bug-filled releases, because new and scarcely tested code can
be added to the trunk just before the release.

One way to avoid long freeze periods on the trunk, while still being able to
stabilize and test new releases, would be to let releases branch off early. But, ac-
cording to Walrad and Strom (2002), this “branch-by-release model” has several
drawbacks, including “unnecessary complexity in managing post-release code fixes
and unnecessarily orphaning changes in progress;” drawbacks that may be especially
important in F/OSS projects.

It is important to note that the release plans are the only plans in the two proj-
ects. They define when the different releases shall be made and, to some degree,
the bug-tracking systems define what shall be part of each release. But there are
no plans on more detailed levels, no timetable for the various contributions that
eventually will lead to the next release.

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 19

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

CONTRIBUTION LEVEL PROCESS MODELS
Each contribution to the repository can be seen as the result of a (probably

small) software engineering project. The requirements for this project will often come
from the bug-tracking system, but developers can also specify their own require-
ments—“scratching their personal itch” (Raymond, 2000). Most developers seem
to work more or less alone (Jørgensen, 2001), but each developer may be engaged
in several projects. At any one time, a large number of these “contribution projects”
will go on in parallel, as can be seen by the more than 50 commits being made each
day to each repository. In this section we will describe the process models used in
Mozilla and FreeBSD for these contribution projects.

Contribution Model in Mozilla
The description following is based on information from the Mozilla website,

most importantly The Seamonkey Engineering Bible (2003)4 introduced as “Here
are the things you must do to be an effective contributor and to keep other team
members productive on the project.”

1. Assignment – choosing the task to work on. There is a general recommenda-
tion to “stay focused on the most important problems,” but no explicit, given
task assignments.

2. Development – producing the source code changes. There are no explicit
guidelines for this process, except for a number of required pre-conditions
before actually committing the source code changes to the repository:
a. Accept may be needed by module owners, super-reviewers, drivers, etc.;

and
b. Coding and documentation standards should be respected.

3. Local test – testing the changes with the newest version of the branch, to which
the changes are going to be committed. The required minimum of testing is
very simple. Apart from being able to build, it is only required to test the most
basic functionality: visiting two websites, changing preferences, and sending
and reading an email message. Further, it is recommended to also test ftp and
be able to view the HTML source. The limited amount of testing is explained
by Duddi (1999): “These tests need to be very short so that developers don’t
flinch at the list … the ultimate goal is to prevent the tree from being closed
for verification for long periods.”

4. Check-in – committing the source code changes to the repository. Except for
certain “emergency situations,” commits should only be made when the tree
is open and green.

5. Tinderbox test – being highly available (on the hook) and helping to fix even-
tual errors encountered in the tinderbox tests. When on the hook, a developer
should be “highly available until the tree has a full cycle of green after you[r]
check-ins are completed.” After the first, successful tinderbox build test

TLFeBOOK

20 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

(“green tree”), the developer is only expected to be “semi-available” until
next morning’s verification build.

6. Verification test – again be highly available and help to fix eventual problems
encountered in the daily verification tests.

7. Community test – after a successful verification test, the developer is expected
to still “watch talkback data reports … follow the newsgroup for patches and
suggestions to make your module better.”

Contribution Model in FreeBSD
The main aspects of the contribution model in FreeBSD are very similar to

Mozilla’s, but in some ways FreeBSD takes a more relaxed approach:

• The rules regarding review are more relaxed. There are no super-reviewers in
FreeBSD, only requirements to “discuss any significant change before com-
mitting [author’s emphasis]”, “when in doubt, ask for review,” and “respect
existing maintainers” (The FreeBSD Committers’ Big List of Rules, n.d.).

• There is no daily closing of the tree due to failed tinderbox or verification
testing. Tinderbox testing is only performed twice each day, and there are no
separate verification tests.

• There are no formal rules regarding being available after a commit. Perform-
ing “drive-by commits” is, however, considered very bad behavior.

Comparing the Two Contribution Models
Supplementing the models described above, both Mozilla and FreeBSD have a

number of general guidelines and recommendations for developers, covering aspects
ranging from rules of good conduct, e.g., “Don’t fight in public … it looks bad” (The
FreeBSD Committers’ Big List of Rules, n.d.) to coding style guides.

As can be seen, neither Mozilla nor FreeBSD has any rules regarding the
method or model the developer should follow in his or her contribution project.
There are a number of general guidelines and recommendations, but basically the
only control that can be exercised are the rules for committing to the repository.
For example, the Mozilla project can require all commits to be assigned to a bug,
but the project has no influence on when the developer chooses to assign his or her
contribution to a bug; it may be at the very start of the contribution project or just
before committing.

Neither project requires that design should precede coding, in the sense of writ-
ing, discussing, or approving written design documents prior to coding. Indeed, in
practice, for the individual change there is typically no design document. Thirty-one
of the 72 committers surveyed in FreeBSD responded that they had never distributed
a design document (defined as a separate document, distinct from a source file).

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 21

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Balancing Anarchy with Control
In traditional software engineering, the quality assurance process involves de-

fining or selecting standards for the software development process and the software
product (Sommerville, 2001), but several factors limit the number and rigidity of the
standards Mozilla and FreeBSD can use. The use of rigid process standards would
be difficult or impossible:

• Many projects may be unknown to everyone but the developer himself, until
the result is finally reviewed and committed.

• The large number of parallel projects would make it a huge task to tightly
control each one.

• If the bureaucratic procedures involved in making contributions become too
complicated and time-consuming, there will be a significant risk of losing
developers, especially if they, as Raymond (2000) puts it, are “self-directed
egoists.”

Reducing the potential problem of lacking or relaxed standards may be the fact
that most contribution projects are performed by very small groups (one to three
persons) (Jørgensen, 2001), as this may make “the quality of the development team
… more important than the development process used” (Sommerville, 2001). But a
complete lack of standards and procedures would also not be convenient:

• Too few rules might lead to poor quality code, in the long run making both
users and other developers lose interest and motivation.

• Too little coordination between different contribution projects might lead to
parallel, and eventually wasted, work (two developers working on the same
bug), also making developers lose motivation.

Both projects have chosen a mixture of quite relaxed and quite strict standards.
As examples of the relaxed standards, we will mention:

• No requirement for separate design documentation;
• No requirement to follow a specific model or method;
• Developers can choose their own task; and
• Only very basic tests are required before committing.

On the other hand, the projects also have several, highly enforced rules, e.g.:

• All contributions must go to the trunk: “merge to the tip, merge to the tip,
merge to the tip, and when there are lots of people checking in code, merge
to the tip” (The Seamonkey Engineering Bible, 2003);

• Mozilla in particular has detailed rules for how a “broken-build” situation shall
be handled, including both detailed time schedules and responsibilities.

TLFeBOOK

22 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Instead of relying on a large number of strict quality standards, both projects
have chosen to focus on relatively few, but highly enforced rules for how contribu-
tions shall be made, and for how to handle “broken-build” situations in the repository.
As a substitution for the missing standards, both projects seem to rely more on the
informal communication and coordination taking place in mailing lists, newsgroups,
and chat forums, and in this way develop a “quality culture” where all developers
are committed to achieving a high level of product quality. The openness of F/OSS
projects may contribute to this, as illustrated by Jørgensen’s study (2001) where
86% of the developers agreed that “knowing that my contributions may be read by
highly competent developers has encouraged me to improve my coding skill,” and
one developer added, “Embarrassment is a powerful thing.”

CONCLUSION
In this section, we will summarize important aspects of how the two projects

balance anarchy (avoiding centralized modes of governance and formal organiza-
tion mechanisms, preferring technical autonomy, self-management, and freedom)
with control (planning, organizing, directing, and controlling company resources
to complete specific goals and objectives).

As seen in this chapter both projects have pretty advanced, well-functioning
and well-supported technical infrastructures, including:

• CVS controlled repositories;
• Websites with large amounts of information being continuously updated with

contributions and status information;
• Newsgroups and mailing lists; and
• A number of tinderboxes and verification machines (Mozilla).

It is obvious that developing and maintaining this infrastructure requires some
amount of organization and control over the organization’s resources.

We have also seen that both projects not only rely on self-management, but also
have cores of formal hierarchy and bureaucracy, including top-level management,
release management, module owners, super-reviewers (Mozilla), and several staff
functions. Finding a place in this organization is not up to the individual developer:
only after showing your worth as a contributor will you be promoted to committer,
and the Mozilla organization also formally appoints super-reviewers and members
of Mozilla.org staff. FreeBSD seems to be somewhat less hierarchical than Mozilla,
with fewer formal appointments and a democratically elected management group,
the Core Team.

Around these formal cores, both projects have peripheries with only a few and
simple control mechanisms. Most information is public (source code, test results,
bug reports, discussions on newsgroups and mailing lists) and no or little formal

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 23

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

authorization is needed to report bugs or post to newsgroups and mailing lists.
Also, there appears to be only quite limited control of the contribution projects:
developers can choose whichever task (bug) they want to work on; there are only a
few requirements to follow specific models or methods; design documents are not
mandated; and only rudimentary testing is necessary before changes are committed.
Control of these contribution projects is mostly limited to the step of committing: a
contribution must be reviewed before being committed (especially in Mozilla); only
authorized developers can commit; developers are required to be “on the hook” and
help in solving potential problems with their contributions; and access to commit
is restricted during slush or freeze periods (before releases) and in broken-build
situations, where the tree is closed or red.

Both projects plan and control the processes leading to new software releases;
in particular, FreeBSD has detailed plans for new releases, including well-docu-
mented models, time schedules, and task assignments. Planning and controlling
these processes imply important decisions regarding duration and strictness of freeze
periods, and if and when to make new branches in the repository.

Both projects seem to rely more on requesting contributors to follow “rules of
good conduct,” (often documented on the websites) than technical mechanisms for
control. For example, once you have commit privileges, it appears to be technically
possible to commit changes to any file at any time (even when the tree is closed
or red) without previous testing and review, even though doing this is, of course,
strongly discouraged.

Finding the optimal balance between anarchy and control is a continuous pro-
cess. Recently, long-time members of Mozilla.org staff, Brendan Eich and David
Hyatt (2003), announced a major shift in strategy for the Mozilla project, including
changes in the development model. They explain the reason for the change as:

Simply put: great applications cannot be managed as common land, with whoever
is most motivated in a particular area, or just the last to check in, determining the
piecewise look and feel of the application. … great software is originated by one
or a few hackers building up and leading a larger team of people who test, clean
up, extend, and grow to join or replace the first few.

What they propose is to:

Continue the move away from an ownership model involving a large cloud of hack-
ers with unlimited CVS access, to a model … of vigorously defended modules with
strong leadership and clear delegation … The faux-egalitarian model of CVS ac-
cess and pan-tree hacking that evolved from the earliest days of Mozilla is coming
to an end.

So, in Mozilla, the pendulum now seems to be shifting away from anarchy
and towards control.

TLFeBOOK

24 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

ACKNOWLEDGMENTS
We wish to thank Dag-Erling Smørgrav, Niklas Saers, Stefan Koch, and the

anonymous reviewers for their valuable comments and suggestions for improve-
ments to previous versions of this chapter.

REFERENCES
Anarchism (2003). Britannica Concise Encyclopedia. Retrieved July 18, 2003, from:

http://search.eb.com/ebc/article?eu=380585.
Asklund, U. & Bendix, L. (2002). A study of configuration management in open

source software projects. IEE Proceedings-Software, 149(1), 40-46.
bugs. (2003). Retrieved April 8, 2003, from: http://www.mozilla.org/bugs/.
Committer’s guide. (2003). Retrieved April 21, 2003, from: http://www.freebsd.

org/doc/en/articles/committers-guide/.
Contributors to FreeBSD. (2003). Retrieved May 9, 2003, from: http://www.freebsd.

org/doc/en/articles/contributors/article.html.
Duddi, S. (1999). Pre-checkin tests. Retrieved May 1, 2003, from: http://www.

mozilla.org/quality/precheckin-tests.html.
Eich, B. (2002). Mozilla 1.0 manifesto. Retrieved Nov. 15, 2002, from: http://www.

mozilla.org/roadmap/mozilla-1.0.html.
Eich, B. & Baker, M. (2002). Mozilla “super-review.” Retrieved Dec. 1, 2002,

from: http://www.mozilla.org/hacking/reviewers.html.
Eich, B. & Hyatt, D. (2003). Mozilla development roadmap. Retrieved April 23,

2003, from: http://www.mozilla.org/roadmap.html.
Feller, J. & Fitzgerald, B. (2002). Understanding open source software development.

London: Pearson Education.
Fogel, K. & Bar, M. (2001). Open source development with CVS. Scottsdale, AZ:

Coriolis Group.
Free Software Foundation. (2003). The free software definition. Retrieved July 18,

2003, from: http://www.fsf.org/philosophy/free-sw.html.
The FreeBSD committers’ big list of rules. Retrieved Dec. 1, 2002, from: http://www.

freebsd.org/doc/en/articles/committers-guide/rules.html.
The FreeBSD core team. Retrieved April 21, 2003, from: http://www.freebsd.org/

doc/en/articles/contributors/staff-core.html.
FreeBSD developers’ handbook. (2003). Retrieved April 21, 2003, from: http://www.

freebsd.org/doc/en/books/developers-handbook/index.html.
FreeBSD handbook. (2003). Retrieved April 11, 2003, from: http://www.freebsd.

org/doc/en/books/handbook/index.html.
FreeBSD tinderbox logs. Retrieved May 1, 2003, from: http://www.rtp.freebsd.

org/~des/.
Getting CVS write access to Mozilla. (2003). Retrieved April 22, 2003, from: http://

www.mozilla.org/hacking/getting-cvs-write-access.html.

TLFeBOOK

Do Not Check in on Red: Control Meets Anarchy in Two Open Source Projects 25

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Godfrey, M. W. & Tu, Q. (2000). Evolution in open source software: A case study.
Paper presented at the International Conference on Software Maintenance
(ICSM’00), San José, California.

Hamerly, J., Paquin, T., & Walton, S. (1999). Freeing the source: The story of
Mozilla. In M. Stone (Ed.), Open sources: Voices from the open source revo-
lution. Sebastopol, CA: O’Reilly & Associates.

Healy, K. & Schussman, A. (2003). The ecology of open-source software develop-
ment. Retrieved May 19, 2003, from: http://opensource.mit.edu/papers/healy-
schussman.pdf.

Henkel, J. (2003). Open source software from commercial firms – Tools, comple-
ments, and collective invention. Unpublished manuscript.

Holck, J. & Jørgensen, N. (2003a). Continuous integration as a means of coordi-
nation: A case study of two open source projects. Paper presented at the 12th
International Conference on Information Systems Development (ISD 2003),
Melbourne, Australia.

Holck, J., & Jørgensen, N. (2003b). Overloading the development branch? A view
of motivation and incremental development in FreeBSD. Position paper pre-
sented at the 4th International Conference on Extreme Programming and Agile
Methods (XP 2003), Genoa, Italy.

Jørgensen, N. (2001). Putting it all in the trunk: Incremental software development
in the FreeBSD open source project. Information Systems Journal, 11(4),
321-336.

Jurison, J. (1999). Software project management: The manager’s view. Communica-
tions of the Association for Information Systems, 2(17).

Kerzner, H. (1989). Project management (3rd ed.). Newbury Park, CA: Sage Pub-
lications.

Lakhani, K. R. & von Hippel, E. (2003). How open source software works: “Free”
user-to-user assistance. Research Policy, 32(6), 923-943.

Lucas, M. (2002). How to become a FreeBSD committer. Retrieved April 22, 2003,
from: http://www.onlamp.com/lpt/a/1492.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3), 309-346.

Mozilla modules and module ownership. (2003). Retrieved April 21, 2003, from:
http://www.mozilla.org/hacking/module-ownership.html.

Mozilla release FAQ. (2002). Retrieved April 7, 2003, from: http://www.mozilla.
org/docs/mozilla-faq.html.

Mozilla roles and responsibilities.(2002). Retrieved April 18, 2003, from: http://
www.mozilla.org/about/roles.html.

O’Mahony, S. (2003). Non-profit foundations and their role in community-firm
software collaboration. In J. Feller, B. Fitzgerald, S. Hissam, & K. Lakhani
(Eds.), Making sense of the bazaar: Perspectives on open source and free
software, Sebastopol, CA: O’Reilly.

TLFeBOOK

26 Holck and Jørgensen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Open Source Initiative (2003). The open source definition. Retrieved July 18, 2003,
from: http://opensource.org/docs/definition.php.

Our contributors. (2003). Retrieved May 9, 2003, from: http://www.mozilla.org/
credits/.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability maturity
model, version 1.1. IEEE Software, 10(4), 18-27.

Pressman, R. S. (1992). Software engineering - A practitioner’s approach (3rd
international ed.). New York: McGraw-Hill.

Raymond, E. S. (2000). The cathedral and the bazaar, v. 3. Retrieved April 8, 2003,
from: http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

Saers, N. (2003). A project model for the FreeBSD project. Retrieved May 5, 2003,
from: http://niklas.saers.com/freebsd-model/freebsd-model.html.

The Seamonkey engineering bible. (2003). Retrieved April 21, 2003, from: http://
www.mozilla.org/projects/seamonkey/rules/bible.html.

Sommerville, I. (2001). Software engineering (6th ed.). Harlow, UK: Addison-
Wesley.

Stark, M. (2003). The organizational model for open source. HBS Working Knowl-
edge, July 7. Retrieved August 15, 2003, from: http://workingknowledge.hbs.
edu/pubitem.jhtml?id=3582&t=technology.

Support. Retrieved April 8, 2003, from: http://www.freebsd.org/support.html.
Supported platforms.(2003). Retrieved April 7, 2003, from: http://www.freebsd.

org/platforms/.
tinderbox. Retrieved April 22, 2003, from: http://tinderbox.mozilla.org/showbuilds.

cgi?tree=SeaMonkey.
Walrad, C. & Strom, D. (2002). The importance of branching models in SCM. IEEE

Computer, 35(9), 31-38.
Yeh, C. (1999). Mozilla tree verification process. Retrieved April 11, 2003, from:

http://www.mozilla.org/build/verification.html.
Yin, R. K. (1998). Case study research: Design and methods. Newbury Park, CA:

Sage Publications.

ENDNOTES
1 Free/Open Source Software. We will use this term to cover both Free Software

as defined by the Free Software Foundation (2003), and Open Source Software
as defined by the Open Source Initiative (2003).

2 April 8, 2003: 17,811 active (i.e., new, assigned, or reopened) bugs related to
the Mozilla browser trunk. 2,747 active (i.e., open, analyzed, feedback, patched,
or suspended) bugs for all FreeBSD versions, including obsolete releases.

3 The two systems use slightly different terms and categories.
4 Seamonkey is the codename used in Mozilla for the current Mozilla brows-

er.

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 27

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter II

Analyzing the Anatomy of
GNU/Linux Distributions:
Methodology and Case Studies

(Red Hat and Debian)
Jesús M. González-Barahona, Universidad Rey Juan Carlos, Spain

Gregorio Robles, Universidad Rey Juan Carlos, Spain

Miguel Ortuño-Pérez, Universidad Rey Juan Carlos, Spain

Luis Rodero-Merino, Universidad Rey Juan Carlos, Spain

José Centeno-González, Universidad Rey Juan Carlos, Spain

Vicente Matellán-Olivera, Universidad Rey Juan Carlos, Spain

Eva Castro-Barbero, Universidad Rey Juan Carlos, Spain

Pedro de-las-Heras-Quirós, Universidad Rey Juan Carlos, Spain

ABSTRACT
GNU/Linux distributions are probably the largest coordinated pieces of software
ever put together. Each one is in some sense a snapshot of a large fraction of the
libre software development landscape at the time of the release and, therefore, its
study is important to understand the appearance of that landscape. They are also the
working proof of the possibility of releasing reliable software systems in the range

TLFeBOOK

28 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

of 50-100 millions of lines of code, even when the components of such systems are
built by hundreds of independent groups of developers, with no formal connection
to the group releasing the whole system. In this chapter, we provide some quantita-
tive information about the software included in two such distributions: Red Hat
and Debian. Differences in policy and organization of both distributions will show
up in the results, but some common patterns will also arise. For instance, both are
doubling their size every two years, and both present similar patterns in program-
ming language usage and package size distributions. All in all, this study pretends
to show how GNU/Linux distributions are with respect to their source code, and how
they evolve over time. A methodology of how to make comparable and automated
studies on this kind of distributions is also presented.

INTRODUCTION
Libre software1 provides software engineering with a unique opportunity to

make detailed characterizations of software projects that can be complete, detailed,
and reproducible, since the source code is available for anyone to read. This makes
it possible to build complete models based on public and repeatable studies. Based
on this idea, it seems reasonable to collect data from libre software projects, to start
building up a castle of numbers that can later be used to sustain theories about how
libre software is developed.

In this respect, we have found GNU/Linux2 distributions to be a perfect example
of what to study. During the second half of the 1990s, GNU/Linux distributions
evolved and grew, to the point that at the beginning of the 2000s they include the
most comprehensive, coordinated compilations of libre software. Therefore, when
we study the most representative distributions, we are in fact analyzing a very im-
portant, and representative, subset of the mature libre software available at the time
of the release of such distributions. Answering questions like which languages are
more usual in these distributions, or how is the mean package size evolving, tells
us about how the libre software community is working, and may help us in making
predictions for the future (for instance, “when, if ever, will C++ surpass C as the
most popular language in libre software distributions?”).

What is more important in terms of libre software engineering is the huge size
of these distributions that makes them the state-of-the-art in terms of management of
software aggregates (libre or not). It is really difficult to find coordinated collections
of software of the size usual in GNU/Linux distributions, with complex interdepen-
dences, composed by the results of hundreds of libre software projects (sometimes
coordinated by volunteers, sometimes by companies, or, in many cases, by a mixture
of both), which, when delivered, satisfy the requirements of literally millions of
users worldwide. Understanding with some detail how these distributions are and
how they evolve may help us to understand how this delivery of 50-100 millions

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 29

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

of lines of source code (MLSOC) is possible, and maybe to determine whether the
growth seen during recent years is going to be maintainable. Lessons that could be
useful in other very large software systems (libre or not) could also be learned.

Therefore, when we were developing some methodological approaches to the
problem of studying libre software projects, it seemed natural to study some of the
most representative GNU/Linux distributions and their evolution over time. A lot
has been said about Linux, for example, the huge amount of programs that you get
when you get a Linux CD-set, the extraordinary cumulative effort of thousands of
developers, etc. But we wanted to go a step further—to get actual figures that can
help us to talk in more precise terms. How large are GNU/Linux distributions, and
which packages do they include? Which languages are used for their development?
How large is the estimated effort needed to develop all the included software? How
do all those data evolve over time, and from distribution to distribution? In other
words, the question we wanted to answer is “How are GNU/Linux distributions in
terms of source code analysis?”

While doing such an analyses, we also determined a methodology of how to
perform it, which can be used to make comparative studies. It is based on the mea-
surement of the source lines of code (SLOC) of the files in the distribution being
studied, for several releases, and the data mining on those measurements looking
for the size of the packages, the relative use of several programming languages,
Constructive Cost Model (COCOMO) estimations, etc. In this chapter, we present
such a methodology, complete with some case studies of its application to several
releases of two of the most representative GNU/Linux distributions, Red Hat Linux
and Debian GNU/Linux.

Other work has previously been done on related topics. David A. Wheeler
(2000) was the first to make public a detailed study of a GNU/Linux distribution,
Red Hat Linux 6.2 (later completed with the study of release 7.1 [Wheeler, 2001]),
while González-Barahona et al. (2001; 2003) have studied two releases of Debian.
Most of the details of the methodology proposed in this chapter can be found in
those studies, although they lack most of the evolutionary approach and the formal-
ization of the methodology itself. The data presented here, related to the releases
studied in those papers, has been recalculated (to use exactly the same methods in
all analysis), but obviously is based on them.

Other authors have also studied the details of some libre software projects.
For instance, Mockus, Fielding, and Herbsleb (2002) studied Mozilla and Apache;
Koch and Schneider (2000) studied GNOME; Schach, Jin, Wright, Heller, and Offut
(2002) the Linux kernel; and Godfrey and Tu (2000) looked at the evolution of libre
software projects over time. However, all of them refer to isolated libre software
projects, in the range of 1-5 million SLOC. On the contrary, our study is focused on
collections of software that include the products of hundreds (or thousands) of libre
software projects, with an aggregated size in the tens of millions of SLOC.

The organization of the rest of the chapter is as follows. The next section
describes the fundamentals of Red Hat and Debian distributions. The section

TLFeBOOK

30 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

“Counting Lines of Code” shows the results of counting the code of the studied
releases as a whole, while the following section does the same but for individual
packages, and the section “Counting Languages” for programming languages. The
section “Estimations of Effort” offers some estimations for the releases, using the
COCOMO model, and the section “Comparison with other Systems” compares the
results obtained in our studies to other systems. Then, the chaper presents in detail
the methodology used for this study and ends with a discussion of some conclusions
and possible new lines of research.

DEBIAN AND RED HAT:
TWO KINDS OF GNU/LINUX DISTRIBUTIONS

Red Hat Linux was one of the first commercial GNU/Linux distributions.
Today, it is probably the most well known, and for sure is the one considered as the
“canonical” among the commercial ones. On the other hand, Debian GNU/Linux
was one of the first GNU/Linux distributions put together by a group of volunteers,
and today it is probably the most widely known “non-commercial” distribution.
Both represent very different ways of collecting the software that Linux users want.
Both have very different stories, development models, technical details, goals, and
funding methods. Because of this, it seems reasonable to study at least both cases
when trying to show how GNU/Linux distributions are.

Despite their differences, both Debian GNU/Linux and Red Hat Linux are
distributions in the strict sense of the term; the work done by Red Hat and Debian
developers is mainly related to integration tasks and not to software development.
Of course, Red Hat and Debian may have software developers (on their staff in the
former case or among its contributors in the latter), but this is only secondary for
the goals of the distributions and, of course, for our study. We assume that the work
done by Red Hat and Debian as integrators was just to take the source code pack-
ages (usually the files released by the software authors themselves) and package
them in a way that fulfills certain criteria (both technical and organizational). The
output of this process is a distribution—a set of packages conveniently organized
that will enable the user to install, uninstall, and update them easily.

Distribution makers are also responsible for quality assurance, a very impor-
tant matter considering that many libre software projects are lead by volunteers
(Michlmayr & Hill, 2003). In this respect, they are accountable to their users for
the stability and security of the resulting distribution.

Although Debian and Red Hat are both distribution makers and share the above
characteristics, their respective goals and policies are very different. For instance,
while Red Hat Inc. takes into account marketing parameters to decide what enters
(and in what condition) its distribution, the Debian Project is proud of taking into
account mainly technical excellence. In this respect, while Red Hat distributions
are announced in advance and released on a fairly regular basis (usually around six

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 31

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

months), Debian delivers a release “when it is ready” (which means, among other
things, that critical bugs are below a very low threshold) and announces no explicit
plans about dates for future releases.

From the point of view of their contents, both distributions are also different.
As it will become clear later, Debian distributions are larger (in fact, much larger),
both in number of packages and in total number of lines of source code. This is
reasonable if we consider two factors:

• First is that while Red Hat has to make economic calculations to decide the
effort devoted to a new distribution (which is, of course, dependent on the
number of packages), Debian counts on volunteers who make no such calculus.
The limiting factor in Debian distributions is not economical resources, but
developer’s (volunteer) time and coordination possibilities.

• Second is that Red Hat is targeted to a certain kind of users, and it shows little
interest in maintaining clearly minority pieces of software, while in Debian, it
is usually enough that a given package interests one skilled developer to enter
the distribution.

With respect to the policy on what versions of packages are included, Debian
and Red Hat also display some differences. As a rule of thumb, Debian usually in-
cludes older releases of packages in its releases. In this respect, it is very interesting
to compare Red Hat 6.2, Debian 2.2, and Red Hat 7.1 (see the versions of some
packages included in these distributions in Table 1). The interval between both Red
Hat releases is about one year, while Debian 2.2 was released in the middle of this
interval. Interestingly enough, many of the Red Hat 6.2 packages match the ver-
sion in Debian 2.2 (released about five months later). There are even some cases
where Debian 2.2 contains versions older than those in Red Hat 6.2. An explanation

Table 1: Versions of several packages in Red Hat 6.2, Debian 2.2 and Red Hat
7.1.

Package Version in
Red Hat 6.2

Version in
Debian 2.2

Version in
Red Hat 7.1

Linux 2.2.14 2.2.19.1 2.4.2
xfree86 3.3.6 3.3.6 4.0.3
Gdb 1991004 1990928 20010316
Python 1.5.2 1.5.2 1.5.2
Perl 5.005 5.005 5.6.0
gnome-libs 1.0.55 1.0.56 1.2.8
Apache 1.3.12 1.3.9 1.3.19
Glibc 2.1.3 2.1.3 2.2.2

TLFeBOOK

32 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

for this situation should be researched with detail, but one can argue that it could
be related to the different nature of both distributions3; Red Hat being more com-
mercially-oriented has a bigger motivation for having the latest of the latest, while
the pressure in Debian for such a policy is not that high. In fact, the Debian release
process includes a phase of freezing. During its duration, no new versions enter the
pool of packages that will finally be the stable release; only bug fixes to packages
already in the pool are allowed. This phase may take several months, which means
that newer versions of the packages will not make it into the final release.

All in all, it could be said safely that in a spectrum of GNU/Linux distributions
Red Hat is on one extreme (the commercial one) while Debian is close to the other
(the one of the independent projects). In the following subsection the reader can
find some more details about both distributions.

Red Hat Linux and Red Hat Software, Inc.
Red Hat Software, Inc. was founded in 1994 by Bob Young and Marc Ewing.

Their first goal was to compile and market a GNU/Linux distribution, which was
named (and still is) Red Hat Linux (Young, 1999). It was basically a packaged version
of what was available on the Net at that time, including documentation and support.
During the Summer of 1995, Red Hat Linux 1.0 saw the light. Some months later,
during Fall 1995, version 2.0 was released, including the Red Hat Package Manager
(RPM) technology that later became a de facto standard for GNU/Linux packages4.
In 1998, Red Hat released version 5.2, which was probably the first GNU/Linux
distribution that reached the mass market. For a complete history of Red Hat Linux
releases, see Smoogen (2003).

Before the RPM system came into existence, almost any GNU/Linux distribu-
tion could be installed through a menu-driven procedure, but modifications and, in
particular, additions of software packages after the first installation were not easy.
RPM went a step beyond the state of the art by providing users with “package
management” (Bailey, 1998), which made it simple to remove, install, or upgrade
any of the software packages available in the distribution. The RPM is still the most
used package managing system among GNU/Linux distributions. The statistics
found at DistroWatch (www.distrowatch.com), a site containing information about
the best known distributions, show that in May 2003 a majority of its 118 recorded
databases used the RPM, exactly 65 (55%). On the other hand, the Debian pack-
age manager (known as deb) is only used by 16 distributions, which make up only
14% of the total.

However, Red Hat Software, Inc. is not only known for its software distribution
based on Linux. In August 1999, Red Hat went public, and its shares had the eighth
biggest first-day gain in Wall Street history. In 2003, the value of Red Hat’s shares
is about one-hundredth of the peak value achieved before the dot-com crash, but
the successful start in the stock market made Red Hat front-page news in journals
and magazines not directly related to the computer world. In any case, Red Hat has

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 33

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

managed to overcome the problems that other companies face in the libre software
business, and it announced “black numbers” for the first time in its history for the
last quarter of the year 2002.

Debian GNU/Linux and the Debian Project
Debian is a free (libre) operating system, which currently uses the Linux ker-

nel to put together the Debian GNU/Linux software distribution (although other
distributions based on other kernels, like the Hurd, are expected in the near future).
The distribution is available for several architectures, including Intel x86, ARM,
Motorola 680x0, PowerPC, Alpha, and SPARC.

The core of the Debian distribution (called section “main,” which accounts for
the vast majority of the packages) is composed only of libre software, according to
the Debian Free Software Guidelines (DFSG) (Debian Project, 2003). It is available
on the Net for download, and many redistributors sell it on CDs or other media. The
Debian distribution is put together by the Debian Project, a group of over 900 vol-
unteer developers (Debian Database, 2003; Robles, Scheider, Tretkowski & Weber,
2001) spread around the world, collaborating via the Internet. The work done by
those developers includes adapting and packaging all the software included in the
distribution, maintaining several Internet-based services (web site, on-line archive,
bug- tracking system, support and development mail lists, etc.), several translation
and internationalization efforts, development of tools specific to Debian, and, in a
broad sense, all the infrastructure that makes the Debian distribution possible.

Debian also takes special care to take advantage of the freedom that libre soft-
ware provides to users, i.e., the availability of source code. Because of that, source
packages are carefully crafted for easy compilation and reconstruction of original
(upstream) sources. This makes them also convenient for measuring and, in general,
for getting statistics about them.

More details about the Debian history and Debian distributions can be found
in Debian History (2003) and in Lameter (2002).

COUNTING LINES OF CODE
The number of physical lines of source code (SLOC) is one of the most simple

and widely used techniques for comparing pieces of software. Some well-established
methods for estimating effort and optimum scheduling (notably COCOMO) use this
metric as the basis for their calculations. Therefore, it seems to be a good metric to
apply when estimating the size of GNU/Linux distributions.

For the analysis presented in this chapter, we have measured the SLOC of five
Red Hat Linux distributions (5.2, released in October 1998; 6.0, April 1999; 6.2,
March 2000; 7.1, April 2001; and 8.0, September 2002) and four Debian GNU/Linux
distributions (2.0, released in July 1998; 2.1, March 1999; 2.2, August 2000; and
3.0, July 2002). Those releases represent the main milestones of both distributions

TLFeBOOK

34 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

SLOC for each release

Number of source packages for each release

Figure 1: Size, in SLOC and number of source packages, of the studied distribu-
tions.

Table 2: Size of the Red Hat Linux and Debian GNU/Linux Distributions studied.

Name Release date Source
packages

Size
(MSLOC)

Mean size of packages
(SLOC)

Red Hat 5.2 1998-10 403 12 31,200
Red Hat 6.0 1999-04 433 15 35,500
Red Hat 6.2 2000-03 470 18 39,900
Red Hat 7.1 2001-04 605 32 52,800
Red Hat 8.0 2002-09 792 50 63,000
Debian 2.0 1998-07 1,096 25 22,850
Debian 2.1 1999-03 1,551 37 23,910
Debian 2.2 2000-08 2,611 59 22,650
Debian 3.0 2002-07 4,579 105 22,860

5000

4000

3000

2000

1000

1988 1999 2000 2001 2002

Debian

Red Hat

5000

4000

3000

2000

1000

1988 1999 2000 2001 2002

Debian

Red Hat

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 35

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

during a period of about four years (including all stable releases of Debian and the
most representative releases of Red Hat Linux during that period of time). Therefore,
we can study how Red Hat and Debian have evolved in parallel and make some
comparisons at given points during this period.

In the following sections we analyze and show the SLOC counts for all these
distributions, starting with the aggregated data shown in Table 2 (and briefly dis-
cussed below), and the graphs in Figure 1, which show the evolution of all studied
distributions over time, both in SLOC and in number of source packages.

Counts on Red Hat Distributions
Red Hat Linux 5.2, released in late 1998, included 403 source packages, with

about 12.5 millions physical source lines of code (MSLOC). Red Hat 6.0, released
about six months later, had 30 packages more and about 15 MSLOC. Release 6.2
(about a year later) included 470 source packages, with about 18 MSLOC. Red Hat
7.1, released another year later, included 605 source packages, with more than 32
MSLOC. Finally, release 8.0 (about a year and a half later) has almost 800 source
packages and about 50 MSLOC. All in all, the SLOC found in year 2002 in Red Hat
Linux are roughly four times those found in 1998, which means that it is doubling
in size approximately every two years. The number of packages, on the contrary,
has only doubled after the whole period of four years (which also means that the
mean package size in Red Hat has doubled during that time).

Counts on Debian Distributions
Debian 2.0 included 1,096 source packages, with more than 25 MSLOC. The

next Debian release, 2.1 (delivered by the project about nine months later), had
more than 37 MSLOC in 1,551 different packages. Debian 2.2 (released about
15 months later than Debian 2.1) contained over 59 MSLOC distributed in 2,611
packages. The latest stable release of the Debian GNU/Linux distribution, Debian
3.0 (delivered almost two years after Debian 2.2) grouped 4,579 source code pack-
ages with almost 105 MSLOC. This means that in four years, the size (in SLOC) of
Debian GNU/Linux has increased more than four-fold (doubling every 24 months),
while the number of packages in the distribution follows in general the same growth
pattern. In other words, every two years the Debian Project is incorporating in its
distribution as much code as it had incorporated during its whole previous history.
As will be shown later, it may be also of interest how the mean package size remains
stable during the whole period of the study, close to 23,000 SLOC.

Comparing Debian with Red Hat
The first data that surprised us when we compared Debian GNU/Linux and

Red Hat Linux was how large Debian distributions were compared to those of Red
Hat. For instance, as the reader has probably noticed, Debian 2.2 is roughly twice
the size of Red Hat 7.1 (released about eight months later) and more than three

TLFeBOOK

36 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

times the size of Red Hat 6.2 (released five months earlier). The comparison with
Debian 3.0 is even more interesting. It is more than three times larger (in lines of
code) than Red Hat 7.1 (released about 15 months earlier), and about twice the
size of Red Hat 8.0 (two months later). In addition, to put these comparisons into
context, it is important to notice the long freezing times of Debian, which in the
case of Debian 3.0 accounted for about six months, and which in fact means that
the release date is well delayed with respect to the time when the packages in the
distribution were “frozen.”

It is difficult to know the underlying reasons for these differences, but our
guess is that they reflect differences in the policies of the two distributions. While
Debian usually includes in the distribution any program that meets some quality and
usability criteria, the policy of Red Hat seems to be more restrictive (for instance,
targeted to produce a given number of CDs in the final distribution).

In any case, what is clearly the main factor causing these differences is the
number of packages included in each distribution. In the case of Debian 2.2, for
instance, we have considered more than 2,600 source packages (with a mean of about
21,300 SLOC per package), while Red Hat 7.1 includes only 605 source packages
(almost 53,000 SLOC per package).

Evolution and Trends
It is interesting to note that both Red Hat and Debian are doubling their size

every two years. This means that both distributions included at least as much new
code between 1998 and 2000 than during its whole previous history (in terms of
lines of code). And the same can be said for the period between 2000 and 2002.

In fact, it is actually more than “as much”, since when, for instance, Debian
doubles from less than 60 MSLOC in Debian 2.2 to more than 105 MSLOC two
years later, we have to count as new code not only the obvious difference between
60 and 105, which corresponds to new packages or increments of code size in
packages already present in Debian 2.2, but also all the code in “old” packages that
has changed (i.e., bug fixes, restructuring of code, sometimes whole rewritings of
parts of applications). The changes in code from release to release should of course
be carefully measured (which is not a target of this study), but they certainly add
another good quantity to this doubling rule.

In addition, it could be assumed that at any given time a very large fraction of
all the libre software available for Unix-like systems that is mature and useful to
more than a handful of users is available in the Debian release of that time5. If this
were the case, it could be said, extrapolating the above comments, that every two
years the libre software community is delivering at least as much mature and useful
code as it delivered during its whole previous history.

It should also be considered that the patterns observed in the past could be
maintained in the future. Four years is little time to make extrapolations, but if the
future trend could be extrapolated, the quantity of libre software code in a Debian

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 37

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

release around 2006 would be about 400 MSLOC, reaching the GigaSLOC (GSLOC)
around 2009. In the case of Red Hat, it would include 200 MSLOC around 2006,
and wouldn’t reach the GSLOC until about 2011. But of course, predicting the future
is a risky business, and only detailed future analysis can determine whether these
predictions will become true or not. Maybe libre software development will peak
at a maximum in the near future, or maybe Debian or Red Hat will fail to scale to
these really large sizes, due to coordination (or other) problems.

SIZE OF PACKAGES
Distributions are composed of packages. The team building them decides

when to consider a piece of software as a package, but in most cases they just fol-
low the practices of the original development project (in the sense that when they
deliver a certain software as a “unit,” the distribution considers it as a package). In
the particular case of Debian, there are cases where documentation is set apart in
another package, but that fact has little impact on the size of packages in terms of
SLOC, since those documentation packages usually contain little or no code. Of
course, in this section (and, in general, in the rest of the chapter), we refer to source
packages, which include the source code from which binary programs and libraries
can be built. On the contrary, users are interested usually in binary packages, which
are those found on the installation CDs, for instance. It is important to note that in
many distributions (for instance, in Debian), a given source package can be used to
produce several binary packages. For instance, in Debian 3.0 there are about 4,500
source packages but more than 10,000 binary packages.

Distribution of the Size of Packages
In Figure 2, the size (as aggregated SLOC count for all the source code files

included in it) of all packages in each of the studied distributions is shown.
From these figures, it is obvious that the “shape” of the curve showing the size

of the packages is similar, and that great differences do exist between the larger
packages (in the order of the millions of lines of source code) and the smaller ones
(with roughly hundreds or tens of SLOC, or even zero). The reader should pay
special attention to the fact that the Y axis (representing the size of each package)
is in logarithmic scale.

However, there is an obvious difference between the Red Hat shapes and the
Debian shapes in these figures. While both distributions show a quick decline to
zero in the curves once the count has gone down to under 500 SLOC, the Debian
curve in this area is smoother than Red Hat (which presents almost a step at about
300-400 lines of code (see this effect with more detail in the next figure). The gap
in packages of that size in Red Hat distributions can also be seen in the histograms
presented below. The reasons for this difference can be explained by looking at the
list of packages in both distributions. While Debian includes a good quantity of small

TLFeBOOK

38 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

packages (fewer than 1,000 SLOC), containing scripts, small plug-ins, tiny script-
ing libraries, documentation, etc., Red Hat seems to miss that kind of packages. In
the end, probably we are looking here at the effects of the different policies of both
distributions for selecting packages to include. While in Debian any developer can
include in the distribution his or her petty scripts (if he or she finds them useful for
the users), in Red Hat there are other considerations to be taken into account when
selecting packages.

Figure 2: Distribution of the size of packages in Debian (a) and Red Hat (b) releases.
Packages are ordered by size in the X axis, SLOC count for each is represented in
the Y axis (logarithmic scale).

(a) Debian: Each line corresponds to a release (starting from left: 5.2, 6.2, 7.1, 8.0).

(b) RedHat: Each line corresponds to a release (starting from left: 2.0, 2.1, 2.2, 3.0).

3,1505e+06
1,483e+06

698000
328500
154500
72500
34000
16000
7500
3500
1500

500

0 1000 2000 3000 4000 5000

3,4145e+06
1,5965e+06

746500
349000
163000
76000
35500
16500
7500
3500
1500

500

0 100 200 300 400 500 600 700 800

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 39

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The variations in the size of the packages are possibly more explicit in the his-
togram representing the distributions of package size (see Figure 3 and Figure 4). In
these figures it is clearer how almost all package sizes are below a certain threshold.
It is also clear (both from these figures and from the former ones) how as time passes
this threshold grows up. In general, as we will see below for a selected collection
of packages, there is a certain tendency of any individual package to become larger
and larger, following the Continuing Growth Law of Software Evolution as stated
in Lehman, Ramil, Wenick, Perry, and Turski (1997).

Figure 3: Histogram with the SLOC distribution for Red Hat packages.

(a) Red Hat 5.2

(b) Red Hat 8.0

TLFeBOOK

40 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Mean Size of Packages
When studying the mean size of source packages (total number of SLOC in the

distribution divided by the number of source packages), there are two meaningful
differences between Debian and Red Hat (see data in Table 2).

• While the mean size of packages in Debian distribution is astoundingly regular
(around 23,000 SLOC for Debian 2.0, 2.1, 2.2, and 3.0), during the studied

Figure 4: Histogram with the SLOC distribution for Debian packages.

(a) Debian 2.0

(b) Debian 3.0

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 41

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

period of about four years, the variation in Red Hat was considerable and
monotonically growing (from about 31,000 SLOC in Red Hat 5.2 to 62,000
SLOC in Red Hat 8.0), in roughly the same period. It is difficult to explain this
notable difference, especially the regularity of the Debian mean package, but
a theory can be ventured. Maybe the Debian “ecosystem” is richer, and while
many packages in it are growing, new smaller ones are also entering, with
the neat effect that the mean remains constant. Meanwhile, Red Hat, being
much more selective with regard to what enters the distribution or not, could
be focusing on a given set of packages that become larger over time.

• The mean of Red Hat packages is larger. And not only “a bit” larger; rather,
the mean of the Red Hat package is roughly twice the mean size of the Debian
package. Even in 1998, when the mean Red Hat package was much smaller
than four years later, it was about 40% larger than the mean Debian 2.0 pack-
age. In 2002 this ratio is about one to three. Again, it is difficult to venture
an explanation, and certainly it is related to the previous item, but this also
certainly reflects deep differences in the policies for selecting the packages
that enter the distribution.

Visiting the Largest Packages
It is also insightful to have a look at the largest packages of the distributions.

Most of them are well-known packages with a large history of development and,
in some cases, their developmental model is even documented in several papers.
Studying how they evolve in the studied distributions, their size, etc., can therefore
be meaningful. For this matter, see data offered in Table 3 and Table 4 (only data
related to Debian is included so that evolution over time can be easily followed).
Looking at these tables, some facts can be highlighted:

• There is a lot of movement in the top 10 (the 10 largest packages) in Debian
distributions. Debian 3.0 includes among its 10 largest packages only three
of those included in the same list for Debian 2.0 (released about four years
earlier). Some of this movement is due to newcomers entering directly the
list (as is the case of Mozilla, not present until Debian 3.0). In other cases it is
due to packages that are really aggregations of other packages (as is the case,
for instance, with mingw32, a cross compiler for C/C++ targeted to Win32
executables). However, the ever-growing lower limit of this list is noticeable.
While in Debian 2.0, gcc entered it with not much more than 460,000 SLOC,
the smallest package in the list for Debian 3.0, ncbi-tools (a set of libraries
for biology applications), has more than 700,000 SLOC.

• The largest packages do not only have more source code, they also tend to
have larger source files. While the mean ratio “SLOC per file” for packages
in the top 10 ranges from 332 to 359 (332.69 for Debian 2.0, 351.70 for 2.1,
333.63 for 2.2, and 359.05 for 3.0), the same mean ratio for all packages is

TLFeBOOK

42 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

in the range between 228 and 243 for (228.49 for Debian 2.0, 229.92 for 2.1,
229.46 for 2.2, and 243.35 for Debian 3.0). However, there is a large variance
in this number, ranges from the 138 SLOC per file of egcs (a derivative of
the GNU compiler gcc), version 1.1.2, to the 806 SLOC per file of bigloo (a
Scheme compiling system), version 2.4b.

• There is a general increase in size of the packages in the list of the largest
packages as time passes. Only the largest package of Debian 2.0 would be in
the top 10 for Debian 3.0. This growth is especially curious when considering,

Table 3: Ten largest packages in Debian 2.0.

Table 4: Ten largest packages in Debian 3.0.

Rank Package
name

Version SLOC Files SLOC/
file

1 xfree86 3.3.2.3 1189621 4100 290.15
2 xemacs20 20.4 777350 1794 433.31
3 egcs 1.0.3a 705802 4437 159.07
4 gnat 3.10p 599311 1939 309.08
5 kernel-source 2.0.34 572855 1827 313.55
6 gdb 4.17 569865 1845 308.87
7 emacs20 20.2 557285 1061 525.25
8 lapack 2.0.1 395011 2387 165.48
9 binutils 2.9.1 392538 1105 355.24
10 gcc 2.7.2.3 351580 753 466.91

Rank Package
name

Version SLOC Files SLOC/
file

1 kernel-source 2.4.18 2574266 8527 301.9
2 mozilla 1.0.0 2362285 11095 212.91
3 xfree86 4.1.0 1927810 6493 296.91
4 pm3 1.1.15 1501446 7382 203.39
5 mingw32 2.95.3.7 1291194 6840 188.77
6 bigloo 2.4b 1064509 1320 806.45
7 gdb 5.2.cvs20020401 986101 2767 356.38
8 crash 3.3 969036 2740 353.66
9 oskit 0.97.20020317 921194 5584 164.97
10 ncbi-tools6 6.1.20011220a 830659 1178 705.14

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 43

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

as was shown above, that the mean size of packages in Debian distributions
remains almost constant over time. To balance the larger “largest” packages,
a lot of small ones have to enter each distribution.

From the point of view of application domains, there are no changes in the
landscape from distribution to distribution. System tools (compilers, debuggers),
graphical systems, editors, special-purpose libraries, and web browsers (Mozilla)
are the kind of applications found in the lists of largest packages.

COUNTING LANGUAGES
In the process of measuring the SLOC count of a given source file, the language

in which the file is written is identified. With this identification, very useful statistics
on the use of programming languages in the distribution can be compiled. In this
section, some of these statistics are presented. However, before discussing them, it
is important to note that languages are detected by using heuristics, and therefore
some mistakes can be found if packages are carefully inspected. In any case, after
the inspection of a good number of randomly selected files, it can be said that the
number of errors in the identification of languages is completely negligible for the
purposes of this study.

Most Used Languages
Figure 5 and Figure 6 show pie graphs with the fractions of the most used

languages (according to their absolute SLOC count) in some Red Hat Linux and
Debian GNU/Linux releases. It is important to note how C is the most widely used
language, with percentages between 60% and 85%. Although its evolution in time
is decreasing (as data and figures will show later), its importance within GNU/Linux
distributions cannot be underestimated. This tendency of C to decrease in SLOC
share is clearer in the case of Red Hat, which over the four years of the study shrinks
from a 85% to a mere 62% in Red Hat 8.0 (for Debian, the decrease is from 77%
in 2.0 to 63% in 3.0).

Another fact that can be highlighted is that the diversity in languages used in
the distributions is increasing. With time, the fraction for “other” languages gets
larger and larger, and includes more and more languages. As an example, the list of
languages found in Debian 3.0 with more than 1% of presence is shown in Table 5.
Below the 1% threshold the languages found (in decreasing order) are: PHP, Ada,
Modula3, Objective C, Java, Yacc, and ML (all with percentages between 0.30%
and 0.60%).

The presence of a small quantity of large packages written mainly in a “minor-
ity” language may sometime explain the language’s relatively high position in the
ranking. For instance, taking numbers from Debian 3.0, in the case of Ada, three

TLFeBOOK

44 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Table 5: Most used languages in Debian 3.0.

Figure 5: Pie graph with the count for main languages in some Red Hat distribu-
tions.

Red Hat 5.2 Red Hat 8.0

Figure 6: Pie graph with the count for main languages in some Debian distribu-
tions.

Language SLOC Percentage
C 66,549,696 63.08%
C++ 13,066,952 12.39%
Shell 8,635,781 8.19%
LISP 4,087,269 3.87%
Perl 3,199,436 3.03%
Fortran 1,939,027 1.84%
Python 1,458,783 1.38%
Assembler 1,367,085 1.30%
Tcl 1,080,897 1.02%

other
Shell
C++
LISP

C

other

Shell
Perl

C++
C

Debian 2.0 Debian 3.0

lisp

other

sh

cpp
ansic

other
sh

lisp

cpp

ansic

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 45

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

packages (gnat, an Ada compiler; libgtkada, an Ada binding to the Gtk library;
and Asis, a system to manage Ada sources) account for more than 430,000 SLOC
of the total of about 576,000 Ada SLOC for the whole distribution. In the case of
LISP, emacs and xemacs alone account for more than 1,200,000 SLOC of the total
of about 4,000,000 SLOC for the whole distribution.

Evolution of Language Use Over Time
The graphs in Figure 7 and Figure 8 show the relative growth of some program-

ming languages for Debian. Figure 7 represents the absolute number of SLOC for
the most represented languages, while the latter shows the relative growth of some
languages (taking as a base their SLOC in Debian 2.0).

In Figure 8, it can be seen how, while C quadruplicates the number of SLOC
from Debian 2.0 to Debian 3.0 (which is roughly the growth ratio for the whole
Debian SLOC count during that period), there are other languages whose growth is
more spectacular (mainly scripting languages, such as Perl or Python), while more
traditional languages (LISP, Fortran, Ada) usually show a minor growth rate (with
the notable exception of C++). Not included in this figure are Java and PHP. Espe-
cially for the latter, the growth rate is enormous, but in part due to the fact that their
appearance in Debian 2.0 is rather testimonial (PHP was not so significant in 1998,
while Java had not entered the libre software world by that date). The case of Shell
(the language with more growth in the figure), has to be considered having in mind
that most packages have some Shell code, be it for configuration, for helper scripts,
etc. This means that, in addition to the growth of its use, there is a component of its
evolution directly linked to the number of packages in the distribution.

Figure 7: Evolution of the four mose used languages in Debian distributions.

TLFeBOOK

46 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

When looking at the evolution of main languages, it is clear how C, despite its
growth in absolute terms, is decreasing slowly but continuously, from a percentage
of 76% in Debian 2.0 to 63% in Debian 3.0, four years later. However, C remains,
with great difference, the most used language in GNU/Linux distributions, still far
away from C++ (currently the second language), which in Debian 3.0 amounts
for 12% of the SLOC in the distribution. Therefore, we can safely say that, still
today, C is the name of the game when we come to languages used in GNU/Linux
distributions.

Mean File Size for Different Languages
Table 6 gives us the mean number of lines of source code in a file for several

programming languages. With the exception of Shell, the mean SLOC per file for
a given language has little variations through the different releases, even with high
relative growth rates for all languages. This fact suggests that somehow, common
uses for a given language cause source files to be, usually, of a certain size.

On the other hand, the modularity of a given language can in part be inferred
from these numbers. For instance, C++ has a smaller mean SLOC per file value
than C, probably due to its object-oriented programming paradigm, which could
lead to smaller files. On the other hand, languages such as LISP and Yacc tend to
present very large files. The mean size of SLOC per file also remains pretty stable,
i.e., around 229 for Debian 2.0, 2.1, and 2.2, climbing only to 243 SLOC per file
in Debian 3.0 (in part due to the growth of the mean size of Shell files). Of course,

Figure 8: Relative growth of some programming languages in Debian.

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 47

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

much more detailed studies should be done before attributing this circumstances to
accident or to any non-casual reason.

ESTIMATIONS OF EFFORT
The Constructive Cost or COCOMO model (Boehm, 1981) gives an estimation

of the effort (human and financial) needed to build software of a given size. In fact,
basic COCOMO uses the number of SLOC in the system to estimate the minimum
resources that are needed to build such a system. However, the model used for this
estimation assumes a proprietary (and “classical”) development environment, so it
has to be considered with some care. In any case, COCOMO estimations can give
us at least a good idea of the order of magnitude of the minimum effort that would
have been necessary if a proprietary development model had been used.

Using the SLOC count for the various distributions considered in this chapter, the
results provided by the basic COCOMO model are shown in Table 7. These numbers
assume that all projects were developed independently from the others, something
we could almost state as true in all cases. In the calculation of cost estimation, the
mean salary of full-time system programmers in the year 2000 in the U.S.A. (ac-
cording to Computer World, 2000) was $56,286 USD per year. The overhead factor
used for the COCOMO calculations was 2.4, and the effort estimation used has been
the one for organic projects (which probably gives an underestimation in a lot of
packages, since organic projects are usually relatively small, with a small number
of developers who are already familiar with each other and usually working at the
same location). Wheeler (2001) provides an explanation for why 2.4 was selected
as the overhead factor and some other details on the estimation model used.

A quick look at the numbers shows how, while the total estimated effort for
distributions grows quickly with distribution size, the estimated minimum schedule
grows at a much slower pace. Without going into detail, this can be attributed to the
assumption made that the development is done in parallel for all packages, which

Table 6: Mean file size for several languages.

Language Debian 2.0 Debian 2.1 Debian 2.2 Debian 3.0
C 262.88 268.42 268.64 283.33
C++ 142.5 158.62 169.22 184.22

LISP 394.82 393.99 394.19 383.60
Shell 98.65 116.06 163.66 288.75
Yacc 789.43 743.79 762.24 619.30
Mean 228.49 229.92 229.46 243.35

TLFeBOOK

48 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

means that merely adding more packages does not increment the minimum sched-
ule. Of course, this assumption ignores the integration problems of a distribution
with thousands of packages (which in the case of Debian leads to freezing periods
of several months, devoted mainly to coordination and stabilization of the distribu-
tion as a whole). In addition, it can be observed how some Red Hat releases have a
larger schedule estimation that Debian releases with a much larger size. This is also
because of the parallel development assumption, which means that the schedule for
a release is as large as the schedule of its largest package. And it happens that there
are some packages in some Red Hat releases that are larger than their counterparts
in Debian releases.

From another point of view, more focused on the estimation of economic re-
sources, it can be seen how the estimated cost of both Debian and Red Hat distribu-
tions is doubling, approximately, every two years. As was said before, this estimation
does not take into account the coordination costs that certainly are needed to put
together such distributions, nor the applicability of COCOMO to the development
models used in libre software. However, the estimation of more than $3.6 billion
USD for the development of Debian 3.0 could be a valid indicator of the economic
effort that the libre software community has made to build and compile such a col-
lection of software.

COMPARISON WITH OTHER SYSTEMS
We can put into context the figures offered for Red Hat and Debian by com-

paring them with some estimations of the size given for several well-known and
significant operating systems and office suites.

Table 7: Development effort and total cost estimations for each release.

Name MSLOC Effort
(person-years)

Schedule
(years)

Cost
(Million USD)

Red Hat 5.2 12 3,216 4.93 434
Red Hat 6.0 15 3,951 5.08 533
Red Hat 6.2 18 4,830 5.45 652
Debian 2.0 25 6,360 4.93 860
Red Hat 7.1 32 8,427 6.53 1,138
Debian 2.1 37 9,425 4.99 1,275
Red Hat 8.0 50 13,313 7.35 1,798
Debian 2.2 59 14,950 6.04 2,020
Debian 3.0 105 26,835 6.81 3,625

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 49

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The cited numbers have been reported in Lucovsky (2000) for Windows 2000,
Sun Press Release (2002) for StarOffice 5.2, McGraw (2000) for Windows XP, and
Schneier (2000) for the rest of the systems. The entries in the table are shown ordered
by increasing number of source lines of code. Most of these estimations (in fact, all of
them) are not detailed and cannot be confirmed because of their proprietary nature. It
is also difficult to know what is being considered as a line of code (although in most
cases, it seems that raw lines of source files, including comments, are considered).
However, the estimations should be similar enough to SLOC counting methods to
be suitable for comparison, at the very least in order of magnitude.

Note also that Red Hat and Debian include many applications that in many cases
can be classified under the same category and share the same goals, while Microsoft
and Sun operating systems and office suites are much more limited in this way. If
the usual applications used in those environments were counted together, their size
would be surely much larger. However, it is also true that all those applications are
neither developed nor put together by the same team of developers, as is the case
in Linux-based distributions such as the ones we have seen in this chapter.

From these numbers, it can be seen that Linux-based distributions in general, and
Debian 3.0 in particular, are some of the largest pieces of software ever put together
by a group of developers, during the whole history of software development.

Table 8: Comparison with proprietary systems.

System Release Date Lines of Code
(millions)

Microsoft Windows 3.1 1992-04 3
Sun Solaris 7 1998-10 7.5
Sun StarOffice 5.2 2000-06 7.6
Red Hat Linux 5.2 1998-10 12
Red Hat Linux 6.0 1999-04 15
Microsoft Windows 95 1995-08 15
Red Hat Linux 6.2 2000-03 18
Debian 2.0 1998-07 25
Microsoft Windows 2000 2000-02 29
Red Hat Linux 7.1 2001-04 32
Debian 2.1 1999-03 37
Windows NT 4.0 1996-07 40
Red Hat Linux 8.0 2002-09 50
Debian 2.2 2000-08 55
Debian 3.0 2002-07 105

TLFeBOOK

50 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

SOME NOTES ABOUT THE METHODOLOGY
After showing the most relevant results of how we have applied the SLOC

counting methodology to several Debian and Red Hat releases, in this section we
now summarize the methodology itself. First, the reader can find its general descrip-
tion, with the issues common to all the software measured. Later, the specifics of
how it was applied to Red Hat and Debian are discussed. At the end of the chapter,
some aspects of the methodology are discussed. Some more details (especially on
how we have applied it to Debian 2.2 and Debian 3.0) can be found in González-
Barahona et al. (2001, 2003).

GENERAL DESCRIPTION
In all cases, the source packages corresponding to the release to be studied are

identified and downloaded, and the source directories used by the developers to create
the binary packages are recreated. These processes depend on some peculiarities of
the distribution and are detailed below for the cases of Debian and Red Hat.

Once the source directory is available, the final analysis consists on the collec-
tion of SLOC data and the elaboration of some statistics regarding the total number
of physical SLOC of the release, the SLOC for each package, the SLOC for each
of several programming languages considered, etc. Most of these data have been
calculated using SLOCCount (Wheeler, 2000), completed with some scripts done
by the authors. Therefore, we are providing some details about how it works, which
could be of interest:

• SLOCCount starts by analyzing the source code files, using heuristics to identify
the programming languages used in each of them. With this information, and
for each package, lists are made including the files written in each language.

• For each file, a parser is run, capable of counting the physical lines of code
for the language in which the file is written. With this information, the SLOC
count for each file in the package is completed.

• Once the package is completely measured, aggregated figures are compiled,
including the SLOC count for each language present in the package and for
the whole package. In addition, statistics for a collection of packages can also
be obtained (by package and by language).

• Based on the SLOC counts calculated above, estimations of effort and value,
using the COCOMO model, are computed.

• SLOCCount also allows for the use of several mechanisms to improve the
counting process. For example, MD5 checksums on each file are used to identify
duplicates within a package, or several heuristics are followed to determine
whether a source file was automatically generated by some tool (and therefore
should not be counted as code directly written by a human).

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 51

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• The code in Makefiles and the specifications of packages in RPM packages
are not counted. SLOCCount can count them, but since Makefiles are more
configuration files than actual source code, it seemed more natural not to
consider them.

It is also important to specify what SLOCCount counts as lines of code. The
definition of physical line of code (SLOC) in this context is a line ending in a newline
or end-of-file marker, and which contains at least one non-whitespace non-comment
character. Therefore, comments are not counted. However, in languages where the
identification of a comment is not trivial, heuristics are used (since SLOCCount does
not include complete parsers for these languages), which in some (but anecdotal)
cases may lead to bad identifications.

With the aim of measuring only mature code, we have tried not to consider
beta packages when included in the releases. This is never the case in Debian (since
beta packages do not enter stable releases, by Debian policy), but can happen in
Red Hat. In this case, we have not considered all packages that included the string
“beta” in its name6. Also, with the idea of not measuring any package twice, we
have examined, both in the case of Debian and Red Hat, the list of packages in each
release and when several versions of the same package were found, only the latest
one was counted.

All in all, when referring to the aggregated numbers for the whole release of a
distribution, the counting methodology leads to the size of the mature source code
directly written by the developers in libre software projects contributing their programs
to Red Hat Linux. When referring to packages, the numbers provide information
about the size of the source code of the package as it is within the distribution (that
is, including any patch or modification that may have applied by the maintainer of
the package within the distribution).

To ease the study of the data produced by SLOCCount, a tool has been built to
parse the raw data produced by it and dump it in an XML-formatted file. The final
data mining (including graph and table generation) has also been automated by a
set of scripts that work on the XML files with the data for distributions (sometimes
using them to feed an SQL database that is later queried to get some statistics). The
whole process—from downloading to final data mining—has been automated by
a set of scripts.

Specifics in the Case of Red Hat Releases
The peculiarities when collecting data related to the Red Hat Linux releases

studied in this chapter are summarized by the following:

1. Which source code makes a Red Hat release? For the purposes of this study,
we have used source packages (src.rpm) of Red Hat Linux releases found in
mirrors of ftp.redhat.com, the official repository of Red Hat software, that in-

TLFeBOOK

52 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

clude only the libre software found in Red Hat releases (some Red Hat releases
included also proprietary software). For each release, we have considered only
the packages found in the directory en/os/i386/SRPMS. This basically means
that we have only considered the source packages for the i386 architecture.
Since most source packages are architecture independent, and when they are
not, they are very similar for all supported architectures, this seems a fair
simplification. In addition, it is consistent with the case of Debian, for which
we have not considered source packages specific for a non-i386 architecture
(though this is a really rare case).

2. Downloading and collecting data: Once the repository with the source packages
is chosen, all the files are downloaded and the source directories corresponding
to each are recreated using a two-step process. First, the packages within the
src.rpm file are extracted, including the spec file, with instructions of how to
build the source. Second, using that spec file, the original directory is recreated,
some patches are applied to it (if needed), and some scripts may be run. As
a result, we get the source package that, when compiled, would result in the
binary package one can find in the corresponding Red Hat binary distribution.
This process is done with the help of rpm, the Red Hat packaging tool, in a
Debian machine. After the recreation of the source directory, the SLOC count
of each source file is obtained.

When comparing our criteria on Red Hat to those used by David A. Wheeler
(described in detail in Wheeler, 2000 and 2001), the main difference is that we use
MD5 checksums only to detect duplicates within packages, while Wheeler also
uses them to detect duplicate files in different packages (he counts unique files only
once across the whole distribution). The reasons for this change are both pragmatic
(it was a bit difficult to do when Debian releases were analyzed, due to the huge
quantity of disk space needed) and methodological (we feel that a file in two dif-
ferent and unrelated packages should be counted twice). In any case, the difference
in the counts due to this different consideration is negligible for the purposes of our
study (usually well below 3%, although there are some packages, like GDB, where
it can be as high as 20%).

Details of Debian Data Collection
The particular issues related to the collection of the data related to the Debian

releases are summarized as follows:

1. Which source code makes a Debian release? Source code for current and past
Debian releases is archived and available to everyone on the Internet. For every
release, they reside in the source directory of the Debian archive7. The only
problem is to determine the list of source packages for any given release and
where to access them, which for releases from Debian 2.0 on is not difficult

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 53

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

since a Sources.gz file is present in the source directory, with information
about the source packages for the release, including the files that compose
each package.

2. Downloading and collecting data: Once we know what files to download, we
have to download all of them before being able to gather data. Since the size
of the unpackaged sources for a Debian release is very large, we chose to work
on a per-package basis, gathering all the relevant data from it (mainly, the
number of lines of code) before deleting it and proceeding with the download
of the next one.

Comments on the Methodology
In this study, there are several sources of inaccuracy that can cause some er-

rors when looking into the details, although they should not alter the main picture.
Therefore, remember that the numbers offered in this chapter are just estimations,
especially when they refer to aggregates of packages. The main sources of inac-
curacy are:

• Some SLOC counts on files could be wrong. Although SLOCCount includes
carefully designed heuristics to detect source files to distinguish source lines
from comments and to avoid automatically generated files, those heuristics
do not always work as expected. For instance, analyzing Debian 2.0 with a
recent version of SLOCCount that supports detection and measuring of C#
code throws 352 lines of code for that language, which is impossible taking
into account that C# was not in use at that time. The error in this case is due
to an erroneous identification of C# files and not to a wrong way of counting
SLOCs. In any case, the number of such errors can be considered irrelevant
in the context of many millions of source lines of code.

• Count of physical SLOC and not logical SLOC. The count of physical lines of
code is usually considered as a minimum for estimating the size of a software
package. However, in general this count is also considered as worse than logi-
cal SLOC (which counts sentences of the programming language using, for
instance, terminating semicolons in C). In any case, the decision to measure
physical SLOC mandates the selection of COCOMO instead of COCOMO II
for effort estimation, since the latter needs logical lines of code as input.

In addition to the inaccuracy in data collection, there is another more seri-
ous concern. All the study is based on SLOC counting. However, SLOC is a very
simple measure of the size and complexity of a system. We selected it as the central
measure for our study since it is easy to calculate (even for source code written in
many different languages), well known to the software engineering community,
and can be used directly to estimate efforts using the COCOMO model (simple but
well accepted as an estimator, at least, of the order of magnitude). But SLOC also

TLFeBOOK

54 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

has several problems derived from its simplicity: it may have very different mean-
ings for different languages, shows no clear relationship to the complexity of the
code (which certainly impacts on effort), or pays no attention to design documents,
documentation, etc., to mention just a few. More research is needed to apply other
source code metrics to GNU/Linux distributions and to try to correlate the data they
may provide with the one shown here.

CONCLUSIONS AND FURTHER WORK
In this chapter, we have presented some results of our work on counting the

lines of code in several Debian and Red Hat releases. They can be used to infer the
evolution of Red Hat Linux and Debian GNU/Linux distributions for a period start-
ing in 1998 and ending in 2002. The main similarities and differences between both
distributions have been shown, and a detailed analysis from several points of view
(total size, package by package data, relevance of different languages, estimations
of effort, etc.), has been provided.

In addition to the static analysis of the releases, we have presented a dynamic
study, showing the evolution of several parameters (total distribution size, packages
size, languages used, etc.) over time. Although four years (the observation period
for this study) can be considered a short time, we venture that in the future (or at
least in the near future) the data offered in this study will follow the same pattern
and trends found during this period. If this assumption were true, this study could
also be used for making estimations of how GNU/Linux distributions will be in the
coming years. By extension, they could also be used to predict the development of
the whole ecosystem of libre software for GNU/Linux and Unix-like systems.

Among the more relevant data presented in this chapter is the analysis of total
size of the releases. In the case of Debian 3.0, the largest analyzed (maybe the larg-
est GNU/Linux distribution to date), we found that it is composed of more than
105 millions of SLOC. Using the COCOMO model, this would imply a cost (using
traditional, proprietary software development models) of more than $3.6 billion
USD and an effort of almost 27,000 person-years. We venture that these numbers
are close to reflecting the state of mature and widely used libre software for Linux
and other Unix-like systems around 2002. We have also found that the size of Red
Hat 8.0, the most well-known Red Hat Linux release of 2002, is about half the
size of Debian 3.0, and that the characteristics (e.g., mean size) of the packages
included in both distributions are rather different (although the larger packages are
almost the same). Also, the size of both Red Hat and Debian releases is doubling
every two years.

With respect to the comparison of Red Hat and Debian, the most obvious fact is
that the latter is much larger. It has also been observed how the different policies for
inclusion of packages cause interesting effects in the pattern of the size of packages
and in the mean package size. With respect to this latter number, it is noticeable how

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 55

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

all Debian distributions maintain an almost constant mean value of about 23,000
SLOC per package, despite their great differences in total size, languages used,
number of packages, etc. Whether this is just a coincidence or there is some kind of
constant on the size of packages is something to be researched with more detail.

We have also shown the evolution of the largest packages in the Debian
distribution. These top 10 sets have been shown to varying greatly in time but, in
any case, include larger and larger packages. Research on future distributions are
needed to clarify whether the larger packages are in the system applications domain
(operating system, applications oriented to the software developer, etc.) or whether,
as data in this study may suggest, shift to more end-user targeted applications is
happening.

When looking at the programming languages, the evolution shows a gradual
decline of C. However, it is still the most used language (and it will surely remain
as such in the near future). Scripting languages have a tendency to grow quickly and
are gaining a share in the languages pie, while most traditional, compiled program-
ming languages show a smaller growth rate, even smaller than C. Java and C++
are the exception, both experiencing an important growth. We also point out how,
with some minor exceptions, files written in a given programming language have
an almost constant mean size over time, measured as the number of SLOC per file.
This could be explained through the different characteristics of each language, but
further studies should be done to confirm or deny this hypothesis.

This chapter also includes the description of the methodology used to obtain
all of these measures, which allows for future studies of new releases of the studied
and other distributions. Should those studies conform to the methodology, the re-
sulting numbers could be compared, which will certainly help in the analysis of the
differences and similarities between GNU/Linux and other Unix-like libre software
distributions. In addition, most of the methodology is automated, which will help to
make extensive studies on distributions in the future. Finally, we find it important to
repeat once more that all the data offered are only estimations. However, we believe
they are accurate enough to draw conclusions and to compare with other systems.

REFERENCES
Bailey, E. C. (1998). Maximum RPM - Taking the Red Hat Package Manager to the

limit. Retrieved on January 19, 2004 from: http://rikers.org/rpmbook/.
Bodnar, L. (2003). Linux distributions - Facts and figures. Retrieved on January

19, 2004 from: http://www.distrowatch.com/stats.php?section=packageman
agement.

Boehm, B. W. (1981) Software engineering economics. Englewood Hall, NJ:
Prentice Hall.

TLFeBOOK

56 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Computer World (2000) Salary Survey 2000. In Wheeler, D. A. (2001). More than
a gigabuck: Estimating GNU/Linux’s size. Retrieved on January 19, 2004
from: http://www.dwheeler.com/sloc.

Debian Documentation Team. A brief history of Debian. Retrieved on January 19,
2004 from: http://www.debian.org/doc/manuals/project-history/.

Debian Project. Debian developers database. Retrieved on January 19, 2004 from:
http://db.debian.org.

Debian Project. Debian free software guidelines (part of the Debian social contract).
Retrieved on January 19, 2004 from: http://www.debian.org/social_contract.

Debian Project. Debian GNU/Linux 2.2 release information. Retrieved on January
19, 2004 from: http://www.debian.org/releases/2.2/.

Debian Project. Debian GNU/Linux 2.2, the “Joel ‘Espy’ Klecker” release, is of-
ficially released. Retrieved on January 19, 2004 from: http://www.debian.
org/News/2000/20000815.

Debian Project. Debian policy manual. Retrieved on January 19, 2004 from: http://
www.debian.org/doc/debian-policy/.

Godfrey, M.W. & Tu, Q. (2000). Evolution in open source software: A case study.
In Proceedings of the Intl Conference on Software Maintenance, San José,
California, October, pp. 131-142. Retrieved on January 19, 2004 from:
http://plg.uwaterloo.ca/~migod/papers/icsm00.pdf.

González-Barahona, J.M., Ortuño-Pérez, M. A., de-las-Heras-Quirós, P., Centeno-
González, J., & Matellán-Olivera, V. (2001). Counting potatoes: The size of
Debian 2.2. Upgrade Magazine. 2(6). Retrieved on January 19, 2004 from:
http://upgrade-cepis.org/issues/2001/6/up2-6Gonzalez.pdf.

González-Barahona, J.M., Robles, G., Ortuño-Pérez, M., Rodero-Merino, L., Cen-
teno-González, J., Matellán-Olivera, V., Castro-Barbero, E., & de-las-Heras-
Quirós, P. (2003). Measuring Woody: The size of Debian 3.0. Unpublished.
Will be available at http://people.debian.org/~jgb/debian-counting/.

Koch, S. & Schneider, G. (2000). Results from software engineering research into
open source development projects using public data. Diskussionspapiere zum
Tätigkeitsfeld Informationsverarbeitung und Informationswirtschaft, no. 22.
Wirtschaftsuniversität. Wien, Austria. Retrieved from: http://wwwai.wu-wien.
ac.at/~koch/forschung/sw-eng/wp22.pdf.

Lameter, C. (2002). Debian GNU/Linux: The past, the present and the future. Free
Software Symposium 2002, October 22, 2002. Japan Education Center, Tokyo,
Japan. Retrieved on January 19, 2004 from: http://u-os.org/tokyo/.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., & Turski, W. (1997). Met-
rics and laws of software evolution - The nineties view. 4th International
Symposium on Software Metrics. Albuquerque, NM, November 5-7, 1997.
Retrieved on January 19, 2004 from: http://www.ece.utexas.edu/~perry/work/
papers/feast1.pdf.

TLFeBOOK

Analyzing the Anatomy of GNU/Linux Distributions 57

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Lucovsky, M. (2000). From NT OS/2 to Windows 2000 and beyond - A software-
engineering odyssey. In 4th USENIX Windows Systems Symposium, Seattle,
WA, August 3-4, 2000. Retrieved on January 19, 2004 from: http://www.
usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/.

McGraw, G. (2000). Building secure software: How to avoid security problems
the right way. In Wheeler, D.A. (2001). More than a gigabuck: Estimating
GNU/Linux’s size. Retrieved on January 19, 2004 from: http://www.dwheeler.
com/sloc/.

Michlmayr, M. & Hill, B.M. (2003), Quality and the reliance on individuals in free
software projects. In Proceedings of the 3rd Workshop on Open Source Software
Engineering, Portland, OR, May 3-10, 2003. Retrieved on January 19, 2004
from: http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf.

Mockus, A., Fielding, R.T., & Herbsleb, J.D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(3), 309-346.

Robles, G., Scheider, H., Tretkowski, I., & Weber, N. (2001). WIDI - Who is doing
it? A research on Libre Software developers. Retrieved on January 19, 2004
from: http://widi.berlios.de/paper/study.pdf.

Schach, S., Jin, B., Wright, D., Heller, G., & Offut, A. (2002). Maintainability of
the Linux kernel. IEE Proceedings - Software, 149(1), 18-23. Retrieved on
January 19, 2004 from: http://opensource.ucc.ie/icse2002/SchachOffutt.pdf.

Schneier, B. (2000). Software complexity and security. Crypto-Gram Newsletter,
March 15, 2000. Retrieved on January 19, 2004 from: http://www.schneier.
com/crypto-gram-0003.html.

Smoogen, S.J. (2003). The truth behind Red Hat Names. Retrieved on January 19,
2004 from: http://www.smoogespace.com/documents/behind_the_names.
html.

Sun Microsystems (2000) . Sun Microsystems announces availability of
StarOffice(TM) source code on OpenOffice.org. October 16. Retrieved
on January 19, 2004 from: http://www.collab.net/news/press/2000/openof-
fice_live.html.

Wheeler, D.A. (2000). Estimating Linux’s size. Retrieved on January 19, 2004
from: http://www.dwheeler.com/sloc/.

Wheeler, D.A. (2001). More than a gigabuck: Estimating GNU/Linux’s size. Re-
trieved on January 19, 2004 from: http://www.dwheeler.com/sloc/.

Young, R. (1999). Giving it away. How Red Hat Software stumbled across a new
economic model and helped improve an industry. Retrieved on January 19,
2004 from: http://www.oreilly.com/catalog/opensources/book/young.html.

TLFeBOOK

58 González-Barahona

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

ENDNOTES
1 Throughout this chapter, we use “libre software” as a way of referring both

to free software and open source software. Though open source software and
free software communities are very different, the software is not, since almost
all licenses considered to be “free” are also considered “open source,” and
the other way around.

2 Throughout this chapter, we use the term “Linux” to refer to the kernel, while
software distributions based on it will usually be referred as “GNU/Linux.”

3 Of course, there are other possible explanations that should be taken into ac-
count, the simplest of them being that Red Hat is better at quickly updating
the versions of the packages in its distribution.

4 Since version 1.1 of the Linux Standard base (a specification with the goal
of achieving binary compatibility among GNU/Linux distributions, released
by the Free Standards Group), RPM has been chosen as the standard package
format. The Debian project continues with its own package format, as well as
many other Debian-package-dependent distributions, and complies with the
standardized format by means of a conversion tool called alien.

5 This is of course an unproved assumption that should be backed by more em-
pirical data than is available today. But given the list of packages in Debian
releases and the way they are selected for inclusion (basically, because a Debian
developer finds them useful), it may not be too risky an assumption.

6 Of course, this simple mechanism is not the more strict way of detecting
software still in beta, but it works pretty well for Red Hat releases.

7 ftp://archive.debian.org and mirrors.

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 59

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter III

The Co-Evolution of
Systems and Communities
in Free and Open Source
Software Development

Yunwen Ye, University of Colorado at Boulder, USA
and SRA Key Technology Lab, Japan

Kumiyo Nakakoji, University of Tokyo, Japan

Yasuhiro Yamamoto, University of Tokyo, Japan

Kouichi Kishida, SRA Key Technology Lab, Japan

ABSTRACT
Because a Free and Open Source Software (F/OSS) project is unlikely to sustain a
long-term success unless there is an associated community that provides the plat-
form for developers, users, and user-turned-developers to collaborate with each
other, understanding the well-observed phenomenon that F/OSS systems experi-
ence “natural product evolution” cannot be complete without understanding the
structure and evolution of their associated communities. This chapter examines the
structure of F/OSS communities and the co-evolution of F/OSS systems and com-
munities based on a case study. Although F/OSS systems and communities gener-
ally co-evolve, they co-evolve differently depending on the goal of the system and
the structure of the community. A systematic analysis of the differences leads us to
propose a classification of F/OSS projects into three types: Exploration-Oriented,

TLFeBOOK

60 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Utility-Oriented, and Services-Oriented. Practical implications of realizing the
co-evolution and recognizing the different types of F/OSS projects are discussed to
provide guidance for F/OSS practitioners.

INTRODUCTION
Many definitions exist regarding Free and Open Source Software (F/OSS)

(DiBona, Ockman, & Stone, 1999). The major difference in those definitions comes
from the difference in distribution and re-distribution rights. In this chapter, we use
the term Free and Open Source Software inclusively to refer to those systems that
give users free access to source code, as well as the right to modify it. F/OSS grants
the right to run, read, and change its source code not only to the developers of a
system but to all users—who, in fact, are potential developers. Developers, users,
and users-turned-developers form a community of practice (Lave & Wenger, 1991).
A community of practice is a group of people who are informally bonded by their
common interest and shared practice in a specific domain. Community members
regularly interact with each other for knowledge sharing and collaboration in pursuit
of solutions to a common class of problems. A F/OSS project is unlikely to sustain
long-term success unless there is an associated community that provides the platform
for developers, users, and users-turned-developers to collaborate with each other.

By allowing users to become co-developers, F/OSS encourages natural product
evolution (O’Reilly, 1999). To understand how this natural product evolution hap-
pens, we conducted a case study of four F/OSS projects and systematically exam-
ined their similarities and differences. Our study examines not only the evolution
of F/OSS systems, but also the evolution of the associated F/OSS communities and
the relationship between these two types of evolution.

The case study leads us to the proposition that a strong correlation exists be-
tween the evolution of a F/OSS system and that of its associated community. F/OSS
systems evolve through the contributions made by its community members, and the
contributions made by any member change the role that the member plays in the
community, thus resulting in the evolution of the community by reshaping commu-
nity structure and dynamics. Although F/OSS systems and communities generally
co-evolve, they co-evolve differently depending on the goal of the system and the
structure of the community. The difference results in different evolution patterns
of F/OSS systems and communities. To treat such differences systematically, we
propose to classify F/OSS projects into three types: Exploration-Oriented, Utility-
Oriented, and Service-Oriented. Such a classification provides the basis for finding
better technological and managerial support for a particular F/OSS project.

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 61

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

RELATED WORK
Since the publication of Raymond’s seminal paper on F/OSS (Raymond, 2001),

F/OSS has received enormous attention. Researchers have started analyzing F/OSS
from a variety of perspectives, including its evolutionary path, its development pro-
cess, its collaborative nature, its developer profiles, and its community dynamics.

Godfrey and Tu (2000) analyzed the evolutionary growth of Linux both at
the system level and within the major subsystems. They found that, over the years,
Linux had been experiencing surprisingly super-linear growth, which contradicted
the inverse square growth rate hypothesis (Turski, 1996) that resulted from previous
software evolution research based on the analysis of proprietary software systems.
Most of the growth of Linux, however, came from the addition of new features and
support for new hardware architecture rather than defect fixing.

Dempsey, Weiss, Jones, and Greenberg (2002) have examined the demographic
composition of Linux contributors and found that most contributions come from
only a handful (2.2%) of developers, although thousands of developers worldwide
have made contributions. The set of core contributors shifts over time, enabling the
sustainable development of Linux.

Koch and Schneider (2002) confirmed that a small “inner circle” of developers
was responsible for the development of GNOME, and those developers were also
active participants in the associated mailing lists. The number of active develop-
ers rises quickly at the start-up of the system, but levels off at the point when the
system reaches stability. Parallel programming on a same file is rare, indicating a
high degree of division of labor in F/OSS development.

By examining the development processes of Apache and Mozilla, Mockus,
Fielding, and Herbsleb (2002) have formed several partially verified hypotheses
that are essential for the success of F/OSS. One of their major hypotheses is that a
successful F/OSS project should have a well-balanced developer community: (1)
A relatively small core of developers who control the code base should be able to
produce about 80% or more of the new functionality for an F/OSS system; (2) a
group larger by an order of magnitude than the core should be available for bug fix-
ing; and (3) yet another larger group by another order of magnitude should engage
in testing and reporting problems.

Another thread of research on F/OSS focuses on its self-organizing community
aspect, which distinguishes F/OSS from proprietary software. Moon and Sproull
(2000) pointed out the importance of creating sustainable developer communities,
with the support of both technical and social tools. Technical tools include mail-
ing lists, newsgroups, and source code management systems that facilitate timely
communications among the members and the coordination of distributed work.
Social tools include differentiated roles and learning support. Those roles, with
their corresponding obligations and responsibilities, should be made explicit and
understood by all. Learning support, such as frequently asked questions (FAQs) and
direct question-and-answer interactions within the community, enables newcomers

TLFeBOOK

62 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

to learn directly from more experienced and skilled long-term members, so that
newcomers can progress into becoming skilled developers through informal train-
ing within the community.

Von Krogh, Spaeth, and Lakhani (2003) suggested that the success of an F/OSS
project is related to the growth in the size of the F/OSS developer community.
They analyzed the strategies and processes by which newcomers join an existing
F/OSS community (the Freenet project) and make initial code contributions. They
observed that for a newcomer to become an active developing member, the new-
comer typically follows a “joining script” to go through different levels and types
of activity. Newcomers tend to start with low-level activity that requires less efforts,
then move gradually toward higher level activity as they gain more understanding
of the system and community, until finally obtaining the right of committing code
directly to the system.

SCOPE OF THE CASE STUDY
Software Research Associates, Inc. (SRA) is a leading company in F/OSS

development. SRA has been supporting the Free Software Foundation since 1987,
and is currently involved in the development of a variety of F/OSS systems. We
conducted our case study by interviewing the leaders and members of four F/OSS
teams within SRA: the GNU team, the Linux support team, the PostgreSQL team,
and the Jun team.

Although members of the four teams are employees of SRA, they have started
their involvement with the related F/OSS projects as voluntary participants and
are still participating in F/OSS communities-at-large as individuals. Contrary to
the common belief that all F/OSS developers use their spare time only to code for
F/OSS systems, company-sponsored participation has become a new trend as more
companies start to support F/OSS (Hars & Ou, 2001; Hertel, Niedner, & Hermann,
2003). For these reasons, we believe our study still reflects the overall picture of
F/OSS although its scope is limited to company-sponsored participants.

The GNU Team
The GNU team at SRA supports the development of GNU software both for

clients and for the community-at-large. The team leader started his involvement with
GNU software in 1986 by submitting bug reports to GCC v1.3. Over the years, the
team has ported several GNU systems, including GCC, GAS, and GDB, to three
different platforms for its clients, and all the ports have been contributed back to the
community. In addition to submitting numerous patches to different GNU systems,
the team also helps its clients improve the quality of the patches developed by the
clients and submit the patches back to GNU project leaders. This phenomenon is
caused by the following. Viewing programs as “scientific knowledge to be shared
among mankind,” GNU project leaders execute tight and centralized control over the

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 63

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

incorporation of patches into the official versions of systems to ensure high quality.
This tight control mechanism sets very strict criteria for the quality of patches and
creates a high barrier for newcomers to have their patches incorporated. Patches
improved and submitted by the SRA team are more likely to be noticed and incor-
porated because the team members have collaborated closely with GNU project
leaders for a long time.

The Linux Support Team
The Linux support team provides user support for the Linux operating system,

excluding the Linux kernel. We make this distinction because, similar to GNU, the
development of the Linux kernel is under centralized control, whereas the remainder
of Linux has been developed in the bazaar style (Raymond, 2001) with decentralized
control. In contrast to GNU programs, multiple versions of programs for the same
functionality exist in Linux, especially for device drivers (Godfrey & Tu, 2001),
and many programs are not compatible with others.

A typical task of the SRA Linux support team is to help clients find appropriate
distribution packages and to customize the software or develop patches according to
the specific needs of clients. Surprisingly, the patches that the team develops for its
clients are not contributed back to the community. The team leader explains that the
clients do not care about version updates and prefer to stay with the current version
of the system as long as the system is working, even if new versions are available.
This is very different from the GNU team, in which it is critical that the patches
developed and used at a client’s site get incorporated into the core version.

The PostgreSQL Team
The PostgreSQL team deals with the PostgreSQL database system. Because

robustness is highly desirable in database systems, PostgreSQL is strictly controlled
by the core development team (six members) and the major development team (14
members). Decisions about the development of PostgreSQL are made democratically
by members of the two development teams. The leader of the SRA team belongs
to the major development team.

The primary task of the SRA PostgreSQL team has been internationalization.
The team has developed patches to deal with two-byte code languages, which have
been incorporated into the core version, and the internationalized PostgreSQL is
now the standard distribution. Another task for the team results from the fact that
the software is a database system. For a bug report, it is often required to include
a set of data to reproduce the bug because without the data it is very difficult for
developers to debug. Such data, however, are often proprietary and cannot be made
public. Therefore, many clients ask the SRA PostgreSQL team to debug for them,
ensuring that their data are exposed only to the team rather than the whole com-
munity. The team members then develop patches and contribute them back to the
PostgreSQL community.

TLFeBOOK

64 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

The Jun Team
The Jun team at SRA develops and distributes the Jun library, a Smalltalk and

Java library for 3D objects and multimedia data handling. Different from the three
teams discussed above, this team deals with the software that has been developed
in-house. The source code of Jun, as well as its underlying object model, has been
used by the Jun community. Jun has served as a reference model in the development
of 3D objects and multimedia data handling (Aoki et al., 2001). Almost all of the Jun
system is developed by a small group of programmers in SRA, and the development
process is strictly controlled by the project leader. Although the community does
not contribute much source code, it provides feedback, feature requests, and bug
reports.

ANALYSIS OF THE CASE STUDY
Unlike most previously related studies that focus on either the evolution of

the system per se (Aoki et al., 2001; Godfrey & Tu, 2000) or the dynamics of the
community (von Krogh et al., 2003), we take a broader perspective in our study:
We examine both the evolution of the system and the evolution of the community,
as well as their interrelationship.

Roles and Structure of F/OSS Communities
The right to access and modify source code alone does not set F/OSS projects

apart from proprietary ones because all developers in a project in most software
companies would have the same access privilege. The fundamental difference is
the role transformation of the people involved in a project. In proprietary software
projects, developers and users are clearly defined and strictly separated. In F/OSS
projects, there is no clear distinction between developers and users; all users are
potential developers. Borrowing terms from programming languages, if we think of
developers and users as types, and persons involved in a project as data objects, pro-
prietary software projects are static-binding “languages” in which a person is bound
to the type of developer or user statically, and F/OSS projects are dynamic-binding
“languages” in which a person is bound to the type of developer or user dynamically,
depending on his or her involvement with the project at a given time.

The distinct feature of role transformation in F/OSS projects leads to a different
social structure. People involved in a particular F/OSS project create a community
around the project, bonded by their shared interest in using and/or developing the
system. Members of an F/OSS community assume certain roles by themselves ac-
cording to their individual ability and personal interest, rather than being assigned
roles by someone else. Benkler (2002) claims that this is the distinctive advantage of
F/OSS, because it enables the matching of the best available person to a given job.
Through the case study, we have found that, typically, a member may participate at
a particular time in an F/OSS community in one of the following roles:

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 65

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Project Leader
The project leader is often the person who has initiated the project. The project

leader oversees the direction of the whole project and makes most of the decisions
about system development. Although all other members in a project are free to
contribute and provide feedback, it is up to the project leader to decide which con-
tribution should be included and which feedback should be addressed. Most GNU
systems have a project leader.

Core Member
Core members are responsible for guiding and coordinating, collectively, the

development of a F/OSS project. Core members are those people who have been
involved with the project for a long time and have made significant contributions to
the development of the system. In those projects that have evolved into their second
generation, a single project leader no longer exists, and the core members form a
council to take the responsibility of overseeing the project. For example, PostgreSQL
does not have a single project leader. Instead, it has six core members who collec-
tively decide the direction of the system, and the inclusion of a new feature must be
sponsored by one core member and approved by all other core members.

Active Developer
Active developers regularly contribute new features and fix bugs; they are

one of the major development forces of F/OSS systems and work very closely
with the project leader or core members. The SRA GNU team members are active
developers for GNU projects. PostgreSQL has 14 active developers, who make
up the major development team in the community. Due to the limited amount of
available time, the project leader and core members are not able to deal with all the
contributions and feedback. Therefore, active developers, whose capability is well
regarded and trusted by the project leader and core members and whose number is
not very large, not only contribute their own code but also play, as we have seen in
the SRA GNU team, an intermediary role by (1) improving the code contributed by
less recognized developers, and (2) recommending the code to the project leader
or core members.

Peripheral Developer
Peripheral developers occasionally contribute new functionality or fix bugs.

Their contribution is irregular, and the period of involvement is short and sporadic.
The time that developers spend on a F/OSS project varies greatly, with most devel-
opers spending a rather short time (Koch & Schneider, 2002). The vast majority of
developers make very small contributions. For example, in the GIMP project, 54%
of developers contributed only once or twice (Ye & Kishida, 2003). Similarly, 91%
of Linux developers contributed only one or two items (Dempsey, Weiss, Jones, &
Greenberg, 2002). Most members in the four SRA teams are peripheral developers,
as are the clients of the SRA GNU team who develop patches.

TLFeBOOK

66 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Bug Reporter
Bug reporters discover and report bugs. They do not fix the bugs themselves,

nor do they necessarily read source code. They assume the same role as testers of
the traditional software development model. The existence of many bug reporters
assures the high quality of F/OSS systems because “given enough eyeballs, all bugs
are shallow” (Raymond, 2001). Clients of the SRA PostgreSQL team are mainly
bug reporters.

Reader
Readers are active users of the system. They not only use the system, but also

try to understand how the system works by reading the source code. Given the high
quality of most F/OSS systems, some readers read the systems to learn programming
skills. Because GNU systems are meant to be “scientific knowledge to be shared”
and are developed by very skilled programmers, their source code provides excellent
educational resources for learning. As Michael Tiemann, founder of Cygnus, puts
it: “It was this depth and richness that drove me to want to learn more, to read the
GNU Emacs Manual and the GNU Emacs source code” (Tiemann, 1999: p. 72).
At the same time, readers are also acting as peer reviewers or code inspectors who
put implicit quality pressure on developers. Members of the Jun team pay special
attention to keeping design simple, writing clear and high-quality code, following
strict coding conventions, including documentation, and adding examples to show
how it should be run because they are all aware that programmers worldwide will
see their source code. Another group of readers exists who read a F/OSS system
not for the purpose of improving the system but for understanding its underlying
model and then using the model as a reference to implement similar systems. For
example, the Jun system was used as a reference model by other developers who
implemented a similar system in C++.

Passive User
Passive users use the system in the same way as the users of proprietary soft-

ware. They are attracted to F/OSS mainly due to its high quality and its potential
to be changed when needed.

Not all of these roles exist in all F/OSS communities, and the percentage of each
type varies. Also, different F/OSS communities may use different names for the above
roles. For example, some communities refer to core members as maintainers.

In addition to the above seven types of roles, another group of people is also an
important factor to be considered in F/OSS development. We refer to these people as
stakeholders. They are end-users who use computing services whose implementation
is based on F/OSS systems. Although they are not members of a F/OSS community
as they are not directly involved in using or developing the F/OSS system, they
have stakes in the F/OSS system because they depend on it. As a database system,

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 67

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

PostgreSQL has a huge base of stakeholders. The existence of such stakeholders
has implications on the decision-making process of F/OSS developers, which we
will discuss further later.

Although a formally defined hierarchical structure does not exist in F/OSS com-
munities, the structure of F/OSS communities is not completely flat. The influences
that members have on the system and community are different, depending on the
roles they play. Figure 1 depicts the general layered structure of F/OSS communities,
in which roles closer to the center, or core, have greater influence. In other words,
the activity of a project leader or a core member affects more members than that of
an active developer, who in turn has a larger influence than a peripheral developer,
and so on. Passive users have the least influence, but they still play important roles
in the whole community. Although they do not directly contribute to the develop-
ment of the system technically, their very presence contributes socially and psy-
chologically by attracting and motivating other, more active members, to whom a
large population of users is the utmost reward and compliment of their hard work
(Raymond, 2001). Metaphorically speaking, those passive users play a role similar
to that of the audience in a theatrical performance, which offers value, recognition,
and applause to the efforts of actors.

Each F/OSS community may have a different percentage of each role. In
general, most members are passive users. For example, about 99% of people who
use Apache are passive users (Mockus et al., 2002). The percentage drops sharply
from peripheral developers to core members (Mockus, Fielding, & Herbsleb, 2000;
O’Reilly, 1999).

Figure 1: General structure of a F/OSS community.

bug reporters

readers

passive usersStakeholders

active developersactive developers

project leader /
core members
project leader /
core members

peripheral developers

passive users

stakeholders

TLFeBOOK

68 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Evolution of Systems
F/OSS systems evolve through the contributions of a large number of people.

Different systems, however, have different evolution paths, depending on their
objectives and policies regarding contributions. Any F/OSS developers can change
the source code and share the change with other developers, but the way that the
change is shared differs significantly.

Figure 2 summarizes how evolution takes place in the four projects we have
studied. GNU software aims to have a single version. When people develop patches,
they use dedicated mailing lists and newsgroups to share their patches. The patches
are officially distributed and maintained only after they are incorporated into the
core version by the project leader, who is not “obligated to include every change
that someone asks [him or her] to include.” The project leader checks not only the
functionality enhancement of the patch but also its coding style and convention,
documentation, and quality. Some patches are never incorporated. For this reason,
many clients of the SRA GNU team, who are peripheral developers, ask the team
members, who are active developers, to act as intermediaries to increase the pos-
sibility of patch incorporation.

In the Linux system, there is much less motivation and encouragement to con-
tribute the developed patches back to the core version. Multiple implementations for
the same functionality are allowed, especially in device drivers and in subsystems
that support the features specific to particular CPUs (Godfrey & Tu, 2001). Many
branches evolved from a single program may exist and compete with each other.
Some branches die out eventually due to the lack of attention they receive from
other developers and users. Consequently, the Linux community has a very large
number of peripheral developers (e.g., 91.4% of contributors have contributed only
one or two items (Dempsey et al., 2002)), and parallel evolution is normal in the
Linux system.

Figure 2: Evolutionary paths of the four projects.

incorporate

patch
patch

incorporate

(a) GNU incorporate

incorporate

(b) PostgreSQL

patch patch

patch

(c) Linux

released
public
versions

internal
versions

(d) Jun

incorporate

patch
patch

incorporate

(a) GNU

incorporate

patch
patch

incorporate

(a) GNU incorporate

incorporate

(b) PostgreSQL

incorporate

incorporate

(b) PostgreSQL

incorporate

(b) PostgreSQL

patch patch

patch

(c) Linux

patch patch

patch

(c) Linux

released
public
versions

internal
versions

(d) Jun

released
public
versions

internal
versions

(d) Jun

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 69

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The major evolution of PostgreSQL takes place in the domain of dealing with
new requirements. As new requirements emerge, interested users and developers
debate about the importance and appropriateness of the new requirements. If the
new requirements are deemed desirable after the debate, an active developer will
organize a team to implement them. However, these new implementations will exist
for a relatively long time as patches and are incorporated into the core version only
after (1) they have been repeatedly tested, (2) their quality has been proven, and (3)
they are approved by the core members through voting. During the debate about the
requirements and the incorporation of the patches, the interests of a large number
of stakeholders are constantly considered because the existing services provided by
the systems that are based on PostgreSQL must not be disrupted.

Similar to GNU software, Jun evolves as a single-version tree. However, Jun
differs from GNU software in that it has temporary branches that are created for
internal use and test only and that cannot be accessed by the public. When the proj-
ect leader decides that the system has been sufficiently tested internally, the tested
version is released to public. Jun has evolved through 500 released versions over
the last seven years. The evolution of Jun is driven by both the feedback from the
community and the needs of several large projects that have used Jun. Unlike GNU
in which patches that meet GNU quality control criteria and are approved by the
project leader are directly incorporated into the official version, no patches submitted
by community members are directly incorporated in Jun. The project leader often
completely rewrites the code to assure the conceptual integrity of the system when
he recognizes the ideas behind the submitted patches are worth incorporation. Jun
has also undergone several refactoring processes (Fowler, Opdyke, Roberts, Beck,
& Brant, 1999) that optimize the structure of the system. Therefore, the evolution
of Jun is manifested as both the growth of system size and the restructuring of the
system architecture that sometimes results in the reduction of system size (Aoki et
al., 2001).

Evolution of Communities
A F/OSS community is characterized by its members, the relations among its

members, and the regularities of communication among its members. Therefore, the
evolution of a F/OSS community is driven not only by the entry of new members
and the exit of old members, but also by the role transformation of its members
within the community. As community members change the roles they play in the
community, they also change the social dynamics and reshape the structure of the
community. The role that a F/OSS member plays in the community might con-
stantly change, depending on how much the member wants to get involved and on
how the member’s involvement affects and is perceived by other members. The
role is not preassigned; it is assumed by the member as he or she interacts with
other members. An aspiring and determined member can become a core member

TLFeBOOK

70 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

through the following path or “joining script” as it is called by von Krogh, Spaeth,
and Lakhani (2003).

New members are often attracted to a F/OSS community because the system
can solve one of their own problems. New members start as passive users. While
using the system, they may find a few bugs and report them back to the community,
changing their role from passive users to bug reporters. The depth and richness of
good F/OSS systems often drives motivated members to want to learn more, to
read the system (Tiemann, 1999); in this case, new members migrate from being
passive users to readers. As they gain more understanding of and experience with
the system, they become capable of fixing bugs that either they encounter or are
reported by others. They may also want to add a new twist to the system to make
the system more powerful and more suitable for their own tasks. As their devel-
oped patches are made publicly available and benefited from by other community
members, their roles as peripheral developers are recognized and established in the
whole community. The more contributions they make, the higher recognition they
earn, and finally, they will make into the highly selected “inner circle” of active
developers and core members.

The above path describes an abstract and idealized model of the role transfor-
mation of aspiring members, which is common in all the four of the studied F/OSS
projects. Not all members want to and will become active developers or core mem-
bers. Some will always be passive users, and some will stop in the middle. In fact,
most of the users served by the four teams at SRA remain passive users. Members
of the SRA GNU team and the leader of the SRA PostgreSQL project have become
active developers due to their long-term contributions to their respective commu-
nities. Members of the Linux support team at SRA remain peripheral developers
because they have not contributed very much back to the community. Because all
the development of Jun is conducted in SRA by the project leader and active devel-
opers, the evolution of the community is limited to the two outside layers as shown
in Figure 1, i.e., from passive users to readers or bug reporters.

The evolution of a F/OSS community is thus determined by two factors: (1)
the existence of motivated members who aspire to play roles with larger influence,
and (2) the social mechanism of the community that encourages and enables such
individual role transformation. This is consistent with the community-based learning
theory called Legitimate Peripheral Participation (LPP) (Lave & Wenger, 1991).
In LPP theory, a community of practice evolves by reproducing itself when new
members (i.e., apprentices) gradually establish their identities as fully qualified
members (i.e., masters) in the community. The process of identity establishment is
also a process of learning—not as a result of being taught, but through legitimate
peripheral participation in social, cultural, and technical practices within the com-
munity.

As new members join a F/OSS community, the right to access and change the
source code of the system in collaboration with established members grants them the
legitimate participation in the community. During the collaboration, new members

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

are also given the legitimate access to the knowledge of existing members. At first,
due to their limited capability and knowledge, new members can only peripherally
participate by engaging in small yet authentic tasks, such as bug reporting and bug
fixing. As they gain more experience and knowledge about the system and the com-
munity, new members become competent in undertaking more important tasks, thus
making more contributions to the community. As their skills are gradually recognized
by the community, based on their contributions, they are trusted to perform bigger
and more challenging tasks, and move toward the “inner circle” of the community,
establishing their identity as competent full participants, enjoying better reputation
as skillful developers, and exerting larger influence.

The ontogenetic development of the identity of individual members changes
their relations with the community as well as the relations among other members,
resulting in the evolution, or phylogenic development, as well as the preservation and
reproduction of the collective identity of the community. The collective identity of
a F/OSS community that rests on the shared set of beliefs, knowledge, and practice
is a critical precondition for the smooth, effective, and efficient collaboration dur-
ing the development of the F/OSS system when developers are geographically and
culturally distributed all over the world (Orlikowski, 2002). Because the collective
identity of a community is constituted and reconstituted out of the social process of
interaction among its members (Weick, 1995) and their common practice (Brown &
Duguid, 2000), the collective identity of a F/OSS community can only be conserved
and reproduced through the ontogenetic development of the identities of its new
members, who become, through legitimate peripheral participation, masters who
embody the mature practice and knowledge of the community.

Co-Evolution of Systems and Communities
The evolution of F/OSS systems and the evolution of F/OSS communities

are mutually constituent. In all the four of the studied projects, the evolution of the
F/OSS community results from the contributions made by its aspiring and motivated
members. Such contributions not only evolve the whole community by means of
either transforming the roles of those relatively new contributors or reconstituting
the central roles of those old and active contributors (because roles in a F/OSS
community are not given and static; rather, they are achieved dynamically through
recurrent practice and participation) (Orlikowski, 2002), but also are the sources
for system evolution. The reverse is also true. Any modification, improvement,
and extension made to a F/OSS system—whether it is a bug report, a bug fix, or a
patch—not only evolves the system itself but also redefines or reconstitutes the roles
of the contributing members and thus changes the social dynamics of the F/OSS
community (Figure 3).

For a F/OSS system to have a sustainable development, the system and the
community must co-evolve. A large base of voluntarily contributing members is one
of the most important success factors of a F/OSS system. Without new members

TLFeBOOK

72 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

aspiring to become core members through continuous contributions to the system
and the community, the development of the system will stop when some of the
original core members decide to leave the community or simply stop contributing
their time, knowledge, and services for some reason. Because members participate
in F/OSS development voluntarily, such eventualities are always possible.

GIMP (Gnu Image Manipulation Program; see http://www.gimp.org/) is such
an example. When the original two creators, Peter Mattis and Spencer Kimball, left
college to take jobs, they cut their ties with GIMP because they thought they had
done their services to the community and wanted to move on (HackVan, 1999).
Because almost the entire system had been developed by these two developers, and
at that time there was not a GIMP developer community to pick up immediately
where the two had left off, the system stayed incomplete for more than a year.
The development was resumed later when a community was finally formed (Ye &
Kishida, 2003).

Because the evolution of F/OSS communities and the evolution of F/OSS
systems are mutually dependent, it is essential to the long-term success of F/OSS
development that enough attention should be paid to the creation and maintenance
of a dynamic and self-reproducing F/OSS community. The project leader and core
members of an existing F/OSS community should not only focus on the evolution
of the system, but also strive to create an environment and culture that fosters the
sense of belonging to the community and mechanisms that encourage new members
to move toward the center of the community through continual participation.

THREE TYPES OF F/OSS PROJECTS
Based on the analysis of the case study and the review of available research

literature on F/OSS, we propose to classify F/OSS projects into three different types:

Figure 3: The co-evolution of F/OSS systems and F/OSS communities.

passive usersStakeholderspassive usersStakeholders
Role transformation or reconstitution
through contributions

System
evolution

Community
evolution

Co-evolution

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 73

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Exploration-Oriented, Utility-Oriented, and Service-Oriented. We do not mean that
the three types cover all the F/OSS projects. Our attempt at defining three types
of F/OSS is to create a general understanding that, although all of these systems
are called free or open-source software, differences do exist in primary objective,
control style, system evolution, community structure and evolution.

Exploration-Oriented F/OSS
Exploration-oriented F/OSS projects, represented by GNU software and the

Jun library, aim at pushing the frontier of software development collectively through
the sharing of innovations embedded in freely shared F/OSS systems. This is very
similar to the culture of a scientific research community in which scientific results
are shared through conferences and journals for peer justification, mutual inspiration,
and continued development (DiBona et al., 1999). Due to the epistemic nature of
this F/OSS type, the quality requirements are often very high. Therefore, this type
of software tends to be developed and maintained by expert programmers, such as
project leaders, who keep a tight control over the system to maintain the conceptual
and architectural integrity of the system so it reflects its original design goal.

This type of F/OSS systems evolves mainly at the hand of the project leader,
and contributions made by the community exist as feedback. Direct code contribu-
tions to the system by community members are not frequent because those code
contributions are incorporated only if they are consistent with the ideas of the project
leader (Figure 2(a)). Most community members collaborate with the project leader
as readers, bug reporters, or peripheral developers, who occasionally provide feed-
back and requests for new functionality. Because the project governance style of
this F/OSS type is closer to the cathedral style than to the bazaar style (Raymond,
2001), it is more difficult for community members to move toward the center, and
consequentially a very small number of active developers exists. From the perspective
of the project leader, community members are more like assistant developers who
help inspect, test, and find bugs in the system, rather than equal partners in system
development. The community structure has a definite core, thin middle layers, and
a large periphery. This is very similar to the “surgical team” suggested by Brooks
(1995), with the project leader as the surgeon (or chief programmer), a few active
developers as copilots, and other community members as testers.

Although community evolution in this type of F/OSS projects takes place
mostly at the periphery through providing peer-to-peer assistance in understanding
and using the software, it still provides important driving forces for system evolu-
tion by providing feedback for system improvement. System evolution enabled by
contributions made by community members allows the contributors to develop a
better understanding of the system and a better ability to offer more contributions
in the future.

The success of such F/OSS projects depends greatly on the vision and leader-
ship of the project leader. However, when the vision of the project leader conflicts

TLFeBOOK

74 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

with the needs of the majority of the community members, forking might happen.
A new F/OSS project and community will be spun off the original one and embark
on a similar but different development path. Two typical examples are the spinning
off of EGCS from GCC, and XEmacs from Emacs.

Utility-Oriented F/OSS
Utility-oriented F/OSS projects, represented by the Linux system (excluding

the Linux kernel, which started as an exploration-oriented one and now is a service-
oriented one), aim at filling a void in functionality. Most such F/OSS systems consist
of many relatively independent programs (e.g., device drivers in Linux), and those
programs are developed because the original developers could not find an existing
program that completely met their needs. Rather than waiting for others to provide
the needed functionality, they develop and share their own programs.

As we have observed from the SRA Linux support team, few F/OSS programs
in utility-oriented projects are completely developed from scratch. Most developers
search the Internet for a partial solution and then modify it to their own needs. Their
primary concern is not to use the source code as a way of scientific exploration as
the exploration-oriented F/OSS developers do, but to create a program that can
meet their personal needs, or scratch their personal itch (Raymond, 2001). Because
the development is driven by an individual need, developers are concerned with
developing an operational system rather than delivering a refined solution as in the
exploration-oriented type.

As the program is released for sharing, other users who have a similar problem
will pick it up and either use it as is or modify it further. As we have mentioned
before in the discussion of the SRA Linux support team, the original developers are
not very much concerned if they receive feedback or improvement from potential
users, as long as the current program works to their satisfaction. This type of F/OSS
software development is a typical bazaar style; no centralized control exists. Unlike
the exploration-oriented F/OSS in which forking is rather rare and the evolution of
the system takes place in the form of improving the original system, utility-oriented
F/OSS has a lot of forks, evolving in the form of developing new programs by reus-
ing and modifying existing programs rather than replacing the old programs with
the new ones (Figure 2(c)). This leads to the existence of multiple, often incompat-
ible programs. Programs that implement a similar functionality compete with each
other and evolve simultaneously, but the implementation that wins the most support
in the community will finally excel and eliminate other competing versions. This
evolution pattern can be called tournament style.

One program of the utility-oriented F/OSS may not have an independent com-
munity associated with it. Instead, it often exists within a larger F/OSS community
of the system of which the program is a part. For example, many Linux device driver
developers are a part of the larger Linux community. From the perspective of the larger
F/OSS community, those developers of F/OSS programs are specialized peripheral

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 75

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

developers. Because most such developers only want to develop a program for their
own particular need, they remain peripheral developers, such as the members of the
SRA Linux support team. However, those peripheral developers might also move
on to become active developers or core members if they extend their involvement
beyond their specialized areas and make more general contributions to the whole
system after having demonstrated their mastery in coding through their initial code
contributions in the specialized areas (von Krogh et al., 2003).

The system evolution of the utility-oriented F/OSS is driven by the diversified
needs of, and contributions made by, its community members. Due to the high spe-
cialization of most utility-oriented F/OSS programs, they have a lower entry barrier
that makes it easier for newcomers to join the community as peripheral developers.
As the utility-oriented program will eventually interact with other components of the
larger system, those peripheral developers are also given the opportunity to spread
their efforts into the whole system and establish themselves as active developers or
core members in the larger community.

Service-Oriented F/OSS
Service-oriented F/OSS projects, represented by PostgreSQL and Apache, aim

at providing stable and robust services to all the stakeholders of F/OSS systems. In
a service-oriented F/OSS project, because the population of stakeholders is much
larger than that of the F/OSS community, any changes made to the system have
to be carefully considered so they do not disrupt its provided services, on which
many end-users rely. Therefore, service-oriented F/OSS projects are usually very
conservative against rapid evolutionary changes. It takes four to 11 months for a
major version of PostgreSQL to be released.

In accordance with its conservative nature, the control style of service-oriented
F/OSS is neither cathedral-like nor bazaar-like. Although the cathedral style has
a tight control over the system, it is often controlled by one project leader whose
creative idea may not reflect the best interests of all the stakeholders. On the other
hand, the bazaar style encourages too many rapid changes to provide stable ser-
vices. As we can see in the PostgreSQL community, service-oriented F/OSS is often
collectively controlled by a group of core members, and there is no single project
leader. Any changes are subject to debate by the group and only those changes that
won the support of the majority of the group are incorporated. We call this kind of
control the council style.

Although the control over the development of the F/OSS system is still central-
ized in the council style, it is not controlled by any individual person. The council
is the assembly of core members, who earn their rights by long-time devotion and
contributions to the F/OSS community (Mockus et al., 2002). Furthermore, the
membership of the council is not fixed. Most F/OSS communities of this type have a
mechanism of accepting new council members whose contributions and competence
are well recognized and who are trusted by community members.

TLFeBOOK

76 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Most members of service-oriented F/OSS communities exist as passive users,
while some of them may become bug reporters and peripheral developers as they
report or submit bug fixes back to the community. Active developers emerge when
some big changes are needed, such as the requirements of dealing with the Japa-
nese language in PostgreSQL. Active developers often work with other peripheral
developers to develop a patch for the new requirements, and the patch is finally
incorporated into the official version of the system if it has been widely tested and
approved by core members (Figure 2(b)). The system evolution of service-oriented
F/OSS is contingent on the increase of the size of its user community. As more us-
ers start to use the system, more bugs are reported and more new requirements are
generated. The reported bugs result in the incremental quality improvement of the
system as peripheral developers submit bug fixes. New requirements often result
in major development efforts, generating a new crop of active developers in the
community who can evolve the system further.

PRACTICAL IMPLICATIONS
Realizing that co-evolution of systems and communities is a key to the sustain-

able development of F/OSS projects and recognizing that different types of F/OSS
projects exist have practical implications in managing and developing F/OSS proj-
ects, as discussed here.

Creating Opportunities for Legitimate Peripheral
Participation

F/OSS communities evolve through the legitimate peripheral participation of
new members. The openness of the produced system, the development process,
and the communication among community members is essential to provide new
members with legitimate participation in practice and legitimate access to learning
resources—products and processes—available in the community. Although all F/
OSS communities are open to certain forms of participation and access, the different
control structure inherent in each F/OSS community due to considerations of system
quality creates different degrees of openness that allow legitimate participation and
access of community members.

Table 1 shows the possible combinations of openness in two dimensions: prod-
uct (row) and process (column). In the product dimension, open release means that
only formally released versions are accessible to all community members, and open
development means that all interim versions are accessible. In the process dimen-
sion, closed process means that the discussion of system development is conducted
mostly within the “inner circle,” often through a strictly controlled mailing list that
is not accessible to other members; transparent process means that although only the
“inner circle” is involved in the development process, their discussion is readable by
other members; open process means that development decisions are made in public

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 77

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

space, allowing the participation and access of all interested parties. Encouragement
of broad participation requires the highest degree of openness in both dimensions
because it offers more learning resources and opportunities for participation. However,
it may also reduce the project leader’s control over the system. This conflict needs
to be carefully balanced by those who want to make their systems open source. To
maintain control over the quality, exploration-oriented and service-oriented F/OSS
may not adopt an open process but should make the process at least transparent to
offer more learning opportunities, while utility-oriented F/OSS can have the maxi-
mum openness in both dimensions.

The possibility for newcomers to participate peripherally is another key aspect
in LPP. To attract more users to become developers, the system architecture must
be designed in a modularized way to create many relatively independent tasks with
progressive difficulty so that newcomers can start to participate peripherally and move
on gradually to take charge of more difficult tasks. The way a system is partitioned
has consequences for both the efficiency of parallel development—a prerequisite
for F/OSS—and the possibility of peripheral participation. The success of Linux is
due in large part to its well-designed modularity (Torvalds, 1999).

Another approach to afford peripheral participation is perhaps to intentionally
under-design the system by leaving some non-critical parts unimplemented to fa-
cilitate easy participation. The TODO list of most F/OSS systems creates guidance
for participation. Rather than just listing TODO items, grouping them according
to their estimated difficulty might provide a better roadmap for newcomers to start
participation at the periphery.

Advice for F/OSS Practitioners
Developers at the center of F/OSS communities should strive to create an en-

vironment and culture that encourage and enable newcomers to move toward the
center of the community. It is very important for the community to be responsive
to the questions and contributions of newcomers in order to sustain their interest
and encourage their further participation. Established members should remember
that they are also the learning resources for newcomers. Core members and active
developers of PostgreSQL have devoted a lot of attention to educating newcomers
by writing a flowchart of its modules to outline the purpose of each. One possible

Table 1: Openness of OSS communities.

Open release Open development
Closed process GNU; Jun Apache
Transparent process Tcl/Tk PostgreSQL
Open process GIMP; Linux (excluding kernel)

TLFeBOOK

78 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

mechanism is to have skilled members take turns in the mailing list to answer ques-
tions of newcomers and to help new contributors perfect their code contributions.

People who want to start a F/OSS project need to consider how many op-
portunities for participation it offers and how easy the project is for others to par-
ticipate legitimately and peripherally. A system with a large size and cumbersome
architecture, such as the early version of Mozilla, makes it difficult to attract new
F/OSS participants (Baker, 2000).

Different types of F/OSS projects require different types of efforts to sustain
the continuous evolution of systems and communities. By identifying their projects
with the particular type, F/OSS developers can take appropriate measures to guide
the management and operation of the projects.

The project leader of an exploration-oriented F/OSS should pay extra attention
to the quality and readability of the source code by enforcing strict coding, format-
ting, and documenting conventions so that it can fully fulfill its goal of disseminat-
ing good programming skills and knowledge. To avoid unnecessary fragmentation
of the community resources caused by forking, project leaders need to adapt and
respond to the needs of the community members.

Project leaders of utility-oriented F/OSS do not need to worry too much about
forking. Instead, they need to develop a social mechanism that coordinates and
encourages peer support among the community members and to facilitate the easy
choice of different implementations of the same functionality.

Project leaders or core members of service-oriented F/OSS should always keep
in mind that many stakeholders rely on the stable services the systems provide. The
simple strategy of “release early, release often” (Raymond, 2001) is not the best one
for this type of projects, because less knowledgeable, passive users might pick up
those unstable versions to provide services for their end-users. To balance the con-
flicting needs of both providing stable and robust systems and leveraging the whole
community as testers and code inspectors, developers might consider a two-stage
version release strategy, i.e., releasing beta versions explicitly for testing purposes
while maintaining robust versions simultaneously for passive users.

Changing the Type of F/OSS Projects to Accommodate New
Needs

As the F/OSS system and community evolve over time or the socio-technical
environment for the F/OSS changes, the type of the F/OSS project might need to
change accordingly. Exploration-oriented and utility-oriented types are good for
the initiation of a F/OSS project, while a service-orientation is more suitable for
mature F/OSS projects.

The success of an exploration-oriented F/OSS attracts many followers, who, as
users, will demand stability at some point because they have invested much effort
into the project and have used it to develop systems for end-users. For the benefit
of the F/OSS system itself and the community, it is better for such a project to mu-

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

tate into a service-oriented type; otherwise, the F/OSS community may split or the
F/OSS system may simply be abandoned by most community members, making
the F/OSS project a victim of its own success.

One example that has successfully completed the mutation from an exploration-
oriented F/OSS to a service-oriented one is the Tcl project (http://www.scriptics.
com/). Tcl was initially created in 1988 by John Ousterhout who wanted to explore
a different style of system programming through the creation of a scripting lan-
guage for “gluing” existing applications (Ousterhout, 1998). More than a decade
later, Tcl is now used by thousands of companies and over 500,000 users, often for
mission-critical applications. In the earlier years, Tcl was developed as an explora-
tion-oriented type, with Ousterhout deciding what extensions should be included
based on his own interest and feedback from the community. Since August 2000,
the development of Tcl is at the helm of the Tcl Core Team (TCT); the team is made
up of 14 members who were elected by the Tcl community in recognition of their
long-time devotion and support of Tcl.

Utility-oriented F/OSS projects also need to change into service-oriented ones
at some point. Developers of competing implementations for similar functionality
can join forces to create a team to develop a system collaboratively that can ac-
commodate the different needs of each developer. The Apache project is a typical
example. The project, since it assumed the name of Apache, has been a typical
service-oriented F/OSS project under the control of the Apache Group. However,
the Apache Group was formed because its members felt the need to combine the
competing and overlapping extensions and bug fixes they had developed individu-
ally and simultaneously for the NCSA HTTPd system in a utility-oriented style
(Fielding, 1999).

Exploration-oriented and utility-oriented F/OSS projects experience rapid evo-
lution, mostly in a super-linear fashion (Aoki et al., 2001; Godfrey & Tu, 2000). As
the projects mature into service-oriented ones, the speed of evolution slows down to
a stable growth. A new round of rapid evolution may start again if the stable F/OSS
systems inspire new ideas or new requirements, giving birth to new exploration-
oriented or utility-oriented F/OSS projects.

CONCLUSIONS
We reported a case study of four F/OSS projects that we have conducted to

understand the evolution of F/OSS. We analyzed the evolution of each F/OSS system
and the evolution of its corresponding community. Our analysis has identified both
the similarities and differences among the four projects in terms of their objective,
collaboration model, control style, system evolution, and community structure and
evolution. The similarities among those projects have led us to propose the theory
that F/OSS systems and communities co-evolve, with evolution in one inevita-
bly causing evolution in the other. The differences have prompted a theoretical

TLFeBOOK

80 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

classification of F/OSS projects into three different types: exploration-oriented,
utility-oriented, and service-oriented. Each type requires different strategies to
manage the sustainable evolution of system and community. Practical implications
of recognizing the similarities and differences among the different types of F/OSS
projects are also discussed.

Our theories, developed through qualitative rather than quantitative analysis, are
still at a primitive stage. The goal of this chapter is to provide an initial theoretical
framework for discovering the best strategies to guide the sustainable development
of F/OSS projects by investigating the mutual constituency of system evolution and
community evolution. We are currently conducting quantitative studies of other
F/OSS projects to substantiate our theories (Ye & Kishida, 2003), and we hope that
we have stimulated the interests of some readers to join us in this direction.

REFERENCES
Aoki, A., Hayashi, K., Kishida, K., Nakakoji, K., Nishinaka, Y., Reeves, B., Ta-

kashima, A., & Yamamoto, Y. (2001). A case study of the evolution of Jun:
An object-oriented open-source 3D multimedia library. Proceedings of 23rd
International Conference on Software Engineering (ICSE’01), Toronto, Canada,
pp. 524-533.

Baker, M. (2000). The Mozilla Project and Mozilla.org. Retrieved February 2, 2002
from: http://www.mozilla.org/editorials/mozilla-overview.html

Benkler, Y. (2002). Coase’s Penguin, or Linux and the nature of the firm. Yale Law
Journal, 112(3), 369-446.

Brooks, F. P. J. (1995). The mythical man-month: Essays on software engineering,
20th Anniversary edition. Reading, MA: Addison-Wesley.

Brown, J. S. & Duguid, P. (2000). The social life of information. Boston, MA:
Harvard Business School Press.

Dempsey, B. J., Weiss, D., Jones, P., & Greenberg, J. (2002). Who is an open source
software developer? Communications of the ACM, 45(2), 67-72.

DiBona, C., Ockman, S., & Stone, M. (Eds.). (1999). Open sources: Voices from
the open source revolution. Sebastopol, CA: O’Reilly & Associates.

Fielding, R. T. (1999). Shared leadership in the Apache project. Communications
of the ACM, 42(4), 42-43.

Fowler, M., Opdyke, W., Roberts, D., Beck, K., & Brant, J. (1999). Refactoring:
Improving the design of existing code. Reading, MA: Addison-Wesley.

FSF.GNU Philosophy. Retrieved February 2, 2002 from: http://www.gnu.org/phi-
losophy/philosophy.html.

Godfrey, M., & Tu, Q. (2000). Evolution in Open Source Software: A Case Study.
Proceedings of 2000 International Conference on Software Maintenance, San
Jose, CA, pp. 131-142.

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Godfrey, M. & Tu, Q. (2001). Growth, evolution, and structural change in open
source software. Proceedings of the 4th International Workshop on Principles
of Software Evolution (IWPSE’01), Vienna, Austria, pp.103-106.

HackVan, S. (1999). Where did Spencer Kimball and Peter Mattis go? Retrieved
February 2, 2002, from: http://devlinux.com/.

Hars, A. & Ou, S. (2001). Working for free? - Motivations of participating in open
source projects. Proceedings of the 34th Hawaii International Conference on
System Sciences, Maui, HI, January 3-6, p. 7014.

Hertel, G., Niedner, S., & Hermann, S. (2003). Motivation of software developers
in open Source projects: An Internet-based survey of contributors to the Linux
Kernel. Research Policy, 32(7), 1159-1177.

Koch, S. & Schneider, G. (2002). Effort, co-operation and co-ordination in an
open source software project: GNOME. Informaton Systems Journal, 12(1),
27-42.

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participa-
tion. Cambridge, UK: Cambridge University Press.

Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source software
development: The Apache server. Proceedings of 2000 International Confer-
ence on Software Engineering (ICSE2000), Limerick, Ireland, pp. 263-272.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3), 309-346.

Moon, J. Y. & Sproull, L. (2000). Essence of distributed work: The case of the
Linux kernel. First Monday, 5(11), November, http://firstmonday.org/issues/
issue5_11/moon/index.html.

O’Reilly, T. (1999). Lessons from open source software development. Communica-
tions of the ACM, 42(4), 33-37.

Orlikowski, W. J. (2002). Knowing in practice: Enacting a collective capability in
distributed organizing. Organization Science, 13(3), 249-273.

Ousterhout, J. (1998). Scripting: Higher level programming for the 21st Century.
IEEE Computer, 31(3), 23-30.

Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O’Reilly.

Tiemann, M. (1999). Future of Cygnus Solutions. In C. DiBona, S. Ockman & M.
Stone (Eds.), Open sources: Voices from the open source revolution, pp. 71-
89. Sebastopol, CA: O’Reilly.

Torvalds, L. (1999). The Linux edge. Communications of the ACM, 42(4), 38-39.
Turski, W. M. (1996). Reference model for smooth growth of software systems.

IEEE Transactions on Software Engineering, 22(8), 599-600.
von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and

specialization in open source software innovation: A case study. Research
Policy, 32(7), 1217-1241.

TLFeBOOK

82 Ye, Nakakoji, Yamamoto and Kishida

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Weick, K. (1995). Sensemaking in organizations. Thousand Oaks, CA: Sage.
Ye, Y. & Kishida, K. (2003). Toward an understanding of the motivation of open

source software developers. Proceedings of 2003 International Conference
on Software Engineering (ICSE’03), Portland, OR, pp. 419-429.

TLFeBOOK

The Co-Evolution of Systems in Free and Open Source Software Development 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

SECTION II:

F/OSS Development
and Software

Engineering Practices –
“Extensive Analysis”

TLFeBOOK

84 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Chapter IV

The Role of Modularity
in Free/Open Source

Software Development
Alessandro Narduzzo, Università di Bologna, Italy

Alessandro Rossi, Università di Trento, Italy

ABSTRACT
Software design and development in Free/Open Source projects are analyzed
through the lens of the theory of modularity applied to complex systems. We show
that both the architecture of the artifacts (software) and the organization of the
projects benefited from the paradigm of modularity in an original and effective
manner. In particular, our analysis on empirical evidence suggests that three main
shortcuts to modular design have been introduced and effectively applied. First,
some successful projects inherited previously existing modular architecture, rather
than designing new modular systems from scratch. Second, popular modular sys-
tems, like GNU/Linux kernel, evolved from an initial integrated structure through
a process of evolutionary adaptation. Third, the development of modular software
took advantage of the violation of one fundamental rule of modularity, that is, in-
formation hiding. Through these three routines, the projects can exploit the benefits
of modularity, such as concurrent engineering, division of labor, decentralized and
parallel development; at the same time, these routines lessen some of the problems
posed by the design of modular architectures, namely imperfect decompositions
of interdependent components. Implications and extensions of Free/Open Source
projects experience are discussed in the conclusions.

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

INTRODUCTION
In this chapter we argue that modularity, a well-known paradigm for the de-

sign and the production of complex artifacts (Schilling, 2000), is a key element in
explaining the development and the success of many Free/Open Source (F/OSS)
projects, since it offers a comprehensive explanation of many key issues, such as
how division of labor takes place between developers, how coordination is achieved,
how code testing and integration is deployed and how innovation occurs.

Our reconsideration of the accounts of many F/OSS projects highlights how
they benefited from the typical advantages of implementing modular architectures
(e.g., fast speed of development, recombination of modules, innovation through
projects competition, reuse of previously developed code) (Feller & Fitzgerald,
2000; Hatch, 2001; Jackson, 1998), while, at the same time, many critical pitfalls
typically related to managing modularity (the architectural design of modules and
interfaces) were avoided. Three interrelated strategies, or design shortcuts, appear
to have been particularly effective in this respect.

First of all, the architectural guidelines of many complex systems were clearly
inherited from previously existing modular software projects (see, for instance, the
GNU project and the FreeBSD project, which closely resemble the UNIX architec-
ture). By imitating a well-established architecture, developers were able to avoid
the problems related to the design of modular architectures from scratch, namely,
devising a decomposition of the whole system in independent sub-parts or modules
(as we will see further on, this is not a trivial task).

Secondly, when devising modular architectures that are considerably innovative,
it is not possible to rely on blueprints of existing software; in such cases, another
design shortcut is to think of modularity not in terms of a static and ex-ante design
principle but, rather, as a dynamic activity of problem solving that starts from fairly
interconnected architectures that are repeatedly fine-tuned and reworked, leading
over time to more modular outcomes (“evolving modularization”). In this respect,
we found it useful to analyze the evolution of the GNU/Linux kernel. Conversely,
pursuing full modularity from the beginning may be very risky, and may eventu-
ally lead to serious difficulties (as in the case of the development of the HURD
microkernel).

Finally, F/OSS development style seems to suggest a third effective design
shortcut. While information hiding has been traditionally viewed as the key prin-
ciple guiding both the design and the implementation of modular software artifacts,
F/OSS seems to substantially disregard this principle at the implementation level.
For instance, empirical evidence shows that F/OSS developers systematically im-
prove parts of the project on which they are working by tinkering with the code of
multiple modules, taking advantage of the source availability and of the absence
of code ownership.

Our examination is based on published and unpublished data: interviews and
papers written by key actors, analyses developed by scholars, and quite a large mass
of original documents made available through Internet websites.

TLFeBOOK

86 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

The chapter is organized as follows: The next section surveys some of the most
relevant topics of modularity in management and organization science. Then, it turns
to software development, characterizing modularity as one of the fundamental topic
in the software engineering debate. We then interpret F/OSS development through
the lens of the theory of complex modular system. We summarize the accounts of
specific projects and we advance some stylized facts of F/OSS development. The
final section sketches some reflections on how F/OSS methodologies may fully
benefit from a mindful modular design and suggests how evidence collected by
many F/OSS projects may help in refining both existing theories of modularity and
their practical application to domains different from software production.

MODULARITY
Modularity has been receiving an increasing amount of attention in a variety of

fields, from neuroscience and artificial intelligence to architecture, urban design, and
management (Baldwin &Clark, 2000). Nowadays, a modular approach is applied
to complex projects in R&D, industrial manufacturing, and software engineering,
and modularity has been assumed as a key-concept in the design and production
of a great number of artifacts, both physical (e.g., buildings, cars, furniture) and
immaterial ones (e.g., software) (Schilling, 2000).

This interdisciplinary interest is largely due to the fact that modularity is
regarded as a general property of complex systems, pertaining to the degree of
decomposability of a system in loosely coupled sub-parts made by tightly coupled
components. Literature on modularity emphasizes the importance of structures and
relationships, and the outlined models all rely on an underlying system theory that
provides a comprehensive framework for understanding and pertinently describes
the specific object of study (artifacts, objects, machines, tasks, molecules, spaces,
projects). A modular system is thus represented as a complex of components or
sub-systems, where designers try to minimize and standardize the interdependen-
cies among modules.

Herbert Simon’s (1957, 1981) influence in the way modularity has been con-
ceived is particularly evident. First of all, modularity is often introduced within a
problem-solving framework, and modular design is regarded as a solution to cope
with uncertainty and variability. Second, as in Simon’s analysis of the artificial,
modularity in complex systems regards both goals and hierarchies. Third, modular
solutions are based on problem decomposition; fourth, since complex systems are
not quite entirely decomposable, modular design eventually needs to deal with
residual interdependencies (Simon, 1981).

Modularity in Management and Organization Science
In management and organization science literature, modularity has been intro-

duced as an innovative paradigm in firm manufacturing (Schilling, 2000; Ulrich,

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

1995), organization design (Baldwin & Clark, 2000), and in the theory of the firm
(Langlois, 2002). Modularity provides relevant advantages that have been neatly
identified in the literature. Modularity allows for product variety that is obtained
by recombination (mix and match) of components (Langlois & Robertson, 1992).
Modularity is viewed as a base for differentiation strategies; firms may enrich their
products catalog and adapt to customers’ needs with limited additional costs (Ca-
muffo, 2002). Moreover, modularity also has a great impact on production processes
as it positively affects flexibility, division of labor, and specialization (Devetag &
Zaninotto, 2001).

According to Baldwin and Clark (2000), modularity in production systems is
obtained by following some general rules, originally drawn from computer science
and software development, concerning two different categories of information:
visible and hidden information. Modular systems design needs to specify only the
visible rules, namely, the information about: (a) the definition of the architecture,
(b) interface specifications, and (c) module integration tests. The inner description
of each module (how it works) is concealed from outside—it does not need to be
defined ex-ante or communicated during the process, since module interactions
exclusively follow the rules specified by the interfaces parameters.

Unfortunately, the design of modular complex systems is not as smooth as it has
been described; most of the times, after the integration of the independently devel-
oped modules, inconsistencies surface and the system does not work properly. The
most common reason for this failure is that the decomposition of a complex system
is not a trivial business at all. Most of the times, the activities of decomposition are
suboptimal and result, at best, in a quasi-decomposable architecture where some
degree of interdependency between modules is still at work. As we will see in the
next subsection, residual and unforeseen interdependencies seem to be particularly
relevant in the production of software artifacts.

Modularity in Software Development
The “Power of Modularity” in Software Engineering

The notion of modularity is central in the design and production of software
artifacts, especially for large and complex projects. Since the early days of soft-
ware engineering, the issue of designing, developing, testing, and releasing a large
software project brought into discussion the trade-off between simplicity and speed
of development.

Frederick Brooks (1975), the author of one of the most influential software
project management handbooks, clearly recognized that small sharp teams performed
better than large ones, but they were not sufficiently staffed to deliver large soft-
ware projects under schedule pressure. Conversely, while larger teams potentially
increased the pace of the development process, they also resulted in an overwhelming
need for coordination of individual efforts and in diminishing marginal returns of
manpower on productivity (also known, in the extreme case of negative marginal
returns, as the “Brooks’ Law”).

TLFeBOOK

88 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Brooks’ recipe for coping with the design and the production of complex soft-
ware was to vertically divide labor in order to separate high-level activities (such
as the design of a software artifact) from lower ones (such as the implementation
of code) as much as possible. Then, the implementation of each part of the project
is assigned to small and focused teams (the so called “surgical team”).

In terms of a modern theory of modularity, the basic assumption inside Brooks’
seminal work is that large software projects are integral and non-decomposable sys-
tems, where interactions among parts are nontrivial and generate high communication
and coordination needs. What is clearly overlooked from Brooks’perspective is that
interdependencies may not only be considered as given constraints. As a matter of
fact, the introduction of a fully modular approach in modern software engineering
methodologies has been fostered by the recognition that the degree of interdepen-
dencies may be greatly reduced if a complex software project can be decomposed
in independent subparts, that is, dividing the whole project into smaller components
that are loosely coupled and highly independent on each other (Langlois, 2002; von
Hippel, 1990).

Conceiving the design of a complex software artifact as a modular system
means to apply the basic principle of “information hiding,” originally developed by
Parnas (1972), that prescribes treating software modules as opaque entities whose
relevant information is only available to its inner programmer, while not being ac-
cessible to external programmers. Here, the only information revealed is embedded
in the interfaces, while the information regarding the design and how the module
works is not communicated.

Nowadays, the widespread adoption of object-oriented languages and the
diffusion of component-based development as well other popular trends in soft-
ware engineering seem to have affirmed this information-hiding principle and the
paradigm of modularity as common software practices aimed at speeding up the
development process.

Modularity as a Complex Design Activity:
Managing Unforeseen Interdependencies in Software Modules

A software product architecture may be defined as a mapping of required func-
tions of the product in functional components. The system as a whole is decomposed
in a set of functional modules whose interactions provide the overall functionality of
the system (Sanchez & Mahoney, 1996; Ulrich, 1995). When it comes to the topic
of component interactions, software seems to be a particular artifact with respect to
physical artifacts. Both software engineering literature (Brooks, 1975; Pressman,
2000; Schach, 2002) and empirical case studies of software product development
(Glass, 1997; Solheim & Rowland, 1993) suggest that integrating software com-
ponents may be harder than assembling hardware artifacts.

Brooks’ famous essay on the difficulties of software engineering techniques
in granting improvements in productivity, reliability, and simplicity in developing
software programs describes the fundamental properties of software entities that

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 89

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

may account for the difficulties in separating interdependencies and decompose large
software projects (Brooks, 1986). Software entities differ from physical artifacts
in that their highly nonlinear complexity leads to the impossibility of enumerating
(not to mention understanding) all the possible states of a program. As the size of
a software project increases, it becomes more and more difficult to decompose in-
terdependencies and to design an architecture that preserves the initial conceptual
integrity of the software project by a combination of loosely coupled functional
software components.

As a consequence, the process of modular software design tends to be a faulty
one, where testing, debugging, and integration phases may be much more relevant
in terms of resources needed when compared to the production of physical artifacts.
This is largely due to two intertwined aspects: (a) designers are boundedly rational
decision makers (Simon, 1957), and (b) the nature of interdependencies between
modules is mainly multidimensional and invisible. As a result, the act of decom-
posing a large software project into components is an activity that results, at best,
in a suboptimal outcome; some sources of interdependencies are well determined
and are taken into account in the design of components and interfaces, while oth-
ers are not.

MODULARITY IN F/OSS DEVELOPMENT
Imitating a Previously Existing Design

Modular design of complex systems is a demanding job since all the modules
interfaces have to be defined ex ante. How can designers cope with such degrees
of complexities? One of the lessons coming from the stories of some well-known
F/OSS projects is to take advantage of existing templates, rather than to develop a
brand new project from scratch. The Free Software Foundation (FSF) GNU project
and the FreeBSD operating system project are two relevant instances of this approach
to the modular design of complex artifacts, as their kinship with UNIX operating
system is openly recognized.

UNIX operating system was a milestone in computer software history, and it
is usually described as a highly modular, scalable and portable platform (Gancarz,
1994; Ritchie & Thompson, 1974). The UNIX architecture is a complex and mas-
sively decomposed architecture of independent modules, characterized by high
specialization of programs (“programs that do one thing and do it well”), working
together by means of structures, “pipes”1, and sharing text streams as a fundamental
interface of communication (also known as the “UNIX philosophy” as formulated by
Douglas McIlroy, the inventor of pipes (Salus, 1994)). UNIX was the first modern
operating system not developed using a hardware-dependent assembly language.
The kernel was written in C, ensuring portability to various hardware platforms
(Johnson & Ritchie, 1978; Miller, 1978).

TLFeBOOK

90 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

UNIX highly modular architecture had strong consequences, both at the level
of developers’ coding activities and at the level of users’ experience. Developers
were able, thanks to its modular design, to carry out development of specific parts of
the system in autonomy and without any need to coordinate their efforts with other
sub-projects. Modularity allowed for both parallel development and contribution
of new components; furthermore, the overall design of the system was significantly
improved by the development of innovative modules and competition between similar
projects (Baldwin & Clark, 2000). At the end-user level, modularity invited mere
users to employ mix and match strategies (recombination of different modules), al-
lowing them to generate a wide variety of different implementations of the operating
system where a large part of the modules pertaining to the user space were highly
customizable and were chosen according to specific tastes or needs.

The GNU project, started in 1984 by Richard Stallman, represented at its begin-
ning a titanic effort to offer a free alternative to currently existing commercial and
proprietary operating systems. In this respect, Stallman’s design strategy consisted of
cloning an already existing project—a stable and mature architecture that had been
originally conceived around 15 years before. As suggested by Rosenberg (2000),
“Stallman says that he chose UNIX as his model because that way he would not
have to make any design decisions.”

FreeBSD is another important operating system that deliberately imitated the
architecture of the UNIX operative system. Again, by adopting an existing architec-
ture, the community spent its attention on incremental development rather than on
design discussions (Jørgensen, 2001). To conceive a new operating system charac-
terized by a modular architecture is a challenging cognitive activity of modules and
interface definition. First, the designer needs to conceive a system of modules by
decomposing the whole system in quasi-independent components. Second, failures
in the decomposition phase result in extra costs for fine-tuning and fixing activities
aimed at solving unexpected and unforeseen interdependencies. In this respect, the
FSF and the FreeBSD community were able to consciously handle what, through
the lens of the theory of modularity, is a fundamental trade-off between threats at
the design level and opportunities at the implementation level. As a result, the deci-
sion of establishing the GNU and the FreeBSD projects upon a stable, mature, and
carefully modularized architecture was the key element to benefit from the typical
advantages of modularity (concurrent engineering, division of labor, decentralized
development, innovation via module-based evolutionary dynamics, and much more),
while at the same time avoiding the classic pitfalls and drawbacks of modularity,
concerning the risks of imperfect decomposition in the design of an innovative
modular architecture as the backbone for the project.2

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 91

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Horizontal Division of Labor, Task Interdependencies and
Brooks’ Law

One of the most criticized principles of the otherwise seminal and evocative
essay, “The Cathedral and the Bazaar” (Raymond, 1999), is the one prefiguring
the demise of Brooks’ Law within F/OSS development. This view is supported by
a reductio ad absurdum argument, claiming that if Brooks’ Law were at work, it
would not be possible to observe such a thing as Linux development. Conversely,
the observation of the Linux case study suggests to the author that the effects of
Brooks’ Law may be overcome by other forces, such as the project leader’s capa-
bilities in attracting, motivating, and coordinating a team of skilled and talented
developers in a distributed process strongly facilitated by Internet connectivity as
a shared medium of communication. This argument, i.e., that Brooks’ Law does
not apply to Internet-based distributed development, has been widely criticized by
many authors (see for instance, Bezroukov, 1999; Jones, 2000).

Modularity allows us to refine and clarify these criticisms suggesting that a
large number of participants in a project may be not a sufficient condition to generate
dysfunctional effects, such as diminishing or negative marginal return of manpower
to productivity. The key aspect in this regard is represented by the degree of task
interdependency between the various members belonging to the project. Thus, the
high productivity experienced in the GNU/Linux development is interpreted as largely
due to the massively modularized structure of the project, enabling the existence of
highly independent sub-projects joined by a limited number of developers, resem-
bling in essence the theory of Brooks’ surgical team (small, skilled, and focused)
(Brooks, 1975); the role of the Internet in this interpretation is of mere medium of
exchange allowing distant communication.

Actually, our latest claim seems to be straightforward if we look at a typical sub-
project within the GNU/Linux architecture. Furthermore, if we look more generally
at the world of F/OSS projects, there is growing empirical evidence showing that
the number of participants involved in a project is on average very small (Capiluppi,
Lago, & Morisio, 2003; Krishnamurthy, 2002). Despite this, in some specific cases
(such as in the development of the kernel for the GNU operating system, that has
been undertaken thanks to the coordinated effort of hundreds of contributors), we
need to clarify our point and to address the relationships between Brooks’ Law and
division of labor in the case of vertical division of labor.

Vertical Division of Labor and Organization and
Architectural Ladders

Many authors have criticized Raymond’s cathedral versus bazaar metaphor
(see, for instance, Kuwabara, 2000). In our view, there is a serious misinterpreta-
tion of this metaphor when it comes to the topic of the architectural characteristics
of GNU/Linux.

TLFeBOOK

92 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

The misinterpretation of the above quote runs, simplifying slightly, as follows:
GNU/Linux comes out of the blue from a chaotic mess of contributions and orga-
nizes itself as a coherent system in an apparently self-regulating way, showing a
mysteriously spontaneous order. This emergent view of the genesis of GNU/Linux
is misleading in that it suggests the existence of a deregulated and emergent flat
architecture. In contrast, the modular architecture of GNU/Linux is characterized
by being quite hierarchical, rather than flat.

Basically, it boils down to the distinct possibility of distinguishing at least
two different and hierarchically ordered ladders in GNU/Linux: a higher level,
the kernel space, and a lower one, the user space. As it happens, the celebrated
babbling bazaar, representing the decentralized and anarchic distributed process,
takes place at the user level and it is fostered by the highly modular architecture, as
previously described. Conversely, at the higher inner level of the operating system,
the development process seems to be rather different. Linux inner core started to be
developed as a one-person hack, and only at a subsequent stage of the process were
contribution from other developers introduced. Moreover, while contributions to the
kernel represent an open process, the integration of code within the kernel has been a
process firmly regulated by the same Torvalds, at the beginning, and later supported
by a small group of “trusted lieutenants” (Franck & Jungwirth, 2002; Dafermos,
2001). In order to preserve integrity and coherence within the most important and
complex part of the system, at the kernel space ladder all initial relevant design
decisions were largely made by Torvalds and by an inner team of developers. The
same holds for most of the subsequent activities of kernel development. While one
has to acknowledge the role of code contribution from the bottom (the hacker com-
munity), it is also indisputable that its incorporation in the project has been fueled
by a highly structured and hierarchical process of review and selection (albeit not
based on formal authority but rather on competence and reputation).

Sanchez and Mahoney (1996) diffusely discuss a basic feature of modular prod-
uct architectures, namely, the isomorphic relationship between product architecture
and organization traits. This seems to be indeed the case for GNU/Linux, which
emerged as a stable system not by a succession of miracles, but rather by exploit-
ing modularity at the user space level, encouraging decentralization, and carefully
crafting and controlling the overall consistency of the design at the kernel space,
imposing a cathedral-like hierarchy in code evaluation and integration.

We have emphasized that the GNU operating system is a massive modular
architecture, mostly inherited from a previous design and characterized by a hier-
archical two-ladder architecture that hardly resembles the flatness of a bazaar at
all. To further refine our analysis we need to admit that, albeit largely based on the
UNIX architecture, there does exist something truly innovative and original in the
GNU operating system, i.e., its kernel. In the following subsection we turn to the
different approaches to modularity and interdependencies decomposition followed
by two different competing projects: the Linux project and the HURD project.

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 93

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Ex-Ante Modularity Versus Evolving Modularization:
The Development of a Kernel for the GNU Operating
System

If we underestimate the problems posed by module identification and decom-
position of new architectures, we hardly understand why modular design of complex
products is so difficult and unpredictable. Another way to grasp this issue is to con-
sider that many modular products were originally developed from interconnected
solutions. While this is not a general rule, it was definitely true for Linus Torvalds’
kernel; the GNU operating system is known for being a modular complex artifact and
its successful development, accomplished by a distributed community of hackers,
largely benefited from that. Thus, it may be surprising that its core component— the
so-called kernel—was initially conceived as a highly integrated product and only
eventually acquired a modular structure.

At the time Linus Torvalds started to work on his kernel, a long debate was
mounting around the advantages offered by an alternative architecture called micro-
kernel, that was designed to work with all possible and different processors.3 Torvalds
decided to develop his kernel in less general terms, thinking that microkernels at the
beginning of the 1990s were still experimental, too complex, and exhibited a much
worse performance (Torvalds, 1999). By the way, when Torvalds started to work
on his kernel, the Free Software community and the GNU partisans were already
involved in the development of a microkernel (called HURD), even though the task
seemed to be far away from its conclusion.

Therefore, the very first version of Linus’ kernel had a monolithic structure and
was also hardware specific, since it was conceived for working on Intel 80386 pro-
cessors only. The first effort to port the Linux kernel to another processor (Motorola
68K) demonstrated all the drawbacks of having a hardware-specific architecture,
since the developers of 68K Linux had to write another hardware-specific kernel
from scratch. When Torvalds started to think about porting Linux to the Alpha
platform, he realized that the original design was no longer effective, and in 1993
he started to rewrite the kernel code completely. He decided to keep a monolithic
architecture, but he introduced some degree of modularity in the system design in
order to simplify the portability task and to encourage parallel development in some
less critical parts of the system.

Therefore, the general kernel model made use of modules, and it was conceived
bearing in mind those elements common to all typical modular architectures (even
though it was not as rigorous and general as microkernels are). Following this scheme,
Torvalds could deal with them separately and confine all the hardware-specific pieces
of code in modules out of the core kernel (de Goyeneche & Apolinario Fernández
de Sousa, 1999). These modules could be later updated or changed by Torvalds
himself and the other Linux developers with no effect on the kernel core.4 Device
driver structure is a good example of the third way followed by Torvalds.

TLFeBOOK

94 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

In later discussions, Torvalds explained the reasons for his choice: a fully
modular architecture, like the one adopted for HURD, would have posed problems
to a degree of complexity that it could have compromised the accomplishment of
the project. To avoid such risks and keep the degree of complexity of the project
as low as possible, Torvalds decided to design a monolith, and he actually wrote
all the architectural specs himself,5 avoiding all the problems related to collective
projects (e.g., division of labor, coordination, communication). On the other hand,
the HURD micro-kernel, a project in direct competition with the Linux kernel, has
paid for the choice of pursuing a fully modular approach from the beginning in
terms of the continuous delays that have plagued its development. Nowadays, it is
still under active development and still lacks the stability and performance assured
by the Linux kernel.

While the modular structure adopted by Torvalds for the Linux kernel happened
to be successful, it does not prevent the system from the emergence of unforeseen
interdependencies within the modules that may arise with the future development
of hardware and software. While HURD established itself as an attempt to develop
a fully general and modular system, Linux kernel took advantage of some archi-
tectural shortcuts. As it is, the problem related to emergent interdependencies that
were not expected at the beginning may become a problem for the future enduring
success of Linux, even though this can be regarded as a future cost for the straight-
forwardness of its design.

The emergent interdependencies sometimes are solved by tinkering, reworking,
and re-designing (Ratto, 2003); in other cases, unanticipated interdependencies may
end up in forks or complete failures of the projects.

The stories of the development of the Linux kernel and of the HURD kernel
suggest the following reflections: the design of modular architectures from scratch
may reveal itself to be an extremely complex task; therefore, designers may prefer
interconnected solutions that are easier to devise and handle, even when task parti-
tioning and division of labor considerations might suggest modular ones. Moreover,
a modular architecture is more vulnerable to design faults, especially when the task
is complex and the amount of resources are limited; in particular, an ineffective
definition of modules that are not coupled loosely enough produces an increasing
amount of interdependency. Thus, individuals, rather than groups of developers
may more efficiently accomplish the early stages of new projects. Some successful
F/OSS stories experienced this fate, as they have been started as one-man projects
aimed to solve specific problems and eventually evolved into structured projects
involving a large number of people.6 Finally, Torvalds’ kernel story enriches the
perspective offered by Conway’s law about the isomorphic structure of product and
process (Conway, 1968). Modularity, in fact, seems to be pursued not as a dogmatic
feature of the product, but it arises as a general design rule, and it is boosted only
when it provides some direct advantage. Therefore, the evolution of the Linux kernel
towards modular design suggests that it is possible to combine both modular compo-

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 95

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

nents and integrated parts under the same architecture. Later on, the designers may
introduce a higher degree of modularity by adapting the originally interconnected
architecture. In other words, modularity arises more as a process of evolutionary
design (modularization) than as an ultimate ex ante property of an artifact.

Beyond the Principles of Modularity
In the previous subsections, we have argued that the paradigm of modularity

has a great explanatory power in characterizing the F/OSS development style and the
success of many software projects;: well-decomposed architectures seem to reconcile
considerations about division of labor and size of a project with concerns of high
speed of development. Nevertheless, as mentioned earlier, for complex software
artifacts it may be almost impossible to separate ex ante all interdependencies, and
unforeseen coupling between components at later stages (like, for instance, integrat-
ing new and existing modules) may strongly affect the final outcome of the process.
We argue that F/OSS development style has originally adapted the principles of
modularity in order to lower the impact of this “dark side” of modularity.

It is worth mentioning that many scholars have radically criticized the modular
approach to the design of software artifacts since its introduction. As noted by Brooks
(1995): “Harlan Mills has argued pervasively that ‘programming should be a public
process,’ that exposing all the work to everybody’s gaze helps quality control, both
by peer pressure to do things well and by peers actually spotting flaws and bugs.”

Brooks (1975) argued that information should be completely available in order
for failures in the design of software to become evident and be corrected. Conversely,
in accordance with the principles of modularity, these processes of peer review,
control, and contribution to others’ source code are strongly limited by information-
hiding constraints, since modules are not available to other developers. Despite
these criticisms, information hiding has nowadays become almost ubiquitous in
software engineering. Even Brooks (1995), in the 20th year anniversary edition of
his The Mythical Man-Month, admits the following: “Parnas was right, and I was
wrong on information hiding.”

We claim that the fundamental innovation of F/OSS practices lies in how the
basic postulate of information hiding is adapted to overcome these pitfalls, suggesting
a step further in the software engineering debate on the pros and cons of modularity.
While information hiding is clearly at the core of designers’ activities when initially
decomposing a software project in modules, the same principle is later disregarded
at the implementation level, in day-to-day coding, testing, and integration activities.
As a matter of fact, in the F/OSS community, hackers actually are overexposed to,
rather then shielded from, a huge amount of code.

The free availability of the source and the absence of code ownership make
programming a truly public process, since good coding solutions are shared and
adapted to solve similar problems (Pavlicek, 2000), and ex post interdependency
conflicts are handled by employing a wider set of fine-tuning strategies. A well-

TLFeBOOK

96 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

known feature of F/OSS methodologies is parallelized and distributed code debug-
ging, where bugs are highlighted and corrected by others’ “eyeballs” (Iannacci,
2003; Raymond, 1999). Kuan (2000), for instance, shows that F/OSS has a higher
rate of quality improvement than closed-source software. Similar results were ob-
tained by Succi, Paulson, and Eberlein (2001). Jørgensen (2001) reports that half
of the respondents to his research survey claimed to have received a bug report
from someone else within the previous month and nearly half of them credited an
external contributor with fixing a bug in their code. Likewise, at the code review
level, similar parallel and distributed processes of peer review highlight design
incoherencies introduced by others.

In other circumstances the “no hiding” principle allows developers to undertake
much more sophisticated software engineering activities, such as redefining module
and interface specifications in response to the emergence of new interdependencies
between separate modules. This is often the case in the introduction of radically
new or substantially complex features in stable projects. For instance, the introduc-
tion of cryptography in the Freenet project (von Krogh et al., 2003) affected many
different modules and demanded the whole redefinition of the architecture. The
availability of other module source code is what allowed the developers to disen-
tangle the complex web of interdependencies introduced by adding a public key to
cryptography. Similarly, Jørgensen (2001) underlines how the free flow of informa-
tion about the whole project helped FreeBSD developers to introduce a radically
innovative feature to support multiprocessing (Symmetric Multiprocessing) within
a mature software architecture.

The no-hiding policy bears one additional consequence: it makes it possible
for individual hackers or entire groups to write patches or variations of the original
code that are not completely compatible with previous work carried out in the same
software project or with respect to other related pieces of software. While incom-
patibilities are usually unintentional and marginal and may be fixed by subsequent
coding activities, sometimes these modifications are large and/or intentional and may
result in forking, i.e., the introduction of an independent and partially incompatible
version of the original software.

As a matter of fact, within the software industry, advocates of corporate closed-
source software development have argued that, due to the lack of code ownership,
F/OSS seems to be particularly prone to developing “multiple incompatible versions
of programs, [plagued by] weakened interoperability, [and] product instability”
(Mundie, 2001). With respect to software development activities, this may lead to
duplication of effort and may result in the inefficient allocation of scarce resources
at the level of the whole F/OSS community. Nevertheless, other studies have sug-
gested that forking in F/OSS may be much less frequent than one might expect at a
first glance, and may eventually lead to positive, rather than catastrophic, outcomes.
Many F/OSS projects have a governance structure (ranging from the project leader
benevolent dictatorship to the formation of complex coalitions) that prevents at-

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 97

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

tempts to fork (Kogut & Metiu, 2001). Moreover, the widespread diffusion of the
GNU General Public License (GPL) seems to mitigate the incentives to fork an
existing F/OSS project since, in essence, it prevents the appropriability of innova-
tions. In fact, while anyone may fork any software project at any time, his or her
subsequent work would be available to the whole community as well due to the
“infectious” nature of GPL. Thus, others may take advantage of the improvements
of the fork. In this perspective, forking rarely happens and even when it occurs,
this often translates in being beneficial to both competing projects, since the GPL
allows each one to study the other and implement the most innovative features (e.g.,
this seems to have been the case in the rivalry between the Emacs and the XEmacs
projects (Moen, 2003)). As a result, forking seems to take place largely in cases of
ultimate and irreconcilable differences in views and priorities in the development
of a software project, and forks take off and succeed only if they are able to occupy
different ecological niches (see, for instance, the existence of various GNU/Linux
distributions), thus offering specialized solutions for a differentiated audience (van
Wendel de Joode, de Bruijn, & van Eeten, 2003). Finally, it has been noted that it
is not uncommon for forks to merge back with the original project as benefits, and
drawbacks of “running alone” may change over time (as in the case, for instance,
of the egcs project, re-merged by the FSF with the original gcc project in 1999
(Moen, 2003)).

DISCUSSION
In the end, modularity may be conceived as simple as it is, as long as we do

not open the “black box” and keep track of the organizational processes behind the
structure. Most quoted contributions in management studies (Baldwin & Clark, 1997,
2000; Sanchez & Mahoney, 1996; Ulrich, 1995) unfold a neat and smooth theory
of modularity, introduced as a cornerstone for artifact design.7 According to this
Olympic version, modularity is defined as a “particular design structure, in which
parameters and tasks are interdependent within units (modules) and independent
across them” (Baldwin & Clark, 2000, p. 88). Unfortunately, this perspective un-
derestimates the fact that the decomposition of complex systems generally results in
a quasi-decomposition and not in a full decomposition, as some interdependencies
may not be predicted or are left out on purpose, simply because they are regarded
as marginal ones.

Our reconsideration of the development of some F/OSS projects shows how the
modularity principles may in practice differ from what the theory prescribes. GNU/
Linux and, more generally, F/OSS represent an instance of unorthodox modularity;
the information-hiding principle is significantly disregarded as the artifact evolves
mainly through a repertoire of practices (e.g., peer coding and debugging, frank
discussions, and open decisions) where developers and users work apart, tinkering
and patching the original modular product.

TLFeBOOK

98 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

In our view, reading the GNU/Linux case from a modularity perspective pro-
vides a complementary understanding of the F/OSS phenomenon and, at the same
time, offers some insights about the way we conceive a theory of modularity for
complex systems.

With respect to the first issue, taking advantage of existing architectures like
UNIX and related standards (e.g., POSIX) has been a successful strategy, as the
community of developers avoided designing a modular structure from scratch. The
comparison between the HURD project and Torvalds’ monolithic kernel shows that
developing decomposable architectures for complex products exposes the designers
to the risk of unforeseen interdependencies that may ultimately endanger the whole
project. Besides, as F/OSS projects are developed by distributed organizations and
the community members communicate only remotely, coordination and collective
decision making seem to be two fundamental issues in F/OSS development.

In other words, our study of F/OSS projects viewed through the lens of the
theory of modularity outlines three main strategies that characterize the design and
the development of complex systems: 1) inheriting existing modular architecture,
2) evolving towards increasing degrees of modularity, and 3) violating the informa-
tion-hiding principle. This repertoire of practices, or shortcuts as we called them
in our introduction, emerge as effective and robust routines that seem to fit very
well with the actors involved (i.e., distributed communities of developers) and the
problem-solving activity they embrace.

GNU/Linux case, on the other hand, suggests some general reflections on
modularity and modularization. F/OSS developers exploit all the advantages of
a modular architecture, as the massive parallel activity within modules/programs
shows; on the other hand, the modularization does not stop with the architecture
design. The unforeseen interdependencies that come to the surface as the opera-
tive system evolves, revealing some inconsistencies, are met by violations of the
information-hiding principle.

In questioning how this experience may be extended to other contexts where
modularity has already started to represent a promising approach, there are at
least two fundamental conditions that need to be clearly spelled out. First, F/OSS
distinctive trait is represented by the open access to knowledge (source code and
documentation) stored in the modules. In the F/OSS world, imitation and copying
are encouraged and protected by a reverse form of copyright (copyleft). According
to the Economics of Innovation standard models, copyleft should inhibit any invest-
ment in innovations, since anybody may take advantage of any innovation and there
are no incentives for the innovators. F/OSS apparently contravenes this rule, and
motivational analyses based on various perspectives (i.e., psychological, cultural,
sociological, etc.) seem to be urgently needed to support an economic explanation
of this phenomenon. From our viewpoint, the apparent paradox of compelling
innovations in a copyleft regime is due to the second fundamental condition that
characterizes the F/OSS movement, that is, a deep overlap between producers and

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 99

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

users. At the beginning, at least, most users were developers or had some skills that
allowed them to perform successful adaptations. Again, most of the traditional ways
of conceiving innovation and product development in other domains keep producers
and users separated, even though today customers are more and more often directly
involved in the definition of their own product.

As long as developers and users communities deeply overlap, copyleft regime
does not inhibit innovation but, rather, ensures its open and free diffusion. On the
other hand, when the communities start to be more and more different from each
other, when developers are viewed as producers and users as customers, the natural
system of reciprocal benefits becomes less and less salient. Therefore, looking for a
possible generalization of F/OSS experience should push us towards other economic
contexts where developers and users are able to establish strong relationships; in
this respect, settings where customers actively participate in the development of
new products (see, for instance, von Hippel, 1998) seem to represent a promising
milieu for empirical investigation.

REFERENCES
Baldwin, C. Y. & Clark, K. B. (1997). Managing in the age of modularity. Harvard

Business Review, 75(5):84–93.
Baldwin, C. Y. & Clark, K. B. (2000). Design rules. Vol. I: The power of modularity.

Cambridge, MA: MIT Press.
Bezroukov, N. (1999). A second look at the cathedral and bazaar. First Monday,

4(12).
Brooks, F. P. (1975). The Mythical Man-Month. Essays on Software Engineering.

Reading, MA: Addison-Wesley.
Brooks, F. P. (1986). No silver bullet. In H.J. Kugler, H. J. (Ed.), Information Pro-

cessing 1986, Proceedings of the IFIP Tenth World Computing Conference,
pp. 1069-1076. Amsterdam: Elsevier Science.

Brooks, F. P. (1995). The Mythical Man-Month. Essays on Software Engineering,
20th Anniversary ed. Reading, MA: Addison-Wesley.

Camuffo, A. (2002). Rolling out a “world car”: Globalization, outsourcing and
modularity. 2nd EURAM Conference, Stockholm, Sweden.

Capiluppi, A., Lago, P., & Morisio, M. (2003). Characterizing the OSS process:
A horizontal study. 7th European Conference on Software Maintenance and
Reengineering, Benevento.

Conway, M. (1968). How do committees invent. Datamation, 14(10):28-31.
Dafermos, G. (2001). Management and virtual decentralized networks: The Linux

project. First Monday, 6(11).
de Goyeneche, J. & Apolinario Fernández de Sousa, E. (1999). Loadable kernel

modules. IEEE Software, 16(1):65-71.

TLFeBOOK

100 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Devetag, M. & Zaninotto, E. (2001). The imperfect hiding: Some introductory con-
cepts and preliminary issues on modularity. DISA Working Paper, Università
degli Studi di Trento.

DiBona, C., Ockman, S., & Stone, M. (1999). Open sources: Voices from the open
source revolution. Sebastopol, CA: O’Reilly & Associates.

Feller, J. & Fitzgerald, B. (2000). A framework analysis of the open source software
development paradigm. In Proceedings of the 21st International Conference
on Information Systems, pp. 58-69. Atlanta, GA: Association for Information
Systems.

Franck, E. & Jungwirth, C. (2002). Reconciling investors and donators. The gover-
nance structure of open source. Lehrstuhl für Unternehmensführung und–politik
Universität Zürich.

Gancarz, M. (1994). The UNIX philosophy. Newton, MA: Digital Press.
Glass, R. (1997). Software runaways. Lessons learned from massive software project

failures. Upper Saddle River, NJ.: Prentice Hall.
Hatch, N. (2001). Modular stepping stones along the firm’s technology path. Nelson

and Winter Conference, Aalborg, Denmark.
Iannacci, F. (2003). The Linux managing model. In Proceedings of the 3rd Inter-

national Conference on Open Source, ICOS 2003.
Jackson, I. (1998). Why is software freedom useful and what does it mean? SANE’98

November 18-20.
Johnson, S. & Ritchie, D. (1978). Portability of C programs and the UNIX system.

The Bell System Technical Journal, 57(6):2021-2048.
Jones, P. (2000). Brooks’ law and open aource: The more the merrier? Retrieved

January 2, 2003, from http://www-106.ibm.com/developerworks/library/mer-
rier.html.

Jørgensen, N. (2001). Putting it all in the trunk: Incremental software develop-
ment in the Free BSD open source project. Information Systems Journal,
11(4):321-336.

Kogut, B. & Metiu, A. (2001). Open-source software development and distributed
innovation. Oxford Review of Economic Policy, 17(2):248–264.

Krishnamurthy, S. (2002). Cave or community? An empirical examination of 100
mature open source projects. First Monday, 7(6).

Kuan, J. (2000). Open source software as consumer integration into production.
Retrieved July 12, 2003, from http://opensource.mit.edu.

Kuwabara, K. (2000). Linux: A bazaar at the edge of chaos. First Monday, 5(3).
Langlois, R. N. (2002). Modularity in technology and organization. Journal of

Economic Behavior & Organization, 49(1):19-37.
Langlois, R. N. & Robertson, P. (1992). Networks and innovation in a modular

system: Lessons from the microcomputer and stereo component industries.
Research Policy, 21(4):297–313.

Miller, R. (1978). UNIX – A portable operating system? ACM Operating Systems
Review, 12(3):32–37.

TLFeBOOK

The Role of Modularity in Free/Open Source Software Development 101

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Moen, R. (2003). Fear of forking essay. Retrieved July 1, 2003, from http://linux-
mafia.com/Erick/essays/forking.html.

Mundie, C. (2001). The commercial software model. Retrieved July 1, 2003, from
http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp.

Parnas, D. L. (1972). On the criteria for decomposing systems into modules. Com-
munication of the ACM, 15(12):1053-1058.

Pavlicek, R. C. (2000). Embracing insanity: Open source software development.
Indianapolis, IN: Sams Publishing.

Pressman, R. (2000). Software engineering: A practitioner’s approach, 5th ed. Bos-
ton, MA: McGraw-Hill.

Ratto, M. (2003). Re-working by the Linux kernel developers. Department of Com-
munication, University of California, San Diego, CA.

Raymond, E. S. (1999). The cathedral and the bazaar: Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O’Reilly & Associ-
ates.

Ritchie, D. & Thompson, K. (1974). The UNIX time-sharing system. Communica-
tions of the ACM, 17(7):365-375.

Rosenberg, D. K. (2000). Open source. The unauthorized white papers. Foster City,
CA: IDG Book Worldwide.

Salus, H. P. (1994). A quarter century of UNIX. Reading, MA: Addison Wesley.
Sanchez, R. & Mahoney, J. T. (1996). Modularity, flexibility, and knowledge man-

agement in product and organizational design. Strategic Management Journal,
17(Winter special issue): 63-76.

Schach, S. (2002). Object- oriented and classical software engineering, 5th ed.
Boston, MA: McGraw-Hill.

Schilling, M. A. (2000). Toward a general modular systems theory and its ap-
plication to interfirm product modularity. Academy of Management Review,
25(2):312-334.

Simon, H. (1957). Models of man. New York: Wiley.
Simon, H. A. (1981). The sciences of the artificial, 2nd ed. Cambridge, MA: MIT

Press.
Solheim, J. & Rowland, J. (1993). An empirical study of testing and integration

strategies using artificial software systems. IEEE Transactions on Software
Engineering, 19(10):941-949.

Succi, G., Paulson, J., & Eberlein, A. (2001). Preliminary results from an empirical
study of open-source and commercial software products. International Confer-
ence on Software Engineering, Toronto, Ontario, Canada.

Torvalds, L. (1999). The Linux edge. In C. DiBona, S. Ockman, & M. Stone (Eds.),
Open sources: Voices from the open-source revolution. Sebastopol, CA:
O’Reilly & Associates.

Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Re-
search Policy, 24:419-440.

TLFeBOOK

102 Narduzzo and Rossi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

van Wendel de Joode, R., de Bruijn, J. A., & van Eeten, M. J. G. (2003). Protecting
the virtual commons. Self-organizing open source and free software commu-
nities and innovative intellectual property regimes. Information Technology
and Law Series, No. 3, The Hague: T. M. C. Asser Press.

von Hippel, E. (1990). Task partitioning: An innovation process variable. Research
Policy, 19(5):407-418.

von Hippel, E. (1998). Economics of product development by users: The impact of
“sticky” local information. Management Science, 44(5):629-644.

von Krogh, G., Spaeth, S., & Lakhani, K. (2003). Community, joining, and spe-
cialization in open source software innovation: A case study. Research Policy,
32(7):1217-1241.

ENDNOTES
1 By pipe technology it is possible to connect the output of one program to

the input of another one, and thereby execute complex tasks by sequences of
elementary programs linked together.

2 See also, later in the chapter, how, in the case of the GNU project, the failure
to correctly modularize the architecture resulted in serious troubles for the
developers of the HURD micro-kernel.

3 As Torvalds put it, “When I began to write the Linux kernel, there was an
accepted school of thought about how to write a portable system. The con-
ventional wisdom was that you had to use a microkernel-style architecture.
(Torvalds, 1999). See also the well-known “Linux is obsolete” flamewar in the
comp.os.minix newsgroup (reported in Appendix A of DiBona et al., 1999),
where Linus Torvalds, Andrew Tanenbaum, and other relevant hackers pas-
sionately debated OS design issues and the strength and weakness of micro
versus monolithic kernels.

4 Version 2.1.110, released in July 1998, counts around 1,5 million lines of code:
29% makes up the kernel and the file systems, 54% the platform-independent
drivers, and the remaining 17% is architecture-specific code.

5 Releasing Version 0.11 in December 1991, he credited three other people.
6 Apart from the Linus/Linux case, see also Sendmail, initially developed by Eric

Allman to route email to other users within UC Berkeley, Perl by LarryWall
to solve some annoying problems in system administration, the World Wide
Web by Tim Berners-Lee as a group environment for academic information
sharing among high-energy physicists, and so on.

7 For an insightful assessment of this topic see also Langlois (2002) and Devetag
& Zaninotto (2001).

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 103

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ABSTRACT
Several successful projects (Linux, Free-BSD, BIND, Apache, etc.) showed that
the collaborative and self-organizing process of developing open source software
produces reliable, high quality software. Without doubt, the open source software
development process differs in many ways from the traditional development process
in a commercial environment. An interesting research question is how these differ-
ences influence the adoption of traditional software engineering practices. In this
chapter we investigate how design patterns, a widely accepted software engineer-
ing practice, are adopted by open source developers for documenting changes. We
analyze the development process of almost 1,000 open source software projects
using version control information and explore differences in pattern adoption us-
ing characteristics of projects and developers. By analyzing these differences, we
provide evidence that design patterns are an important practice in open source
projects and that there exist significant differences between developers who use
design patterns and who do not.

Chapter V

A Quantitative Study of the
Adoption of Design

Patterns by Open Source
Software Developers

Michael Hahsler
Vienna University of Economics and Business Administration, Austria

TLFeBOOK

104 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

INTRODUCTION
The growing need for reliable software has made software engineering an im-

portant industry in the last few decades. The steady progress produced an enormous
number of different approaches, concepts, and techniques: structured analysis and
design, the object-oriented paradigm, agile software development, component-based
systems, frameworks, and design patterns, just to mention a few. These techniques
were developed with traditional software development in a commercial environment
in mind. Recently, a new organizational form of collaborative software develop-
ment, the open source movement (Raymond, 1999), gained popularity. Open source
software (OSS) development differs from traditional forms in many respects. For
example, the source code is publicly shared and therefore rigorously peer reviewed,
the development teams are often geographically dispersed, and massive system-
level testing by large user communities is conducted instead of extensive unit tests
(Dempsey, Weiss, Jones & Greenberg, 2002; Jorgensen, 2001; Perpich, Perry, Porter,
Votta, & Wade, 1997; Vixie, 1999). Quantitative research is the key to understand-
ing how these differences influence the adoption of existing software engineering
practices or how software engineering practices are adapted to the needs of open
source development.

In this chapter we study how design patterns are used in open source software
development teams. We are interested in the question “Are design patterns are
useful for open source development and, if so, are there factors that influence their
adoption?” To gain an insight into the application of design patterns, we analyze
historic data of the development process of OSS projects.

This chapter is organized as follows: As the starting point for the chapter we
review literature about design patterns to identify how patterns are used for tradi-
tional software development. Next, we describe the research method employed by
the study. We present the used data set and its main characteristics followed by the
analysis of the data set and the discussion of the results. We conclude the chapter
with the main findings and point out directions for further research.

BACKGROUND AND RELATED LITERATURE
Design patterns describe non-obvious solutions in a standard written form for

recurring software design problems in a certain context. They are normally devel-
oped by experts from their experiences with many existing systems and represent
good and flexible solutions.

Since the introduction of the first software pattern catalog containing 23 design
patterns by Gamma, Helm, Johnson, and Vlissides (1995), design patterns were rap-
idly accepted by the software engineering community, and their use is now strongly
facilitated by the Unified Modeling Language (UML), the standardized notation
for object-oriented analysis and design. The number of publications about design
patterns has soared, and even several conference series on the topic were initiated.

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

In the United States, the conference series is called Pattern Languages of Programs
(PLoP), and in other parts of the world conference series like EuroPLoP, KoalaPLoP,
and ChiliPLoP were started. These conferences, as well as most publications, focus
on the development of new and improved design patterns, but the research on the
actual adoption of design patterns by commercial and especially by open source
software developers is still underdeveloped.

In their book about design patterns, Gamma et al. (1995) state that they expect
design patterns will provide (a) a common vocabulary, (b) a documentation and
learning aid, (c) an adjunct to existing methods, and (d) a target for refactoring. To
underpin these expectations there were some early publications by practitioners
that describe experiences with design patterns in an industrial setting as well as for
training (Beck et al., 1996; Goldfedder & Rising, 1996; Helm, 1995). However,
these publications represent personal experience reports with no empirical data to
support their claims. In the joint paper “Industrial Experience with Design Patterns”
(Beck et al., 1996) co-authored by Kent Beck (First Class Software), James O. Co-
plien (AT&T), Ron Crocker (Motorola Inc.), Lutz Dominick and Frances Paulitsch
(Siemens AG), Gerard Meszaros (Bell Northern Research), and John Vlissides
(IBM Research), these seven experts describe the efforts they and their companies
put into design patterns and the resulting experiences. The paper contains a table
of the most important observations sorted by the number of experts who mentioned
them. This can be interpreted as the results of interviewing experts. The following
observations were mentioned by all experts (Beck et al., 1996):

1. Patterns are a good communications medium.
2. Patterns are extracted from working designs.
3. Patterns capture design essentials.

The first observation is the most prominent benefit of design patterns. In
Gamma et al. (1995), two of the expected benefits are that design patterns provide
“a common design vocabulary” and “a documentation and learning aid” that also
focus on the communication process. Prechelt, Unger-Lamprecht, Philippsen, and
Tichy (2002) studied this aspect with two controlled experiments using undergradu-
ate and graduate students to perform maintenance tasks for small programs. The
experiments showed that explicit documentation of a used pattern has a positive
influence on the speed and the error rate of the maintenance task.

Efficient communication is certainly also a key issue for OSS development.
Often, there is no explicit design document for new OSS projects, and the design
emerges later on from the implementation (Vixie, 1999). This means that collaborat-
ing developers need to communicate the design in part directly by code. But since
infering design from code artifacts is known to be hard, this would make collabo-
ration almost impossible unless there are some widely accepted design practices
that are known within the software engineering community. Design patterns try to

TLFeBOOK

106 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

capture such design practices and give them a unique name to communicate them
efficiently, even as short comments within the code.

Seen, Taylor, and Martin (2000) look at the adoption of design patterns in a
commercial environment from a perspective of the diffusion of innovation theory.
Although they rate the overall adoption rate for design patterns as moderate, they
identify an area where design patterns score very high. The area is concerned with
properties that influence the individual motivation for adoption, which are especially
interesting for open source developers. Specifically, patterns require no infrastructure
investment; they can be adopted bottom-up; and visible pattern adoption advertises
competence. All three properties are certainly more important in an open source
environment than in a traditional company where the necessary infrastructure is
provided and the management controls the development process.

RESEARCH METHOD
To investigate the adoption of design patterns by open source software de-

velopers we analyze the development process of OSS projects by using publicly
available version control data accessible via the Source Forge Web site (http://www.
sourceforge.net). This approach is inexpensive and non-intrusive (Atkins, Ball,
Graves, & Mockus, 1999; Cook & Votta, 1998) and was already successfully used
to analyze the development of the Apache Web Server project (Mockus, Fielding,
& Herbsleb, 2000) and of the GNOME project (Koch & Schneider, 2002), both
large-scale open source projects.

Source Forge currently hosts over 59,000 open source projects and has over
597,000 registered users (as of April 2003). It provides the projects with a version
control facility as well as a presentation platform and communication channels for
developers and users. For Source Forge, each developer has a unique pseudonym, a
user name, that can be used throughout all projects in which he or she participates.
Each project has a home page with general information about the project, like the
project name, a short description of the project, the developers in charge of the
project (administrators), the development status of the project (alpha, beta, produc-
tion, etc.), the intended audience (e.g., developers or end users), the programming
languages used, and more general information.

For this study we analyze projects that use the object-oriented programming
language Java and employ the version control tool Concurrent Versions Control
(CVS) (Fogel, 1999). The CVS tool supports parallel development by several
developers, comments for modifications of the code, control of releases, reversing
modifications, generating history logs for the projects and for each individual file,
and much more. A project is defined as a collection of individual files that are stored
together with version control information in a CVS repository. New files can be added
to the project, and existing files can be modified by the developers of the project.
To modify files using version control, the developer has to obtain a version of the

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 107

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

files from the repository, change the files locally, and commit the modifications to
the repository (execute a check-in for the files). During the check-in (often called
modification request), the developer is encouraged to add a short log message that
explains the purpose of the modifications and therefore makes it easier to understand
the changes in the code later on.

CVS records the modifications in each file in lines of code (LOCs) added and
LOCs deleted by the developer. The definition of LOCs used by CVS is the number
of physical lines. There is no distinction between program statements, comments, or
other arbitrary text. We adopt this definition for our study. Furthermore, CVS does
not explicitly record changes in a line; instead it records a changed line as a line
deleted and a new line added. Therefore, the growth of LOCs for a check-in (the
delta) is the difference between the LOCs added and the LOCs deleted.

To analyze the application of design patterns we have to identify the patterns
in the projects. Design patterns are design artifacts that result in special construc-
tions in the final code, e.g., several objects that interact in a certain way. It is very
difficult to infer the application of design patterns automatically from code (see,
e.g., Antoniol, Fiutem, & Cristoforetti, 1998, for an automatic approach). However,
CVS provides us with additional information, i.e., the log messages for changes,
which Mockus and Votta (2000) already successfully used to classify maintenance
activities. For this study we analyze the log messages to identify the application
of design patterns. Of course, design patterns can be applied without mentioning
them in the log message. Therefore, we can only identify the application of design
patterns when they are used for documentation of changes and to support com-
munication between developers. This is one of the major contributions of patterns
stressed throughout the literature, namely, that the names of design patterns become
part of a common language that developers use to communicate design more ef-
ficiently (Buschmann, Meunier, Rohnert, Sommerlad, & Stal, 1996; Gamma et al.,
1995; Vlissides, 1998). However, it is important to note that with this approach
we only analyze the communication aspect of patterns. To analyze the influence of
patterns on software quality or the usage of patterns in general, other approaches
are necessary that might include analyzing bug tracking databases, interviews with
developers, extensive manual code reviews, and controlled experiments.

For this study we only use the original set of the 23 design patterns introduced
by Gamma et al. (1995). Although many other design patterns were introduced in
the literature (e.g., in Coplien & Schmidt, 1995; Martin, Riehle, & Buschmann,
1998; and Vlissides, Coplien, & Kerth, 1996), these 23 patterns are still the most
popular and best known patterns. For the analysis we first extracted the CVS log
messages for each project using Java. We parsed the messages using regular ex-
pressions, identified changes to files that constitute together a check-in, and stored
the information in a relational database. All analyses in the subsequent sections are
performed using standard SQL select statements on the data base and a standard
statistical package.

TLFeBOOK

108 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Figure 1: Number of projects by size in LOC.

Size in LOCs

150000+

140000-150000

130000-140000

110000-120000

100000-110000

90000-100000

80000-90000

70000-80000

60000-70000

50000-60000

40000-50000

30000-40000

20000-30000

10000-20000

0-10000

400

300

200

100

0

THE DATA SET
The used data set includes 988 open source projects from Source Forge using

Java as the main programming language. The projects were downloaded between
August and September of 2001 and were selected by the following criteria: only
projects that enabled CVS and that have had already more than 1,000 LOCs Java
code. In total, the selected projects contain almost 120,000 files (with the exten-
sion .java) with more than 19.5 million LOCs and 1,487 different developers hav-
ing worked on them. Figure 1 depicts the distribution of the size of the projects
in LOCs. The project sizes in number of files follows a similar distribution. Most
of the projects are rather small, with a mean around 20,000 LOCs or 120 files,
but there is a significant amount of much bigger projects. The biggest project has
almost 1 million LOCs and almost 6,000 files. The sizes of the developer teams
for the projects show a similar distribution, with many projects with only a single
developer (see Figure 2). The mean of the team size is 1.84, and the biggest team
consists of 73 developers.

Figure 3 shows the number of projects by the development status used by
Source Forge. The status ranges from 1 to 6 (1 planning, 2 pre-alpha, 3 alpha, 4
beta, 5 production/stable and 6 mature) and gives an idea about the project in its

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 109

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Figure 2: Number of projects by team size.

Team size

10+5-94321

800

700

600

500

400

300

200

100

0

Figure 3: Number of projects by status.

Status

654321

300

200

100

0

TLFeBOOK

110 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

development life cycle. Most of the selected projects with more than 1,000 LOCs
have a status of 3 and 4. Fewer projects with status 1 and 2 already reached the
minimum LOCs. For the status 5 and 6, there are fewer Java projects in Source
Forge, indicating that most of the analyzed projects can be considered still in the
design and implementation phases of the software life cycle. In Table 1 we sum-
marize the statistics of the analyzed projects.

For the analyzed changes made to the projects, we excluded the initial check-
in of new files since new files added to the Source Forge CVS repository often
already have a considerable size and it is impossible to say how many developers,
and who, already worked on this file. We only know the developer who checked-in
the file. This would distort the results in an unpredictable way. We observed about
97,300 check-ins where 6.65 million lines of code were changed or added in almost
329,000 files. A check-in affected, on average, 3.38 files and increased the code
base of the project by almost 20 lines. Table 2 summarizes the descriptive statistics
of the analyzed changes.

Table 1: Descriptive statistics of the main project variables.

 Status Size in LOCs Size in Files Team Size
 N

Minimum
Maximum
Median
Mean
Variance

988 988

1.703
3.13
3.00
6
1 1001

961961
7279.50
19908.79

2952336139

988 988

1 1
5951
50.00
121.14
104534.022

73
1.00
1.84
9.468

Table 2: Descriptive statistics of the analyzed changes (check-ins).

Number
of files

LOCs
added/changed

LOCs deleted Increase
in LOCs

N
Minimum
Maximum
Median
Mean
Variance

97292
1
644
1.00
3.38
77.328

97292
0
27189
7.00
68.40
172224.284

97292
0
26998
3.00
48.92
143837.124

97292
-5375
18018
.00
19.48
25235.507

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 111

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

RESULTS
In this section we present the results of our explorative analysis of the adoption

of design patterns by open source developers. The section is divided into three parts.
First, the results of the pattern identification are presented. Second, we try to find out
if characteristics of the project (e.g., size) make the usage of design patterns more
likely. And finally we determine if there are specific characteristics of developers
who use design patterns (e.g., extent of participation).

The Identified Design Patterns
To identify patterns in the log messages we first searched all messages for

the names of the 23 design patterns introduced by Gamma et al. (1995). In the
log messages of 1,475 of the 97,292 observed check-ins we found the name of at
least one pattern. The names found most often were “command” (142 counts) and
“state” (80).

Of course we expect a high number of false positives since several pattern
names (e.g., Prototype) are also terms frequently used in software engineering with
a meaning other than the design pattern. To quantify the rate of false positives, we
manually inspected the log message and the code of a random sample of 100 out of
the 1,475 check-ins where pattern names were found. For 69 changes it was clear from
the log messages whether a design pattern was meant or not, and for the remaining
31 changes we had to inspect the source code. In the inspected sample we found
a false positive rate of 69%. For example, “command” was almost always used in
connection with changing the command-line interface of the software, which is not
related to the application of a design pattern. To reduce this problem we required
the pattern names that were also common terms for software development or that
had a meaning in the projects’ problem domains (command, interpreter, prototype,
proxy, state, and strategy) to be accompanied by the term “pattern,” which reduced
the number of check-ins with patterns to 343.

Table 3: Accuracy of pattern identification from log messages.

Contains a pattern Total
no yes

Classified as pattern no Count
%

65
90.3%

7
9.7%

72
100.0%

yes Count
%

4
14.3%

24
85.7%

28
100.0%

Total Count
%

69
69.0%

31
31.0%

100
100.0%

TLFeBOOK

112 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Table 3 depicts the accuracy of this approach. 85.7% of the check-ins identi-
fied as using a pattern really use the pattern, reducing the rate of false positives to
14.3%. Overall 89 out of the 100 inspected check-ins were classified correctly. Note
that this approach only identifies the application of design patterns where their full
original names are used in the log messages. Therefore, the actual usage of design
patterns is considerably higher and includes the following cases:

1. Alternative names are used (e.g., Virtual Constructor instead of Factory
Method; some alternative names can be found in Gamma et al., 1995).

2. Design patterns are not mentioned in the log message but are obvious from
comments in the code or the names of classes, methods and files.

3. Design patterns are used without giving any clue.

Although it is possible to incorporate some of these cases into an identifica-
tion heuristic, we use the simpler and therefore more robust approach described
above.

In Figure 4 we show the number of projects in which we identified each in-
dividual pattern. The pattern mentioned most by far in the analyzed projects is the
Singleton pattern. The reason for this is that the Singleton pattern is very simple
and is easy to implement in Java. This leads us to the conclusion that for Java the
application of the pattern Singleton seems to provide important design advantages

Figure 4: Number of projects using individual patterns.

Visitor

Strategy

State
Singleton

Proxy
Observer

Memento

Flyweight

Factory Method

Facade

Decorator

Composite

Command

Chain of Responsibil

Builder

Bridge
Adapter

Abstract Factory

N
um

be
r o

f P
ro

je
ct

s

30

20

10

0

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 113

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

at little implementation effort. During manual inspection of the log messages, we
observed that out of eight inspected changes concerning the Singleton pattern, four
changes consisted of removing existing Singletons. This perhaps indicates overuse
of the pattern caused by its simplicity. Further analysis is needed to investigate the
usage of different patterns and pattern types, but this is outside the scope of this
chapter.

Analysis of Differences between Projects
For Source Forge all development efforts are organized in projects as the basic

unit of coordination. A project has one or several administrators who coordinate the
development of the project and organize the cooperation between the developers.
In this section we investigate whether characteristics of projects (e.g., development
status, project size, team size, number of check-ins) are related to the application
of design patterns for documenting changes.

Most of the projects in the data set do not apply patterns for documenting changes
in the code. Only for a small fraction of projects—86 out of 988 projects—did we
find one or more patterns. To exclude very small projects that are still in their plan-
ning phase and therefore do not have enough code that can contain design patterns,
we only select the projects for which we observed at least 1,000 LOCs being added
or changed. This leaves 519 projects for analysis. The general trend of the distribu-
tions of project sizes and team sizes of this sample is similar to the distributions of
the whole data set. Only for the development status do more projects with a status
smaller than three not meet this criterion, resulting in a shift towards projects with
status three and up. We used the number of developers using patterns and the number
of distinct patterns used in a project as the indicators of pattern usage in a project.
Table 4 contains the descriptive statistics for the selected projects.

In Figure 5 we show the number of projects using 0 to 5 different design pat-
terns in the project. For 83 projects (16% of the 519 projects), at least one design
pattern was used.

Table 4: Descriptive statistics for the selected projects.

Status Size in
LOCs

Size in
files

Number of
check-ins

Team
size

Developer
using

patterns

Number of
distinct
patterns

N
Minimum
Maximum
Median
Mean
Variance

519
1
6
3.00
3.30
1.604

519
1038
961961
12126.00
27172.79
3.9E+09

519
1
4265
79.00
164.34
113925

519
4
4146
68.00
164.47
1197551.852

519
1
73
2.00
2.47
17.029

519
0
10
.00
.20
.401

519
0
5
.00
.22
.359

TLFeBOOK

114 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

To explore the relationship between the main project variables (development
status, size of the project, the number of check-ins, and the team size) and the use of
design patterns for documenting changes, we calculated the correlation coefficients.
Since the distributions are highly skewed, we use non-parametric Spearman’s rank
order correlation. All reported correlation coefficients are significant with p < .01.

The two measures of project size, LOCs and the number of files, are highly
correlated with a coefficient of .90. Both measures are correlated with the number of
check-ins, with a coefficient around .60. Team size is correlated with the number of
check-ins (.48) and with the project size (around .30). These correlations reflect the
intuitive relationship, with larger projects having more check-ins and also tending
to be developed by bigger teams.

Both indicators of pattern usage (number of different patterns and developers
using patterns) seem highly correlated with each other in the data set (a significant
coefficient of .99) and are significantly correlated with the number of check-ins (.33),
the size of the project (around .19), and the team size (around .16). However, all
these correlations are artifacts occurring only because we have a very small propor-
tion of projects with patterns (creating the high correlation coefficient between the
two indicators) and because the probability of detecting a pattern increases with the
number of check-ins we analyze and this number is in turn correlated to the other
variables. To improve this analysis, object-oriented software metrics like the Chi-
damber and Kemerer’s Metrics Suite (1994) can be used. These metrics can reflect
differences in the complexity of classes and their interactions better than simple

Figure 5: Projects by number of different design patterns used.

Number of distinct patterns

543210

500

400

300

200

100

0

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 115

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

LOCs. However, it was shown by Masuda, Sakamoto, and Ushijima (1999) and by
Reissing (2001) that the introduction of design patterns can increase the complexity
measured by object-oriented metrics by using additional classes, more inheritance,
and increased coupling between the classes of which the pattern is composed. Since
this would create an additional artificial relationship between complexity and the
usage of design patterns, we restrict our analysis here to the simple LOCs-oriented
analysis made possible by the output of the CVS tool.

To analyze the application of patterns in more detail, we cross-tabulate team
size by developers using patterns (see Table 5). A simple assumption would be that
the application of patterns is independent from the projects and that there exists a
fixed subset of developers who know and use patterns. Under this assumption we
can estimate the proportion of developers using patterns from the projects with a
team site of 1 in Table 5. We found patterns in 11.4% of the projects with one de-
veloper. If the usage of patterns is independent of the projects, this percentage can
be used as an estimate of the total proportion of developers using patterns. With
this estimate we can calculate the probability that we will see at least one developer
using a pattern in teams of sizes 2 and up. This simple model largely overestimates
the observed proportion of projects with developers who document changes with
patterns (compare in Table 5). The observed proportion of projects with develop-
ers who use patterns stays almost constant around 20% for team sizes 2 to 9. Only
for team sizes 10 and larger does the proportion jump to over 60%, which is still
considerably below the estimate. Therefore, the assumption that the developers who
use patterns are evenly distributed over all projects does not hold.

Table 5: Cross-tabulation of team size and the number of developers who use pat-
terns.

Team size Total
1 2 3 4 5-9 10+

Developer
using
patterns

Total

0
1
2
3
4
10

228
29

255

107
21
2

139

43
8

51

26
6
1

33

29
6
2

37

5
2
3
1
1
1
13

438
72
8
1
1
1
518

Observed projects with
patterns

11.4% 17.7% 15.7% 21.2% 21.6% 61.5% 16.0%

Estimated projects with
patternsa

11.4% 21.5% 30.4% 38.3% 50.8% 82.2% 18.4%

a Using team size = 1 to estimate probability of a developer using patterns

TLFeBOOK

116 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Next, we only look at the projects where patterns are used (rows with develop-
ers using patterns greater than 0 in Table 5). Interestingly, we found in almost all
these projects only one developer who used patterns for documentation, regardless
of team size. Again, only at a team size of 10 and larger did we find more developers
using patterns. The projects with team sizes 1 through 9 all had, on average, similar
sizes and number of check-ins. For the projects with team sizes 10 and higher, the
average of all variables (except the project status) was by the factor 2 to 4 higher,
which seems to make them different. However, the fact that for almost all projects
only one developer uses design patterns indicates that there must be factors that
influence the usage of design patterns that are not dependent on the team size and
other characteristics of the project but on the developer and his or her position
inside the project.

An interesting fact is that the development status of the project has only very
small significant correlation (between .13 and .24) with the other variables and no
significant correlation with the indicators of pattern usage. This means we have
very different projects in terms of size in the data set (ranging from small tools to
large applications) and that we cannot find evidence that design patterns are used
more often in later stages of the life cycle to refactor code (replace code and design
with more flexible design provided by a design pattern) as suggested by Gamma et
al. (1995). To analyze this in more detail we split the projects into two groups. The
first group contains projects that are still in an early phase (277 projects with status
1-3) and the second contains projects that are more mature (242 projects with status
4-6). If design patterns are used frequently for refactoring, the more mature projects
should contain significantly more different design patterns or a higher proportion of
check-ins containing patterns. We used the non-parametric Mann-Whitney U test
to compare the two groups of projects. We found that project size, team size, and
number of check-ins is significantly higher for the more mature projects (p < .0033,
significant at the .01 level using Bonferoni correction for three independent tests).
But there is no significant difference between the groups for the indicators of pattern
usage (p > .9). This results either from the fact that design patterns are not used for
refactoring and documenting these changes in our data set or that if design patterns
are used at all, they are already applied in the initial stages of development to create
new design. For OSS development, the second explanation seems appealing since
in the early stages of the project developers need to create and communicate the
design of a system using code (Vixie, 1999), and supporting communication is a
major advantage attributed by experts to design patterns.

Analysis of Differences between Developers
In this section we use the developer as the main unit of analysis. We analyze the

usage of patterns for each developer and compare that with observed characteristics
of the developer to investigate whether a relationship exists. As the developer’s
characteristics, we use the number of projects in which a developer participates,

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 117

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the LOCs he or she modified in the analyzed period, and the increase of LOCs and
the check-ins the developer produced. As the indicator of pattern usage, we use the
number of different patterns used by a developer. To exclude developers who did
not apply patterns only because of their small contribution of code to the analyzed
projects, we restrict our analysis to the 761 of the 1,487 developers who added or
changed more than 1,000 LOCs.

First, we look at the number of projects in which a developer participates (Fig-
ure 6). More than 80% of all developers only participate in one project. Although
participation in several projects could indicate more experience, no significant cor-
relation was found between the number of projects in which a developer participates
and the indicator of design pattern usage.

The increase in LOCs produced by developers was also used by Mockus,
Fielding and Herbsleb (2000) and Koch and Schneider (2002) to analyze two big,
open-source projects. A main finding of these studies was that there exists a rela-
tively small, very active group of core developers who typically produce more than
80% of the total code. This group is responsible for implementing most of the new
functionality, which also involves making design decisions. The histogram of the
increase in LOCs by developer for the analyzed projects is depicted in Figure 7.
Only 278 of the 1,487 developers are responsible for 80% of the total increase in

Figure 6: Number of projects to which developer contributes.

Number of projects

7654321

700

600

500

400

300

200

100

0

TLFeBOOK

118 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

LOCs for all projects. With 18.7% of the total developers, the proportion is similar
to the proportion found for the GNOME Project analyzed in Koch and Schneider
(2002). An observation that agrees with the Pareto Principle (also known as the 80/20
rule), which was found to hold in many different settings and disciplines. The 278
most dedicated developers can be seen as the core developers in the development
community of the analyzed projects where, depending on the project’s size, none
(for very small projects), one, or several core developers work together with less
active developers on a project.

We use rank order correlations to check if the usage of design patterns is related
to indicators of activity of different developers. Significant correlation coefficients
were found between the number of different patterns a developer uses and the LOCs
added or changed (.19), the increase in LOCs (.20) and the number of check-ins
conducted (.27). All three indicators are significantly intercorrelated (with correlation
coefficients between .57 and .63). These correlations could mean that developers
who work more intensely on a project (more check-ins) and therefore increase the
code size are more likely to document their changes using design patterns. But this
is a very tentative interpretation given the low correlation coefficient, the influence
check-ins have on the opportunity to use a design pattern, and the probability of
detecting a design pattern with the used heuristic.

To analyze this further, we divided the population of developers (the devel-
opers who added/changed more than 1,000 LOCs) into a group of developers for
which we never found patterns in the analyzed projects and a group of developers

Figure 7: Histogram of the increase of LOCs by developer.

Increase in LOCs

50000 - 55000

45000 - 50000

40000 - 45000

35000 - 40000

30000 - 35000

25000 - 30000

20000 - 25000

15000 - 20000

10000 - 15000

5000 - 10000

0 - 5000

-5000 - 0

700

600

500

400

300

200

100

0

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 119

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Table 6: Differences between developers who use patterns and who do not.

for which we did. Table 6 contains the statistics for both groups. Except for the
number of projects, the medians and means of all variables are about twice as high
for the group that uses patterns. The Mann-Whitney U Test confirms that the loca-
tion of the distributions of LOCs added or changed, the increase in LOCs, and the
number of check-ins differ significantly (applying Bonferroni correction for four
independent tests which reduces the maximum accepted p-value to .0025 at the .01
level). This suggests that there is a highly significant difference between developers
who use patterns for documentation and developers who do not. Developers who
use patterns tend to create more new code (increase of LOCs) and therefore are also
involved in creating new design.

In Table 7 we show the cross-tabulation for developers (core developers identi-
fied above in this section and other developers who added or changed at least 1,000

Table 7: Cross-tabulation for normal developers and core developers who are re-
sponsible for more than 80% of the project’s code base with pattern usage.

Uses
patterns

Number of
projects

LOCs
added/changed

Increase
in LOCs

Number of
check-ins

no N
Minimum
Maximum
Median
Mean
Variance

667
1
7
1.00
1.22
.382

667
1001
173869
3585.00
7988.10
213576579.378

667
-4157
52797
1068.00
2117.14
15432652

667
1
2430
49.00
97.26
36096.841

yes N
Minimum
Maximum
Median
Mean
Variance

94
1
6
1.00
1.37
.731

94
1251
60955
6866.00
12022.61
177046413.317

94
-3485
32970
2858.00
4371.15
31091095

94
5
1665
123.50
210.72
67273.148

Uses patterns Total
no yes

Core developer no Count
%

447
92.5%

36
7.5%

483
100.0%

yes Count
%

220
79.1%

58
20.9%

278
100.0%

Total Count
%

667
87.6%

94
12.4%

761
100.0%

TLFeBOOK

120 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

LOCs) and pattern usage. On average, 12.4% of developers use pattern names in
the log messages. The table shows a big difference (a significant relationship, p < .01
using the chi-square test) in pattern usage between core developers (20.9%) and
other developers (7.5%). The observation of more core developers commenting
their changes with patterns could have the following reasons:

1. Core developers simply check-in more changes and therefore have more
opportunities to use patterns and document these changes with the names of
the used design patterns.

2. Design patterns represent an efficient way to apply best practices in the form
of flexible and robust design and to communicate these design decision (Beck
et al., 1996). This is needed more often by experienced developers who create
most of the new design.

3. The open-source community has a reputation-based culture (Feller & Fitzger-
ald, 2000; Raymond, 1999). Visible pattern adoption by core developers
advertises competence (Seen, Taylor, & Martin, 2000) and can therefore be
used to strengthen their position in the project team and in the open-source
community.

It seems reasonable to believe that all three reasons contribute to adopting
design patterns to document changes in source code. However, it is not possible
to quantify the extent to which each reason influences the observed pattern usage
based on historic version control data alone. Another study that includes interviews
of developers who use patterns is necessary.

SUMMARY OF RESULTS AND CONCLUSION
Open source software development represents a new and efficient way to

produce high quality software. Many traditional software engineering practices
are adopted by open source developers. However, different software engineering
practices support the collaborative and implementation-driven development style of
OSS better than others. In this chapter, we analyzed the adoption of design patterns
by open source developers. Design patterns are interesting for OSS development
since their adoption does not require an infrastructure investment and they can be
used by a developer without interfering with the development style of others. For
almost 1,000 open source projects using Java, we checked if the 23 original design
patterns introduced by Gamma, Helm, Johnson, and Vlissides (1995) were used to
document changes in the code. There are three main results of analyzing the factors
that influence pattern usage:

1. The characteristics of projects have little influence on the developers’ adop-
tion of design patterns. For most team sizes, the percentage of projects where

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

patterns are used for documentation is around 20% in the data set. Only the
projects with the largest team size (10+) show a significantly higher propor-
tion. These projects differ from the rest by a much higher level of activity
(number of check-ins, increase and changes of LOCs are, on average, two to
four times higher than the other projects). Also, we discovered that for most
projects where design patterns were used, only one developer used them
(again except the few most active projects).

2. No relationship was found between the usage of design patterns in a project
and the project’s phase in the software life-cycle. Therefore, in the analyzed
OSS projects, we found no evidence that design patterns are widely used
for refactoring in later stages of the software development. A reason for this
finding could be that the analyzed projects are still too early in their life-
cycle to make major restructuring necessary. Another explanation could be
that open source development generally favors a more flexible design by
already using patterns for developing new code and frequent modifications
and expansion of the code. This constant change would reduce the need for
an explicit refactoring in later phases of the life-cycle.

3. There exist differences between developers who use patterns and develop-
ers who do not. There are significant differences in the level of activity of
developers in the analyzed projects. These differences indicate that the small
number of developers that create most of the code (for OSS projects, often
called core developer) are more likely to use design patterns. About 20% of
these developers used the 23 design patterns to document changes.

This first study of the adoption of design patterns by open source software
developers has many limitations: e.g., information on the quality of the produced
code is not included; there is no differentiation between types of changes (bug fixes,
new features, etc.); the complexity of the projects is not analyzed using object-ori-
ented metrics; only a very limited number of known design patterns and only one
programming language are used; and no further information from the developers
(actual effort used for changes, reasons for using patterns) is incorporated. Each
of these limitations provides a direction for further research. However, even with
these limitation, the results of this study show that design patterns are adopted for
documenting changes and thus for communication in practice by many of the most
active open source developers.

REFERENCES
Antoniol, G., Fiutem, R., & Cristoforetti, L. (1998). Design pattern recovery in

object-oriented software. Proceedings of the 6th Workshop on Program
Comprehension (WPC), Ischia, Italy, June 24-26, 153-160.

TLFeBOOK

122 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Atkins, D., Ball T., Graves, T., & Mockus, A. (1999). Using version control data
to evaluate the impact of software tools. Proceedings of the 21st Interna-
tional Conference on Software Engineering, Los Angeles, CA, May 16-22,
324-333.

Beck, K., Coplien, J.O., Crocker, R., Dominick, L., Meszaros, G., Paulisch F., &
Vlissides, J. (1996). Industrial experience with design patterns. Proceedings
of the 18th International Conference on Software Engineering, Berlin, Ger-
many, March 25-30, 103-114.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pat-
tern-oriented software architecture: A system of patterns. Chichester, England:
John Wiley & Sons Ltd.

Chidamber, S.R. & Kemerer, C.F. (1994). A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6), 476-493.

Cook, J.E. & Votta, L.G. (1998). Cost-effective analysis of in-place software pro-
cesses. IEEE Transactions on Software Engineering, 24(8), 650-663.

Coplien, C.O. & Schmidt, D.C. (1995). Pattern languages of program design.
Reading, MA: Addison-Wesley.

Dempsey, B.J., Weiss, D., Jones, P., & Greenberg, J. (2002). Who is an open source
software developer? Profiling a community of Linux developers. Communica-
tions of the ACM, 45(2), 67-72.

Feller, J. & Fitzgerald, B. (2000). A framework analysis of the open source software
development paradigm. Proceedings of the 21st Annual International Confer-
ence on Information Systems, Brisbane, Queensland, Australia, December
10-13, 58-69.

Fogel, K. (1999). Open source development with CVS. Scottsdale, AZ: CoriolosO-
pen Press.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Ele-
ments of reusable object-oriented software. New York: Addison-Wesley.

Goldfedder, B. & Rising, L. (1996). A training experience with patterns. Com-
munications of the ACM, 39(10), 60-64.

Helm, R. (1995). Patterns in practice. Proceedings of the 10th Conference on Ob-
ject-Oriented Programming, Systems, Languages, and Applications, Brisbane,
Queensland, Australia, December 10-13, 337-341.

Jorgensen, N. (2001). Putting it all in the trunk: Incremental software engineering
in the FreeBSD open source project. Information Systems Journal, 11(4),
321-336.

Koch, S. & Schneider, G. (2002). Effort, co-operation and co-ordination in an
open source software project: GNOME. Information Systems Journal, 12(1),
27-42.

Martin, R.C., Riehle, D., & Buschmann, F. (1998). Pattern languages of program
design 3. Reading, MA: Addison Wesley.

Masuda, G., Sakamoto, N., & Ushijima, K. (1999). Evaluation and analysis of
applying design patterns. Proceedings of the International Workshop on

TLFeBOOK

The Adoption of Design Patterns by Open Source Software Developers 123

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the Principles of Software Evolution (IWPSE99), Fukuoka City, Japan, July
16-17.

Mockus, A. & Votta, L.G. (2000). Identifying reasons for software changes using
historic databases. International Conference on Software Maintenance, San
Jose, CA, October 11-14, 120-130.

Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source software
development: the Apache server. Proceedings of the 22nd International Confer-
ence on Software Engineering, Limerick, Ireland, June 4-11, 263-272.

Perpich, J.M., Perry, D.E., Porter, A.A., Votta, L.G., & Wade, M.W. (1997). Anywhere,
anytime code inspections: Using the Web to remove inspection bottlenecks
in large-scale software development. Proceedings of the 19th International
Conference on Software Engineering, Boston, MA, May 17-23, 14-21.

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., & Tichy, W.F. (2002). Two
controlled experiments assessing the usefulness of design pattern informa-
tion in program maintenance. IEEE Transactions on Software Engineering,
28(6), 595-606.

Raymond, E.S. (1999). The cathedral and the bazaar: Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O’Reilly and As-
sociates.

Reissing, R. (2001). The impact of pattern use on design quality. Position paper,
Beyond design: Patterns (mis)used, Workshop at the ACM Conference on Ob-
ject-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2001), Tampa Bay, FL, October 15.

Seen, M., Taylor, P., & Martin, D. (2000). Applying a crystal ball to design pat-
tern adoption. 33rd Technology of Object-Oriented Languages and Systems
(TOOLS-33 2000), St. Malo, France, June 5-8, 443-454.

Vixie, P. (1999). Software engineering. In C. DiBona, S. Ockman & M. Stone
(Eds.), Open sources: Voices from the open source revolution. Cambridge,
MA: O’Reilly and Associates.

Vlissides, J. (1998). Pattern hatching: Design patterns applied. Software Patterns
Series. New York: Addison-Wesley.

Vlissides, J., Coplien, J. O., & Kerth, N. L. (1996). Pattern languages of program
design 2. Reading, MA: Addison-Wesley.

TLFeBOOK

124 Hahsler

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

SECTION III:

F/OSS Projects as
Social Constructs

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 125

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter VI

Coordination and Social
Structures in an

Open Source Project:
VideoLAN

Thomas Basset, Centre de Sociologie des Organisations, France
and Ecole Normale Superieure de Chachan, France

ABSTRACT
This chapter tackles the issue of the distribution of work in an open source project
through the influence of social relationships among developers. The author dem-
onstrates that the concentration of code in the VideoLAN project —already pointed
out in other projects—does not only depend on technical expertise but is strongly
influenced by the nature of social relationships among developers. Face-to-face
relationships have a great importance, as does friendship which can favor the
circulation of advice. In addition to technical expertise, a second kind of expertise
—the ability to be aware of who is working on what—determines the hierarchy
within this entity that looks like a collegial organization. The author hopes that this
work will help to reduce the hiatus between technical and social considerations on
open source software.

TLFeBOOK

126 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

OPEN SOURCE AND FREE SOFTWARE AS A
SUBJECT OF STUDY FOR SOCIAL SCIENCES

Free Software as a Public Good
As shown by the huge number of papers written on the subject during the past

two years, sociologists and economists take a great interest in the development of
free software. The main reason for such an activity may be that free software shares
many characteristics with well-known objects in social sciences, e.g., public goods.
Whereas open source is often only a technical measure, by making the source code
of a program available, the choice of the license has great importance as it may
exclude some uses of the source code. Free software appears as a surprising object,
as its users are very careful about this public good status and have invented and
try to promote2 the GNU General Public License. This license allows anyone to
use, modify, and distribute copies or improved versions of the software, but also
requires any software that uses any part of its code to be published under the same
conditions. By a contagious effect, the software remains “free” and conserves its
public good characteristics.

Participation and Coordination
An intense research activity has taken place during the last few years on the

part of both economists and sociologists. If the production of products that look
like public goods is quite surprising for economists, it is even more so when it is
done by people who communicate and coordinate themselves over a new medium.
It has therefore raised the interest of many sociologists. According to Healy and
Schussman (2003), studies have focused on two main issues: on the one hand,
participation, i.e., trying to understand why people spend time on the elaboration
of a product that is available for free, and, on the other hand, coordination, as free
software may have appeared to be quite an unstructured phenomenon.

The answers to the first question may be broadly brought together in three
categories that correspond to three kinds of actors that have taken interest in the
subject. A first interpretation of the free software phenomenon has been given by its
members themselves. Part of them consider that their work is based on an alternative
way of production to the capitalist system: the participation of some people in free
software projects may be explained by a don contre-don model (Mauss, 1923). For
example, some contributors give code in exchange for user feedback, and because
of the existence of such a generalized exchange, free-rider attitudes are rare. But
such an explanation has always been difficult to elaborate with classical economic
tools. A second set of answers has been developed to explain the participation in the
free software movement by the existence of individual incentives (e.g., Lee, Moisa,
& Weiss, 2003; Lerner & Tirole, 2000; Dalle & David, 2001). The participation in
a free software project provides personal advantages that outweigh its costs, since
it could be an opportunity to acquire higher skills or to gain a reputation as a good

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 127

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

developer, manager of project, etc.3 A third stream of studies has developed by taking
into account earlier research that has been done on social movements (e.g., the civil
rights movements or the peace movement) where the gains from an action can not be
individually captured, and by insisting on the relationship a developer has with the
small team with which he or she works4 (Hertel, Niedner, & Herrmann, 2003).

The second issue that has been tackled — mostly by sociologists — is the way
people coordinate within organizations that are virtually open to anyone who wants
to take a look into them and where access costs are low. Eric Raymond’s “The Ca-
thedral and the Bazaar” (1999) was a fundamental article written by a developer. It
compares two ways of coordination: cathedrals (or proprietary) software and open
source software that look like a bazaar where there is little hierarchy and where
development appears chaotic. In cathedrals, plans are drawn and have to be closely
followed, whereas in a bazaar-type environment, anyone can join and leave the
team after making a contribution in an unplanned kind of coordination. According
to Raymond, this free entrance characteristic gives a great technical advantage to
open source software over proprietary software — bugs are more rapidly detected
because more people with different skills tend to take a look at the code. This idea
of a good allocation of resources because of a low cost of gathering information
has been theorized by Benkler (2002), who uses the concept of transaction costs5
(Coase, 1988; Williamson, 1985). Because it has little hierarchy and participants
to the project are linked within a peer-to-peer network, an open source project
lowers transaction costs. Therefore, resources could be allocated in a much better
way than in a market or in a firm. According to Benkler (2002), “peer production
has a systematic advantage over markets and firms in matching the best available
human capital to the best available information inputs to create the most desired
information product.”

One may consider that the studies that focus on the distribution of work inside
the open source projects are based on such a hypothesis. They rely on the analysis
of the Concurrent Version System (CVS)6, a tool that allows participants to work
together and researchers to know who has done what within each file. By focusing on
the CVS, the only criterion taken into account is the source code that is exchanged.
The main result obtained by these studies is that the majority of the code is writ-
ten by a small number of people (Koch & Schneider, 2002; Mockus, Fielding, &
Herbsleb, 2000, 2002), which goes against the myth of a myriad of people working
together on a software. However, such a result has not been that much discussed.
It may just reflect that people have only offered a punctual contribution and that,
once it has been accepted, they no longer participate. This is coherent with the fact
that developers tend to often join and leave a project (Koch & Schneider, 2002).
But another interpretation of these facts is possible. Since many people are able to
participate, it may prove that the costs of information acquisition are low, but the
very important concentration of code in the hands of a few developers could also
be a sign of a huge cost for acquiring information that prevents developers from
gathering enough information to join the core team.

TLFeBOOK

128 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

LITERATURE LACUNA
AND RESEARCH PROJECT

These two approaches to the study of the open source7 way of development
face an issue that has already been pointed out by Granovetter (1985) in economic
exchanges. They are often treated in an over- or under-socialized way. The study of
a CVS tends to be quite the same as an analysis of an economic exchange, without
taking into account the importance of the community. In the same way, the analysis
in terms of incentives — however interesting it may be — goes against the myth of
a spontaneous and totally original movement tending to be under-socialized as it
focuses on personal interests. Reconnaissance in a small community is more satis-
factory, as it points out the importance that is given to belonging to a community, as
does the don contre-don model. But in these cases, exchanges are over socialized;
community is considered as a whole, almost separated from the writing of the code.
Exchanges are considered as natural and their impact on the distribution of work
is not questioned further.

Consequently, if both these approaches have made interesting interpretations
about why work was done, current literature lacks studies on how work is done. The
under-socialized studies that focus on the analysis of the CVS provide results about
how work is distributed but do not explain how such a state has been elaborated,
as coordination between the developers does not appear in a dynamic way within a
CVS. They give an interesting view of the state of work at a given time, how work
is distributed in terms of contributions, but do not say much about how work is
done, what kind of processes have produced such a state of the work.

In order to complete these approaches and escape from this situation, exchanges
of code, joining a community and belonging to it should be considered as the results
of embedded interactions. The questions of participation and coordination would
therefore be joined, as von Krogh, Spaeth and Lakhani (2003) have already begun
to argue. I suggest here that we should try to conciliate both approaches by studying
how some micro social structures see to it that cooperation within an open source
project is not only led by technical expertise (that is, by the amount of code con-
tributed) or by communitarian considerations, but that both influence each other.
Taking into account social aspects of the open source phenomenon may help explain
how — and not only why — work is done in a dynamic prospect by considering
the influence of social relationships. This views social aspects not as incentives but
as variables that may be used as resources.

Open Source Software as Collegial Organizations
The fact that the eventual impact of social interactions on coordination has

been little studied is all the more surprising as studies have already been devoted
to structures that are close to open source projects. I make the hypothesis that
open source software may be considered as collegial organizations. Waters (1989)
identifies six criteria that could characterize a collegial organization. They fit with

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 129

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

common characteristics of many open source projects. At first, what characterizes
a collegial structure is that theoretical (as opposed to practical) knowledge is at
the core of the work. The theoretical knowledge we are talking about is the ability
to write software, which is the expertise familiar to many studies devoted to open
source. The second criterion concerns the “career” of the members of the collegial
organization. It is composed of two steps: a period of learning is necessary before
a new member is considered equal to the other members. This fits with the idea
often developed within open source teams that anybody is able to join the team but
that he or she has to prove his skills, for example, by submitting valuable patches
(enhancements) in the mailing-lists. The third criterion is that performance of each
member is difficult to compare with that of others. In an open source project, how
could one determine who is the performing the most? Is it the one who has written
the main part of the code, the one who is in charge of the website8, the one who has
written the documentation that helps people to use the software and allow develop-
ers to know what needs to be done and how it could be? Even if one only consid-
ers the code, the amount of code written by each team member is a very doubtful
measure of performance, and the use of CVS statistics for such a task should be
done very carefully, as all parts of the code do not all have the same importance.
Because the performance of each team member is very difficult to compare, most
members of a project are on equal footing with each other from a formal point of
view. The fourth criterion is that a collegial organization controls itself, as opposed
to a subcontractor whose performance is evaluated by the firm that has bought its
services. The collegial organization therefore gives itself ways to evaluate its own
production (fifth criterion), this evaluation being mostly done by exchanging opin-
ions among peers. Finally, the last criterion is the existence of collective forums
where decisions are made. In most open source projects, the mailing-list (and in a
way IRC channels) are a place to ask the members of the project their opinion on
some technical choices. The very existence of flame wars proves that decisions are
often very debated before and even after being made.

As members of a collegial organization are permanent, the comparison between
collegial organizations and open source projects is limited to the core developers
who almost permanently work on the software. Considering open source projects
as collegial organizations could shed a new light on how they work and help to
go further than the simple statement that the core teams are very narrow. Lazega’s
work on corporate law partnerships (1995, 2001) could be a source of inspiration.
Corporate law partnerships are firms that group highly skilled lawyers who work
together on judicial cases, the structure of the team being decided according to the
cases and the knowledge that is supposed to be needed. As in open source projects,
what is at the core of these teams is each member’s knowledge. But if one only
considers technical skills, one may miss many aspects that explain how people work
together. Lazega points out that professional cooperation between people is deeply
influenced by the fact that they have social interactions outside of their work. For

TLFeBOOK

130 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

example, friendship may be used to control one peer who is straying from the norm,
this resource being used in very different ways according to the status of the person
to be controlled and the person who tries to exercise the social control (Lazega,
1995). Far from being guided only by technical considerations, coordination within a
collegial organization depends on more “social” variables. The understanding of the
workings of open source projects may benefit greatly from taking into account the
role of such social embeddedness, rather than only considering social incentives.

The fact that interactions have rarely been studied at a mezzo level, as being
embedded in a small network of relationships, may result from the particular nature
of the phenomenon that is studied. The open source movement requires great techni-
cal skills in programming that are essential in order to understand exactly what is at
stake in interactions. The interactions between developers are by themselves difficult
to observe, as some of them are private (e.g., mail between the core developers that
are not made public) and occur between people who are geographically located
throughout the world. The cost of a traditional study with face-to-face interviews
would be astronomical and mail or Internet Relay Chat (IRC) interviews would
introduce other biases. Moreover, although some of the interactions are publicly
available and archived, they are very numerous. For a sociologist, the cost of entry
into an open source project is indeed very high, and very little ethnographic observa-
tion has been done. However, some projects are more accessible than others. What
follows is a case study of an open source project that was by chance accessible to
various sociological methods such as ethnographic observation, network analysis,
and CVS analysis.

A CASE STUDY: VIDEOLAN
Presentation

The VideoLAN9 project is quite a particular open source one. From a technical
point of view, it is a video-streaming solution over high-bandwidth networks. It is
made of two major pieces of software: the VideoLAN Server (VLS) that sends the
video over the network and the VideoLAN Client (VLC) that receives and displays
the video. As with Xine, Mplayer or Ogle (with which it shares some pieces of
code), the VLC can work as stand-alone software to play videos on DVDs. Though
it is not as well known as Xine or Mplayer, in the small world of open source video
players, VideoLAN has a good reputation, being considered the best video player
by a majority of MacOS X users, who prefer it to Apple’s DVD player.

But VideoLAN was not only developed over the Internet by people who did
not see or even know each other before they began to work together. VideoLAN
has strong “real” roots, and the ties between some of its members are therefore
very strong, deeply rooted in traditional social links. VideoLAN was developed
for years at the Ecole Centrale Paris (ECP)10 before being released under the GPL
and made publicly available in 2001. Though many external developers worked on

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 131

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the project, a huge number of those working on VideoLAN are students from the
ECP. These students live on a campus, most of them on the same floor in a small
building devoted to them. As students in a college who live together, strong bonds
of friendship often develop between them. Moreover, VideoLAN still remains in
parallel a “club” of the school, i.e., a team that the students may choose to join in
order to validate a part of their studies.

Questions
This provides VideoLAN with two major advantages for a sociologist. It is a

place where ethnographic observation can take place, which allows gathering much
more information than with interviews over the Internet. Moreover, the existence of
a network of strong relationships allows the study of the role of embeddedness on
the coordination within the project11. Three points need a particular attention. First,
it should be interesting to see whether the concentration of expertise in the hands
of a few people is a global characteristic of open source projects or whether it was
only the case for some software, such as Apache and Mozilla (Mockus, Fielding
& Herbsleb, 2000, 2002) or GNOME (Koch & Schneider, 2002). Second, as the
students from the ECP constitute a strong community, it should be interesting to
see whether there is a gate-keeping phenomenon for the external contributors who
would like to work on the project. If not, one may think that the first participation
in an open source project relies primarily on technical expertise and that being part
of a network of embedded relationships has little impact on the issue of joining an
open source project. Last, the impact of the social variables on the place taken within
the team and the work done should be tackled. In other words, it is an attempt to
determine to what extent the distribution of work is structured by technical expertise
and by the nature of the relationships between the developers.

Metrics Used
In order to tackle these issues, three methods have been used for the gathering

of data: analysis of the CVS, ethnographic observation, and network analysis.
The CVS was analyzed using StatCVS12 0.1.3. The analysis was run on the CVS

version of VideoLAN dated March 29, 2003. StatCVS does not allow the distinction
between added and deleted lines, as has been done in previous studies (e.g., Koch
& Schneider, 2002; Mockus, Fielding & Herbsleb, 2000, 2002) but returns only the
modified lines. As it gives significant results that are consistent with ethnographic
observations, this measure was considered sufficient.

The ethnographic observation consisted of a personal involvement in the project,
in reading the mailing-lists, and being on the IRC channel and at the meeting of the
ECP staff that takes place every week. The observation began in October 2002 and
ended in March 2003. At the end of it, I was almost considered as a member of the
tribe, knowing each developer, even the external ones. My position was the one that

TLFeBOOK

132 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

a member of the ECP would have held in the project, except for the fact that I never
lived where most of VideoLAN developers from the ECP are grouped.

In order not to rely only on subjective observations (which were moreover
highly asymmetric between the developers linked to the ECP and those who were
not), a network analysis has been done. A list of 53 active developers out of 184
people identified as having taken part in the development of VideoLAN13 was
elaborated with the two main coders of the VLC. An email was sent to these 53
people, inviting them to complete web questionnaires on a private server. Forty-
seven people registered on the server. Because of uncompleted answers, only 34
people furnished usable data. This number is quite low and does not allow serious
statistical treatment. However, these people represent 85% of modified lines for
the VLC, 100% for the website14 and only 37% for the VLS. Data were analyzed
thanks to Pajek15 0.90.

Concentration of the Code and Weight of Technical
Expertise

One of the first and most spectacular results concerning the distribution of work
within an open source team is the fact that only a very limited number of people
contribute to a huge part of the code that is written. In the case of Apache, the top
15 developers contributed 88% of lines added (Mockus, Fielding & Hersbsleb,
2000). The concentration of contributions is not always that high, as found for the
GNOME project where the top 15 developers contributed 48%, 52 being necessary
to reach the 88% (Koch & Schneider, 2002). A similar result has been found for the
Mozilla project where for each of the seven main parts of the software, between 22
and 35 developers were necessary to reach the 88% of lines of code added (Mockus,
Fielding & Hersbsleb, 2002). However, if one considers that at the time of the dif-
ferent studies 220,000 lines had been added to Apache, 2,037,000 to Mozilla and
6,300,000 to GNOME, these differences were probably due to the size of the project
(the wider the project, the wider the group of core developers), because it is almost
impossible for a small group of people to write millions of lines of code.

An analysis was run on VideoLAN in order to know whether this result was
common to any open source project or not, even if it has a very particular social
structure. The VLC is a piece of software that is constituted of 355,014 lines of code.
860,686 lines have been modified between 1999 and March 29, 2003. Forty-four
people are quoted in the AUTHORS file and 58 in the THANKS file, i.e., at least 102
people have been involved in VLC development. Within the VLC, the core team,
defined by Mockus, Fielding, and Herbsleb (2000) as the people that have together
contributed 83% of the modified lines or 88% of added lines, is made up of 10 people
among the 46 who did commit in the CVS at least once. The concentration is even
stronger if one takes a look at the very top developers: the most active developer has
contributed 46% of modified lines16, and the top two most active developers 61%
of the code. Almost 75% of the code was written by four people. This is consistent

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 133

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

with the statement of Mockus, Fielding, and Herbsleb (2002) who considered that
a consequent part of the code was written only by a few people.

The distribution within the VLS is quite different. Only 15 different people
did commit some work in the CVS; 16 are quoted in the AUTHORS file and con-
tributed to many more modified lines of code; and six people were needed to reach
85% of modified lines.

If the distribution of work is more “egalitarian,” we know by ethnographic
observation that expertise concerning this software is still very concentrated. The
VLS is a relatively small piece of software (73,223 lines on March 29, 2003) but,
according to the members of the VideoLAN project, it is quite hard to understand
how it works. This is all the more true as the two main developers have not worked
on it for at least six months. In fact, only four people actively work on the VLS (three
on its very core and one on peripheral features) and are therefore the only ones who
have the necessary technical skills to understand its workings. Technical skills are
very concentrated among some happy few for both the VLC and the VLS.

This result is another indication that technical expertise is very concentrated
in open source projects. The role of these experts is therefore probably very strong
in the project. That expertise may be one of the major ways to be recognized and to
gain an important place in the project. However, the issue of how such a distribution
is elaborated still remains. Are so few people writing so much of the code because
they are highly skilled developers and therefore take a central place within the team
or aren’t there any social variables that may play a role by giving these developers
more opportunities to gather information and hence acquire more expertise on the
software in order to take a central place in the project? Technical expertise should
be the only explanatory variable of such a distribution of work if one makes the
hypothesis that the costs required to gather information are very low and equal

Figure 1: Distribution of work between developers in VLC.

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

30%

40%

50%

60%

70%

80%

90%

100%

C umulative percentage of modified lines in V LC

Number of developers

TLFeBOOK

134 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

between every developer. This is a strong premise that needs closer examination.
As the VideoLAN project has a structure in which a strong network of friendship
exists, it offers the opportunity to examine whether technical expertise leads the way
or whether the coordination within the team may be influenced by other variables
that may have an influence on costs for gathering information.

Ability to Join the Team
If costs for gathering information are not the same for each developer and de-

pend on the intensity of relationships between developers, technical expertise may
play a less important role in the participation to a project than has been stated.

For the members of the ECP, the goal of the release under the GPL license
was to attract external contributors. However, they were conscious that it might be
a difficult task because of the existence of a strong community with almost daily
face-to-face interactions, whereas external contributors would only be accessible
via the Internet through which it is (according to them) much harder to exchange
information than face-to-face. Furthermore, within the ECP, information is more
easily available thanks to the meeting that takes place every Sunday evening and
that allows people to share their knowledge about the state of the development.
Such information is also available to external contributors, but they have to ask
people on an individual basis through the IRC channel, which constantly necessi-
tates a new interaction, as Internet usage of all involved rarely overlaps. One may
therefore think that the costs necessary to get the information are much higher be-
tween people of the ECP and external contributors than among people of the ECP.
It should therefore be harder for exterior participants to join VideoLAN because

Figure 2: Distribution of work between developers in VLS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

30%

40%

50%

60%

70%

80%

90%

100%

C umulative percentage of modified
lines in VLS

Number of developers

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 135

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

it would be much more difficult for them to know what needs to be done and how
than the people from the ECP.

A first look at the distribution of work tends to point out that it is much easier
to participate to the VideoLAN project when one is linked with the ECP. Among
the top developers, a huge majority are students or past students at the ECP; among
the 10 most active developers of the VLC, only two of them do not belong to the
ECP—one contributed 6.31% of modified lines (third place) and the other 1.47%
(eighth place). Only two external contributors have worked on the VLS, their con-
tribution being of 6.2% of modified lines. There seems to be a huge entry barrier
for people who are not related to the ECP.

However, this does not take into account the time that people have been in-
volved in the project. As VideoLAN has been released under the GPL in 2001, it is
not surprising that external contributors should not yet have written as many lines of
code as people who worked on VideoLAN at the ECP before this date. The number
of modified lines per months of participation to the project reflects in a much better
way whether a developer had enough information to work and was able to participate
to the development. Out of the 10 developers who wrote the most important part
of the VLC since the beginning of the project, seven are still active (i.e., they sent
work to the CVS at least once during the past five months) as of March the 29, 2003,
most of them sending commits every week. For this reason, on April 1, 2003, the
tenth most active developer who still works on the VLC has the 13th rank in terms of
modified lines since the beginning of the development of the VLC. The comparison

Figure 3: Distribution of work per month in VLC.

TLFeBOOK

136 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

of the number of lines written per month of participation to the development of the
VLC shows no clear link between the intensity of the development and whether the
developer is a member or a past member of the ECP.

Among these 10 most active developers who are still working on the VLC, two
were past students of the ECP and are often present at the Sunday evening meeting,
three are currently students at the ECP, and five have no link to the ECP. Whereas
three of the five people who have modified the greatest number of lines are related
to the ECP, there is no clear link between whether a developer is a student or a past
student from the ECP and the amount of modified lines per month. Information
does seem to be accessible to everybody and the fact that a group with strong social
relationships exists is not an obstacle for new contributors to join the group. From
the large point of view of the amount of work done, being part of a group that is
located in the same place does not seem to have any influence on one’s ability to
become an expert by writing a huge amount of code.

One could share the assumption that for the experts of the core team, informa-
tion is available at a very low cost. This is possible because of the existence of the
IRC channel #videolan and the mailing-lists. In the network analysis, people were
asked with which other members of the team they had private interaction (that is,
a conversation where they answer to each other, not only giving their thoughts to
everyone in a public discussion) about any aspect related to the VideoLAN project
during the last month and on which medium. Both the diameters of the networks
concerning IRC and the mailing-lists of the project were of 3. Five people out of
34 were not connected to the IRC network, and two of them were not connected to
the mailing list. As long as one is able to write good code, the fact of not belonging
to the ECP does not seem to have an impact on the ability to work on the Vide-
oLAN project, thanks to the various existing avenues of communication between
developers. External developers have always gained their places in the project by
submitting some patches in the mailing-lists. Technical expertise is evaluated by
the team according to the importance of the contribution (e.g., a developer has been
immediately integrated after he had posted a conversion of the VLC to Windows)
or the fact that several small but good works have been done over time and give
CVS access when a developer is considered as competent. Embeddedness has in-
deed little impact on the ability to join the project for the people who have already
good technical skills.

How Do People Coordinate?
The process of joining VideoLAN is often the same: a developer identifies a

lacking feature that he is able to code, works on it, and submits his work to the Vide-
oLAN team. If it is considered good enough, he is given CVS rights. The Windows
version and a new design of the Mac OS X interface have been two contributions
that have allowed their authors to integrate the team. These patches mainly need
technical expertise. But once inside the team, where choices on the very architecture

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 137

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

of the software are made, is technical expertise sufficient to explain the participation
on the project? One may think that it is not and that the issue of coordination needs
other variables in order to be correctly studied.

Two facts tend to prove that the distribution of the work, which is a result of
the coordination between developers, depends on a second kind of expertise called
panoptic expertise. The first fact is the way the documentation has been written.
Though it has been started by an external developer, the user documentation of Video
LAN is mostly written by three first-year students from the ECP under the direc-
tion of a third-year student. According to this third-year student, they were indeed
astonished that an external developer may have been able to write documentation,
considering that they were in a much more comfortable situation to do so because
“[they] had easier access to anything.” The distribution of the work done on the
website which gives the users information concerning the state of the project has
the same kind of distribution as over 75% has been done by two people related to
the ECP, one of them having committed only 0.35% of the modified lines of code
for VLC and VLS, whereas the other represents the major contribution (46%) to
the VLC. Most of the documentation and the website, which are the two main
ways for a user to gather information, have been done by people related to the ECP
who have very little technical skill. This is surprising, because if we consider that
costs necessary to gather information are low, anybody—including people who
are not linked to the ECP—should be able to gather information and take part in
the writing of the documentation. And that proves that technical expertise may be
supplemented by another expertise, a “panoptic” expertise that is an awareness of
the state of the work.

The second fact that favors consideration of an expertise other than technical as
an important part of coordination among the different developers has been furnished
by the ethnographic observation. If, during the meetings that take place at the ECP
and the exchange on the IRC channel, the persons who have contributed most of
the code are carefully listened to, other people with a weaker technical legitimacy
are also listened to very carefully, even on technical choices. The reason why such
attention is given to them is that they often are very knowledgeable about the state
of the developments, sometimes even more so than the developers themselves who
do not always share information concerning what they are doing. Whereas the way
the documentation has been written was an argument in favor of considering that
a second kind of expertise existed, the argumentation used in the decision making
proves that such an expertise is legitimate.

But the assessment that coordination is influenced by two kinds of expertise,
one mostly technical and the other that is an ability to have a wider view and ac-
cess to information, does not help very much in explaining the way coordination is
driven. It only points out that technical expertise may not be considered as the only
way of explaining how people work together. It leads to consider, on the one hand,
that these kinds of expertise that are not equally distributed within a team may result

TLFeBOOK

138 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

in various hierarchical structures and, on the other hand, that the variability of the
relative legitimacy of these two kinds of expertise has an influence on the kind of
management that is adopted. This is to some extent the point made by Healy and
Schussman (2003), who consider that the success of an open source project depends
on three factors, two of them being the hierarchy and the kind of management. I
would like to go one step further and not take these two kinds of expertise for granted
but, rather, try to understand how people acquire them and what influence they may
have on the distribution of work within the VideoLAN team.

How Does Technical Advice Circulate? Authorities and
Hubs

In order to tackle this point, the circulation of technical advice within the team
has been studied. People were asked to indicate the persons from whom they have
already sought advice when they faced an issue concerning any part of the Video
LAN code. This study was guided by the hypothesis that people who are the most
(directly or indirectly) sought out for advice are the technical experts, recognized as
such by the members of the team, but that the circulation of advice within the team
is not only determined by technical expertise but also by the “panoptic” expertise.
The comparison between the structure of the network and the distribution of techni-
cal expertise, determined by the study of the CVS, would help to understand how
both kinds of expertise are distributed among the team, how they are mobilized,
and how they are acquired.

In order to protect their anonymity, people have been divided into six popula-
tions according to their technical expertise, depending on the amount of code writ-
ten and the ownership of a unique skill. In Category 1 are the four top developers
of the VLC, who have modified between 54,000 and 400,000 lines of code (out of
810,000). The specialists of the VLS, who are almost the only ones to work on it,
are regrouped in Category 2. The people who recently gave significant amounts of
code (from 8,000 to 35,000 modified lines of code) to the VLC have been marked
as Category 3. People who have written the documentation but have committed
almost no source code to any program are grouped in Category 4. A fifth group
has been constituted with the people who have given significant amounts of code
(around 7,000 modified lines of code) but who have stopped their development for
months and with the people who have made only limited contributions (from 2,000
to 4,000 modified lines of code) though they are still considered as active. A last
group was created, grouping the people who are considered to be active members
of the project but do not have CVS access or did not use it, all of them needing to
relay their action through a member of the team because they are first-year students
or very specialized people who make limited and punctual contributions, such as
the making of packages for Linux distributions—Red Hat or Mandrake—when a
new release is coming.

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 139

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Partial Discrepancy between Technical Expertise and the
Circulation of Advice

The results of the study show a clear discrepancy between the technical exper-
tise and the network of advice. The people who have the highest authority17 score
(between 0.26 and 0.47) are the four people in Category 1 because of their technical
skill. The higher the technical skill, the higher the authority in the technical advice
network. This is also consistent with the fact that among the ten people whose advice
is most sought by others, there is one of the three experts working on the VLS and
the person who is in charge of most of the documentation and the website. However,
even if technical skill explains a large part of the circulation of advice among the
team as it induces who are the authorities, it is strongly influenced by other factors.
Within the group of the three most skilled people, the person not belonging to the
ECP has an authority score of 0.26, whereas the other people who are members or
past members of the ECP have authority scores from 0.43 to 0.47. In the same way,
people from the ECP have been quoted between 21 and 32 times as having been
asked for advice, whereas this person has only been quoted 10 times18. Despite the
fact that this expert has taken more and more weight in the technical choices made
by the VideoLAN team and is now one of the three developers able to work on the
VLC kernel, the circulation of advice to the top depends on the links to the ECP.
One may suppose that the cost necessary to gather information is lower among de-
velopers of the ECP than if an external developer is involved, and that it therefore
has influence on all authority scores. The same interpretation could be made if one
considers a second group made up of people having authority scores from 0.10 to
0.23. In this group, the two persons working on the VLS who are related to the ECP
have been sought out for advice much more than the one who comes from outside
the ECP. Even if the technical expertise allows all three of them to be considered
as experts of the VLS, the costs to contact the person are less important when one
knows each other. In the same way, if one excludes the “core” team, the people
who have written the main part of the contributions over the last months are people
who do not belong to the ECP and they are not considered as advice authorities in
the network. One may therefore again suppose that the costs to gather information
are not equally low among the members of the team but that people from the ECP
tend to seek advice from each other.

Importance of Face-to-Face Relationships
The structure of the advice network is therefore much more intricate than if it

was only based on technical expertise. It is quite clear with regard to the external
contributors who may have joined the project mainly because of technical inter-
est—they ask advice from the members of the core groups working on VLS or VLC
and from the secondary contributors in terms of code. However, in most cases, they
have only asked advice from only one or two people, whereas most of these external
contributors have worked on several parts of the code. If costs to reach the people

TLFeBOOK

140 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

who have the technical expertise were null or equal among all developers, one may
have found a much wider spectrum of relationships. Concerning the students from
the ECP, the question is more complex, as they see each other every day. Because
of the technical gap that may exist between two members of the project, it may be
difficult for the new and less skilled people to contact more experienced developers,
as such a contact may reveal the technical gap between them. It is particularly true
in the case of the students from the ECP, but one may think that this fact is only
outlined by the specific relationships among them and exists at a broader scale with
less intensity. In both cases, a developer does not always dare start a new interac-
tion in order to gather information. The costs to gather information should therefore
be reintroduced through the notion of “face” as it has been developed by Goffman
(1956); i.e., in order not to lose face, the developers use elaborated strategies, trying
to gather information through hubs, which explains why the advice network is so
much disconnected from the technical skills. A member of Group 3 reveals that he
prefers to leave his room and ask advice from a friend who is one of the core de-
velopers rather than trying to join any of the core developers over the IRC. Despite
VideoLAN being a collegial organization with equals, the circulation of advice is
not free from social constraints but depends on individual strategies.

A Network Structured around Hubs
This notion of face helps to understand how panoptic expertise is acquired and

mobilized. The advice network is indeed very much structured around hubs that have
been given this role not because of their technical skills but because they both are
accessible to advice-seekers and themselves have access to technical experts. They
are therefore able to gather information at an cost acceptable to them. And people
are able to ask advice from them. The four people who have the highest hub scores25
have modified very few lines of code (from 600 to 15,000) as compared to other
members of the project. But for the students from the ECP, these four have the great
advantage of having known the project for a long time and therefore have easy access
to the main coders. Three of them are third-year students who are able to join the
“core” developers without too much cost, as long as they have demonstrated a great
involvement in the project and have been at the ECP with the two main developers.
One of these hubs is the main writer of the documentation, and another is one of
the experts of the VLS. Newcomers use these persons who have panoptic expertise
in order to get technical information indirectly. Within the VideoLAN team, the
first-year students have easier contacts with second-year students because they are
integrated in clubs driven by their predecessors, where older people are less active.
On a wider scale, the forum related to an open source project may be the place to
find some of the people with high panoptic expertise, as the core developers do not
always have much time to spend on guiding newcomers.

But the way panoptic expertise is being mobilized by people who need it does
not explain how it is acquired. Within the VideoLAN project, the panoptic expertise

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 141

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

is acquired through a very specific process. As indicated by ethnographic observa-
tion and confirmed by network analysis, friendship is a resource that may be used
to develop panoptic expertise. It is particularly true concerning the students from
the ECP: the friendship network19 is made of groups that roughly tie together people
from the same year of study. Some individual people are the links between various
groups, one first-year student being, for example, a friend of one of the second-year
students who has a wide friendship network, thus allowing the first-year student to
slowly integrate the group and have indirect contact with third-year students who
themselves know external developers. This explains the high betweenness centrality
scores20 concerning friendship from people 2 and 18 who are at the intersection of
two groups of friends. Such a structure is extended to the relationships with external
contributors. The core developers (e.g.,17 and 33) tend to have developed friendship
with the people with whom they work , which may explain why the core developers
who are linked with the ECP also have high betweenness centrality scores. Because
some people are indispensable in helping two persons to communicate, their panoptic
expertise grows. Newcomers ask them for advice, and developers are therefore aware
of their projects. And they may have to ask core developers about some functions
within the kernel and are therefore aware of the state of its development. Panoptic
experts benefit both from ascending and descending information. Because of their
position based on their panoptic expertise, they have to face many more technical
problems than if they were isolated and did not have to gather information for other
people. Their technical expertise consequently grows, and they have the ability to
convert some part of their panoptic expertise into technical expertise. But as their
technical expertise grows, the cost to contact developers of the kernel declines
and the cost to be contacted by newcomers grows, and thus they tend to become
authorities rather than hubs. Therefore, a new cycle has to begin in order to keep
the link between newcomers and experimented coders. At the ECP, this process is
helped by the arrival of a new promotion (entering class) every year. The two kinds
of expertise, though they do not strictly go together, influence each other and are
therefore sometimes difficult to distinguish.

Expertise and Its Influence on the Regulation System
The fact that panoptic expertise is partially based on friendship — and not

only on a technical expertise that could allow information gathering without losing
face — has important consequences on the regulation of the relationships within the
team. Friendship plays a double role in the VideoLAN project. It allows newcomers
to the ECP to integrate the team after a period of acclimatization, without losing
face in front of experts who often impress them. But these bonds of friendship are
not only visible from inside the ECP team; they are often publicly demonstrated,
especially on the IRC channel which is a permanent circus where people exchange
news about their lives, in addition to answering questions of users or developers
who would like to do some work. According to the external developers, such an

TLFeBOOK

142 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

atmosphere is quite rare on an IRC channel devoted to software. Therefore, the
friendship that unites the members of the ECP has spillover effects, as external
contributors tend to join the conversation and speak about their private lives. By
doing so, they develop a link with the team that is much stronger than if it was
only technical. Even if some of the external developers join the team because they
would like to implement a new feature into the software, the atmosphere of the team
may be a criterion for the choice. According to most of the external developers,
the feeling that the VideoLAN project is supported by a community that has more
than technical ties is very important. One may think that such importance is given
to these non-technical considerations partly because it helps to prevent the risk of a
fork, a phenomenon that is quite common within open source software, even very
important ones (e.g., PHPNuke — PostNuke and their followers, the various BSD
systems, or Xfree86 — Xwin). VideoLAN is therefore a project that produces both
code and social link, this one being voluntarily maintained by external developers
who come to France and see the students from the ECP, or people who have stopped
working on the project but who are still present on the IRC channel21.

CONCLUSION
Even in a particular project such as VideoLAN, in which a significant num-

ber of people are able to have physical contact and share bonds of friendship, the
importance of technical expertise remains absolutely preponderant. In a coherent
way with previous studies (Koch & Schneider, 2002; Mockus, Fielding & Herbsleb,
2000, 2002), technical expertise is highly concentrated in the hands of few contribu-
tors, who are disconnected from their geographical situations and who coordinate
themselves over non-physical ties — the IRC channel being the main medium of
communication. However, one should moderate the assumption that this abstrac-
tion from physical links means that open source software succeeds because costs to
gather information required to join the development (which include cost to contact a
person, if possible, an expert) are very low and therefore information is available to
anyone who wants to participate. Relationships that are not only based on technical
considerations may have an effect on the distribution of work within the team. The
fact that these relationships (sometimes with strong forces such as friendship) link
embedded people should be seriously considered when one studies an open source
project, as it introduces differentiated costs of communication that influence the
way information is distributed. It is an illusion to consider that all information is
easily available (even when it is publicly available) and that the network of active
developers is a flat one. In this particular study, students from the ECP have the
opportunity to seek out technical experts in order to gather pertinent information
through a medium such as the IRC that allows people to contact anyone at the same
cost. But they do not, rather preferring to use their social network in order not to
lose face. Such considerations thus introduce new costs that have to be considered

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 143

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

in order to join the project and that define what is possible. Because of differences
in costs of communication, one should consider a panoptic expertise that plays a
significant role and has non-trivial links with technical expertise. Concerning the
external contributors, their cost to join the project is inferior, as they do not already
belong to the social network constituted by the VideoLAN members. They may
therefore directly work on their field of expertise.

As the ways to determine the position taken in the project are not the same,
the distribution of work inherits from this difference. The coordination and docu-
mentation tasks are endorsed by students from the ECP who have easy access to
information, whereas people who have technical expertise focus on the development
of the software.22 The agent who joins a project takes advantage of the resources
(technical expertise or position within the network of relationships) that he is able
to use and that gave him access to some places. As stated by David Zeitlyn (2003),
“relationships are made through action, mutually directed and reciprocal” (p.8), and
through action people acquire and confirm a symbolic capital, as it has been defined
by Bourdieu, that allows the development of panoptic expertise. They are then able
to redefine what is possible. The place that is occupied in the social network of
developers and the resources that have been used to access it should therefore be
taken into account in a model that tries to determine the development of an open
source software, particularly when it focuses on the choice of developing a new
module or working on the kernel of the software (Dalle & David, 2003).

These results shed a light on VideoLAN analyzed as a collegial structure. The
fact that developers are theoretically equal and that information is made publicly
available does not imply that everybody communicates with everybody, the structure
of the circulation of advice being explained by technical expertise. Face-to-face
interactions have a great importance in the structuration of this network of advice
and their analysis can help us to understand how work is done within VideoLAN.

Of course, the VideoLAN project remains a very unique open source project
because of its links with the ECP. The issue of the generalization of the conclusions
that have been drawn should not be ignored and this study calls for comparative
works. However, quite a few facts indicate that taking into account the embedded-
ness of relationships between the core23 developers may help us to understand open
source development better. Some projects are based on the relationship between a
limited number of people. Several projects have been started by people who were
present at the same place, such as the Apache web server or Emacs at MIT, the
DVD player Ogle at the University of Copenhagen, or Galeon at the University of
Milano. The main project that reflects the importance of interpersonal links is prob-
ably the Debian distribution in which co-optation is the key to participation. One
may think without too much risk that personal interactions within this project play
an important role and constitute an exciting field of study.24 But Debian is quite a
unique project. If one looks at the libraries that are used by many video players in
order to decode specific audio and video formats (which are not marginal, such as

TLFeBOOK

144 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

the MPEG2 and A52/AC3 decoders used for the video and sound of the DVD), one
can see that the same people are working together on it. It may be the result of a
technical specialization, the worldwide experts on the subject working together, but
it also may be the result of a lowering of communication costs and the people who
already worked together on a project tending to work on other ones (close in technical
terms) with the same people. This is consistent with some results from the FLOSS
report (FLOSS, 2002): 50.1% of the developers had less than six regular contacts
with other members of the open source/free software community and 64.2% of the
developers were involved in less than three projects. If the cost to join a project is
high, it is not only because of the technical expertise to acquire and information to
gather, but it may also be because one has to develop relationships with new people.
These relationships are not only based on technical consideration but also on social
ones, and the difference in communication costs induces differences in the network
that link the members of a team together.

In the long run, one may finally wonder whether embeddedness would not take
a growing place in the open source development as firms invest in it and therefore
hire people. One may see the emergence of structures that share many common
characteristics with the VideoLAN project. For example, Netscape and IBM have
involved several people in Mozilla and the Linux kernel, and it is quite possible
that the development of these projects may be influenced by the existence of teams
that work together in offices and in which information may circulate more easily
than among isolated people. However, I consider that embeddedness already has a
great importance in existing projects; if the involvement of firms in the open source
software field follows the movement of the last few years, one may see projects with
a structure close to VideoLAN appear and reinforce these aspects.

REFERENCES
Benkler, Y. (2002). Coase’s penguin, or, Linux and the nature of the firm. Yale

Law Journal. 112(3). Retrieved in January 2003 from: http://www.yale.edu/
yalelj/112/BenklerWEB.pdf.

Coase, R. (1988). The firm, the market and the law. Chicago, IL: University of
Chicago Press.

Dalle, J.-M. & David, P. (2003). The allocation of software development resources
in ‘open source’ production. Retrieved in April 2003 from: http://opensource.
mit.edu/papers/dalledavid.pdf.

Dalle, J.-M. & Jullien, N. (2001). Turning fads into institutions. Retrieved in Sep-
tember 2002 from: http://opensource.mit.edu/papers/Libre-Software.pdf.

Floss Report. Free/Libre and open source software: Survey and Study (2002). Uni-
versity of Maastricht and Bercelon Research GmbH. Retrieved in September
2002 from: http://www.infonomics.nl/FLOSS/report/.

Friedberg, E. (1993). Le pouvoir et la règle. Paris, France: Le Seuil.

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 145

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Goffman, E. (1956). Presentation of self in everyday life. Edinburgh, Scotland:
University of Edinburgh, Social Sciences Research Center.

Granovetter, M. (1985). Economic action and social structure: The problem of
embeddedness. American Journal of Sociology. 91(3), 481-510.

Healy, K. & Schussman, A. (2003). The ecology of open source software develop-
ment. Retrieved in February 2003 from: http://opensource.mit.edu/papers/
healyschussman.pdf.

Hertel, G. (2002). Management virtueller teams auf der dasis sozialpsychologischer
modelle. In E.H. Witte. (Ed.), Sozialpsychologie wirtschaftlicher Prozesse.
Lengerish, Germany: Pabst Publishers, 172-202.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers
in open source projects: An Internet-based survey of contributors to the Linux
Kernel. Retrieved in March 2003 from: http://opensource.mit.edu/papers/rp-
hertelniednerhermann.pdf.

Hirschman, A. (1970). Exit, voice, and loyalty: Responses to decline in firms, orga-
nizations and states. Cambridge, MA: Harvard University Press.

Koch, S. & Schneider, G. (2002). Effort, cooperation and coordination in an open
source software project: GNOME. Information Systems Journal. 12(1), 27-
42.

Lazega, E. (1995). Capital Social et Contrainte Latérale. Revue Française de So-
ciologie. 36(4), 759-777.

Lazega, E. (2001). The collegial phenomenon: The social mechanisms of coop-
eration among peers in a corporate law partnership. Oxford, UK: Oxford
University Press.

Lee, S., Moisa, N., & Weiss, M. (2003). Open source as a signaling device – An
economic analysis. Retrieved in April 2003 from: http://opensource.mit.edu/
papers/leemoisaweiss.pdf.

Lerner, J. & Tirole, J. (2000). The simple economics of open source. Retrieved in
September 2002 from: http://opensource.mit.edu/papers/Josh%20Lerner%2
0and%20Jean%20Triole%20-%20The%20Simple%Economics%20of%20O
pen%20Source.pdf.

Lerner, J. & Tirole, J. (2002). The scope of open source licensing. Retrieved in
September 2002 from: http://opensource.mit.edu/papers/lernertirole2.pdf.

Mauss, M.. (1923). Essai sur le don. Forme et raison de l’echange dans les Sociétés
Archaïques. L’Année Sociologique. 2(1), 30-186.

Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source soft-
ware development: The Apache server. In Proceedings of the 22thInternational
Conference on Software Engineering. pp.263-272. Retrieved in September
2002 from: http://opensource.mit.edu/papers/mockusapache.pdf.

Mockus, A., Fielding, R., & Herbsleb, J. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM). 11(3), 1-38.

TLFeBOOK

146 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Raymond, E. (1999). The cathedral and the bazaar: Musings on Linux and open source
by an accidental revolutionary. Sebastopol, CA: O’Reilly and Associates.

von Krogh, G., Spaeth, S., & Lakhani, K. (2003). Community, joining and special-
ization in open source software innovation: A case study. Retrieved in March
2003 from: http://opensource.mit.edu/papers/rp-vonkroghspaethlakhani.pdf.

Wasserman, S. & Faust, K. (1995). Social network analysis: Methods and applica-
tions. Cambridge, UK: Cambridge University Press.

Waters, M. (1989). Collegiality, bureaucratization and professionalization: A We-
berian analysis. American Journal of Sociology. 94(5), 945-972.

Williamson, O. (1985). The economic institution of capitalism. New York: Free
Press.

Zeitlyn, D. (2003). Gift economies in the development of open source software:
Anthropological reflections. Retrieved in March 2003 from: http://opensource.
mit.edu/papers/rp-zeitlyn.pdf.

ENDNOTES
1 I would like to thank Erhard Friedberg and Antoine Roullet for their stimulat-

ing comments, as well as Martha Zuber, Thomas Constantinesco and Paula
Chesley for their contributions. However, I am the only one who should be
considered responsible for what follows.

2 The promotion of the GNU GPL has been quite successful, as a huge majority
of software developed on SourceForge.net is released under its terms (Lerner
& Tirole, 2002, p.38). This majority does not reflect the exact part of the GPL
among open source software, as many great pieces of software have created
their own licenses (e.g., Mozilla, Apache), but it shows how popular and well-
known it is.

3 The influence of such analysis may be found in the questionnaire whose results
have been published in part II of the Free/Libre Open Source Survey (FLOSS
2002).

4 This is based on the VIST (for valence, instrumentality, self-efficacy and trust)
model developed by Hertel (2002) that explains individual motivations to work
in a virtual team. Valence stands for the adequation between the personal goals
and the team goals. Instrumentality is the perceived importance or indispen-
sability of one’s contribution to the work of the team. Self-efficacy is the fact
that the individual perceives himself as being able to accomplish is part of the
team task. And trust relies on the consideration that the other members of the
team will not use team efforts for their personal interest.

5 I disagree with the way Benkler (2002) uses this notion: transaction costs are
used in a much more precise way by Coase and Williamson and reflect the
costs that would be required to elaborate a contract between two persons. It
includes costs for discovering adequate prices and costs for establishing a

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 147

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

contract for each transaction (i.e., negotiation costs). I will only focus in this
article on costs that are required to gather the information necessary to take
part in the development of the project.

6 A CVS is a piece of software that is designed to help people to work together.
As a file system it stores data files but it stores every difference of a file since
its creation. Write permission is limited to the person who has gained it and
the difference is associated with many variables such as the identity of the
person who has “committed” a difference. It allows the developers to come
back and see previous versions of a file in case they have broken something.
From a sociological point of view, this is a very interesting tool as it shows
which person has contributed what and in which proportion.

7 Though the studied object was named free software upwards because only
free software has the characteristics of a public good, I will use the term open
source downwards. What follows focus on the way people coordinate in an
opened structure and the chosen license has little impact on the subject. I do
not deny that free software and open source software are different but the
processes that will be described here are in my opinion not specific to free
software but shared by open source software. The only important point is
that the license should not impose any pre-existent hierarchical structure and
that the repartition of power, whether formal or informal, should be the result
of a perpetual bargaining between the members of the project. As stated by
Friedberg (1993), power is always bargained but in open source software, the
license rarely prevents fork, which allows some developers to chose exit rather
than voice (Hirschman, 1970) without much cost and to start a new project
where a new structure of power will be elaborated. Because they rely on the
fact that power is informally distributed, conclusions drawn downwards would
not apply to software released under a license that prevents forks and imposes
its own organization.

8 A part of an open source project often neglected although it plays a major role
in the success of the project as it is one of the main media to make the work
public, to gain interest from the users and other developers.

9 http://www.videolan.org
10 The French educational system is quite different from Anglo-Saxon educational

system; universities are wide open to anyone, whereas one can study in some
schools called ‘Grandes Ecoles’ only if one passes selective tests. Because
the access to these Grandes Ecoles is much harder than to university, they are
more prestigious and often considered as being at the top of the system. The
Ecole Centrale Paris (http://www.ecp.fr) is one of the best of these Grandes
Ecoles and is as such one of the top scientific school in France.

11 However, these advantages have to be paid by the fact that it will be difficult
to generalize the results of this case study. This will be discussed in conclu-
sion.

12 http://statcvs.sourceforge.net

TLFeBOOK

148 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

13 The sources for such a result were the THANKS and AUTHORS files of
the VLC and the VLS, the persons that were quoted on the team page of the
project (http://www.videolan.org/team) and those who give contributions in
the mailing-lists.

14 The website was added in the CVS on October 27, 2002 in order to allow
anyone who has a CVS to have access to it and modify it.

15 http://vlado.fmf.uni-lj.si/pub/networks/pajek
16 Such a number is calculated after having ignored a CVS commit of 107,521

modified lines. This corresponds to the move of some part of the code from
one directory to a new one. According to the author of the commit, it should
not be taken into account as no code has been added. It has therefore been
ignored. Some other commits from the same author have also been ignored as
they were devoted to remove double spacing. The score of the top developer
calculated on the whole CVS was 52% of modified lines. I was not able to
find other commits to ignore. The addition of license and documentation were
taken into account as they constitute a real addition to the software and are
part of it.

17 The more people have sought advice directly or indirectly from a person, the
greater authority score he or she has.

18 Which is still the fifth score.
19 The friendship network was elaborated by asking people to design among the

53 developers who they consider as friends. The definition was voluntarily
very strong as people were asked to check the box related to the person only
if they consider that the person was one of the closest persons from them.
The instructions seem to have been well understood as the answers seem to
correspond to the ethnographic observation and there were never more than
a few friends for each answer.

20 The betweenness centrality score is only as high that the person is indispesable
to keep two persons in touch. It is calculated as:

 jk

kjkikj
jk

B g

ig
C

i

∑
≠≠<= ,,

)(

 i.e., the proportion of shortest paths (geodesics) between j and k that go through

i. gjk is the ensemble of geodesics between j and k ; gjk(i) is a geodesic between
j and k that goes through i. See Wasserman & Faust (1995) for more details.
However, this score does not reflect the fact that the graph representing bonds
of friendship is oriented. Friendship relationships were considered as being
symmetric, the fact that one person declares the other his friend as being
sufficient to consider that a friendship link between them existed. What is at

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 149

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

stake is that one of the two people considers the relationships that unite them
as friendship, not the fact that it is reciprocal.

21 The nature of the conflicts and their solutions are also influenced by this kind
of regulation but this goes too far to be in this article.

22 This dichotomical distribution of tasks may be moderated, as the most techni-
cally skilled persons from the ECP are both among the main contributors to
the project and endorse coordination of tasks.

23 I share the intuition of Healy and Schussman (2003) that the closer to the
core functions developers are the more important hierarchy is. But this is not
only due to the fact that these functions are technically primordial: because
these developers are in close contact, the network is much more structured
than one which could group occasional contributors. The dynamic that ends
in and perpetuate a particular hierarchical state is therefore a phenomenon
which should be examined more closely, as it may reveal the nature and the
variety of resources that are exchanged in order to reach that state.

24 The Debian developers are aware of this and some of them show interest in
elaborating the network that links the personal keys of developers (i.e., who offer
who to join Debian). See http://people.debian.org/~edward/globe/earthkeyring/
which could provide a good start to study the phenomenon.

25 In graph theory, a vertex is a good hub, if it points to many good authorities,
and it is a good authority, if it is pointed to by many good hubs.

TLFeBOOK

150 Basset

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

N
um

be
r

St
ud

en
t o

f
th

e
EC

P
Te

ch
ni

ca
l

ex
pe

rti
se

H
ub

 sc
or

e
in

 th
e

ad
vi

ce
 n

et
w

or
k

Q
uo

te
d

as

so
ug

ht
 fo

r
ad

vi
ce

A
ut

ho
rit

y
sc

or
e

in
 th

e
ad

vi
ce

ne

tw
or

k

Q
uo

te
d

as

fr
ie

nd
B

et
w

ee
nn

es
s

ce
nt

ra
lit

y
in

th

e
fr

ie
nd

sh
ip

ne

tw
or

k
1

Ye
s

5
0.

34
07

52
7

8
0.

20
13

08
12

0.
02

36
09

7
2

Ye
s

6
0.

17
94

85
8

0
0

3
0.

09
47

54
4

3
N

o
2

0.
13

95
09

7
4

0.
10

29
95

6
1

0.
00

08
75

2
4

N
o

6
0

0
0

0
0

5
N

o
6

0.
09

06
99

7
0

0
0

0
6

Pa
st

5
0.

09
43

71
5

3
0.

10
05

17
4

11
0.

00
35

42
5

7
N

o
6

0.
04

90
67

2
4

0.
11

08
78

3
1

0
8

Pa
st

5
0.

08
29

89
5

3
0.

08
85

72
6

10
0.

00
17

55
7

9
N

o
3

0.
09

43
71

5
4

0.
08

04
05

4
1

0
10

Ye
s

3
0.

24
08

50
8

9
0.

22
56

62
9

9
0.

01
37

97
9

11
Ye

s
4

0.
15

82
74

6
0

0
5

0.
04

54
54

5
12

N
o

3
0.

19
01

18
4

2
0.

03
14

69
9

1
0

13
N

o
6

0.
04

90
67

2
0

0
0

0
14

Ye
s

2
0.

31
50

33
1

7
0.

15
22

24
3

18
0.

03
36

77
2

15
Ye

s
3

0.
15

53
38

1
7

0.
16

66
19

8
6

0.
00

29
55

1
16

Ye
s

4
0.

06
61

20
7

0
0

4
0.

00
03

15
7

17
Pa

st
1

0.
14

83
35

8
23

0.
43

56
98

1
13

0.
17

67
12

3
18

Ye
s

5
0.

24
43

66
8

5
0.

14
76

56
5

0.
00

16
20

4
19

Ye
s

2
0.

17
88

02
7

11
0.

23
63

79
4

15
0.

04
30

13
2

APPENDIX
Synthetic Results of the Network Analysis

TLFeBOOK

Coordination and Social Structures in an Open Source Project: VideoLAN 151

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

20
Ye

s
6

0.
13

95
59

4
1

0.
01

64
58

7
4

0.
04

30
13

2
21

N
o

6
0.

14
54

88
4

0
0

0
0

22
N

o
4

0.
08

82
76

7
0

0
0

0
23

Ye
s

1
0.

11
89

50
4

21
0.

43
41

01
8

7
0.

02
12

05
8

24
Ye

s
4

0.
31

09
42

1
8

0.
16

40
06

2
13

0.
01

33
44

1
25

Ye
s

4
0.

09
52

35
3

0
0

2
0

26
Pa

st
6

0.
04

90
67

2
4

0.
08

98
56

7
10

0.
01

23
05

1
27

Ye
s

5
0.

09
43

71
5

6
0.

15
72

75
8

8
0.

01
05

21
6

28
Ye

s
6

0.
30

50
13

1
0.

01
86

64
1

9
0.

12
94

14
1

29
Ye

s
6

0.
19

60
48

6
1

0.
03

17
14

8
8

0.
01

04
29

9
30

N
o

3
0.

05
36

64
9

0
0

1
0

31
N

o
1

0.
15

43
11

2
10

0.
26

10
48

6
1

0
32

Ye
s

5
0.

11
15

30
7

2
0.

03
31

76
6

4
0.

01
23

10
6

33
Pa

st
1

0.
28

56
62

3
32

0.
47

18
87

4
18

0.
06

49
25

4
34

Ye
s

6
0.

04
43

96
8

1
0.

00
99

03
6

4
0

APPENDIX
Synthetic Results of the Network Analysis (continued)

TLFeBOOK

152 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Chapter VII

Free Software
Development:

Cooperation and Conflict in a
Virtual Organizational Culture

Margaret S. Elliott, University of California, Irvine, USA

Walt Scacchi, University of California, Irvine, USA

ABSTRACT
This chapter presents an empirical study of a free software development community
and how its virtual organizational culture influences its work practices. Results show
that beliefs in free software and freedom of choice, and values in cooperative work
and community influence work practices and norms. The authors wish to convey the
importance of understanding the deeply held beliefs and values of the free software
movement by showing how a free software development community uses computer-
mediated communication in the form of IRC (instant messaging), mailing lists, and
summary digests to mitigate and resolve conflicts, build a community, reinforce
beliefs, and facilitate teamwork. Results are intended to assist future contributors
and managers of free/open source software development projects in understanding
the social world surrounding free/open source software development.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 153

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

INTRODUCTION
Free/open source software (F/OSS) development projects are growing at a

rapid rate. The SourceForge website estimates 750,000+ users with 700 new ones
joining every day and a total of 75,000+ projects with 60 new ones added each
day. Thousands of F/OSS development projects have emerged within the past few
years (DiBona, Ockman, & Stone, 1999; Pavlicek, 2000) leading to the formation
of globally dispersed virtual communities (Kollock & Smith, 1999). Examples of
F/OSS development projects are found in the social worlds that surround computer
game development; X-ray astronomy and deep space imaging; academic software
design research; business software development; and Internet/Web infrastructure
development (Elliott, 2003; Elliott & Scacchi, 2003a, 2003b; Scacchi, 2002a, 2002b).
Working together in globally distributed virtual communities, F/OSS developers
communicate and collaborate using a wide range of web-based tools including In-
ternet Relay Chat (IRC) for instant messaging, CVS for concurrent version control
(Fogel, 1999), electronic mailing lists, and more (Scacchi, 2002b).

Proponents of F/OSS claim advantages such as improved software validity,
simplification of collaboration, and reduced software acquisition costs. While some
researchers have examined F/OSS development using quantitative studies explor-
ing issues like developer defect density, core team size, motivation for joining
free/open source projects, and others (Koch & Schneider, 2000; Mockus, Fielding,
& Herbsleb, 2000, 2002), few researchers have explored the social phenomena sur-
rounding F/OSS development (Berquist & Ljungberg, 2001; Mackenzie, Rouchy, &
Rouncefield, 2002). Popular literature has described F/OSS developers as members
of a “geek” culture (Pavlicek, 2000) notorious for nerdy, technically savvy, yet
socially inept people, and as participants in a “gift” culture (Berquist & Ljungberg,
2001; Raymond, 2001) where social status is measured by what you give away.
However, no empirical research has been conducted to study F/OSS developers as
virtual organizational cultures (Martin, 2002; Schein, 1992) with beliefs and values
that influence decisions and technical tool choices. In this chapter, we present the
results of a virtual ethnography to study the work culture and F/OSS development
work processes of a free software project, GNUenterprise (GNUe) (http://www.
gnuenterprise.org). We identify beliefs and values of the free software movement
(Stallman, 1999) associated with the work culture of the GNUe community, and
we show the importance of computer-mediated communication (CMC) such as
chat/instant messaging and summary digests in building community, resolving
conflicts, and facilitating teamwork.

The free software movement promotes the production of free software that is
open to anyone to copy, study, modify, and redistribute (Stallman, 1999). The Free
Software Foundation (FSF) was founded by Richard M. Stallman (known as RMS
in the F/OSS community) in the 1980s to promote the ideal of freedom and the
production of free software based on philosophical convictions and on the concept

TLFeBOOK

154 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

that free source code is necessary for innovation to flourish in computer science
(DiBona, Ockman & Stone, 1999). It is important to distinguish between the terms
free software (Stallman, 1999) and open source (DiBona et al., 1999). Free software
differs from open source in its philosophical orientation. Details regarding the Open
Source Initiative (OSI) may be found at http://www.opensource.org. RMS believes
that the difference between the free and open source software movements is in their
values and ways of looking at the world. He explains it below:

For the Open Source movement, the issue of whether software should be open source
is a practical question, not an ethical one. As one person put it, “Open source is
a development methodology; free software is a social movement.” For the Open
Source movement, non-free software is a suboptimal solution. For the Free Software
movement, non-free software is a social problem and free software is the solution
(RMS) (http://www.fsf.org/philosophy/free-software-for-freedom.html)

A popular expression in the free software culture is “Think free speech, not
free beer.” The FSF promotes the use of the General Public License (GPL) for free
software development as well as other similar licenses (http://www.gnu.org/licenses/
license-list.html). While the majority of open source projects use the GPL, alterna-
tive licenses are suggested by the OSI (see http://www.opensource.org).

The free software movement has spawned a number of free software projects
all adhering to the belief in free software and belief in freedom of choice (see http://
www.gnu.org and http://www.fsf.org) as part of their virtual organizational culture.
As with typical organizations (Martin, 1992; Schein, 1992), virtual organizations
develop work cultures, which have an impact on how the work is completed. Sub-
sequently, there is a need for better articulation of how cultural beliefs and values of
the free software movement influence work practices of F/OSS development. Such
an understanding would benefit both managers and developers of F/OSS develop-
ment. In this chapter, we present empirical evidence from the study of the work
culture of one free software community — GNUe. As with all qualitative research
(Strauss & Corbin, 1990; Yin, 1994), we do not intend to portray a generalized view
of all free software development projects. However, research has shown that many
F/OSS development projects follow similar procedures (Feller & Fitzgerald, 2002;
Scacchi, 2002b). Future research will show how closely the GNUe work culture
resembles that of other free software projects.

In the next section, we present the GNUe project, followed by research meth-
ods. In subsequent sections we present the background, discuss the GNUe virtual
organizational culture, and present the three case studies followed by a discussion.
Finally, we end with practical implications, future research, and conclusions.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

GNUE PROJECT
GNUe is a meta-project of the GNU (http://www.gnu.org) Project. GNUe is

organized to collect and develop free electronic business software in one location
on the Web. The plans are for GNUe to consist of:

1) a set of tools that provide a development framework for enterprise information
technology (IT) professionals to create or customize applications and share
them across organizations;

2) a set of packages written using the set of tools to implement a full Enterprise
Resource Planning (ERP) system; and

3) a general community of support and resources for developers writing applica-
tions using GNUe tools.

GNUe is an international virtual organization for software development
(Crowston & Scozzi, 2002; Noll & Scacchi, 1999) based in the U.S. and Europe.
This organization is centered around the GNUe Web portal and global Internet
infrastructure that enable remote access and collaboration. As of the writing of
this paper, GNUe contributors consist of six core maintainers (co-maintainers who
head the project), 18 active contributors, and 18 inactive contributors. The six core
maintainers share various tasks, including the monitoring of the daily Internet Relay
Chat (IRC), accepting bug fixes to go into a release, testing software, documentation
of software, and other tasks. Companies from Austria, Argentina, Lithuania, and
New Zealand support paid contributors, but most of the contributors are working
as non-paid participants.

RESEARCH METHODS
This ongoing ethnography of a virtual organization (Hine, 2000; Olsson, 2000)

is being conducted using the grounded theory approach (Strauss & Corbin, 1990)
with participant-observer techniques. The sources of data include books and articles
on F/OSS development, instant messaging (Herbsleb & Grinter, 1999; Nardi, Whit-
taker, & Bradner, 2000), transcripts captured through IRC logs, threaded electronic
mail (email) discussion messages, and Kernel Cousins (summary digests of the IRC
and mailing lists — see http://kt.zork.net). This research also includes data from
email and face-to-face interviews with GNUe contributors and observations at Open
Source conferences. The first author spent over 100 hours studying and perusing
IRC archives and mailing list samples during open and axial coding phases of the
grounded theory. During open coding, the first case study was selected as repre-
sentative of the strong influence of cultural beliefs on GNUe software development
practices. The selection of cases was aided by the indexing of each Kernel Cousin
into sections labeled with a topic. For example, we read through all Kernel Cousins

TLFeBOOK

156 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

looking mainly at the indices only and found the following title “Using Non-Free
Tools for Documentation” in http://kt.zork.net/GNUe/gnue20011124_4.html. Hy-
perlinks from this cousin pointed us to a similar case where non-free tools were
being used for documentation of code. The third case was discovered during axial
coding for Case Two. In the third case, a newcomer asks for help regarding the use
of GNUe, and we show how cooperation and community building are facilitated by
the use of IRC. The initial research questions that formed the core of the grounded
theory are:

1) How do people working in virtual organizations organize themselves such that
work is completed?

2) What social processes facilitate open source software development?
3) What techniques are used in F/OSS development that differ from typical

software development?

We began this research with the characterization of open source software com-
munities as communities of practice. A community of practice (COP) is a group of
people who share similar goals, interests, beliefs, and value systems in a common
domain of recurring activity or work (Wenger, 1998). An alternative way of viewing
groups with shared goals in organizations is to characterize them as organizational
subcultures (Martin, 2002; Schein, 1992; Trice & Beyer, 1993). As the grounded
theory evolved, we discovered rich cultural beliefs and norms influencing “geek”
behavior (Pavlicek, 2000). This led to us to the characterization of the COPs as
virtual organizations having organizational cultures.

We view culture as both objectively and subjectively constrained (Martin,
2002). In a typical organization, this means studying physical manifestations of
the culture such as dress norms, reported salaries, annual reports, and workplace
furnishings and atmosphere. In addition, subjective meanings associated with these
physical symbols are interpreted. In a virtual organization, these physical cultural
symbols are missing, so we focus on unique types of accessible manifestations of
the GNUe culture, such as website documentation and downloadable source code.
We selected GNUe as a research site because it exemplified the essence of free
software development, providing a rich picture of a virtual work community with
downloadable free software as well as lengthy documentation—all facilitating a
virtual ethnography (Hine, 2000). We took each IRC and Kernel Cousin related to
the three cases and applied codes derived from the data (Strauss & Corbin, 1990).
We used a text editor to add the codes to the IRC text logs using [Begin and End]
blocks around concepts we identified, such as “belief in free software.” In this way,
we discovered the relationships shown in Figure 1. During the axial coding phase
of several IRC chat logs, mailing lists, and other documentation, we discovered
relationships between beliefs and values of the work culture and manifestations of
the culture.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 157

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

BACKGROUND
In this section, we first discuss the organizational culture perspective and its

application to virtual organizations. Next, we present research on conflict resolu-
tion in virtual communities.

Organizational Culture Perspective
Much like societal cultures have beliefs and values manifested in norms that

form behavioral expectations, organizations have cultures that form and give mem-
bers guidelines for “the way to do things around here.” An organizational culture
perspective (Martin, 2002; Schein, 1992; Trice & Beyer, 1993) provides a method
of studying an organization’s social processes often missed in a quantitative study
of organizational variables. Organizational culture is a set of socially established
structures of meaning that are accepted by its members (Ott, 1989).

The substances of such cultures are formed from ideologies, the implicit sets
of taken-for-granted beliefs, values, and norms. Members express the substance
of their cultures through the use of cultural forms in organizations—acceptable
ways of expressing and affirming their beliefs, values, and norms. When beliefs,
values, and norms coalesce over time into stable forms that comprise an ideology,
they provide causal models for explaining and justifying existing social systems.
Researchers have theorized the application of a cultural perspective to understand
IT implementation and use (Avison & Myers, 1995; Robey & Azevedo, 1994), but
few have applied this to the workplace itself (Dubé & Robey, 1999; Elliott, 2000).
More research is needed to understand the relationship between organizational culture
and the development and use of IT in typical and virtual organizations.

In a virtual organization, cultural beliefs and values are manifested in norms
regarding communication and work issues (if work-related communities like F/OSS
development) and in the form of electronic artifacts—IRC and mailing list archives,
and summary digests (Kernel Cousins). Most organizational culture researchers
view work culture as a consensus-making system (Ott, 1989; Schein, 1992; Trice
& Beyer, 1993). However, some researchers view organizational culture from
two other perspectives (Martin, 2002): 1) differentiation where culture is viewed
as resulting in inconsistencies, lack of consensus, and non-leader centered sources
of culture content often manifested in differing subcultures, and 2) fragmentation
where culture is viewed as having no shared values except that of the awareness of
ambiguity. Martin (2002) proposes the use of all three perspectives on the same
organizational culture, where appropriate, for a more in-depth look at work cultures.
In this study, we focus on the integration perspective to characterize the unifying
effects of the GNUe beliefs and values.

Conflict Resolution in Virtual Communities
Researchers have attempted to understand conflict resolution in virtual com-

munities (Kollock & Smith, 1996; Smith, 1999) in the areas of online communities

TLFeBOOK

158 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

and in the game world. Many others have studied conflict resolution in common
work situations such as computer-supported cooperative work (CSCW) (East-
erbrook, 1993). For our purposes, we are interested in virtual communities and
how they resolve conflicts, so this discussion does not include studies on conflict
management tools.

Smith (1999) studied conflict management in MicroMUSE, a game world
dedicated to the simulation and learning about a space station orbiting the earth.
There were two basic classes of participants: users and administrators. Disputes
arose in each group and between the two groups regarding issues like harassment,
sexual harassment, assault, spying, theft, and spamming. These problems can be
attributed to differing views of MicroMUSE by participants and to diverse values,
goals, interests, and norms of the group. Smith concluded that virtual organiza-
tions have the same kinds of problems and opportunities brought by diversity as
real organizations do, and that conflict is more likely and more difficult to manage
than in real communities. Factors contributing to this difficulty are: wide cultural
diversity; disparate interests, needs and expectations; nature of electronic participa-
tion (anonymity, multiple avenues of entry, poor reliability of connections, and so
forth); text-based communications; and power asymmetry among users.

Kollock and Smith (1996) explored the implications of cooperation and con-
flict in Usenet groups, emphasizing the importance of recognizing the free-rider
problem. In a group situation where one person can benefit from the product or
resource offered by others, each person is motivated not to contribute to the joint
effort, instead free-riding on others’ work. Success in a newsgroup is predicated
by the active and ongoing contributions of its membership. If many members free-
ride by lurking or by infrequently contributing to the newsgroup, a critical mass of
participants may never occur. In addition, the authors suggest that bandwidth be
used judiciously by taking care not to post extremely long articles or by not posting
the same message to many newsgroups. Otherwise, participants might free-ride
on the efforts of other members by using the available bandwidth without restraint
while others post carefully. However, success of a Usenet group also depends on
its members following the groups’ cultural rules of decorum. We explore the topic
of following cultural rules in the next section.

GNUe VIRTUAL
ORGANIZATIONAL CULTURE

The substance of a culture is its ideology—shared, interrelated sets of emo-
tionally charged beliefs, values, and norms that bind people together and help
them to make sense of their worlds (Trice & Beyer, 1993). While closely related
to behavior, beliefs, values, and norms are unique concepts as defined below (Trice
& Beyer, 1993):

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 159

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Beliefs - Express cause and effect relations (i.e., behaviors lead to out-
comes).

• Values - Express preferences for certain behaviors or for certain outcomes.
• Norms - Express which behaviors are expected by others and are culturally

acceptable.

In the GNUe study, we apply an integration perspective (Martin, 2002) to the
GNUe community to show how beliefs and values of the free software movement
tie the virtual organization together in the interests of completing the GNUe free
software project (see Elliott & Scacchi, 2003a, for a detailed report of the GNUe
study). We present the GNUe virtual organization as a subculture of the FSF in-
culcating the beliefs and values of the free software movement into its everyday
work. As members of the FSF, free software developers share an ideology based
on the belief in free software and the belief in freedom of choice. These beliefs
are espoused in the literature on free software (Williams, 2002). The values of
cooperative work and community are inferred from this research.

Figure 1 shows a conceptual diagram of the GNUe case study. The columns
are labeled with terms derived from a grounded theory approach (Strauss & Corbin,
1990). The causal conditions consist of the beliefs (free software and freedom of

Figure 1: Conceptual diagram of variables.

Values
Cooperative Work
Community

Beliefs
Free Software
Freedom of Choice

Norms

Work
Practices
Software
Develop.

Strong
Belief in
Free SW

Conflicts
Over Free
Versus
Non-Free
SW

Building
Community

Resolving
Conflicts
Reinforces
Beliefs

Facilitating
Teamwork

Causal Conditions Phenomenon Consequence

IRC logs, email

TLFeBOOK

160 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

choice) and the values (cooperative work and community). The phenomenon is the
free software development process (i.e., code reviews, CVS releases, etc.) influenced
by the norms (open disclosure, informal management, and immediate acceptance
of outsider critiques), which are a manifestation of beliefs and values. The interac-
tion/action occurs on the IRC and mailing lists. It consists of: 1) the conflict over
the use of a non-free tool to create a graphic diagram of the emerging GNUe system
design; 2) the conflict over the use of a non-free tool to create GNUe documentation;
and 3) acceptance of a newcomer. The consequences are: 1) building community;
2) resolution of conflicts with a reinforcement of the beliefs; and 3) strengthened
teamwork. The beliefs, values, and norms are described below; the consequences
are presented in the discussion section.

Belief in Free Software
The belief in free software appears to be a core motivator of free software devel-

opers. GNUe developers extol the virtues of free software on its website and in daily
activity on the IRC logs. The FSF website has many references to the ideological
importance of developing and maintaining free software (see http://www.fsf.org).
This belief is manifested in electronic artifacts such as the Web pages, source code,
GPL license, software design diagrams, and accompanying articles on its website
and elsewhere. The data analysis of the GNUe cases showed that this belief varies
from moderate to strong in strength. For example, those who have a strong belief
in free software may refuse to use any form of non-free software (such as a com-
mercial text editor) for development purposes.

Belief in Freedom of Choice
F/OSS developers are attracted to the occupation of F/OSS development for

its freedom of choice in work assignments. Both paid and unpaid GNUe partici-
pants to some degree can select the work they prefer. This belief is manifested in
the informal methods used to assign or select work in an F/OSS project. During
a face-to-face interview with one of GNUe’s core contributors, we asked about
job assignments, and he responded with: “The number one rule in free software is
‘never do timelines or roadmaps’ (Derek, LinuxWorld conference, August 2002).”
The belief in freedom of choice also refers to the ability to select the tool of choice
to develop free software. Some F/OSS developers believe that a mix of free and
non-free software tools is acceptable when developing free software, while others
adhere to the belief that free software should be used exclusively.

Value in Community
The beliefs in free software and freedom of choice foster a value in community.

This value is evident in the IRC archives when newcomers join GNUe offering
suggestions or pointing out bugs, and GNUe contributors quickly accept them as
part of the community. In addition, one of the GNUe case studies shows that when

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 161

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

a frequent contributor refuses to use a computer program that requires non-free
software, fellow contributors join in an attempt to persuade him that a temporary
use of non-free software should be acceptable.

Value in Cooperative Work
The GNUe community’s beliefs in free software and freedom of choice com-

bined with the value in community foster a value in cooperative work. As with
previous researchers (Easterbrook, 1993; Kollock & Smith, 1996; Smith, 1999), our
results indicate that conflict arises during the course of cooperative work. GNUe
contributors work cooperatively to resolve conflicts through the use of IRC and
mailing lists.

Open Disclosure Norm
Open disclosure refers to the open content of the GNUe website including the

software source code, documentation, and archived records of IRC, Kernel Cousins,
and mailing list interchanges. The GNUe contributors join others online via IRC
on a daily basis and record the conversations for future reference.

Informal Management Norm
The entire GNUe virtual organization is informal. There is no lead organiza-

tion or prime contractor that has brought together the alliance of individuals and
sponsoring firms as a networked virtual organization. It is more of an emergent
organizational form where participants have in a sense discovered each other and
have brought together their individual competencies and contributions in a way
whereby they can be integrated or made to interoperate (Crowston & Scozzi, 2002).
The participants come from different small companies or act as individuals who
collectively move the GNUe software and the GNUe community forward. Thus, the
participants self-organize in a manner more like a meritocracy (Fielding, 1999).

Immediate Acceptance of Outsider Critiques Norm
In the GNUe organization, outsiders who have not visited the GNUe IRC

before can easily join the discussion and give criticisms of the code or procedures.
Sometimes this criticism revolves around the use of free versus non-free tools and
other times it is related to attempts to fix bugs in the code. In either case, the GNUe
maintainers who discuss these critiques respect and respond to outsiders’ reviews
with serious consideration without knowledge of reviewers’ background.

GNUe CASE STUDY
The GNUe case study consists of data analysis of three cases of GNUe software

development—two involving conflict and one conflict-free case. Each case will

TLFeBOOK

162 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

be described briefly in this section. For a more detailed description of the first two
cases, see Elliott and Scacchi (2003a).

Case One - Use of Non-Free Graphic Tool for
Documentation

In this section we present the first case study that reveals a trajectory of a
conflict and debate over the use of a non-free tool to create a graphic on the GNUe
website (http://www.gnuenterprise.org/irc-logs/gnue-public.log.25Nov2001). This
exchange takes place on the IRC channel on November 25, 2001, and ends the next
morning. This example illustrates the ease with which a newcomer comes onboard
and criticizes the methods used to produce a graphical representation of a screenshot
on the GNUe website. CyrilB, an outsider to GNUe, finds a graphic that was cre-
ated using ADOBE Photoshop, a non-free graphical tool. He begins the interchange
with a challenge to anyone onboard stating that “it is quite shocking” to see the
use of non-free software on a free software project. He exhibits a strong belief in
free software, which causes a debate lasting a couple of days. Table 1 displays the
total number of contributors and the number of days of the conflict. Eight of the
nine regular GNUe contributors were software developers, and one was working
on documentation. The infrequent contributors drifted on and off throughout the
day — sometimes lurking and other times involved in the discussion.

CyrilB’s strong belief in free software leads to conflict among regular con-
tributors: “I hope I’m wrong: it is quite shocking…We should avoid using non-free
software at all cost, am I wrong?” (Strong BIFS-1)

Reinhard responds with a moderate view of belief in free software: “Our main
goal is to produce good free software. We accept contributions without regarding
what tools were used to do the work especially we accept documentation in nearly
any form we can get because we are desperate for documentation.”

Later, Neilt, who originally created the GNUe diagram using ADOBE Photoshop,
joins the IRC, reviews the previous discussion on the archived IRC, and returns to
discuss the issue with Reinhard and CyrilB. A lively argument ensues between Neilt
and others with onlookers testing free software graphics tools in real-time. CyrilB
becomes adamant that the choice should be free software as shown below:

<CyrilB>We need people do be able to use free softwares…neilt:You are compro-
mising our freedom by using non-free software: we can’t modify and/or redistribute
the source vector file.

Table 1: Contributors and duration of conflict in Case One.

Total
Contributors

Regular
Contributors

Infrequent
Contributors

Number
of Days

17 9 8 2

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 163

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Neilt responds by arguing with CyrilB over the utility in changing the graphic:

<Neilt> otoh I see no reason to avoid non-free software either if this is really a
freedom thing then we should be free to use whatever we want.

Neilt feels that his freedom of choice is hampered by the strict adherence to
using free software to develop an F/OSS system.

These exchanges illustrate how participants use the IRC medium to support
and enable the cooperative work needed to resolve this issue. It also conveys the
community spirit and cooperative work ethic that is a value in the GNUe work
culture. They both agree to wait until CyrilB comes back to give more suggestions
for an alternative. One of the norms of the work culture is immediate acceptance
of outsider contributions. CyrilB’s critique is considered very important to GNUe
contributors and causes many to test free graphics packages in real-time for Neilt as
the discussion unfolds. Eventually, Neilt agrees with CyrilB and others to change
the graphic to one created with a free graphics tool. Consequences of the debate are
a clarification and reinforcement of the beliefs and values of the GNUe community,
and a recreation of a website graphic with free software to replace the original cre-
ated with a non-free software tool.

Case Two - Use of Non-Free Software for GNUe
Documentation

The second case study explores project insider review of the procedures and
practices for developing GNUe documentation (see http://www.gnuenterprise.
org/irc-logs/gnue-public.log.15Nov2001 for the full three-day logs). Once again
the debate revolves around polarized views of the use of non-free tools to develop
GNUe documentation. In this case, chillywilly, a frequent contributor, balks at the
need to implement a non-free tool on his computer in order to edit the documentation
associated with a current release. Even though his colleagues attempt to dissuade
him from his concerns by suggesting that he can use any editor—free or non-free—to
read the documentation in HTML or other formats, Chillywilly refuses to back
down from his stance based on a strong belief in free software. This debate lasts
three days. Table 2 displays the number of contributors and their classification for
participation in case two. This case exemplifies the fierce adherence to the belief
in free software held by some purists in the free software movement and how it
directs the work of the day. While the three- day debate reinforces cultural beliefs
and values and builds community, at the same time, it ties up valuable time that
could have been spent writing code or documentation.

In order to understand this example, some background information is needed.
The GNUe core maintainers selected a free tool to use for all documentation called
docbook (http://www.docbook.org). Docbook is based on an SGML document-type
definition which provides a system for writing structured documents using SGML or

TLFeBOOK

164 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

XML. However, as of November 15, 2001, several GNUe developers were having
trouble with its installation. Consequently, they resorted to using lyx tool to create
documentation (http://www.lyx.org) even though it required the installation of a
non-free graphics packages (called libxforms). The following example shows the
initiation by chillywilly of a debate that lasts several days:

 Action: chillywilly trout whips jamest for making lyx docs
 Action: jcater troutslaps chillywilly for troutslapping jamest for making easy
 to do docs
 <chillywilly> lyx requires non-free software
 <Maniac> lyx rules
 <chillywilly> should that be acceptable for a GNU project?
 <jcater> chillywilly: basically, given the time frame we are in, it’s either
 LyX documentation with this release, or no documentation for a while (until
 we can get some other stinking system in place) pick one :)
 <chillywilly> use docbook then

As the day wears on, chillywilly continues his debate, continuously harassing
fellow contributors. Reinhard agrees with chillywilly as do others, but in order to
complete the documentation, they agree to use an interim solution. Chillywilly is so
adamantly opposed to the use of non-free software that he references Richard Stall-
man as part of his reasoning—“I will NOT install lyx and make vrms unhappy.”
This passage shows how RMS is considered by some to be the “guru” of the free
software movement. In the GNUe culture, the mailing list is considered to be a more
“formal” form of CMC, and it is a norm to save its use for more serious, technical
problems, not for joking as seen on the IRC logs. However, chillywilly sends the
following email to the mailing list causing a stir among fellow contributors:

“OK, I saw on the commit list that you guys made some LyX documents. I think it is
extremely ***that a GNU project would require me to install non-free software in
order to read and modify the documentation. I mean if I cannot make vrms happy
on my debian system them what good am I as a Free Software developer? Is doc-
book really this much of a pain? I can build html versions of stuff on my box if this
is what we have to do. This just irks me beyond anything. I really shouldn’t have to
be harping on this issue for a GNU project, but some ppl like to take convenience

Table 2: Contributors and duration of conflict in Case Two.

Total
Contributors

Regular
Contributors

Infrequent
Contributors

Number of
Days

24 9 15 3

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 165

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

over freedom and this should not be tolerated… Is it really that unreasonable to
request that we not use something that requires ppl to install non-free software?
Please let me know.” (chillywilly, mailing list)

Later that day, Jcater sends a reply to chillywilly’s message to the mailing list
explaining the importance of his belief in freedom:

“I would like to personally apologize to the discussion list for the childish email you
recently received. It stemmed from a conversation in IRC that quickly got out of hand.
It was never our intention to alienate users by using a non-standard documentation
format such as LyX. … LyX was chosen because it is usable and, more importantly,
installable. After many failed attempts at installing the requirements for docbook,
James and I made the decision that LyX-based documentation with the upcoming
0.1.0 releases was better than no documentation at all…
PPS, By the way, Daniel, using/writing Free software is NOT about making RMS
happy or unhappy. He’s a great guy and all, but not the center of the free universe,
nor the motivating factor in many (most?) of our lives. For me, my motivation to
be here is a free future for my son.” (Jcater, mailing list)

After posting this message, Jcater discusses this issue further with chillywilly
and others over the IRC. Finally, fellow contributors persuade chillywilly that he
can continue creating documentation in HTML or text until a free GNUe is avail-
able. Although he does not like this choice, he is reminded by mdean that he has a
freedom of choice in which tool to choose:

<mdean> chillywilly: you have a choice – which is what is “really” impor
 tant

<chillywilly> mdean: I choose GNU whenever I can, that is my choice.
<Mr_You> Sorry your choice is a frustrating one...
<chillywilly> whatever man I am burnt to a crisp.

Finally, chillywilly accepts the fact that fellow contributors are not willing to
change the documentation tool to one based exclusively on free software.

Case Three - Newcomer Asking for Help with GNUe
Installation

In this example, mcb30 joins the IRC as a newcomer who wants to install and
use GNUe business applications for his small business in England (http://www.
gnuenterprise.org/irc-logs/gnue-public.log.16Nov2001). In addition, he offers his
services as a contributor and immediately starts fixing bugs in real-time. This case
is a good example of the community-building spirit of GNUe, since mcb30 is im-

TLFeBOOK

166 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

mediately accepted by frequent contributors especially because he posts significant
bug fixes very rapidly.

<mcb30> Is anyone here awake and listening?
<reinhard> yes
<mcb30> Excellent. I’m trying to get a CVS copy of GNUe up and running

 for the first(ish) time - do you mind if I ask for a few hints?
<reinhard> shoot away :)
<reinhard> btw what exactly are you trying to run?
<reinhard> as “GNUe” as a whole doesen’t exist (yet)
<reinhard> GNUe is a meta-project (a group of related projects)
<mcb30> OK - what I want to do is get something running so I can get a

 feel for what there is, what state of development it’s in etc. - I’d like to con
 tribute but I need to know what already exists first!

<reinhard> ok cool
<reinhard> let me give you a quick overview
<mcb30> I have finally (about 5 minutes ago) managed to get “setup.py de

 vel” to work properly - there are 2 bugs in it
Mcb30 goes offline and continues to fix bugs. He then comes back and sug

 gests that he has a patch file to help:
<mcb30> I’ve got a patch file - who should I send it to? jcater?
<reinhard> jcater or jamest
<mcb30> ok, will do, thanks
<reinhard> mcb30: btw sorry if i tell you things you already know :)
<mcb30> don’t worry - I’d rather be told twice than not at all! :-)
<reinhard> people appearing here in IRC sometimes have very different

 levels of information :) …
<reinhard> mcb30: i will have to thank you
<reinhard> mcb30: we are happy if you are going to help us

Later, mcb30 comes back to the IRC and posts code that he wrote to fix a
problem, and several frequent contributors thank him and say that they wish they
could hire him for pay. As with the first case, contributors immediately accept him
into the “club.”

DISCUSSION
The three GNUe examples will be discussed in this section in relation to the

three main themes found in the data: building community, conflict resolution, and
facilitating teamwork.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 167

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Building Community
Kollock (1996) suggests that there are design principles for building a suc-

cessful online community, such as identity persistence. He draws upon the work
of Godwin (1994) showing that allowing users to resolve their own disputes with-
out outside interference and providing institutional memory are two principles for
making virtual communities work. Applying these principles to the GNUe project
shows that disputes are resolved simultaneously via IRC without management in-
terference and recorded in IRC archives as a form of institutional memory. In the
GNUe virtual community, the community is continuously changing with newcom-
ers and infrequent contributors sporadically participating, yet the core maintainers
are dedicated for long periods of time and help build a community by continuous
participation (everyday, for some) in IRC discussions. Derek, a core maintainer,
explains below how the IRC helps sustain a community:

“Many free software folks think IRC is a waste of time as there is ‘goofing off,’ but
honestly I can say it’s what builds a community. I think a community is necessary
to survive. For example, GNUe has been around for more than three years. I can
not tell you how many projects have come and gone that were supposed to be com-
petition or such. I put our longevity solely to the fact that we have a community.”
(Derek, email interview, 2002)

Conflict Resolution
In the two GNUe cases involving conflict, the issues were resolved via debate

over the IRC and mailing lists. In the first case, the contributor who created the
graphic with ADOBE Photoshop agreed to change it in the future using a free tool.
In the second case, chillywilly stopped badgering his co-workers about the use of
a non-free graphics package to complete documentation. An interesting finding
from the research is that, for some F/OSS developers, there is tension between the
belief in free software and the belief in freedom of choice. In Case One, CyrilB’s
strict adherence to the free software principle prompted Neilt, the creator of the
graphic, to feel hampered in his freedom of choice (to select a graphics tool). In
Case Two, chillywilly’s strong beliefs in free software restricted his freedom of
choice for a documentation tool. In resolving conflicts over the use of free versus
non-free software tools, it appears that having a strong belief in free software can
also inhibit an F/OSS developer’s freedom of choice. This reveals how important
the philosophical convictions of the belief in free software are to some F/OSS
developers. In both cases, the conflicts were resolved without formal management
techniques via the IRC exchanges. At the same time, the beliefs in free software are
reinforced by people defending their positions and this, in turn, helps to perpetuate
the community.

TLFeBOOK

168 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Facilitating Teamwork
In the two cases involving conflict, as the day proceeded on the IRC, people

were going offline to experiment with free software that would help to resolve the
conflict (i.e., a free graphics package and a free text editor). Many infrequent con-
tributors or newcomers, who were lurking and watching the problem unfold on the
IRC, also offered suggestions for workable free tools. The real-time aspect of the
work clearly facilitates the teamwork with people simultaneously working together
to solve a technical problem. For example, in the conflict-free case, a newcomer,
who was having trouble with the GNUe installation, was directed by a maintainer
to the original author of the code who shortly thereafter joined the IRC and worked
with mcb30 to fix the bugs. The real-time connection enabled a quick resolution
to the newcomer’s problems.

PRACTICAL IMPLICATIONS
We have shown that the persistent recording of daily work using instant

messaging (IRC) and Kernel Cousins can serve as an aid to community building.
Managers of open source might benefit from incorporating these CMC media into
their computing infrastructures. It assists employees in conflict resolution and also
binds the groups together by reinforcing the organizational culture. As illustrated
in the non-conflict GNUe example, the IRC serves as an expertise Q&A repository.
The author of the software quickly emerged, and mcb30 was able to gain detailed
knowledge of how the system works. In addition, the IRC enables real-time soft-
ware design and debugging. As F/OSS development projects proliferate, managers
should consider the benefits of using an IRC to facilitate software development and
to help build a community.

FUTURE WORK
We plan to continue with the analysis of GNUe data and to compare the results

with other free software communities. Likewise, we expect to find similar beliefs
and values in open source projects (e.g., Apache), and we plan to explore this phe-
nomenon. In this way, we can assertain whether GNUe is in fact a unique culture
(Martin, 2002), or whether other F/OSS software projects have similar software
development processes. In a cursive look at other GNU projects’ websites, we have
found evidence of proselytizing of strong beliefs in free software (http://www.gnu.
org/projects/projects.html. In addition, possible future research could be an analysis
of the ongoing dispute in the Linux Kernel community about using Bitkeeper (non-
free) versus CVS (free) as a configuration management system. Another potential
topic of interest is to explore the hypothesis that strong beliefs in free software lead
to more successful, productive F/OSS projects.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 169

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

CONCLUSIONS
Previous CSCW research has not addressed how the collection of IRC mes-

saging, IRC transcript logs, email lists, and periodic digests (Kernel Cousins) can
be collectively mobilized and routinely used to create a virtual organization that
embodies, transmits, and reaffirms the cultural beliefs, values, and norms such as
those found in free software projects like GNUe. Strong cultural beliefs among con-
tributors in an F/OSS development community combined with persistent recording
of chat logs help to build the GNUe community and to perpetuate the project. The
beliefs in free software and freedom of choice create a special bond for the people
working on free software projects. These beliefs foster the values of cooperative
work and community building. Schein’s (1990) theory of organizational culture
includes revelation of underlying assumptions of cultural members that are on a
mostly unconscious level. In the GNUe world, the underlying assumptions of the
importance of cooperative work and community become an integral part of everyday
work practices in the pursuit of a free ERP system. These beliefs and values enhance
and motivate acceptance of outsiders’ criticisms and resolution of conflict despite
the distance separation and amorphous state of the contributor population.

ACKNOWLEDGMENTS
The research described in this chapter is supported by grants from the National

Science Foundation #ITR-0083075, #ITR-0205679, #ITR-0205724 and #ITR-
0350754. No endorsement implied. Mark Ackerman at the University of Michigan
Ann Arbor; Les Gasser at the University of Illinois, Urbana-Champaign; John Noll
at the Santa Clara University; Chris Jensen, Mark Bergman, and Xiaobin Li at the
UCI Institute for Software Research; and also Julia Watson at the Ohio State Uni-
versity are collaborators on the research project that produced this chapter.

REFERENCES
Avison, D. E. & Myers, M. D. (1995). Information systems and anthropology: An

anthropological perspective on IT and organizational culture. Information
Technology and People, 8, (43-56).

Berquist, M. & Ljungberg, J. (2001). The power of gifts: Organizing social rela-
tionships in open source communities. Information Systems Journal, 11(4),
305-320.

Crowston, K. & Scozzi, B. (2002). Exploring strengths and limits on open source
software engineering processes: A research agenda. Paper presented at the
2nd Workshop on Open Source Software Engineering, Orlando, Florida, May
25, 2002.

TLFeBOOK

170 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

DiBona, C., Ockman, S., & Stone, M. (Eds.) (1999). Open sources: Voices from
the open source revolution. Sebastol, CA: O’Reilly & Associates Inc.

Dubé, L., & Robey, D. (1999). Software stories: Three cultural perspectives on the
organizational practices of software development. Accounting, Management
and Information Technologies, 9(4), 223-259.

Easterbrook, S. M. (Ed.) (1993). CSCW: Cooperation or conflict? London: Springer-
Verlag.

Elliott, M. (2000). Organizational culture and computer-supported cooperative
work in a common information space: Case processing in the criminal courts.
(Unpublished Dissertation). Irvine, CA: University of California, Irvine.

Elliott, M. (2003). The virtual organizational culture of a free software development
community. Paper presented at the 3rd Workshop on Open Source Software,
Portland, Oregon, May 3, 2003.

Elliott, M. & Scacchi, W. (2003a). Free software: A case study of software devel-
opment in a virtual organizational culture, Technical Report # UCI-ISR-03-6.
Irvine, CA: Institute for Software Research, University of California, Irvine.
Available online at: http://www.ics.uci.edu/~melliot/reports/UCI-ISR-03-
6.pdf.

Elliott, M. & Scacchi, W. (2003b). Free software developers as an occupational
community: Resolving conflicts and fostering collaboration. Proceedings
2003 International ACM SIGGROUP Conference on Supporting Group Work,
21-30, Sanibel Island, FL.

Feller, J. & Fitzgerald, B. (2002). Understanding open source software development.
New York: Addison-Wesley.

Fielding, R. T. (1999). Shared leadership in the Apache project. Communications
of the ACM, 42(4), 42-43.

Fogel, K. (1999). Supporting open source development with CVS. Scottsdale, AZ:
Coriolis Press.

Godwin, M. (1984). Nine principles for making virtual communities work. Wired,
2.06, 72-73.

Herbsleb, J. D. & Grinter, R. E. (1999). Splitting the organization and integrating
the code: Conway’s law revisited. Proceedings of the 1999 International
Conference on Software Engineering, Los Angeles, CA, May 16-22, 85-95.

Hine, C. (2000). Virtual ethnography. London: Sage.
Koch, S. & Schneider, G. (2000). Results from software engineering research into

open source development projects using public data. Wirtschaftuniversitat
Wien, Austria: Working Paper #22. Available online at: http://citeseer.nk.nec.
com/koch00result.html.

Kollock, P. (1996). Design principles for online communities. In the Proceedings of
the Harvard Conference on the Internet and Society, May 20-22, 1996, Cam-
bridge, MA. Also published in PC Update 15(5): 58-60 (June 1998). Available
online at: http://sscnet.ucla.edu/soc/faculty/kollock/papers/design.html.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 171

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Kollock, P. & Smith, M. (1996). Managing the virtual commons: Cooperation and
conflict in computer communities. In S. Herring (Ed.), Computer-mediated
communication: Linguistic, social, and cross-cultural perspectives, pp. 109-
128, Amsterdam: John Benjamins.

Kollock, P. & Smith, M. A. (1999). Communities in cyberspace. In M. A. Smith &
P. Kollock (Eds.), Communities in Cyberspace, pp. 3-25. New York: Rout-
ledge.

Mackenzie, A., Rouchy, P., & Rouncefield, M. (2002). Rebel code? The open source
‘code’ of work. Paper presented at the Open Source Software Development
Workshop, February 25-26, 2002, Newcastle-upon-Tyne, UK.

Martin, J. (2002). Organizational culture: Mapping the terrain. Thousand Oaks,
CA: Sage Publications.

Mockus, A., Fielding, R., & Herbsleb, J. (2002). Two case studies on open source
software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3), 309-346.

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000). A case study of open source
software development: The Apache server. In the Proceedings of the 22nd
International Conference on Software Engineering, 263-272, Limerick, IR.

Nardi, B., Whittaker, S., & Bradner, E. (2000). Interaction and outeraction: Instant
messaging in action. In the Proceedings of the CSCW, 2000, Philadelphia,
PA, 79-88.

Noll, J. & Scacchi, W. (1999). Supporting software development in virtual enter-
prises. Journal of Digital Information, 1(4), Available online at: http://jodi.
ecs.soton.ac.uk.

Olsson, S. (2000). Ethnography and Internet: Differences in doing ethnography in
real and virtual environments. Paper presented at the IRIS 23: 23rd Information
Systems Research Seminar in Scandinavia Doing It Together, August 12-15,
2001, Laboratorium for Interaction Technology, University of Trollhattan
Uddevalla, Sweden.

Ott, J. (1989). The organizational culture perspective. Pacific Grove, CA: Brooks/
Cole.

Pavlicek, R. G. (2000). Embracing insanity: Open source software development.
Indianapolis, IN: Sams Publishing.

Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O’Reilly & Associ-
ates.

Robey, D. & Azevedo, A. (1994). Cultural analysis of the organizational conse-
quences of information Technology. Accounting, Management, and Informa-
tion Technology, 4(1), 23-37.

Scacchi, W. (2002a). Open EC/B: A case study in electronic commerce and open
source software development, Technical Report. Irvine, CA: University of
California, Irvine.

TLFeBOOK

172 Elliott and Scacchi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Scacchi, W. (2002b). Understanding requirements for developing open source
software systems. IEE Proceedings - Software, 149(2), 24-39.

Schein, E. H. (1990). Organizational culture. American Psychologist, 45, 109-
119.

Schein, E. H. (1992). Organizational culture and leadership. San Francisco, CA:
Jossey-Bass.

Smith, A. D. (1999). Problems of conflict management in virtual communities. In
M. A. Smith & P. Kollock (Eds.), Communities in Cyberspace, pp. 134-163.
New York: Routledge.

Stallman, R. (1999). The GNU operating system and the free software movement.
In C. DiBona, S. Ockman & M. Stone (Eds.), Open Sources: Voices from the
Open Source Revolution. Sebastopol, CA: O’Reilly Press, 53-70.

Strauss, A. L. & Corbin, J. (1990). Basics of qualitative research: Grounded theory
procedures and techniques. Newbury Park, CA: Sage Publications.

Trice, H. M. & Beyer, J. M. (1993). The cultures of work organizations. Englewood
Cliffs, NJ: Prentice Hall.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity.
Cambridge, UK: Cambridge University Press.

Williams, S. (2002). Free as in freedom: Richard Stallman’s crusade for free soft-
ware. Sebastopol, CA: O’Reilly & Associates.

Yin, R. K. (1994). Case study research, design and methods, 2nd ed. Newbury Park,
CA: Sage Publications.

TLFeBOOK

Cooperation and Conflict in a Virtual Organizational Culture 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

SECTION IV:

Simulating F/OSS
Development –

“Dynamic Swarms”

TLFeBOOK

174 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Dynamical Simulation
Models of the Open Source

Development Process

I.P. Antoniades, Aristotle University of Thessaloniki, Greece

I. Samoladas, Aristotle University of Thessaloniki, Greece

I. Stamelos, Aristotle University of Thessaloniki, Greece

L. Angelis, Aristotle University of Thessaloniki, Greece

G.L. Bleris, Aristotle University of Thessaloniki, Greece

ABSTRACT
This chapter will discuss attempts to produce formal mathematical models for
dynamical simulation of the development process of Free/Open Source Software
(F/OSS) projects. First, a brief overview for simulation methods of closed
source software development is given. Then, based on empirical facts reported
in F/OSS case studies, we describe a general framework for F/OSS dynamical
simulation models and discuss its similarities and differences to closed source
software simulation. A specific F/OSS simulation model is introduced. The
model is applied to the Apache project and to the gtk+ module of the GNOME
project, and simulation outputs are compared to real data. The potential of
formal F/OSS simulation models to turn into practical tools used by F/OSS
coordinators to predict key project factors is demonstrated. Finally, issues for
further research and efforts for improvement of this first-attempt model are
discussed.

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
There have been a few studies attempting to define the Open Source

Software (OSS) development process in general terms (Bollinger, Nelson, Self
& Turnbull, 1999; Feller & Fitzgerald, 2000; McConnell, 1999; O’Reilly, 1999;
Raymond, 1998; Wilson, 1999), and there have also been a few case studies of
OSS projects: Linux (Godfrey & Tu, 2000), Apache WWW-server (Mockus,
Fielding, & Herbsleb, 2000), FreeBSD (Jorgensen, 2001), GNOME (Capiluppi,
Lago, & Morisio, 2003; Koch & Schneider, 2000). The latter studies presented
some interesting qualitative data for the F/OSS development process, managerial
issues, and programmer attitudes, as well as quantitative data regarding the total
Lines of Code (LOC) added as a function of time, the defect density of the code
produced, number of programmers and contributions per project module/task,
average work-effort/time to submit a contribution (code change, defect correc-
tion, code testing), and other statistical measures. Despite the fact that these
studies have produced interesting results validating or disproving certain hypoth-
eses regarding F/OSS development on a per case basis, there is not sufficient
global understanding nor a precise definition of the open source development
process—the results show both similarities and clear differences in processes
and outputs among different projects, but there is no adequate explanation of
presented facts based on more general principles. In many cases, the authors
offer descriptive explanations based on plausible assumptions but, as there is no
general model to quantify their claims together with their possibly complicated
interactions, the validity of such explanations cannot be directly demonstrated.

Therefore, there is a need to move from descriptive models based on special
cases to a more general quantitative mathematical model that would hopefully be
used as a demonstrating tool of real case results. Most importantly, this model could
serve as a predicting tool of key F/OSS project factors, such as project failure/
success, dynamical evolution of source code, defect density/architectural quality,
expected number of programmers involved, and distribution of work effort to distinct
project modules and tasks.

Previous studies have shown that the dynamical evolution of the above key
factors is quite sensitive to a) the type of software developed, and b) the specific
technical management framework of an F/OSS project. Therefore, the model should
be general enough so that, by a straightforward adjustment of model parameters, it
is able to simulate various types of F/OSS projects under alternative managerial
scenarios.

The “predictive power” of such a model could be viewed as follows: by first
calibrating the model parameters against available historical data from a certain time
period within the development phase of an F/OSS project, the model should be able
to approximately reproduce the future evolution of the same F/OSS project.

This chapter will discuss attempts to produce formal mathematical models for
dynamical simulation of the development process of F/OSS projects. Whereas

TLFeBOOK

176 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

several such models and corresponding computer simulation studies exist for the
traditional (closed source) software development process, it is only very recently that
such attempts have started to appear in international literature regarding the F/OSS
development process. We will briefly describe closed source simulation models and
their practical applications in software engineering. We will then introduce a general
framework for generic F/OSS dynamic simulation models, compare and contrast it
to traditional closed source simulation models, and discuss its possible use in
describing the F/OSS development process and its possible practical applications for
the F/OSS community. Then, we will introduce a specific simulation model and
demonstrate it against the Apache case study (Mockus et al., 2000) and evolution of
the gtk+ module of the GNOME project (Koch & Schneider, 2000; http://
bulunga.dat.escet.urjc.es/gnome-cvs/index.php). As F/OSS dynamical simulation
opens an entirely new field of research, we will discuss future possibilities and
suggestions for improvements and further work.

BACKGROUND
Towards the Creation of a Simulation Model of F/OSS
Development Dynamics

In this section, we first review briefly simulation modeling for traditional closed
source software projects. We discuss mainly a generic structure for such models and
the ways these models may be used for project management. We then proceed by
discussing the requirements of a simulation model for the F/OSS case by describing
a general framework (Antoniades, Stamelos, Angelis, & Bleris, 2003) that may be
used as a basis for the design of such models. It is evident that, as there exist major
differences between the closed and F/OSS approach, respective simulation models
are also quite different in nature, structure, and accuracy. Then, we discuss plausible
ways of exploiting F/OSS simulation models by project coordinators. Finally, we
present briefly a very recent approach to OSS simulation modeling (Dalle & David,
2003) that follows a different point of view from the general framework we present
here.

Closed Source Project Simulation Modeling
Closed Processes and Models

As it is known, closed source software projects are developed according to
more or less well-defined software processes. Examples of such development cycle
models are the traditional waterfall model, the prototyping model, the spiral model
and, more recently, Rational Unified Process (RUP) (Pfleeger, 2001). Initially,
development models were quite rigid, but gradually more flexible and adaptable
models were proposed and applied.

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In general, three modeling methods may be distinguished, namely, the analytical,
the continuous, and the discrete-event methods. Various analytical models have been
proposed in software engineering for predicting effort, time (Boehm, 1981; Center
for Software Engineering, 1997), reliability (Fenton, 1997), etc., when producing
software. They are capable of estimating specific aspects of software, but lack the
necessary flexibility to model interactions and variations within the project.

In parallel, various simulation approaches have been also proposed to model
software development practices. Continuous simulation is the most common choice
of the researchers, although discrete-event simulation is also proposed. The approach
of Abdel-Hamid and Madnick (1991) based on System Dynamics is probably the
most known approach. This kind of approach uses dynamic processes to simulate the
software process. A descriptive model, a graph for example, is built of the various
activities that are involved in software production, with each node representing a
factor that affects software production. For example, one node can represent the
fraction of the experienced staff, while another, the actual fraction of a person’s days
on the project. These nodes are connected with directed arrows that represent how
changes in one factor affect changes in another. Nodes can be grouped together to
represent a bigger part of the software development process, such as human
resource management. The next step after the identification of the nodes and the
relations between them is to quantify those relations and assign a probability
distribution to those nodes that change in time. After the model is built, its dynamic
view enables us to simulate the process.

Perhaps the most straightforward way to understand the application of simulation
on closed source software modeling is to look at the approach presented in Doncelli
(2001). In that paper, a two-level, hybrid approach is proposed. At a high level of
abstraction, discrete-event simulation seems to be more appropriate. At that level,
requirement definition, component interaction, project artifact exchanges, deliverable
appearance and consumption, and macro-management activities, based on discrete
decisions, take place. Consequently, a discrete-event queuing network may adequately
model high-level process dynamics.

At a lower level, i.e., at the level of artifact production (for example, code
generation), a combination of analytical and continuous approach looks quite suitable.
At this level, the production activities to be modeled are of a more continuous nature,
presenting dynamics that resemble those of a production line, and therefore,
analytical, equation-based models or continuous simulation models are more suitable.
A discrete-event approach at this level of detail might produce overly cumbersome,
difficult to manage models.

Certain process characteristics are typical inputs to closed source software
simulation. For example, a group of persons possessing a specific role within the
project may be defined. For instance, the number of programmers is often used. Such
a figure may be known and fed to the model by its user as a single number or as a
short range of numbers, e.g., the user may determine that a group of 4-6 persons will

TLFeBOOK

178 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

code one system function. Other simulation inputs or parameters may be schedules
(e.g., delivery date), requirements rate of arrival, personnel experience and turnover
rates, complexity of the system to be produced, etc. For a review of recent
developments in software simulation refer to the Special Issue on Software
Simulation, Journal of Systems and Software (Vol.59, 2001).

A Generic Structure for F/OSS Simulation Modeling
We now describe a general framework that should be followed (perhaps not

exclusively) by generic F/OSS simulation models and point out the extra difficulties
that have to be confronted relative to analogous models of the “traditional” (closed
source) process.

1. Unlike closed source projects, in F/OSS projects the number of contributors
(programmers) greatly varies in time, cannot be directly controlled, and cannot
be predetermined by project coordinators. As any qualified programmer can
freely contribute to the project at any time, on any task and as often as he or
she desires, the number of distinct individual contributors varies based on the
interest that the specific F/OSS project attracts. Therefore, an F/OSS model
should a) contain an explicit mechanism for determining the flow of new
contributors as a function of time, and b) relate this mechanism to specific
project-dependent factors that affect the overall “interest” in the project.
These project-dependent factors should be identified and parameterized
(quantified).

2. In any F/OSS project, any particular task at any particular instant can be
performed either by a new contributor or an old one who decides to contribute
again. In addition, it has been shown that almost all F/OSS projects have a
dedicated team of programmers (core programmers) that perform most of the
contributions, especially in specific tasks (e.g., code writing), while their
interest in the project (judged by how often they contribute in the course of time)
stays approximately the same (e.g., Mockus et al., 2000). Therefore, the
F/OSS simulation model must contain a mechanism that determines the
number of contributions that will be undertaken per category of contributors
(e.g., new, old, or core) at each time interval.

3. In F/OSS projects, there is also no direct central control over the number of
contributions per task type or per project module. Anyone may choose any task
(e.g., code writing, defect correction, code testing/defect reporting, functional
improving, etc.) and any project module to work on. The allocation of
contributions per task type and per project module depends on the following
sets of factors:
a. Factors pertaining to programmer profile (e.g., some program-

mers may prefer code testing to defect correcting). These factors can
be further categorized as follows:

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

i. factors that remain constant in time (e.g., the aptitude or preference
of a programmer in code writing), and

ii. factors that vary with time (e.g., the overall interest of a program-
mer to contribute to any task or module may vary based on
frequency of past contributions).

b. Project-specific factors (e.g., a contributor may wish to write code for
a specific module, but there may be nothing interesting left to write for that
module).

Therefore, the F/OSS model should (a) identify and parameterize the
dependence of programmer interest to contribute to a specific task/
module on (i) programmer profile, (ii) project evolution, and (b) contain
a quantitative mechanism to allocate contributions per task type and per
project module.

4. In F/OSS projects, because there is no strict plan or task assignment mechanism,
the total number of Lines of Code (LOC) written by each contributor varies
significantly per contributor and per time period, again in an uncontrolled
manner. Therefore, project outputs such as LOC added, number of defects, or
number of reported defects are expected to have a much larger statistical
variance than in closed source projects (e.g., Koch & Schneider, 2000). This
fact is not only due to the lack of strict planning, but also to the much larger
numbers and diverse profiles of contributors that participate in an F/OSS
project. Therefore, the F/OSS simulation model should determine delivered
results of particular contributions in a stochastic manner, i.e., drawing
from probability distributions. This is a similar practice to what is used in
closed source simulation models, with the difference being that probability
distributions here are expected to have a much larger variance.

5. In F/OSS projects there is no specific time plan or deadlines for project
deliverables. Therefore, the number of calendar days for the completion of a
task varies greatly and must be drawn from probability distributions with
relatively large variances. Also, delivery times should depend on project-
specific factors such as the amount of work needed to complete the task. For
example, writing 1,000 LOC should, on average, take more time than writing
200 LOC, while discovering all defects in a source file containing 10,000 LOC
should take, on average, more time than the same task for a file containing only
100 LOC. Therefore, task delivery times should be determined in a
stochastic manner on the one hand, while average delivery times should
follow certain deterministic rules, on the other.

A fact that becomes immediately apparent from the discussion in Points 1-3
above is that the core of any F/OSS simulation model should be based upon a specific
behavioural model that must be properly quantified (in more than one possible way)
in order to model the behaviour of the “crowd” of project contributors in deciding: a)
whether to contribute to the project or not, b) which task to perform, c) to which

TLFeBOOK

180 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

module to contribute, and d) how often to contribute. The behavioural model should
then define the way that the above four aspects of programmer behaviour
depend on a) programmer profile (both static and dynamic), and b) project-
specific factors (both static and dynamic).

The formulation of a behavioural model must be based on a set of qualitative
rules. Fortunately, previous case studies have already pinpointed such rules either
by questioning a large sample of F/OSS contributors or by analyzing publicly available
data in F/OSS project repositories. There is probably no single behavioural model that
can fit contributor behaviour in all types of F/OSS projects. However, as previous
case studies identified many common features across several F/OSS project types,
one certainly can devise a behavioural model general enough to describe at least a
large class of F/OSS projects.

An extra degree of freedom that comes in when designing a behavioural model
is the variety of ways that a set of qualitative rules may be quantified; there can be
an infinite number of specific equations that describe a specific qualitative rule.
Selecting a suitable equation is largely an arbitrary task in the beginning; however,
a particular choice may be subsequently justified by the model’s demonstrated ability
to fit actual results. Once the behavioural model equations and intrinsic parameters
are validated, then the model may be applied to other F/OSS projects.

Application of an F/OSS Simulation Model
General Procedure

In Figure 1 we show the structure of a generic F/OSS dynamic simulation model.
Just as in any simulation model of a dynamical system, the user must specify on input
a) values to project-specific time-constant parameters, and b) initial conditions
for the project dynamic variables. These values are not precisely known at project
start. One may attempt to provide rough estimates for these values based on results
of other (similar) real-world F/OSS projects. However, these values may be
readjusted in the course of evolution of the simulated project as real data
becomes available. The way to readjust these values would be to try to fit actual
data from an initial historical period of the project to the results of the simulation for
the same period. By applying this continuous re-adjustment of parameters (backward
propagation), the simulation should become more accurate in predicting the future
evolution of the project. If this is not the case, it means that a) either some of the
behavioural model qualitative rules are based on wrong assumptions for the specific
type of project studied, or b) the values of behavioural model intrinsic parameters
(project-independent) must be re-adjusted.

Initial values of dynamic variables are known at project start. Dynamic
variables can be the number of contributors, the number of LOC written for each
module, the number of source files for a module, the number of modules itself, the
defect density, the number of reported defects, activity in each task type, etc.

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Due to the stochastic features of the simulation model, several computer runs
must be performed in order to obtain average values and variances of the dynamic
variables.

Calibration of the Model
The adjustment of behavioural model intrinsic (project-independent) parameters

is the calibration procedure of the model. According to this procedure, one may
introduce arbitrary values to these parameters as reasonable “initial guesses.” Then
one would run the simulation model, re-adjusting parameter values until simulation
results satisfactorily fit the results of a real-world F/OSS project (calibration
project) in each time-window of project evolution. More than one similar type of
F/OSS projects may be used in the calibration process.

Validation of the Model
Once the project-independent parameters of the behavioural model are properly

calibrated, the model may be used to simulate other F/OSS projects according to the
procedure outlined in the following chapters.

Probability distribution
parameters

Behavioral model project-
specific parameters

Initial conditions of
dynamic variables

INPUT (Project-Specific)

TIME EVOLUTION
OF DYNAMIC
VARIABLES

PROBABILITY
DISTRIBUTIONS

Task Delivery times Task Deliverables

Behavioural
model
fixed

parameters

BEHAVIOURAL
MODEL

OSS SIMULATION
MODEL

OUTPUT

Figure 1: General structure of an OSS dynamic simulation model.

TLFeBOOK

182 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Practical Use of F/OSS Simulation Models
Before proceeding with the whereabouts of an F/OSS simulation model, let us

consider its plausible practical uses, in the same way we have done with closed
source models. We provide such a tentative list, although the reader might suggest
further uses.

• Prediction of F/OSS project evolution. Project coordinators may obtain a
picture of plausible evolution scenarios of the project they are about to initiate.
Moreover, they may calibrate a generic model to their own project, using data
from its initial stages (e.g., first 1-2 years) and anticipate future development
with increased accuracy. In such a way, an F/OSS project profile (size, quality,
population of programmers) may be maintained and updated as frequently as
desired. Software users may also be interested in such prediction, as it would
indicate when the software will most likely be available for use. This also
applies to organizations, especially if they are interested in pursuing a specific
business model that is based on this software.

• F/OSS project risk management. Much as a closed source project, F/OSS
projects are risky, in the sense that many, not easily anticipated factors may
negatively affect their evolution. Simulation models may help in quantifying the
impact of such factors, taking into account their probability of occurrence and
the effect they may have, in case they occur.

• What-if analysis (a typical usage mode for simulation models). F/OSS
coordinators may try different development processes, coordination schemes
(e.g., core programming team), tool usage, etc., to identify the best possible
approach for initiating and managing their project.

• F/OSS process evaluation. F/OSS dynamics are not yet fully understood.
Moreover, the nature of F/OSS guarantees that, in the future, we will observe
new types of project organization and evolution patterns. Researchers may be
particularly interested in understanding the dynamics of F/OSS development
and simulation models may provide a suitable tool for that purpose.

• Education of students and professionals in F/OSS (e.g., in the case of hybrid
projects). F/OSS is being introduced in the curricula of various academic
institutions as a novel way of developing and managing software. The contrast
with the traditional approach of doing software has a tremendous educational
value for students of informatics and guarantees that such courses, along with
extreme programming, agile methods, etc., will flourish in the near future. F/
OSS project simulators appear as natural learning tools, providing to novice
students/professionals a readily available picture of how an F/OSS project
evolves and which factors steer such evolution.

An interesting approach in F/OSS simulation was presented recently by Dalle
and David (2003). In this paper, the authors aim to develop a stochastic simulation

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model in order to describe how people involved in the F/OSS development community
decide how to allocate programming resources both within and among various F/OSS
projects. The core of the model relies on the reward that is gained when someone
(a F/OSS developer) contributes to a project. Based on behavioural models, the
authors try to determine a) the way F/OSS developers decide to which module to
contribute and b) the processes that drive the evolution of certain modules to a mature
stage of development. Making assumptions — among others — like: “Launching a
new project is more rewarding than contributing to an existing one,” “Contributing
to early releases is more rewarding than contributing to late ones,” and “The creation
of new projects/modules is related to existing ones, to which they add functionality,”
Dalle and David developed a dynamic stochastic (random graph) model. In this
model, at any moment in time, a specific “agent” (i.e., an F/OSS developer) must
choose how to allocate a fixed level of development effort (i.e., adding new
functionality and/or bug fixing) to a particular module of a project. Without quoting
here any particular mathematical formula, the authors result in a function called
“social utility function,” that depicts the assumptions mentioned above. The model
also seems to confirm the well-known “release early” rule that Eric Raymond first
formulated (Raymond, 2002).

The Dalle & David approach is similar to ours in that it also utilizes a
‘behavioural model’ for prescribing how programmers decide on which task and
which module to work. Our approach, however, moves a step further, attempting to
also reproduce specific outputs of a F/OSS project (such as LOC, defect density, and
number of committers) in real-time.

AN EXAMPLE SIMULATION MODEL
OF THE F/OSS DEVELOPMENT PROCESS

Definitions
Project modules: A project module consists of a collection of code files that

have the same general specifications.
Project tasks: Project tasks are the different type of actions that can be

performed by individual contributors. The tasks considered are:

1. Design and submit the first release version of a new module. We call this task
new module submission and index all quantities related to it by index S. This
task may refer to a submission of an alternative or more advanced version of
an existing (old) module. This occurs frequently during the evolution of the most
popular F/OSS projects.

2. Correct defects that were previously reported for a specific file. We will call
this task debugging and index all quantities related to it by index B.

TLFeBOOK

184 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Test a specific source file and report defects. We will call this task testing and
index all quantities related to it by index T.

4. Add functionality and/or improve an existing source file. We will call this task
functional improving and index all quantities related to it by index F.

Model Equations
In order to quantify the above dynamical procedure, three major sets of model

equations are employed:

1. Equation Set 1: It yields the number of tasks initiated at project day t per task
type, per project module.

2. Equation Set 2: It yields the specific output of each task (number of LOC,
number of defects, defect corrections, etc.)

3. Equation Set 3: It yields the time period needed for each task to be completed.

The above sets of equations have been described in detail in Antoniades,
Stamelos, Angelis and Bleris (2003), thus we limit the discussion here to the most
significant points.

Equation Set 1
Equation 1.1: Determination of initial “interest” in the project.
We assume that the number of individuals E(t) that tentatively decide to

contribute to the project starting at day t depends on (i) the “overall quality” of the
project, and (ii) the profile of the programmers that either have worked on the same
project before day t or are new to the project. The “overall quality” of the project is
determined by all those project-specific factors that stimulate the interest of
prospective programmers, leading them to decide to devote personal effort and time
on any one contribution. Previous studies have pinpointed such factors as are
summarized in Antoniades et al. (2003).

Taking into account these factors, a time-dependent overall quality factor
Q(t) defined as:

()
()1

10 1 1

()
1

1

1 log () , 1
()

1 10 , 1

() () () () ()

o

o

Q Q t
o

R L A

Q t Q Q
Q t

Q Q

Q t w R t w L t w A t J t

−

 + + >=  − ≤
= + ∆ + +

(1)

where R(t) the percentage increase per unit time in the LOC, from the last
production release to the one before the last, <∆L(t)> the cumulative time
average rate of change in total LOC in the current development release from one
day to the next, <A(t)> the cumulative time average of the Activity in the project,

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

which is defined as the total number of tasks that were terminated on day t and J(t)
the “interest boost factor,” which is zero for all t, except for the day(s) when there
is an extra boost in interest (e.g., due to the public announcement that a renowned
programmer participates in the project). Q

o
, w

R
, w

L
 and w

A
 are time-constant, project-

specific parameters that determine the scale (calibration) of Q(t) for a specific
F/OSS project. We will discuss the way to determine their values later.

Except for the overall project “quality” Q(t), the number of individuals that show
an interest to initiate a task depends also on the programmer’s profile. Project
contributors are divided into two categories: “core” contributors and “normal”
contributors. It is assumed that up to a certain number of man-days s

o
 spent on the

project by any contributor, interest to contribute again increases, whereas beyond
this number (s>s

o
) interest decreases.

Based on the above discussion, E(t) is given by the following equation:

E(t) = Q(t)Λ(t) + N'
core

(t) (2)

where N'
core

(t) is the number of available core programmers at day t and Λ(t) is
a factor determining the variation in programmer interest according to the time they
spent on past contributions, as mentioned above.

The core programmers are assumed always to show the same interest in the
project independent of its quality and their past contributions (last term in
equation 2).

In order to determine E at t=t
o
, where t

o
 is the first day of the project after which

simulation will apply, we impose the condition Q≡1 at t=t
o
, assuming that we use the

first t
o
 days of the real-world project to calibrate project-specific, time independent

parameters mentioned above. In order to do this, we let E(t
o
)=N

o
, where we define

N
o
 as the average number of tasks actually performed per day as measured in the

first t
o
 days of the project. Then, we run the simulation from t=0, and fix Q

o
, w

R
, w

L

and w
A
 so that simulation results fit actual results for the first t

o
 days as closely as

possible.

Equation 1.2: Determination of number of tasks initiated for each task
type and each project module.

The E(t) individuals who have decided to contribute to the project starting at day
t will then have a closer look at what in particular they can do. It is not necessary for
all of them to actually initiate a task, as they may lose interest after they browse the
project site in search for an interesting assignment.

Denoting by upper index j=S,B,T,F, the task type, first lower index i=1,2,…,M,
the particular project module and second lower index k=1,2,…,S

i
, possible

alternatives of module i that an individual may contribute to, we define (t) as the
number of tasks actually initiated for project module i, alternative k (of
module i)1 and task type j at day t.

TLFeBOOK

186 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In Antoniades et al. (2003), we proposed the following master equation to
determine the P

ik
j’s for every project day t:

��������

������
��

��

������

�
��

�
��

�
��

�
�� �����
�	

�

 (3)

where I
ik

j is the total interest factor for task type j, module i and alternative k,
defined as:

j j j
ik ik ikI γ≡ Γ − (4)

where Γ
ik

j(t) the interest increase factors and the γ
ik

j(t) interest reduction factors
for task type j, module i and alternative k at time t. The particular way Γ

ik
j and γ

ik
j

depend on project-specific time variables was also defined in Antoniades et al. The
precise mathematical formulae are reported in http://sweng.csd.auth.gr/TR/
report#001.pdf. For example, for task type T (testing), Γ

ik
T (interest increase factor)

is inversely proportional to the number of times alternative k of module i has been
tested since its last update. On the other hand, γ

ik
T (interest decrease factor) is larger

the more times a given alternative k has been tested since its last update, and smaller
the larger the total number of tests performed in the past for the entire module. The
behavioural rule assumed here is that the more times an alternative k of module i has
been tested, the less interested a potential contributor would be to test it again, and
also, if potential contributors see that many tests are being performed for a given
module i (including all its alternatives), the more interested they would be to test it
themselves.

The basic assumption behind (3) is that a proportion of the users who turn down
tasks other than j, i, k will finally turn to task j, i, k with a probability proportional to
the total interest in j, i, k. The values of the Γ’s and γ’s are properly normalized so
that the sum of all tasks that will actually be initiated at day t for all task types, modules
and alternative modules in the project is at most equal to E(t).

Equation Set 2
Equation Set 2 determines the deliverable quantities of each of the initiated tasks

by drawing from probability distributions. We use lognormal distributions, since
relevant quantities are all positive. The following time-constant project-specific
quantities must be provided as initial input to the simulation model:

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

, S
i

S
i L

L σ : The mean and standard deviation for the number of LOC added as initial

contribution for a new module, alternative to module i, which appears in
the development release.

, F
i

F
i L

L σ : The mean and standard deviation for the number of LOC added per

contribution for a functional improvement (update) of an existing source file
in module i.

,
ii dd σ : The mean and standard deviation of the initial defect density (number of

defects per LOC) of code written and submitted by a contributor for module
i in a single check-in.

,
ii TT σ : The mean and standard deviation of the estimated fraction of actual

defects in a source file of module i that are reported by a contributor
undertaking a testing task.

One can obtain reasonable initial estimates for the above parameters by using
real results from a known F/OSS and periodically re-adjusting their values at later
project times by the backward-propagation procedure described in section,
Application of an F/OSS Simulation Model.

Equation Set 3
Finally, the delivery time of each initiated task is also drawn from lognormal

probability distributions. The following time-constant project-specific quantities
must be provided as initial input to the simulation model:

, S
i

S
i t
t σ : The mean and standard deviation for the time (in days) to write one LOC

for a file in module i.

, B
i

B
i t
t σ : The mean and standard deviation for the time (in days) to correct a

single defect in 1,000 LOC.

, T
i

T
i t
t σ : The mean and standard deviation of the time (in days) to test the most

recent version of the project’s development release and report detected
defects for a file in module i, when the file contains 1,000 LOC and the
development release Mx1,000 LOC (M is the number of modules of the
project).

Equation Sets (1)-(3) fully determine the dynamics of the system. Due to the
stochastic character of Equation Sets 2 and 3, each run has to be repeated an
adequate number of times with different random number generator seeds. Averages
and standard deviations of output variables must be calculated at each time step.

TLFeBOOK

188 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SIMULATION STUDIES AND RESULTS
In order to adequately validate the above model one has to a) calibrate the

behavioural model intrinsic parameters (project-independent) using results from one
or more case studies, and b) simulate other F/OSS projects comparing simulated data
with actual data. Although, there is relative data in all case studies that could be used
for these purposes, no single case study contained all the information needed in
order to adequately calibrate or validate the entire model. This is quite
expectable, as none of the existing studies was conducted having any particular
simulation model in mind. For example, the GNOME case study contained a lot of
data for key project factors’ time averages, but lacked information on the averages
or dynamic evolution of defect density, activity per task type. The Apache case
study, on the other hand, contained much more information for cumulated activities
per task type but a) reported no results regarding the evolution of relevant quantities
as a function of time, b) lacked other necessary data such as statistical information
about deliverables per single check-in (LOC, defects, reports, etc.), and information
about the evolution of separate project modules.

Therefore, it was not possible to attempt a full-scale calibration and
validation of the proposed model in the present work. However, in Antoniades
et al. (2003), solely for the purpose of producing at least an initial demonstration of
the model’s ability to fit actual data and reproduce some of the reported qualitative
features of F/OSS development process, we managed to side-track some of the
difficulties mentioned above by using data mainly from the Apache case study
combined with data from the GNOME case study that were reasonably assumed to
be similar for both projects. For certain project parameters, for which we had no data
from either project, we had to make our own plausible assumptions. Finally, we
produced simulation results that compare very well for the respective results given
in the Apache case study.

Results after 1,094 Project Days and Comparison to Apache Case
Study

Details and justification of the values given to project-specific parameters for
application to the Apache case study were presented analytically in Antoniades et
al. (2003). A summary of these inputs is presented in Table 1, along with respective
inputs for the gtk+ case study that we will present in the next section. Simulations
were realized by a custom C application. One hundred runs with different random
number generator seeds were performed, each one for 2,000 time steps and
averages taken for each dynamical variable. All 100 runs finished in about seven
minutes on a regular PC with Pentium IV 1.8GHz. The interactive calibration
procedure showed that the Apache case study data were best fitted by assuming that
6.5% of normal contributors by priority are interested in creating a new source file,
3.89% of them in debugging, 53.7% in testing, and 35.9% in functional improving.

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1: Input parameters for Apache and gtk+ simulations.
 P

ar
am

et
er

s
A

pa
ch

e
So

ur
ce

/J
us

ti
fi

ca
ti

on

G
tk

+
+

So
ur

ce
/J

us
ti

fi
ca

ti
on

� ��

� �
�

σ�

(4
00

0,
20

00
)

L
O

C

A
ss

um
pt

io
n.

 D
at

a
no

t a
va

ila
bl

e
in

 A
pa

ch
e

ca
se

st

ud
y.

-

 ��

 �
�

σ�

(3
6,

 4
0)

 L
O

C
/c

om
m

it

A
ve

ra
ge

 L
O

C
 d

if
fe

re
nc

e
pe

r
co

m
m

it
 d

ed
uc

ed
 f

ro
m

A

pa
ch

e
ca

se
 s

tu
dy

 (
eq

ua
ls

 to
ta

l L
O

C
 w

ri
tte

n
di

vi
de

d
by

 r
ep

or
te

d
nu

m
be

r
of

 ty
pe

 F
 ta

sk
s)

.

(1
5,

97
)

L
O

C
/c

om
m

it
D

ed
uc

ed
 v

al
ue

 f
ro

m

ht
tp

:/
/b

ul
un

ga
.d

at
.e

sc
et

.u
rj

c.
es

/g
no

m
e-

cv
s/

in
de

x.
ph

p
fo

r
th

e
fi

rs
t 1

,0
00

 d
ay

s.

�
�

�
�

σ �

(2
, 3

)
de

fe
ct

s/
1K

L
O

C

R
ea

so
na

bl
e

as
su

m
pt

io
n.

 D
at

a
no

t a
va

ila
bl

e
in

A

pa
ch

e
ca

se
 s

tu
dy

.
(2

, 3
)

de
fe

ct
s/

1K
L

O
C

R

ea
so

na
bl

e
as

su
m

pt
io

n.
 N

o
da

ta
 a

va
ila

bl
e

fo
r

G
N

O
M

E
 o

r
gt

k+
.

��
�

�
σ�

(5

0%
, 2

5%
)

R
ea

so
na

bl
e

as
su

m
pt

io
n.

 D
at

a
no

t a
va

il
ab

le
 in

A

pa
ch

e
ca

se
 s

tu
dy

.
(5

0%
, 2

5%
)

R
ea

so
na

bl
e

as
su

m
pt

io
n.

 D
at

a
no

t a
va

ila
bl

e
in

 G
N

O
M

E
 o

r
gt

k+
 p

ub
lic

 d
at

a.

� ��

� ��
σ�

(0

.1
1,

 0
.0

2)
 d

ay
s/

L
O

C

D
ed

uc
ed

 v
al

ue
 f

ro
m

 A
pa

ch
e

ca
se

 s
tu

dy
 (

av
er

ag
e

ti
m

e
a

si
ng

le
 c

on
tr

ib
ut

or
 ta

ke
s

to
 s

ub
m

it
 1

 L
O

C
).

(0

.0
11

7,

0.
03

87
2)

E

xa
ct

 d
ed

uc
ed

 v
al

ue
 f

ro
m

 G
N

O
M

E
 c

as
e

st
ud

y
(a

ve
ra

ge

ti
m

e
a

si
ng

le
 c

on
tr

ib
ut

or
 ta

ke
s

to
 s

ub
m

it
on

e
L

O
C

).

� ��

� ��
σ�

(3

5,
 4

7)
 d

ay
s

D
ed

uc
ed

 v
al

ue
 f

ro
m

 A
pa

ch
e

ca
se

 s
tu

dy
 (

av
er

ag
e

ti
m

e
a

si
ng

le
 c

on
tr

ib
ut

or
 ta

ke
s

to
 c

or
re

ct
 o

ne
 d

ef
ec

t)
.

(3
, 4

)
da

ys

N
o

da
ta

 a
va

il
ab

le
. U

se
 s

am
e

va
lu

es
 a

s
in

 A
pa

ch
e,

 r
ed

uc
ed

ro
ug

hl
y

in
 p

ro
po

rt
io

n
to

 th
e

ra
tio

s
be

tw
ee

n
� ��

� ��
σ �

in
 th

e

tw
o

pr
oj

ec
ts

.

� ��

� ��
σ�

(1

, 2
)

da
ys

D

ed
uc

ed
 v

al
ue

 f
ro

m
 A

pa
ch

e
ca

se
 s

tu
dy

 (
av

er
ag

e
ti

m
e

a
si

ng
le

 c
on

tr
ib

ut
or

 ta
ke

s
to

 te
st

 a
 p

or
tio

n
of

 th
e

A
pa

ch
e

co
de

).

(0
.1

, 0
.2

)
N

o
da

ta
 a

va
il

ab
le

. U
se

 s
am

e
va

lu
es

 a
s

in
 A

pa
ch

e
re

du
ce

d

ro
ug

hl
y

in
 p

ro
po

rt
io

n
to

 th
e

ra
tio

s
be

tw
ee

n
� ��

� ��
σ�

in
 th

e

tw
o

pr
oj

ec
ts

.
N

o
23

.3

A
dj

us
te

d
va

lu
e

so
 th

at
 E

qu
at

io
n

1
is

 p
ro

pe
rl

y
ca

lib
ra

te
d.

25

A

ct
ua

l a
ve

ra
ge

 n
um

be
r

of
 c

om
m

it
s

pe
r

da
y

fo
r

gt
k+

 f
or

 th
e

fi
rs

t 1
,0

00
 d

ay
s.

Q

o
-

In
 th

e
ve

rs
io

n
of

 th
e

m
od

el
 p

re
se

nt
ed

 in
 A

nt
on

ia
de

s
et

 a
l.

(2
00

3)
 Q

o
w

as
 n

ot
 p

re
se

nt
 in

 E
qu

at
io

n
1.

C

al
ib

ra
tio

n
w

as
 a

ch
ie

ve
d

so
le

ly
 b

y
ad

ju
st

in
g

N
o.

 T
he

ac

tu
al

 N
o

fo
r

A
pa

ch
e

w
as

 ~
9.

8.

0.
08

9
A

dj
us

te
d

va
lu

e
so

 th
at

 E
qu

at
io

n
1

is
 p

ro
pe

rl
y

ca
li

br
at

ed
. I

n
th

e
pr

es
en

t v
er

si
on

 o
f

th
e

m
od

el
 N

o
ob

ta
in

s
it

s
ac

tu
al

 v
al

ue

an
d

ca
lib

ra
tio

n
is

 a
ch

ie
ve

d
th

ro
ug

h
Q

o.

(w
R
, w

L,
 w

A
, J

)
(0

.0
02

27
, 0

.0
02

27
, 0

.0
,

0.
0)

A

rb
it

ra
ry

 w
ei

gh
ts

 g
iv

en
 to

 r
es

pe
ct

iv
e

te
rm

s
in

E

qu
at

io
n

1.

(0
.0

02
27

,
0.

00
22

7,
 0

.0
, 0

.0
)

A
rb

it
ra

ry
 w

ei
gh

ts
 g

iv
en

 to
 r

es
pe

ct
iv

e
te

rm
s

in
 E

qu
at

io
n

1.

N
co

re

15

R
ep

or
te

d
va

lu
e

fr
om

 A
pa

ch
e

ca
se

 s
tu

dy

(c
on

tr
ib

ut
or

s
th

at
 w

ro
te

 8
8%

 o
f

so
ur

ce
 c

od
e)

.
7

R
ed

uc
ed

 v
al

ue
 f

ro
m

 g
tk

+
 d

at
a

as
 o

bt
ai

ne
d

fr
om

ht

tp
:/

/b
ul

un
ga

.d
at

.e
sc

et
.u

rj
c.

es
/g

no
m

e-
cv

s/
in

de
x.

ph
p.

 I
t

eq
ua

ls
 th

e
nu

m
be

r
of

 c
om

m
it

te
rs

 th
at

 c
le

ar
ly

 p
ro

du
ce

d
m

uc
h

m
or

e
co

de
 th

an
 a

ll
ot

he
rs

.
s o

12

0
da

ys

R
ea

so
na

bl
e

as
su

m
pt

io
n.

 N
o

da
ta

 a
va

ila
bl

e
in

A

pa
ch

e
ca

se
 s

tu
dy

.
24

6
da

ys

E
xa

ct
 r

ep
or

te
d

av
er

ag
e

va
lu

e
in

 K
oc

h
an

d
Sc

hn
ei

de
r

(2
00

0)
 f

or
 th

e
en

ti
re

 G
N

O
M

E
 p

ro
je

ct
 f

or
 th

e
m

ea
n

nu
m

be
r

of
 d

ay
s

a
co

nt
ri

bu
to

r
sp

en
t o

n
th

e
pr

oj
ec

t i
n

th
e

fi
rs

t t
hr

ee

ye
ar

s.
 I

t i
s

as
su

m
ed

 th
at

 th
e

sa
m

e
va

lu
e

ho
ld

s
fo

r
gt

k+
.

Fu
nc

tio
na

l
co

m
pl

et
io

n
th

re
sh

ol
d

40
0

K
L

O
C

R

ea
so

na
bl

e
as

su
m

pt
io

n
ba

se
d

on
 th

e
fa

ct
 th

at

A
pa

ch
e

ha
d

ne
ar

ly
 r

ea
ch

ed
 c

om
pl

et
io

n
in

 th
e

fi
rs

t
th

re
e

ye
ar

s.

2,
00

0
K

L
O

C

R
ea

so
na

bl
e

as
su

m
pt

io
n

fo
r

gt
k+

.

TLFeBOOK

190 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Previous case studies reported programmer interest per task type in the same order
as what the present simulation yielded, namely, testing, functional improving/new
source file creation, and debugging.

Table 2 compares average values of certain key project variables between
simulation and reported results in the Apache project. Standard deviations of the
reported quantities as calculated after 100 simulation runs are also reported.

Temporal Evolution of Project Variables of the Apache Case Study
In Figures 2 and 3, the dynamical evolution of project variables is shown for

2,000 days. The Apache case study reported results for the first three years (1,094
days) of the project, but we continued the runs in order to look at the simulated
evolution at later times. For all figures except 2b, average data for the 100 runs is
further “smoothed” by taking running (window) time averages within a running
window of 30 days.

Figure 2a shows the evolution of the total number of LOC difference (for all
project modules). By LOC “difference” we mean actual (uncommented) LOC that
is purely added to the development release from one day to the next. The bold line
shows the average of the 100 runs tried, and the two dashed lines show the bounds
of one standard deviation above and below average. We see that in the first 310 days
the project already reaches half the size (110 KLOC) of the number of LOC after
1,094 days. Only about 35 KLOC are added from Day 1095 until Day 2,000. This
means that project size growth rate rises at the first stages and slows down
towards later stages of the F/OSS project. This fact is more clearly demonstrated
by Figure 2b, which shows the average rate of adding LOC each project day. The

Table 2: Apache simulation results compared to real results from Mockus
et al. (2000).

Variable Simulation (average ± st.
dev.)

Real Data

Total number of LOC after 1094 days
(3 years)

220,907.0 ± 31.6 LOC 220 KLOC

Average Defect density in the first
1094 days

2.71 ± 0.42 defects/KLOC 2.64 defects per KLOC

Residual defect density (i.e., actual
reported defects that were not
corrected after 1094 days)

0.03 ± 0.09 defects/KLOC Not available

Average Number of reported defects
per day

33.9 ± 11.05 Not available

Total activity in task type B (in the
first 1094 days)

715 ± 26.7 tasks 695 tasks

Total Activity in task type T 4,040 ± 60.9 tasks 3,975 tasks
Total Activity in task type F + type S 5,991 ± 83.2 6,092
Total Activity in all task types 10,747 ± 106.5 10,762
Number of individual contributors 489 ± 21.8 388

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

rate reaches a maximum around Day 100 and subsequently drops. This behaviour
has been observed with certain strands (core) of the GNOME project and
certain modules of the LINUX project. In fact, the slowing down of software
projects is a well-known fact for both closed source projects (e.g., Boehm, 1981) and
F/OSS projects (e.g., Godfrey & Tu, 2000; Koch & Schneider, 2002).

Figure 2: Simulation results for the Apache project: (a) Cumulative LOC
difference vs. time for the Apache project. The bold line is the average of
the 100 runs. The gray lines are one standard deviation above and below
the average. The dashed vertical line shows the day of the project until
data was reported in the Apache case study (Mockus et al., 2000). (b)
Total number of LOC added per day. (c) Density of (unfixed) defects as a
function of time.

���������	
��	�����	�
 �	����

�

��

���

���

���

���

���

���

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�

�
�

�
�
�
�

��������	
�

�

�
�

(a)

��	�����	���	���	�
 �	����

�

���

���

���

���

���

���

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�

�
�

�
�
�
�

��������	
�

�

�

(b)

TLFeBOOK

192 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(c)

��������	��
���	��
����	�� �	����

�

���

���

���

���

�

�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

���� 	����� �

�
�

�
�

��
��

�
�

�

Figure 2: Simulation results for the Apache project (continued).

Figure 3: Number of committers vs. time. (a) Simulation results for the
Apache project. (b) Respective plot with actual results for the Mutt project
from Capiluppi et al. (2003). The relevant curve for comparison with our
simulation results is the curve for “contributors.”

���������	
��	�
��
����
� 	�� �	����

�

���

���

���

���

	��

���

��

���

�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

����	������

�
�

�
�	

�

	

�

�

��
�

�
�

�
��

(a)

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(b)

Figure 3: Number of committers vs. time. (continued)

Finally, Figure 2c shows the evolution of residual defect density, i.e., defects per
KLOC that are left unfixed. We see that the density rises rapidly in the beginning,
when a lot of code is added, and defect correction activity cannot keep up.
Fortunately, the model predicts that defect density will drop less than 0.1 defects per
KLOC that are left after Day 1,000. This agrees with the Apache, FreeBSD, and
Linux case studies that state that defect correction is quite effective in F/OSS
projects.

Finally, Figure 3a shows the simulation results for cumulative number of
committers in time for the Apache project. At Day 1094, there is a total of 489 ± 21.8
individual programmers that have performed at least one task for the project.
Compared to the actual number for Apache, which is 388, this is indeed larger, but
the disagreement is surprisingly satisfactory if one considers that Q was calibrated
using only the reported three-year period time average values for the evolution of
project variables in the Apache case study and that many other data used for
adjustment of model parameters was either assumed or picked from other cases
studies. The step-like increase in number of committers has been noticed in several
studies of other F/OSS projects, e.g., in Capiluppi et al. (2003). Figure 3b shows an
example plot of actual data on the “Mutt” project taken from Capiluppi et al. The
definitions of “Authors, contributors and developers” shown in the figure can be
found in Capiluppi et al.; the definition consistent with what we have called
“committers” in this chapter is the one the above authors used for the term
“contributors.”

TLFeBOOK

194 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Demonstration of Model against Evolution of gtk+
Module in GNOME Project

In this chapter, we also present simulation results for the gtk+ module of the
GNOME project. For gtk+, we gathered data from http://bulunga.dat.escet.urjc.es/
gnome-cvs/index.php, a website that graphically reports dynamic evolution of
committers, commits, and LOC along with other interesting statistics based on CVS
analysis of several F/OSS projects. For data not present in the aforementioned site,
we used data from the GNOME case study of Koch and Schneider (2000), from
which we managed to deduce estimates for averages and standard deviations of
delivery times necessary for Equation Set 3. Both sources lacked data regarding
activity for individual task types (code writing, defect correction defect reporting),
thus we used the same values that we had available from the Apache case study.

In the present simulation, we are examining the evolution of a single module
(gtk+). Therefore, we disabled assignments of task type S in the simulation so that
there is no change in the number of modules during the simulation. Further, we used
the exact same equations (with the same time-constant parameter values) for the
behavioural model in Equations 1 and 3 as in the Apache case study simulations.
Table 1 shows the values of project-specific parameters used for Equation Sets
2 and 3. Notice that gtk+ programmers were more productive in code writing than
in the Apache project (more LOC were written on the average for shorter time
periods). Also, the estimated threshold for “functional completion” of gtk+ was set
to 2,000 KLOC, much higher than in the Apache (see discussion in the next section).
N

o
 was set equal to 25, the actual average value of commits per day in the first 1000

days of gtk+ development. Subsequently, Q
o
 (the project-specific “quality factor”

calibration parameter) was interactively adjusted to a final value of 0.089 so that
cumulated LOC difference and number of commits fit actual data for the first 1,000
days as closely as possible. Finally, the runs were continued until Day 2,000. One
hundred repetitions were performed and averages taken. Table 3 shows simulation

Table 3: gtk+ simulation results compared to real data from http://
bulunga.dat.escet.urjc.es/gnome-cvs/index.php (data taken on April 29,
2003).

Variable Simulation (average
± st. dev.)

Real Data

Total number of LOC after 1,000 days 390±93 KLOC 350 KLOC
Total number of LOC after 2,000 days 951±185 KLOC 950 KLOC
Total number of commits by Day 1,000 24,600 ± 311 24,500
Total number of commits by Day 2,000 59,880 ± 344 60,000
Number of individual committers by Day 1,000 459 ± 27 125
Number of individual committers by Day 1,000 975 ± 40 250

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

results compared to actual data from http://bulunga.dat.escet.urjc.es/gnome-cvs/
index.php.

Figure 4a shows the cumulative LOC difference (i.e., LOC added minus LOC
deleted) for 2,000 days of gtk+ evolution. At Day 1,000, about 390±93 KLOC were
written according to simulation results, compared to about 350 KLOC in reality. At
Day 2,000, 951±185 KLOC were written according to simulation results, the value
being 950 KLOC in reality. The rise in LOC difference is almost linear, showing that
gtk+ has not reached a plateau in development yet, contrary to the Apache case
study. This is basically due to the fact that we set the “functional completion” cut-

Figure 4: LOC evolution in gtk+ module of GNOME project. (a) (Simulation
results) Cumulative LOC difference vs. time. The bold line is the average of
the 100 runs. The gray lines are one standard deviation above and below
the average. The dashed vertical line shows approximately the day of the
project until data was reported in the GNOME case study (Koch &
Schneider, 2000). (b) (Simulation results) Cumulative LOC difference vs.
time for three individual runs. Bold curve: least χ2 curve from actual
results. Dashed curve: Maximum LOC run. Gray curve: Minimum LOC run.
(c) (Real results from http://bulunga.datescet.urjc.es/gnome-cvs/index.php,
downloaded on April 29, 2003) Cumulative LOC difference vs. time ©
Grupo de Sistemas y Comunicaciones (Universidad Rey Juan Carlos),
Spain. In order to compare with simulation results in (a), time axis of (a)
must be shifted to the left by about 350 days (see discussion in text).

����������	
���

���	�	��	
�� �
���	
������

�

���

���

���

���

���

���

���

	��

��

����

����

����

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�

�
�

�
�
�
�

����	����� �

�
�

�
�

(a)

TLFeBOOK

196 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4: LOC evolution in gtk+ module of GNOME project (continued).

�����������	���	��

���
��	�� �	����	������

�

���

���

���

���

	��

���

��

���

���

����

����

����

����

����

�	��

�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

����	������

�
�

�
�

�
�����

���

���

(b)

(c)

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(b)

Figure 5: Number of committers vs. time: (a) Simulation results for the gtk+.
Bold line is average after 100 runs. Thin line is result of a single (least χ2)
Run. (b) Equivalent plot for actual results from the GnuParted project
taken from Capiluppi et al. (2003). The relevant curve for comparison with
our simulation results is the curve for “contributors.”

��� � ���	 ��
�� �
��� 	

�

���

���

���

���

���

���

���

	��

��

����

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�

�
�

�
�
�
�

��������	
�

�������

����	�
���

(a)

TLFeBOOK

198 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

off at a high value. The dashed lines show one standard deviation above and below
the average curve.

Figure 4b shows the cumulative LOC difference for three individual simulation
runs: a) the run that had the least χ2 deviation from the actual LOC difference curve
reported in http://bulunga.dat.escet.urjc.es/gnome-cvs/index.php (“closest”), b) the
run that resulted in the fewest LOC after 2,000 days (“min”), and c) the run that
resulted in the most LOC after 2,000 days (“max”). The large standard deviations
in LOC difference are expected due to the large standard deviations of the LOC
submitted in a single commit by a single programmer. Finally, Figure 4c shows the
actual LOC difference curve for the gtk+ module as reported in http://
bulunga.dat.escet.urjc.es/gnome-cvs/index.php. (The actual LOC difference curve,
as reported on the mentioned website, is shifted 350 days to the right; Day zero, for
simulation, corresponds to Day 350 for the actual plot.)

Figure 5a shows simulation results for cumulative number of committers vs.
time. The bold curve is the average of all runs and the plain curve the result of a single
run (“closest” run). The almost linear increase compares well with respective real
results in http://bulunga.dat.escet.urjc.es/gnome-cvs/index.php. As a comparison to
the step-like shape of the second curve, we show the respective plot for the
GnuParted project taken from Capiluppi et al. (2003).

Figure 6 shows the cumulative time variation in number of commits (for task
type F only). It rises linearly to about 24,600 commits (actual value for gtk+ is
~25,000) at day 1,000 and up to 60,000 (actual value for gtk+ is) commits at day 2,000.

Figure 6: Commits for task type F (functional improving) vs. time. Simulation
results for gtk+ project. Average of 100 runs.

������� 	�� �	����	������

�

�����

�����

�����

�����

	����

�����

�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

����	����� �

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The almost linear rise in number of commits is also seen in the real data plotted in http:/
/bulunga.dat.escet.urjc.es/gnome-cvs/index.php. However, the actual number of
committers is almost four times higher in simulation results than in real data (see
Table 3). Compared to the almost exact agreement in the number of commits, this
fact suggests that, in simulation, individual committers appear to be about four times
less productive in code writing than actual gtk+ committers. This discrepancy is
partly due to a “time resolution” problem and partly due to the fact that the gtk+ real
data on committers refer only to individuals that applied changes to the source code.
In the present model, testing tasks (task type T) produces no change in source code,
but still occupies a great number of individuals that must be drawn from the general
“pool” of programmers. The “time resolution” problem refers to the fact that the
simulation model must have a discrete time scale. In the Apache simulation, our basic
unit of time was one calendar day, whereas in the gtk+ simulation it was 1/10 of a
day (due to the shorter delivery times). When a delivery time shorter than the basic
unit is selected from the time probability distribution, it must inevitably be rounded off
to a higher time scale resulting in “loss” of effort and thus leading to a reduced
average productivity of individual programmers.

Sensitivity of Results to Model Parameters
Simulation results are quite sensitive to the values of parameters N

o
 and Q

o
. The

reason is that they both determine, by large, the flow of new contributors into the
project (see Equation Set 1). Since the rate of growth is exponential in the initial
project phases—as correctly predicted by the present model—a slight change in N

o
,

especially in the early stages of project evolution, will greatly affect the future
evolution of the total number of LOC. However, by letting N

o
 be equal to the average

number of commits per day in an initial period of the project, one can use Q
o
 to fit the

actual cumulated LOC difference and the actual number of commits as closely as
possible in the same time period. The accuracy of the model may be concluded if,
by keeping these values fixed, it succeeds in reproducing the future evolution of the
project.

The most critical parameter that determines the time scale after which the
development in a particular module will reach a plateau (i.e., the module is nearing
functional completion) is the value given to the “LOC threshold” parameter for each
module i in the project. The value of this parameter must be estimated according to
the known specifications of the module and represents a rough estimate of the
maximum size (in LOC) of the module so that it may be considered “functionally
complete.” For example, for a module like gtk+ it is reasonable to assume that this
threshold must be set high, since possible functionality is limited (theoretically) only
by programmer imagination. For projects like Apache, on the other hand, where
maximum expected functionality is naturally much more limited, this threshold may
be set much lower. Of course, it is not at all the case that the evolution of a project
with a high functional completion threshold will necessarily evolve up to this threshold

TLFeBOOK

200 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

without the risk of reaching a plateau much earlier. According to the present model,
evolution depends on other dynamically changing factors, such as residual defect
density of the code written, frequency of production releases, the initial flow of
contributors, and how long the interest of each contributor is maintained during the
lifetime of the project.

CONCLUSIONS AND POSSIBILITIES
FOR FUTURE DEVELOPMENT

We introduced a general framework for the production of OSS dynamic
simulation models. We then presented a first effort to produce a specific simulation
model for the OSS development process and attempted to produce some indicative
simulation results, applying the model to the Apache case study and to the gtk+
module of the GNOME study. The present model contains enough generality to allow
its application to multi-module projects.

Unfortunately, existing case studies do not contain the complete set of data
necessary for a full-scale calibration and validation of the present model. Despite this
fact, qualitatively, the simulation results demonstrated the super-linear project
growth at the initial stages, the saturation of project growth at later stages where a
project reached a level of functional completion (Apache), the “step-like” increase
in number of contributors, and the effective defect correction, facts that agree with
known studies.

Due to the lack of adequate literature data, simulation results presented here
cannot be considered at all as full-scale validation of the model, a task that would
require future F/OSS case studies to be conducted in parallel with the application of
the simulation model for all the necessary data to be available. For example, future
case studies should report commits per each task type and per each project module
as a function of time. This way, the full-scale dynamics of the model will be exploited
revealing, for example, possible complicated interactions among different modules
and tasks.

One of the most evident intrinsic limitations of the present F/OSS simulation
models comes from the very large variances of probability distributions. On output,
this leads to large variances in the evolution of key project variables, a fact that
naturally limits the predictive power of the model. A remedy for this is to attempt a
less coarse description of these probability distributions, for example, by treating
different categories of contributors separately or applying correlations between time
distributions in Equation Set 3 and project output distributions in Equation Set 2.
Another solution would be to apply a continuous re-adjustment of model parameters
at shorter past time windows, trying to predict the evolution in the next (short) future
time window. Of course, the above solutions would require a more detailed recording
of real-world data, which we hope to stimulate by our present work.

TLFeBOOK

Dynamical Simulation Models of the Open Source Development Process 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Despite the aforementioned intrinsic and extrinsic limitations, these first attempt
simulation runs fairly demonstrated the model’s ability to capture reported qualitative
and quantitative features of F/OSS evolution, indicating that the present work is a first
promising effort that could stimulate further research in designing alternative OSS
simulation models within the general framework described in the following chapters.
Future case studies on F/OSS real-world projects conducted with the purpose of
collecting all the necessary data needed for accurately calibrating and validating
F/OSS simulation models is first priority research that will reveal the full potential of
such models in practical applications.

ACKNOWLEDGMENTS
Figure 4c is copyrighted by Grupo de Sistemas y Comunicaciones

(Universidad Rey Juan Carlos), Spain.
The authors wish to thank A. Capiluppi, P. Lago and M. Morisio for

permission to reproduce Figures 3b and 5b in this chapter

REFERENCES
Abdel-Hamid, T. & Madnick, A. (1991). Software Project Dynamics: an

Integrated Approach. Upper Saddle River, NJ: Prentice Hall.
Antoniades, I. P., Stamelos, I., Angelis, L., & Bleris, G.L. (2003). A novel

simulation model for the development process of open source software
projects. Software Process: Improvement and Practise, 7(3-4), 173-188.

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, NJ:
Prentice Hall.

Bollinger T., Nelson, R.O., Self, K.M. & Turnbull, S. J. (1999). Open-source
methods: Peering through the clutter. IEEE Software 16(4), 8-11.

Capiluppi, A., Lago, P., & Morisio, M. (2003). Models for the evolution of OS
projects. In Proceedings of the 9th International Software Metrics Sympo-
sium, Sydney, Australia, September 3-5, p.65.

Center for Software Engineering (1997). COCOMO II Model Definition
Manual, Computer Science Dept., USC Center for Software Eng., Los
Angeles, CA.

Crowston, K. & Scozzi, B. (2002). Open source software projects as virtual
organizations: Competency rallying for software development. IEE Pro-
ceedings – Software Engineering, 149(1), 3.

Dalle, J. M. & David, P. M. (2003). The allocation of software development
resources in “open source” production mode, SIEPR Discussion Paper No.
02-27, Stanford Institute For Economic Policy Research, Stanford, CA.

Doncelli, I. (2001). Hybrid simulation modeling of the software process. Journal
of Systems and Software, 59(3), 227-235.

TLFeBOOK

202 Antoniades, Samoladas, Stamelos, Angelis and Bleris

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Feller, J. & Fitzgerald, B. (1999). A framework analysis of the open source
software development paradigm. ICIS, p.58, Retrieved November 25, 2000
from: http://citeseer.nj.nec.com/feller00framework.html.

Fenton, N.E. (1997). Software metrics: A rigorous and practical approach.
London: International Thomson Computer Press.

Godfrey, M. W. & Tu, Q. (2000). Evolution in open source software: A case
study. In Proceedings of the International Conference on Software
Maintenance (ICSM ’00), San Jose, CA, October 11-14, p. 131.

Jorgensen, N. (2001). Incremental software development in the FreeBSD open
source project. Information Systems Journal, 11, 321.

Koch, S. & Schneider, G. (2000). Results from software engineering research
into open source Development projects using public data. Diskussionspapiere
zum Taetigkeitsfeld Informationsverarbeitung und Informationswirtschaft
Nr. 22, Wirtschaftsuniversitaet, Wien.

Koch, S. & Schneider, G. (2002). Effort, cooperation and coordination in an open
source software project: GNOME. Information Systems Journal, 12(1), 27-42.

McConnell, S. (1999). Open source methodology: Ready for prime time? IEEE
Software, 16(4), 6-8.

Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source
software development: The Apache server. In Proceedings of the Inter-
national Conference on Software Engineering, 263-272, Limerick, IR.

O’Reilly, T. (1999). Lessons from open source software development. Commu-
nications of the ACM, 42(4); 33-37.

Pfleeger, S. L. (2001). Software Engineering, Theory and Practice. Upper
Saddle River, NJ: Prentice Hall.

Raymond, E.S. (1998). The cathedral and the bazaar. Retrieved November 25,
2000 from: http://www.tuxedo.org/esr/writings/cathedral-bazaar.

Rus, I., Collofello, J.,& Lakey, P. (1998). Software process simulation for
reliability strategy assessment. In International Workshop on Software
Process Simulation Modeling (ProSim’98), Silver Falls, OR.

Special Issue on Software Simulation (2001). Journal of Systems and Software
59(3), December 2001.

Wilson, G. (1999). Is the open source community setting a bad example? IEEE
Software, 16(1), 23-25.

ENDNOTE
1 By “alternative k” to a project module i, we mean a separate project module

with the same specifications as the original, which is developed as a
separate strand of the original within the project. For example, the gtk+
module in GNOME project is an alternative to gtk; the “nedit” text editor
in UNIX (X-windows) is an alternative to the “edit” text editor.

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 203

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter IX

Modeling the
Free/Open Source

Software Community:
A Quantitative Investigation

Gregory Madey, University of Notre Dame, USA

Vincent Freeh, North Carolina University, USA

Renee Tynan, University of Notre Dame, USA

ABSTRACT
In this chapter we summarize the latest results from an ongoing study examining
Free/Open Source Software (F/OSS) Development communities as self-organizing
systems. Using publicly available data about projects, developers, and their rela-
tionships at F/OSS hosting sites such as SourceForge, we have found the existence
of several power-law relationships, which is consistent with the contention that
F/OSS communities are self-organizing systems. The F/OSS community is mod-
eled as a collection of ad hoc, social networks consisting of heterogeneous agents,
self-organizing into projects and clusters of projects. A computer simulation of the
F/OSS community model is developed using SWARM, an agent-based simulation
toolkit. Empirical data is used to parameterize the simulation, which in turn is used
to investigate a social psychological model of communication and team effective-
ness in F/OSS projects.

TLFeBOOK

204 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

INTRODUCTION
Our investigation aims to increase the understanding of the Free/Open Source

Software (F/OSS) movement by providing a quantitative investigation of the network
properties of the community. In some ways, the F/OSS movement is a prototypi-
cal example of a self-organizing system (Axelrod & Cohen, 1999; Barabasi, 2002;
Barabasi, Albert, & Jeong, 2000; Faloutsos, Faloutsos, & Faloutsos, 1999; Holland,
1998; Huberman & Adamic, 1999; Kuwabara, 2000; Madey, Freeh, & Tynan, 2002a,
2002b, 2002c), but it also possesses some unique properties that may affect the
development of the network.

The lack of central planning or control in F/OSS projects challenges conven-
tional economic assumptions, turns conventional software engineering and project
management principles inside out, threatens traditional proprietary software busi-
ness strategies, and presents new legal and governmental policy questions regarding
software licensing and intellectual property. Understanding F/OSS is far from an
academic enterprise—F/OSS is a major component of the IT infrastructure enabling
global e-commerce. Free/open source software includes BIND, sendmail, Apache,
Linux, INN, GNU utilities, MySQL, PostgreSQL, and Perl, all critical elements of
the Internet.

In this chapter we describe a social network investigation of almost 60,000 F/OSS
projects at SourceForge (2003), a web-based project support site sponsored by VA
Software. With permission, we collected data on developers and projects over time
at SourceForge. We analyzed the data using cluster analysis to learn more about the
structure of the developer-project network, and then used the data to create a model
of the network for agent-based simulations. We ran simulations of the network using
the model to validate the model and to discover emergent properties of the network
that can only be observed by studying the network growth over time.

We find that both project size and the number of projects on which developers
are working can be modeled with the power-law relationship, providing empirical
evidence for the claim that the F/OSS community is a self-organizing system. We
also find that the cluster size of connected developers fits the power law, if the largest
and most connected cluster, comprising almost 35% of the developers, is removed,
and we discuss the possible causes behind this dual structural nature of the network.
Finally, extending Barabasi’s construct of a network fitness component (Barabasi,
2002), we find that a dynamic lifecycle fitness parameter for projects is necessary
to best model the project data at SourceForge.

We begin with a discussion of social network theory and the utility of using
simulation modeling to understand self-organizing systems. We then describe our
data collection, cluster analysis results, model development and simulation results,
followed by a discussion of the theoretical and practical ramifications of our results
and directions for future research.

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 205

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

MODELING SOCIAL NETWORKS
Why should we invest the effort to do a quantitative simulation of the F/OSS

network? The rationale behind such an investigation is that the F/OSS community
is a social network that possesses several prototypical features of complex systems,
systems that prior investigations have shown possess temporal and emergent proper-
ties that can be discovered only through modeling the system as a whole over time.
For example, Axelrod (1984) found that certain types of “guarded cooperation”
emerged as the most effective strategies for maximizing long-term joint outcome
of dyads in a community, a result that could not have been obtained without simu-
lation modeling.

Social network theory seeks to understand the network properties of people in
relation to one another. Social network theory models persons as vertices or nodes
of a graph and their relationships as edges or links of the graph (Barabasi, 2002;
Jin, Girvan, & Newman, 2001; Wasserman & Faust, 1994; Watts, 1999; Watts &
Strogatz, 1998). Thus two persons are directly connected if they have a relationship
(e.g., friendship) with each other; they then are one edge away from one another, a
distance of one. More distant relationships are modeled as paths through the graph;
a “friend of a friend” is two edges away. For example, displayed in Figure 1 is a
diagram of a social network composed of four individuals, labeled A through D and
represented as vertices of the graph. In this social network, individuals A through C
are fully connected by edges, representing a “circle of friends” or a clique. Vertices
C and D are connected by one edge, and since this is the only path between C and D,
that edge is called a weak tie. The number of edges attached to a vertex is called its
index value. Vertex C, called a hub (or later in this chapter, a linchpin), is critical in
social networks because its removal would break the network into two disconnected
components. Hubs are also important because they often share the edges that weakly
tie cliques together, and those weak ties have been shown to be most important in
the spread of information through a network (Barabasi, 2002; Granovetter, 1973;
Watts, 1999). Several studies reveal an interesting phenomenon present in many of
these social networks; most persons are very few links from any other person—the
Small World Phenomenon (Watts, 1999; Watts & Strogatz, 1998). This idea was
popularized in the play (and movie) Six Degrees of Separation (Guare, 1990) that
claims that all persons in the world are at most six friendship links away.

Collaboration networks are variations of social networks where the relationships
are collaborations, e.g., actors in movies (Tjaden, 1996; Watts, 1999) or co-authors
on research papers (Barabasi et al., 2001; Newman, 2001). Often entire populations
are connected into one large cluster with high characteristic clustering coefficients
(Watts, 1999). Highly prolific actors or authors are linchpins in collaborative net-
works. Linchpin actors or researchers play key roles in bridging disparate groups
into one large cluster.

Social networks and collaboration networks have another interesting property
in common; they are often self-organizing systems, forming patterns of connectiv-

TLFeBOOK

206 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

ity that emerge in a bottom-up process based on local interactions. Such systems
displaying self-organizing behaviors and emergence based primarily on local inter-
actions are the subject of study called complex systems (Cowan, Pines, & Melzer,
1999; Johnson, 2001; Kelly, 1994).

Social networks, collaborative networks, and other self-organizing systems (e.g.,
the Internet, corporation sizes, cities, economic systems, word usage in languages,
ecosystems, lines-of-code in programs) often have another interesting property; they
have highly skewed distributions, which under a log-log transformation results in a
linear relationship. This is called a power-law relationship. Power-law relationships
have been reported for the Internet (Albert, Jeong, & Barabasi, 1999; Barabasi &
Albert, 1999; Barabasi et al., 2000; Faloutsos et al., 1999; Huberman & Adamic,
1999), sizes of U.S. firms (Axtell, 2001), city size distributions (Pumain & Mori-
coni-Ebrard, 1997), ecosystems (Jorgensen, Mejer, & Nielsen, 1998), word rank
in languages and writing (Schroeder, 1991) and other systems for which emergent
properties are of interest. One major hypothesis about the source of power-law
relationships is nonrandom attachment of nodes (called preferential attachment by
Barabasi, 2002; Barabasi et al., 2001; Newman, 2001). Preferential attachment
refers to the fact that some vertices tend to attract new edges over time in an evolv-
ing network with greater probability than other vertices. Unlike random networks,
where all vertices have equal probability of attracting new edges as the network
grows, in collaboration networks the probabilities tend to be in part proportional to
the index of the vertex, resulting in a “rich-get-rich” phenomenon. They also may
have different intrinsic “fitness” that can outweigh the attractiveness for new edges
caused by index value of the graphs’ vertices (Barabasi, 2002). This property helps
model the fact that “young upstarts” can attract new edges with greater probability
that older vertices that typically have greater index values because they have been
part of the network for a longer time.

We analyze the free/open source software phenomenon by modeling it as a
collaborative social network. The developers are vertices of a network, and joint

Figure 1: Components of a social network.

node or vertex

edge or link

hub

circle
of friends

or
a clique

weak tie

S ocial Ne twork A

B C D

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 207

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

membership on an open source project is a collaborative link between the develop-
ers, as shown in Figure 2.

The F/OSS development community is highly decentralized and is a volunteer
effort where developers freely join projects that they find appealing—all attributes
of typical self-organizing systems. We hypothesize that the open source community
displays power-law relationships in its structure and grows with a preferential at-
tachment process modified by a fitness property. Our empirical analysis of structural
data collected from SourceForge suggests that this is the case. These results, along
with additional unique properties of the F/OSS community discovered using agent-
based simulation and data-mining techniques are described in the next section.

DATA COLLECTION
Because free/open source software is typically developed by global virtual

teams, most projects use the Web and the Internet to facilitate their work. This
provides research opportunities for the acquisition of data directly from online
data sources, as has been used by several prior studies, including Mockus, Field-
ing, and Herbsleb (2002), Ghosh and Prakask (2000), and Krishnamurthy (2002).
We collected data on F/OSS developers and projects from January 2001 to March
2003 at SourceForge.net, a large project management website supporting F/OSS
development with project management tools, bug tracking software, mail list ser-
vices, discussion forums, and version control software (SourceForge, 2003). We
believe that SourceForge is representative of a wide cross-section of the F/OSS
community. While SourceForge does not support many large high-profile projects
that maintain their own developer sites (e.g., Apache, Perl, sendmail, and Linux),
some large projects have moved to SourceForge, including Samba, and there are
many smaller projects that have joined SourceForge.

Each project in SourceForge has a unique project number, and each developer is
assigned a unique ID when he or she registers with SourceForge. We collected data

Figure 2: The Free/Open Source Software (F/OSS) community modeled as a col-
laborative social network.

developer

joint project
members hip

linchpin developer

F /OS S
project

F /OS S C ollaboration Network A

B C D

TLFeBOOK

208 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

linking developers to the projects on which they are working, over time. The data
thus consisted of a table of records with two fields, project number and developer
ID. Because projects can have many developers and developers can be on many
projects, neither field is a unique primary key, and thus, the composite key composed
of both attributes serves as the primary key. After the data collection, the data was
completely anonymized by an algorithm that shuffles the ID values.

To collect the data, we created a web crawler to traverse the SourceForge
website monthly, with the permission of SourceForge. All project home pages in
SourceForge have a similar top-level design, with most of them dynamically gener-
ated from a database. A simple shell script fetches each project’s developer page.
It parses the HTML and extracts the names of the developers. A python program
parses the HTML source, giving as output one line for each developer, containing
the project number and the developer’s ID. For March 2003, the table generated
with this method exceeded 110,000 records in the form shown in Table 1. Thus, in
the example data displayed in Table 1, there are six projects ranging in size from
one developer to three developers. All the data was stored in a relational database
by month. The combined data for all months of collected data exceeds two million
records.

RESULTS AND ANALYSIS
We submitted the data to three types of analyses. First, we examined the

cluster properties of the network using developers as nodes, with an edge existing
between nodes if both developers are on the same project. This representation is
analogous to using research paper authors as nodes and joint authorship as a link
in a collaboration network (Barabasi et al., 2001; Newman, 2001). As can be seen
in Figure 3, a randomly selected small cluster from one monthly data set from

Table 1: Typical data (anonymized) retrieved from SourceForge associating projects
and developers.

9001 | dev378
9001 | dev8975
9001 | dev9972
9002 | dev27650
9005 | dev31351
9006 | dev12509
9007 | dev19395
9007 | dev4622
9007 | dev35611
9008 | dev7698

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 209

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission

of Idea Group Inc. is prohibited.

Figure 3: Social network consisting of one connected cluster, 24 developers, fi ve
projects, and two Linchpin developers (dev[58] and dev[46]).

Figure 4: Distribution of developer index values on linear axes (left) and log axes
(right).

dev[46]

dev[83] dev[56]

dev[48]

dev[52]

dev[79]

dev[72]

dev[51]

dev[57]

dev[55]

dev[99]

dev[47]

dev[58]

dev[53]

dev[59]

dev[65]

dev[45]

dev[70]

dev[67]

dev[59]

dev[54]

dev[49]

dev[64]

dev[61]

P roject 6882

P roject 9859

P roject 7597

P roject 7028

P roject 15850

OSS Developer - Social Networ k
Developers are nodes / Projects are links

24 Developers
5 Projects

2 L inchpin Developers
1 Cluster

Participated projects Participated projects (LOG10)

TLFeBOOK

210 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-

sion of Idea Group Inc. is prohibited.

SourceForge, linchpin developers (Developer 58 and Developer 46), or developers

who link two projects together, play an important role in linking clusters together

(Granovetter, 1973). Our analysis showed that the developer collaboration network

at SourceForge fi ts the power-law model, as determined by ordinary least squares

(OLS) regression in log-log coordinates. As shown in Figure 4, the distribution of

the number of projects per developer has a power-law distribution, with the solid

line the OLS regression line through the data (adjusted R-squared greater than .95).

The data displayed in Figure 4 was collected from SourceForge in March 2003.

Equivalent results are seen in all monthly data for distributions of the number of

projects developers join.

The second analysis used projects as nodes and developers as edges, with two

projects linked together if they shared a common developer. Project size frequency

showed equivalent results to the number of projects developers join, fi tting the

power-law and with R-squared greater than .95 displayed in Figure 5.

We also conducted an analysis on the size of clusters, with a cluster defi ned

as a connected component with a path between all developers. Cluster analysis of

Figure 5: Power-law distribution on size of projects determined by number of
participating developers.

Participated developers (LOG10)

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 211

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the SourceForge data from March 2003 identified the presence of one large cluster
consisting of 28,394 developers, about 34.6% of the developers at SourceForge.
The next largest cluster was of size 75, with sizes ranging down to one (i.e., those
developers on single-member projects). Projects with only one developer occurred
most frequently (in addition, developers on only one project was the most frequent
value for the number of projects joined by a developer, with a large intersection
between the two groups). Identification of clusters, or connected groups of develop-
ers, was implemented using a version of Prim’s spanning tree algorithm (Corfmen,
Leiserson, Rivest, & Stein, 2001).

Figure 6: Cluster analysis on SourceForge developer data. One large cluster (far
right) and remaining clusters with a power distribution of sizes.

Figure 7: Relative cluster sizes. Major cluster comprises about 34.6% of all
developers.

TLFeBOOK

212 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

The large super-cluster was an outlier relative to the rest of the data points.
If this cluster is removed, the cluster components fit the power-law, with a log-log
transformation giving a good fit using regression (adjusted R-squared = .93) shown
in Figure 6.

In Figure 7, we display the relative sizes over the months of gathered data,
measured in numbers of developers, of the major cluster (the largest cluster), the
isolated clusters (consisting of a single project with a single developer), and all other
clusters. Note that the major cluster has grown over time but is slowing relative to
the rest of the social network.

DISCUSSION OF THE ANALYSIS
The analysis provides support for the contention that the F/OSS community

is a self-organizing system, and it also yielded an unexpected finding regarding
the structure of the community. Several different types of analyses on the F/OSS
data obey the power-law, which gives support to the hypothesis advanced by many
qualitative researchers that the F/OSS community operates as a self-organizing
system. When one examines the size of connected projects and developers, how-
ever, a second phenomenon emerges. It appears that there may be a dual nature
to the structure of the F/OSS community, at least at this point in time. While the
less well-connected clusters fit the power-law, suggesting that part of the network
is operating as a self-organizing system, there is a substantial percentage of the
network (34.6% in March 2003) that is behaving differently, and that cluster does
not fit the power-law pattern of the rest of the network data.

To our knowledge, this type of phenomenon has not been reported for other
self-organizing systems, which may be due to the fact that our data set is large enough
for us to be able to do a cluster analysis on cluster size. There are many possible
explanations for this dual nature to the network structure that we are observing in
the network. The F/OSS community does not operate in a vacuum, and in fact it
may operate in some respects as a “shadow” network, with its structure influenced
by the structure of the outside networks to which some of the developers and proj-
ects belong. For example, the commercial software industry can be expected to
exert an influence on the structure of the F/OSS network by influencing the training
and background of the developers, as well as influencing the reward and incentive
structure for working on a particular type of project. Many F/OSS projects have
developers that are full-time employees of commercial software firms assigned to
the projects; e.g., IBM is reported to have as many as 350 employees on various
F/OSS projects including Apache, Linux, Jikes, and Samba, and has invested over
$1 billion USD in Linux-related development (Hochmuth, 2002).

Several follow-on research questions suggest themselves to improve under-
standing of the meaning and significance of this dual structure. Do projects and
developers in the large cluster differ in observable ways from projects and developers

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 213

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

that fit the power-law? At what point in the development of the network does the
super-cluster emerge, and what is the percentage of the whole will to which it will
converge? What relationship does this network structure have to threshold effects
that have been observed in real-world network phenomenon such as the spread of
computer viruses or vulnerability to denial-of-service network attacks? If there
really is a dual nature to the F/OSS network, we need to recognize and understand
it as such, as the network and behavioral dynamics observed in the super-cluster
may differ significantly from that part of the network that is organizing itself as
a power-law distribution. While we think this phenomenon is likely to be due to
idiosyncratic properties of the F/OSS community and the fact that it is a shadow
network and subject to strong external pressures, another possibility that must be
examined is whether data in other self-organizing systems shows this dual nature
when it becomes large enough or at a certain point in its development.

AGENT-BASED MODELING OF F/OSS
Agent-based modeling is a technique for understanding the temporal dynamics

and emergent properties of self-organizing system by simulating the behavior of
individual components of the network over time (Axelrod, 1984; Epstein & Axtell,
1996; Resnick, 1994; Schelling, 1978). We use empirically collected data to generate
models of the F/OSS using social network theory (see Figure 8). We then use that
model to provide specifications for an agent-based simulation in which we grow an
artificial SourceForge over time (Epstein & Axtell, 1996; Goldspink, 2000, 2002).
We can then compare the outcome of the simulation to the data to assess and improve
the model. In addition, using multiple iterations of the simulation given different
starting conditions, we can discover invariant properties of the network/simulation
that would not otherwise be observable.

Although the rules describing the local interactions of the components or agents
of a self-organizing system (in our case, F/OSS projects and developers) may be
few and simple, often unexpected and difficult to predict global properties emerge.
Many investigators of such systems have found that they can only be understood
through modeling and, specifically, through agent-based simulation (also called
iconological, individual-based, and structural modeling) (Eve, Horsfall, & Lee,
1997; Harvey & Reed, 1997; Kiel & Elliot, 1997; Smith, 1997).

An understanding of a complex system can be obtained by discovering the
rules and mechanisms that control agent interactions, by discovering invariant
global properties, and conditions that lead to stability, periodic behavior, or chaotic
behavior. Prediction may not be possible because of sensitive dependence to initial
conditions, dynamic coupling, and feedback. Rather, the goal of these simulations
is to develop an understanding of how and why the elements of the system are able
to produce emergent behavior (Axelrod, 1997a, 1997b; Harvey & Reed, 1997; Hol-
land, 1998). Possible emergent behaviors in these complex systems might include

TLFeBOOK

214 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

adaptation, learning, memory, cooperation, and the persistence of self-sustaining
temporal patterns.

To conduct an agent-based simulation, researchers specify types of agents. In
our simulations, we used only one type of agent for each simulation, F/OSS devel-
opers. Future research could, however, specify different types of developers and
different types of projects (e.g., game projects, programming language projects,
Internet projects, etc.). Next, the researchers specify behavior rules for the agents.
These rules can be either deterministic (e.g., “If X happens, agents of type Y will do
Z”) or probabilistic (e.g., “If X happens, agents of type Y will have a 20% chance
of doing Z”). The model can also contain information about the environment in
which the agents are interacting.

In our simulation, we model at every time period (1 day) whether the developers
in our artificial SourceForge community will 1) start a new project, 2) join another
existing project, or 3) quit a project. In addition, at every time period we model
whether a new developer will join the community, either by starting a new project or
joining an existing project. We use the data we collected at SourceForge to provide
parameters for our simulation (e.g., the growth of the number of developers and
projects at SourceForge over time, the ratio of new project creation between current
developers and new developers, the evolution of projects as measured by number of
developers, downloads, lines of code, bug reports, and posting on discussion lists,
rates at which developers leave projects, project termination rates, etc.).

The simulations are built using the Java programming language and the agent-
based modeling library Swarm (Minar, Burkhart, Langton, & Askenzi, 1996; Swarm
Development Group, 2000; Terna, 1998). The Swarm library enables discrete event,
multi-agent simulations. In these simulations, agents are organized into “swarms.”
Several swarms can be nested into another swarm in a hierarchical manner. Thus,

Figure 8: Coupled agent-based modeling and simulation help gain a better under-
standing of the F/OSS phenomenon.

Modeling

Simulation
Observation

Social Network
Model of F/OSS

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 215

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

OSS developers can be grouped into a “project swarm,” which in turn can be grouped
into a “cluster swarm,” which would be part of the entire “OSS development swarm.”
Both the Swarm library and the Java language are object-oriented, providing the
object-oriented programming benefits of attribute and behavior encapsulation, infor-
mation hiding, and inheritance (Epstein & Axtell, 1996; Minar et al. 1996; Swarm
Development Group, 2000; Terna, 1998). We are using modeling and simulation
in concert with empirical data collection and analysis, as shown in Figure 8.

We use the empirically collected data to generate models of F/OSS using so-
cial network theory. Next, we use that model as a specification for a Java/Swarm
agent-based simulation in which we grow an artificial SourceForge. Using multiple
iterations of the simulation given different starting conditions (e.g., different random
seeds), we discover invariant properties of the simulation.

These properties, along with other simulation output, are compared against
the data we have on the “real-world’ SourceForge. Agreement between the real
and artificial suggests that the model may be correct, although it does not prove it.
Disagreement between the real and artificial suggests that the model (or simulation)
may be flawed or incomplete and provides clues on where to look in the empirical
data for hints on how to correct or refine the model. This process of coupling model
and simulation to real data has provided us with additional insights into the F/OSS
community. We conducted our agent-based simulations of SourceForge in an itera-
tive manner, starting with the simplest model, checking its fit against the data, and
improving the model. Using this method we obtained the following results:

1) Preferential attachment improves the model. Our first simulation used random
attachment of developers to projects, which fails to replicate the power-law
observed in the real data. Adding preferential attachment does improve the fit
of the model. By experimenting with different simulation implementations,
we discovered that preferential attachment can be implemented independently
for a) developers choosing a project yielding a power distribution on project
sizes, and b) developers preferentially choosing to join an additional project,
yielding a power distribution of developer index size. Figures 9 displays a
comparison between 1) the actual values of SourceForge’s average degree and
diameter over time, and 2) the average degree and diameter of the network
created in our simulation under the assumption of random joining (attachment)
of developers to projects. (In our analysis, we identify networks that grow with
random attachment as Erdos-Renyi graphs or ER for short.) Likewise, Figure
10 displays a comparison between 1) the actual values of SourceForge’s aver-
age degree and diameter over time, and 2) the average degree and diameter
of the network created in our simulation under the assumption of preferential
joining (attachment) of developers to projects based on project size (or degree
in our network representation). (In our analysis, we identify networks that
grow with preferential attachment as Barabasi-Albert graphs or BA for short.)

TLFeBOOK

216 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

By comparing Figures 9 and 10, we see a much better fit for these network
parameters (average degree and average diameter) in the simulations that as-
sume preferential attachment.

2) Simply adding preferential attachment did not provide a model that could
properly model the “young-upstart” phenomenon, where a new project or new
developer quickly passes older projects or developers. Barabasi (Barabasi,
2002) found that to model links to Internet sites a “fitness factor” was necessary.
Fitness modifies the probability of a new edge, meaning that some websites
are born more fit than others and are more likely to attract new links. Adding
a fitness factor to our model did improve the fit of the model, although there
were discrepancies.

3) In our search to understand these discrepancies, we made the discovery that
the best fitness factor for the SourceForge data is not static but rather dynamic
as a function of project age and life-cycle. In other words, these data are bet-
ter modeled with a fitness factor that changes over time. For example, a new
project may start with an attractive fitness factor, but its fitness levels over
time and then decreases.

Figure 9: Comparison between 1) the empirical values of SourceForge’s average
degree and diameter over time, and 2) the average degree and diameter of the net-
work created in our simulation under the assumption of random attachment (ER)
of developers to projects.

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 217

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

CONCLUSION
We investigated the potential for learning more about the F/OSS community

by 1) using SourceForge to learn more about developer and project evolution over
time, 2) modeling the F/OSS community using social network theory, 3) discovering
that the frequency of developer index, project sizes, and cluster sizes (excluding the
one large component) all have a power-law distribution, 4) simulating the evolution
of “artificial” F/OSS communities using agent-based modeling, and 5) iterating a
coupled observation-modeling-simulation cycle to discover properties of the F/OSS
community. Using the projects at SourceForge, the F/OSS community appears
to be a highly fragmented social network, with the largest connected component
comprising approximately 35% of all developers. Also, supporting this observation
is the observed power-law distribution in the SourceForge community that has as
the most frequent value, projects with only one developer and developers on only
one project with a relatively large intersection of the two. Future work includes 1)
studying Savannah and other F/OSS sites (under way), 2) computing and analyzing
additional social network metrics such as clustering coefficients, network diameter,

Figure 10: Comparison between 1) the empirical values of SourceForge’s average
degree and diameter over time, and 2) the average degree and diameter of the
network created in our simulation under the assumption of preferential attachment
(BA) of developers to projects.

TLFeBOOK

218 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

and average index values, and 3) continuing to refine the model and simulation us-
ing the process displayed in Figure 8.

ACKNOWLEDGMENTS
This research was partially supported by the U.S. National Science Foundation,

CISE/IIS-Digital Society & Technology, under Grant No. 0222829. We acknowledge
the assistance of Patrick McGovern, Director of SourceForge.net and the contribu-
tions of University of Notre Dame students Yongqin Gao, Chris Hoffman, Carlos
Siu, and Nadir Kiyanclar for their assistance with data collection, data analysis,
and programming on this project. Finally, we wish to thank the two anonymous
reviewers of this chapter for their most helpful suggestions.

REFERENCES
Albert, R., Jeong, H., Barabasi, A. L. (1999). Diameter of the World Wide Web.

Nature, 401, 130-131.
Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.
Axelrod, R. (1997a). Advancing the art of simulation in the social sciences. Com-

plexity, 3(2), 16-22.
Axelrod, R. (1997b). The complexity of cooperation: Agent-based models of com-

petition and collaboration. Princeton, NJ: Princeton University Press.
Axelrod, R. & Cohen, M. (1999). Harnessing complexity: Organizational implica-

tions of a scientific frontier. New York: The Free Press.
Axtell, R. L. (2001). Zipf Distribution of U.S. firm sizes. Science, 293(5536),

1818-1820.
Barabasi, A. L. (2002). Linked: The new science of networks. Boston, MA: Perseus

Books.
Barabasi, A. L. & Albert, R. (1999). Emergence of scaling in random networks.

Science, 286, 509-512.
Barabasi, A. L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random

networks: The topology of the World Wide Web. Physica A, 69-77.
Barabasi, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Viscek, T. (2001).

Evolution of the social network of scientific collaborations. Retrieved April
10, 2001, from: xxx.lanl.gov/arXiv:cond-mat/0104162v1, from xxx.lanl.
gov/arXiv:cond-mat/0104162v1.

Corfmen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to algorithms
(2nd ed.). Cambridge, MA: MIT Press.

Cowan, G., Pines, D., & Melzer, D. (Eds.). (1999). Complexity. Boulder, CO:
Westview Press.

Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from
the bottom up. Cambridge, MA: MIT Press.

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 219

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Eve, R., Horsfall, S., & Lee, M. (Eds.). (1997). Chaos, complexity and sociology.
Thousand Oaks, CA: Sage Publications.

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships
of the Internet topology. Paper presented at the SIGCOMM’99, August 31-
September 3, Cambridge, MA.

Ghosh, R., & Prakask, V. V. (2000). Orbiten free software survey. First Monday,
5(7).

Goldspink, C. (2000). Modelling social systems as complex: Towards a social simula-
tion meta-model. Journal of Artificial Societies and Social Simulation, 3(2).

Goldspink, C. (2002). Methodological implications of complex systems approaches
to sociality: Simulation as a foundation for knowledge. Journal of Artificial
Societies and Social Simulation, 5(1), 1-19.

Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology,
78, 1360-1380.

Guare, J. (1990). Six degrees of separation. New York: Vintage Books.
Harvey, D., & Reed, M. (1997). Social science as the study of complex systems. In

L. D. Kiel & E. Elliot (Eds.), Chaos theory in the social sciences: Founda-
tions and applications (pp. 295-323). Ann Arbor, MI: University of Michigan
Press.

Hochmuth, P. (2002). IBM’s open source advocate. Network World, , December 12.
Retrieved on January 27, 2004 from: http://www.nwfusion.com/power/2002/
frye.html.

Holland, J. (1998). Emergence: From chaos to order. Reading, MA: Addison
Wesley.

Huberman, B. A. & Adamic, L. A. (1999). Growth dynamics of the World Wide
Web. Nature, 401, 131.

Jin, E. M., Girvan, M., & Newman, M. E. J. (2001). The structure of growing social
networks. Unpublished manuscript, Santa Fe.

Johnson, S. (2001). Emergence. New York: Scribner.
Jorgensen, S. E., Mejer, H., & Nielsen, S. N. (1998). Ecosystem as self-organizing

critical systems. Ecological Modeling, 261-268.
Kelly, K. (1994). Out of control. Reading, MA: Addison-Wesley.
Kiel, L. D. & Elliot, E. (1997). Chaos theory in the social sciences: Foundations

and applications. Ann Arbor, MI: University of Michigan Press.
Krishnamurthy, S. (2002). An empirical examination of 100 mature open source

projects. First Monday, 7(6).
Kuwabara, K. (2000). Linux: A bazaar at the edge of chaos. First Monday, 5(3),

1-68.
Madey, G., Freeh, V., & Tynan, R. (2002a). Agent-based modeling of open source

using Swarm. Paper presented at the Americas Conference on Information
Systems (AMCIS2002), August 8-11, Dallas, TX.

Madey, G., Freeh, V., & Tynan, R. (2002b). The open source software development
phenomenon: An analysis based on social network theory. Paper presented

TLFeBOOK

220 Madey, Freeh and Tynan

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

at the Americas Conference on Information Systems (AMCIS2002), August
8-11, Dallas, TX.

Madey, G., Freeh, V., & Tynan, R. (2002c). Understanding OSS as a self-organiz-
ing process. Paper presented at The 2nd Workshop on Open Source Software
Engineering at the 24th International Conference on Software Engineering
(ICSE2002), May 19-25, Orlando, FL.

Minar, N., Burkhart, R., Langton, C.,Askenzi, M. (1996). The Swarm simulation
system: A toolkit for building multi-agent simulations. Retrieved on January
27, 2004 from: http://citeseer.nj.nec.com/minar96swarm.html.

Mockus, A., Fielding, R.T., & Herbsleb, J. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3), 309-346.

Newman, M. E. J. (2001). Clustering and preferential attachment in growing net-
works. Unpublished manuscript, Santa Fe.

Pumain, D. & Moriconi-Ebrard, F. (1997). City size distributions and metropoliza-
tion. GeoJournal, 43(4), 307-314.

Resnick, M. (1994). Turtles, termites, and traffic Jams. Cambridge, MA: MIT
Press.

Schelling, T. (1978). Micromotives and macrobehavior. New York: W. W. Nor-
ton.

Schroeder, M. R. (1991). Fractals, chaos, power laws. New York: W. H. Freeman
and Company.

Smith, T. (1997). Nonlinear dynamics and the micro-macro bridge. In R. Eve, S.
Horsfall, & M. Lee (Eds.), Chaos, Complexity and Sociology, pp. 52-78.
Thousand Oaks, CA: Sage Publications.

SourceForge. (2003). http://sourceforge.net/. Retrieved March 2003.
Swarm Development Group. (2000). Brief overview of Swarm. Retrieved on Janu-

ary 27, 2004 from: http://www.swarm.org/swarmdocs/set/book149.html.
Terna, P. (1998). Simulation tools for social scientists: Building agent-based mod-

els with Swarm. Journal of Artificial Societies and Social Simulation, 1(2),
1-12.

Tjaden, B. (1996). The Kevin Bacon Game. Retrieved July, 2001, from: http://www.
cs.virginia.edu/oracle/.

Wasserman, S.& Faust, K. (1994). Social network analysis: Methods and applica-
tions. Cambridge, UK: Cambridge University Press.

Watts, D. (1999). Small worlds. Princeton, NJ: Princeton University Press.
Watts, D. & Strogatz, S. H. (1998). Collective dynamics of small-world networks.

Nature, 393, 440-442.

TLFeBOOK

Modeling the Free/Open Source Software Community: A Quantitative Investigation 221

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

SECTION V:

F/OSS Development
Interacting with Commercial

and Public Organizations

TLFeBOOK

222 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Chapter X

Benefits and Pitfalls of
Open Source in

Commercial Contexts
Jiayin Hang, Siemens Business Services GmbH & Co. OHG, Germany

Heidi Hohensohn, Siemens Business Services GmbH & Co. OHG,
Germany

Klaus Mayr, IFS IT GmbH, Germany

Thomas Wieland, University of Applied Sciences Coburg, Germany

ABSTRACT
This chapter intends to show how companies can benefit from open source software
and its development culture and how the open source communities could, in turn, be
stimulated and accelerated. One of the first major steps for businesses that plan to act
in this context is to accept that open source projects have their own communication
culture. After explaining this fact, we illustrate its relevance on the basis of a case
study in which an open source framework was used to build a commercial product. The
decision-making process and the lessons learned from it point out some guidelines,
particularly for companies that offer projects rather than products. As there are,
however, more parties involved than just the developers when OSS is discussed as a
business opportunity, we also classify the different players in the software business
such as distributors, system integrators, and software/hardware vendors. Findings
on roles and their motivations and restraints, partially based on a survey carried
out within our research project, point up this categorization. The authors hope that

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 223

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

this overview of the benefits and pitfalls will encourage more companies to make
use of and invest in the open source way to develop and deploy software.

INTRODUCTION
Open source has become an established model for software development. It is

no longer hidden among obscure Internet mailing lists populated by purely idealistic
and mostly academic programmers. It is today well known in the IT world, albeit
not always fully understood. Books like this one do not need to start explaining
what the basic ideas of open source software (OSS) development are, but can focus
on trying to grasp the appeal of this model and its main antipodes: open source
vs. proprietary source, free-of-charge vs. commercial. However, OSS is not just a
menace for the business world, as some commercial software companies sometimes
propagate it. OSS also offers great opportunities for enterprises. In this chapter, we
want to show how companies can benefit from OSS and its development culture
and how the open source community could, in turn, be stimulated and accelerated
by adopting some best practices from classical commercial development.

In this chapter, we start with a short discussion about the uncertainties of OSS
releasing companies and emphasize the importance of understanding the open
source culture for businesses that plan to act in this context. We then describe one
case study performed by one of the authors in which an open source framework was
used to build a commercial product. The decisions in this project and the lessons
learned from it are explained in detail. The second major part is an overview of the
different players, their motivations, and restraints in the software business such as
distributors, system integrators, and software/hardware vendors. Some results are
based on a survey carried out within our research project.

Throughout this chapter, we will call software “open source software” if it
complies with the Open Source Definition published by the Open Source Initiative
(Open Source Initiative, 2003). This definition comprises ten clear and strict rules
that a piece of software and its distribution license have to fulfil in order to be called
“open source” justifiably. For classical OSS projects like Linux, Apache, or GNU,
these requirements are a matter of course. But for companies that have become
interested by the cheering press reports and just want to “jump on the OSS train,”
they can represent considerable barriers.

Uncertainties of OSS Releasing Companies
One example of the ten requirements of the OSI definition is that any discrimi-

nation against a specific field of endeavour is forbidden. The consequence is that a
company that releases this software cannot prevent other companies from using it
for business and profit. Since it is also required that an OSS license must not place
restrictions on other software with which is shipped, the originator must even tolerate
his or her open source software being bundled and sold with commercial software.

TLFeBOOK

224 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Licenses like the GPL do not oblige the creator to publish derived works, but if
the enlarged or new version is published, the sources have to be published as well
(Free Software Foundation, 1999). There are a number of OSS licenses, however,
, that allow the incorporation of OSS codes in commercial software systems, e.g.,
the BSD license. The basic question of software producers is: Can I still make profit
with my software when putting it out as open source? The answer is as simple as the
question: You can make profit, but you will make in a different way, especially with
value-added services and higher level products built on the open source software
base. One example is Digital Creations Inc., who turned its proprietary content
management system Zope into open source. It has gained much more popularity
and market share in the meantime and succeeded in increasing the sales volume of
its service offering related to Zope (Tippmann, 2001).

Other prevailing uncertainties are related to legal aspects, especially with
respect to licenses. The free character of the code and the commercial (but vital)
interests of the company in terms of licenses look as if they are hardly compatible.
But at the moment no one seems to know if the problem is inherent in the license
and business structure or in the accustomed way of considering the source itself as
an object of merchandise instead of only its use. Anyway, if considerable support
from open source programmers is envisaged for a particular software development
project, only a free and open license should be chosen.

So before releasing some software into the open source space, one should
acquire a profound understanding of what open source is and what the “do’s and
don’ts” of the community are. Some smaller companies who do not want to build
their entire business on such a product but just realize that releasing the code of
one particular piece of software may bring them some advantages, are usually very
uncertain about the consequences of such a step. One main fear is that open source
shows a “viral” character, infecting the company’s other products, too. Some people
are afraid that they might not be able to sell any software if they release one as OSS.
This is completely wrong, as many examples from IBM to Sun Microsystems show.
In any case, the original creator of the software definitely keeps the right to decide
under which conditions his software may be distributed. This includes also the right
to put one product under an open source license and another under a commercial
license. The GNU General Public License (GPL), however, indeed has the intention
to transfer its license to derived works. If software is directly linked (in the sense of
object code linking) with GPL software, it is considered such a derived work, and
if published, it has to be published under GPL and in source code (Free Software
Foundation, 1999). But in practice, there is seldom the need for direct linking with
GPL software. Most common OSS systems to which commercial software is linked
are released under the Library GPL (LGPL). This license explicitly allows linking
with closed source and requires open source disclosure only for direct modifications
of the libraries themselves.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 225

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Understanding Open Source Culture
A more practical conflict is that the attitude, motivations, and expectations of

commercial developers and OSS developers are usually very different. OSS projects
are built on contributions by random developers, frequent releases, feature selection
according to willingness and qualifications of developers, decentralization, and peer
review (Raymond, 1999). Typical business practices like schedules, time-line plan-
ning, task distribution by a project manager, determination of feature set, and date of
a release by a product manager are widely unknown (and ignored or even seen with
disdain) among OSS developers. Companies that want to avail themselves of the
OSS community have to learn these rules of the game. So, apart from any licensing
issues, releasing software as open source usually means first a fundamental change
of the development culture of the company. Therefore, the first step for companies
realizing software, using OSS, or establishing their business around OSS has to be
a deeper understanding of this sometimes conflicting culture—and vice versa, if an
OS company wants to conquer commercial areas on a wider scale. This culture is
widely known as the “geek culture” (Pavlicek, 2000). Since OSS developers are
working “just for fun,” due to their technical interest or sometimes because they
offer consultancy services around it, they do not feel any obligation to the originator
of the software. They generally do not accept when someone is trying to impose
his or her development and management processes on them. For the other side,
this means that the originating company has more or less to acknowledge the OSS
culture and to create appropriate interfaces to the community alike (cf. Seifert &
Wieland, 2003).

But the step into the open source universe affects many more business practices
than the development process alone. A good example is the handling of patents and
standards. Open source should mean “open” in every sense, allowing only the use
of open standards and formats (Holmes, 2000). Usually OSS needs to be free of
any parts that are protected by a patent. It is, however, possible to file patents to any
part of a piece of software or its algorithms, but they must be publicly and freely
available so nobody outside the company would run the risk of patent infringement
by just using and distributing the software. As we will see later, this restriction can
also be an advantage in the sense that concepts that are widespread as OSS may
soon become “de facto” standards.

OSS projects with a completely unstructured, chaotic organization are hardly
likely to succeed—just the same way management shortcomings threaten com-
mercial projects. OSS does not always mean success. In contrast, there are many
more unsuccessful projects that never get above the alpha stage and never produce
useful software than successful ones, as the statistics of the project mediator Source-
Forge show (McGovern, 2003). Among the OSS projects there is a “survival of
the fittest”—the best designed (and maybe organized) projects get the most input
(contributors) and attention (users). Although a stringent project management alone
is not sufficient for a successful end product, it seems to be necessary, as Mockus,

TLFeBOOK

226 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Fielding, and Herbsleb reported (2000, 2002) for Apache and Mozilla. But remember
that this project management is much more reliant on people and personal commu-
nication than on processes and tools. Nevertheless, OSS projects can benefit from
a couple of insights and best practices from commercial development. This mutual
fertilization will be the red thread for the rest of this chapter.

The NOW Project
Much of the work described in this chapter was done in the context of a publicly

funded research project called “NOW.” It explores how commercially oriented
enterprises can benefit from the software engineering practices of the open source
community. NOW is the German acronym for “Utilization of open source concept in
business and industry.” The project consortium consists of three industrial members
(Siemens Corporate Technology, Siemens Business Services, and 4Soft) and one
university partner (Technical University of Munich).

The primary goal of this project is to point out an effective model of how a
joint endeavour between the open source community and a “traditional” software
company works effectively. The project therefore investigates the problem area
from various angles:

• Business models. One result of the project will be working business models for
interested companies. Clearly, there are already working models, but they do
not apply on a development project level. Aside from “common” open source
models, for example apparent in the Linux industry, small- and medium-sized
companies need new business models to utilize the potential power of open
source software projects in their own business processes.

• Software engineering methodologies. Open source software development
differs from prevalent in-house software engineering processes. In order to
combine both NOW analyzes the differences and communities and develops
a suitable model for this type of software design.

• Community management. An important question to be answered is how to find
the right partners in the open source community for an open source project
and how to manage the project. Therefore, a community platform based on
portal technologies—of course, open source—is being created to serve as
virtual meeting point between interested companies and open source develop-
ers. This portal will also contain material or links to material of interest for
creating and managing open source projects. In addition, project results will
be presented and discussed there continuously and tools supporting develop-
ment and employment processes will be tested.

The project is funded by the German Federal Ministry of Education and Re-
search (BMBF) and runs from 10/2002 to 03/2005.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 227

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

TOWARDS AN OPEN SOURCE PROJECT
METHODOLOGY: A CASE STUDY

In this section we try to sketch how the contrary philosophies described previ-
ously can be reconciled. For that purpose, we briefly summarize the experiences
that we made in a case study at 4Soft that was undertaken within the context of the
research project NOW.

4Soft was founded in 1999, has since that time grown to fifteen employees,
and specializes in developing trendsetting IT-strategies and architectures, iterative
development processes, and model-based software engineering. The case study was
meant to simulate a real-world scenario in which a software company evaluates
ways to successfully use and enhance open source software. For this reason, three
experienced Java developers were assigned to a development team (one of which
was the project leader and is co-author of this chapter) and opposed to another 4Soft
employee “playing” the role of some customer. Starting in mid October 2002 and
lasting for about five man-months, this case study resulted in about 800 lines of
code and a very good understanding of the “do’s and don’ts” of communication
with an open source community. Besides using open source software in the scope
of the technical infrastructure of the company, this case study was the first contact
of 4Soft to open source software in progress and the thriving community beyond.
In the following, we present some more insights in the activities and results of the
associated activities.

The case study began with a workshop for setting the goals of a successful
open source strategy at 4Soft. After several discussions, it became clear that along
with more or less general marketing and technically oriented goals, open source
software development could play an essential role in supporting existing and ac-
quiring new projects.

The challenging task here was twofold—we aimed at developing something
new, and we wanted to show how such a development can be successfully organized
within a commercial project environment. Despite the advantages that we associated
with the usage of open source, the question of how to make profit with the software
that we were going to develop constantly remained open. Furthermore, there was also
a constant skepticism against the risks that came along with the complexity of the
open source components that we used and that we were going to extend. And, last
but not least, we recognized the dilemma of developing a product within a company
that is focused on projects. On one hand, and guided by the expectations of the
open source community, our software engineers planned to develop a very generic
tool that could be used in lots of different contexts for a long period of time and that
would finally be very attractive for the open source community. On the other hand,
and much more dominating, the development was stimulated by the specific and
temporary needs of the customer. He was faced with the problem of modelling and
modifying highly complex processes that contained thousands of nested activities
and transitions, but no commercial product matched his requirements for flexibly

TLFeBOOK

228 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-

sion of Idea Group Inc. is prohibited.

defi ning different views onto this process graph. Therefore, we planned to build

our own solution on the basis of existing open source.

Just as expected, managing the project and reconciling the interests of software

engineers, researchers, and management was very diffi cult. The technical challenges

were very hard, too. No matter which open source component we chose, we had to

cope with big pieces of unknown, complex, and partially undocumented software.

Moreover, since our initial requirements were not precise enough, they needed to

be refi ned and reworked according to the restrictions that the underlying software

imposed (Scacchi, 2001). Last but not least, during our work, an increasingly active

open source community proceeded with an ongoing development that our develop-

ment team was uncertain to follow. In order to manage our project, we successfully

established an iterative process as shown in Figure 1.

The overall process was separated into two phases, where in the fi rst phase

(analysis) we chose a mixture between a top-down approach (oriented on our

customer’s requirements) and a bottom-up approach (oriented on the underlying

OSS packages). Within a very limited time, we had to fi nd the best candidates

that met our basic requirements and gave the best perspective for unknown future

customer requirements.

In the second phase (implementation), we proceeded in an iterative manner. The

outer loop here illustrates the release cycles, each of which started with two actions:

selection of new feature requests and defi nition of a plan by which the tasks were

assigned to the developers. In the inner loop, we were concerned about iteratively

Figure 1: Iterative development process used in case study project.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 229

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

working on the tasks and subtasks that we created. After having described each task
precisely, we concentrated on defining the appropriate test cases and detailed out the
design for the code to be written, implemented, and tested. As in Extreme Program-
ming (Beck, 1999), a “test first approach” was identified as useful for reworking
and restructuring written code. However, instead of installing a pair programming
procedure as Beck recommends for such refactoring tasks, we installed pairs for
reviewing the corresponding design and implementation documents.

Before turning to the crucial point (evaluation), some of the stages of the above
sketched process need to be explained in more detail.

Elaboration of a Product Idea
After having settled on our general strategy that open source should help to

support existing and acquire new projects, we came to the point to decide in which
way this could be achieved. The product idea that we had (developing a process
modelling tool) was already mentioned. The criteria that led to this decision should
now be made clear.

Of course, the process modelling tool that we developed was currently needed.
But we also expected that we could flexibly adjust its graph visualization features
easily to a lot of other application areas. The tool that we planned to develop was
required to be useful also beyond our current needs. Finally, we recognized that as
long as we did not rely on a component that was published with the GPL license,
we had a free choice to preserve the secrets of the source code that we linked to
such an OSS component. Due to the LGPL license, no restrictions were imposed
on a commercial usage.

It is also interesting to mention some of the other motivations to which lower
priorities were assigned. The more technically oriented people in our company (also
beyond the borders of our project team) came up with questions that targeted the at-
tractiveness of the result. They encouraged us to develop something really innovative
and were curious about the opportunities to find an OSS community that could help
us with developing such a tool. They also took into account the status and features
of underlying open source software that they already had in mind and that needed
to be improved. Certainly, the quality and extensibility of such a piece of software
become more and more important when implementation starts. However, in the early
phase of elaborating a product idea such facts were of minor importance.

Selecting an Open Source Component
After having settled on the product idea along with a set of initial requirements,

we came to the point of finding the right component. Due to time restrictions, we
were able to evaluate only a very limited number of systems. Furthermore, in each
case the evaluation could not go very deep; so there remained a clear risk of having
chosen the wrong software. In order to minimize these risks, we worked out a detailed
checklist for evaluating the respective components. The essential criteria were:

TLFeBOOK

230 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

• Functionality;
• Stability;
• Quality of architecture and design;
• License; and
• Community support.

The functionality of the underlying software was checked by comparing as-
serted features with required ones. In the next step, we evaluated the stability of
the selected components. This was easily achieved by installing the latest version
and giving it a try. Getting a good impression of the quality of design and archi-
tecture first seemed to be a very difficult and complex task. Surprisingly, however,
by briefly reading the available documentation or performing more or less detailed
code inspections, we were able to define a clear ordering of the candidates. In a final
step, on the basis of the information that we had gained, we tried to estimate the
amount of work that we expected for an implementation of the missing features. In
order to achieve this and to avoid possibly redundant work, we did not hesitate to
contact the respective open source communities. The help and competent advice that
we got finally provided the key criteria that led us to select JGraph as our premier
choice (JGraph, 2003).

JGraph is an open source component based on the Java Swing library and dis-
tributed under the LGPL. It visualizes an arbitrary business model, enables “drag
& drop” on the view level and—like other Swing components—it provides access
to the underlying objects.

System Analysis and Requirements Analysis
The most difficult phase in our project began when we started in parallel to

follow two different tasks: a more detailed list of requirements and system analysis.
Clearly there were tight interdependencies between these tasks, and the essential
problem that we had to solve was to find the right compromises. In order to verify
that we were on the right path, we were forced to quickly build an early release.
We presented a simple multiple-window application as our first prototype that
was continuously developed further by iteratively refining the system according
to upcoming requirements. It would have been useful to present the features of the
JGraph component itself in advance (maybe in comparison with the demos of the
other components). Alas, the impatience in awaiting the first release had increased
in the meantime, while the developers could only tell that they were experimenting
with the components that they were going to use.

Release Planning and Development Issues
Unlike commercial projects that typically start with an analysis of the require-

ments and that proceed with a very detailed design phase, we were faced initially
with a huge amount of code that with which we had to cope, In this situation, it would

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 231

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

have been a great risk to independently build up our own detailed design while hav-
ing hardly understood the underlying components. Hence, our first goal was to get
a running prototype of the system that we were planning to implement. Instead of
throwing away this prototype, however, we improved it step-by-step. Incrementally,
we proceeded with an analysis of the old system and the development of the new
one. For performing these tasks, we quickly recognized the advantages of feature
request tracking systems that are often used by open source communities. Each re-
lease with a clearly and a priori defined set of features was considered a milestone,
and the risk of exceeding our fixed time schedule was controlled continuously. Help
from the outside experts was sometimes required, too. We were surprised by how
quickly we got competent support. Typically, our support requests were answered
within a few days, mostly within a few hours or even minutes. Of course, we could
not rely on this, but we found it much more helpful to get an occasional help quickly
than a guaranteed help within a much longer period of time

Lessons Learned
Finally, we were successful both in developing a new tool on the basis of a

previously unknown piece of OSS and in working together with an unfamiliar open
source community. Nevertheless, in the end we realized that some of the virtues that
we had regarded as best practices for commercial software development projects
are not valuable in a mixed context, i.e., when OSS components and commercial
components should be combined.

The experts of the open source community constantly offer substantial sup-
port. Without this support, it would have been impossible to fix a couple of intricate
problems that we met during development. This support was offered to us for free
and without any kind of contract. This means it is both commercially attractive and
technically inspiring to stay in contact with such excellent software engineers, and
our company will proceed on the successful path cooperating with people from
appropriate open source communities. The unwritten laws for such cooperation,
namely, giving back an elaborated piece of software for having used a basic one,
are very well understood. However, the discussion about which pieces of software,
licenses, and business model are best in this situation has not been finalized at the
time of writing. But, as our case study clearly indicates, deriving and providing the
right explanation models here is heavily needed. These guidelines should be help-
ful, especially for small companies like 4Soft or for companies that offer projects
instead of products.

OPEN SOURCE IN COMMERCIAL CONTEXT
Experiences as described above illustrate the difficulties in the adaptation pro-

cess between OSS culture and commercial understanding and demands in software
development. Nevertheless, a lot of resources have been invested. As is the case in

TLFeBOOK

232 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

most of the OSS-projects, this project was driven by technical aspects; however,
to ensure real benefits, the business perspective has to be taken into account early
enough—even beyond the scope of potential users and companies having OSS
portfolios. All different involved parties have to be analyzed to develop sufficient
models of OSS handling to support the OSS trend and its tendencies to gain a more
and more important role in commercial areas.

Therefore, a central task of NOW is to investigate roles and their interaction
to identify the potential benefits and ways to gain them. This explicitly includes
the benefits of the community itself. As a first step, roles and motivations of all
parties have been analyzed. As the demand of users—especially from industry and
government—has caused the current OSS boom, their restraints and concern will
be considered in particular. In support of this, an explorative survey has been car-
ried out.1 In the ongoing project, these first steps will be the basis for developing
business models and suggestions for procedures.

A substantial discussion would fill a whole book. Accordingly only a brief
summary of these aspects can be given.

Definition of the Different Roles in the Open Source Process
To make use of the advantages that software development in an open source style

provides and to make use of the results already available, business models for OSS
have to be developed that constitute a “win-win” situation for all parties involved
in the open source process. For example, one goal is to find out how companies can
benefit from the open source approach. New business models have to be developed
that allow companies to take OSS into their portfolio. Simultaneously, the reward
of the developing community has to be secured.

By analyzing the open source process, five different roles can be identified that
are involved in the open source development. For a better understanding of the open
source phenomenon, these five roles should be differentiated based on their functions
and interrelations. These five parties are: Developers, Distributors, System Integra-
tors/Consulting Companies, Software and Hardware Companies, and Users.

In reality, some people and companies are covering several roles such as devel-
oping software as a part of the community, using open source products, and maybe
at the same time offering services in the field of integration or consulting. But this
does not affect the necessity of understanding each single role.2

• Developers: Private developer, developer in a company, academic devel-
oper.

• Distributors: Bundling and packaging of software, offering releases in a product
style way.

• System Integrators: Providing services, carrying out advisory services and
customization of software for customers, integration of software on behalf of
the customers.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 233

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Software and Hardware Companies: Selling software and hardware.
• Users: Private person, software developer, company or institution.

During the initial stage of OSS, mainly two roles existed—developers of OSS
and users of OSS. Most of the time even these roles were played by the same people.
With the growth and maturity of the segment, some intermediary roles arose: dis-
tributors, system integrators, and software and hardware companies.

Sometimes users can take OSS directly from the community—depending on
their own abilities. But as the market grows, more and more customers are also
non-IT specialists; therefore, in most of the cases, intermediaries are needed.

The motivation for each role has to be analyzed in order to identify intentions,
demands, restrictions, and objections. By starting at this stage, win-win interactions,
business models, etc., can be defined.

In the research project NOW, an online survey was carried out as an additional
source of information to the already available studies and papers.3

Motivations of Different Roles for Committing to the Open
Source Phenomenon

What motives do the different parties have for their commitment to open source
software? All five roles have different motivations.

Motivation of OSS Developers

Since open source software is free of charge, the motives of OSS developers
are not profit or substantial income; instead, there is a wider spectrum of human
motivations (Hertel, Niedner, & Herrmann, 2003). The incentives often found in
literature are fun, success, technical curiosity, intellectual challenge (Hars & Ou,
2000), prestige, acknowledgement, and appreciation (Hars & Ou, 2001), self-
realization, learning, personal conviction, and idealism (Raymond, 1999). Some
people also work on OSS projects to improve their personal qualification and offer
consulting services later (Seifert & Wieland, 2003).

In the NOW survey, the two reasons “fun” and “personal conviction and ideal-
ism” were the most selected items by the respondents, followed by “technical curios-
ity,” “success,” and “intellectual challenge”; the motive “prestige and appreciation”
scored the fewest number of points.

Nevertheless, one has to bear in mind that most of the developers from academia
and industry are paid employees (Hars, 2001).

Motivation of Distributors

The motivation of distributors is common commercial interest. Their interest
lies in the establishment of open source software. For commercial success, they need
input from the community and a growing market segment of users. They depend on
this segment—more than software companies with a mixed portfolio of classical

TLFeBOOK

234 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

and open source-based software. Therefore, marketing activities and advertising
are important to increase the publicity level of open source software. There are
distributors for Linux operating systems, other OSS applications, and documenta-
tions/books about OSS. In addition, they offer different services around OSS that
include full services along the software value chain (Wichmann, 2002a).

Motivation of System Integrators

The motivation of system integrators for engaging in open source software is
their desire to differentiate themselves from competitors, who only offer proprietary
software in their solution packages, and to meet the growing demand of customer
requests for open source-based solutions. They want to fill a void in the market that
has been neglected so far. As the market matures, the number of non-IT specialist
customers who need such an intermediary grows. Another reason system integrators
dealing with open source software is the assumption that with OSS a greater profit
margin can be realized than with proprietary software. With open source software,
system integrators can gain more independence from big commercial software
companies regarding product and price policy. Another advantage of open source
software is free availability of its source code, which means that system integra-
tors can achieve a better customization of the software according to the individual
customer needs.

Motivation of Software and Hardware Vendors
There are a lot of possible motives of software and hardware vendors for

their commitment to open source software. In the following, some objectives are
stated:

• Software and hardware vendors use the open source concept as a business
strategy to compete with their business rivals and market leaders (Hecker,
1999).

• With the open source business model, more profit can be realized than with
the commercial business model because of independency.

• An unprofitable proprietary software product could be turned profitable again
by converting it into an open source software product (Behlendorf, 1999).

• To gain market share or to weaken competitors/market leaders (Behlendorf,
1999).

• Hope of enhancement of software with the help of OSS developers. To achieve
this, they try to gain prestige/reputation in the OSS community.

• As a complementary product or incentive to promote sale of commercial
software (Hecker, 1999).

• As a complementary product or incentive to promote the sale of commercial
hardware (Raymond, 1999).

• To employ less own development resources.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 235

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Own unprofitable software could be maintained free of charge from OSS
community.

• Because open source software becomes a trend-appearance in the IT industry.
Open source software gains importance in economy and industry.

As part of the NOW survey, the software and hardware vendors were asked for
their motivations/objectives for engaging in open source software. The most frequently
selected motives in the responses to the survey were the software and hardware
companies’ use of OSS as a business strategy to compete with business rivals and
market leaders, and their desire to minimize their own development resources. The
second most frequently selected objectives in the survey were the hope that their
software product would be improved through the OSS developers, and the use of
OSS as a complementary product or incentive to promote the sale of commercial
hardware. Further motives stated by the respondents were that through converting
a commercial software into open source software an unprofitable software could
be turned profitable again, and to gain market shares or to weaken competitors or
market leader. The objectives that were not taken into consideration at all by the
respondents were the possibility to realize more profit with the open source business
model than with the commercial business model, and the more indirect endeavour
to increase their prestige/reputation in the OSS community.

Motivation for Users of OSS

Open source software has a lot of advantages in comparison to proprietary
software. The most important reasons stated by users for the application of OSS
instead of commercial software are: higher cost savings potential; the Total Cost
of Ownership (TCO)4 of open source software is lower than that of proprietary
software5 (BMWi, 2001); no license fees; better price-to-performance ratio; higher
stability (Wichmann, 2002b)’; higher performance6 (University of Dortmund, 2002);
better functionality; open and/or modifiable source code; better quality (University
of Dortmund, 2003); better security (Raymond, 1999); higher maturity of software
(Raymond, 1999); openness/flexibility of interfaces; more independence from the
product and price policy of commercial software companies (Wichmann, 2002b);
less dependence on a single provider; and better maintenance and support.7

In a survey carried out by META Group (2003) in 2002, 188 companies were
asked for the most important reasons for their application of Linux. The most important
reason stated by the respondents was the cost savings of open source software due
to the loss of license fees and due to the fact that the calculated costs of ownership
of open source software are much lower than those of proprietary software. This
argument was stated by 81%. In second place, with 59% of the respondents was
the argument that OSS has higher stability, reliability, and availability. Flexibility
and ability of integration were stated by 54%. Other stated reasons were ability of

TLFeBOOK

236 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

administration (37%), security (33%), compatibility (22%), open/modifiable source
code (15%), and performance (11%).

In the survey of the NOW Project, the result was similar. The main reason for
their decision in favor of OSS was the cost savings that can be realized. Due to the
loss of license fees, a better price-to-performance ratio can be achieved with OSS.
Another advantage that was often stated by the respondents was open and/or modi-
fiable source code of OSS. With an open source code, the software is modifiable
and easier to assimilate to individual customer needs. Other very important aspects:
openness and flexibility of the interfaces of OSS (thereby, OSS is better compatible
with other software and hardware), and the desire to have more independence from
the product and price policy of big commercial software companies. The above
mentioned criteria nearly all received the same rating of 50%. The following criteria
achieved the second highest rating, ranging from 20-30%: higher stability of OSS,
higher performance, and better functionality. Additionally, OSS has better quality
and it is more secure in contrast to proprietary software, e.g., because with OSS,
bugs and errors in the source code can be discovered and removed more quickly
by IT administrators and consequently the down time of the operating system can
be reduced.

Those motivations are drawing an impressing picture of positive objectives.
But OSS has encountered a point where this triumphal trend entering the industrial
world can be stopped by “simple” aspects such as unsolved legal issues, liability,
and warranty, which have a major impact on commercial interest—sometimes more
than technical advantages.

Prevailing Restraints and Concerns of OSS Users
The driving force bringing open source to wider areas of industrial user sce-

narios is the end-user himself —companies considering this option as an alternative
to traditional software. The different intermediaries and suppliers will follow such
a request—if it is profitable for them as well. The developers in companies are
steered by those decisions. But if those considerations end up in a more and more
commercial deployment of open source, academia and private developers will ask
for a participation—which does not need to be monetary.

But will there be a wide industrial demand of open source—more than Linux
and some other well-known communication components?

Despite all the advantages of OSS, many users and companies still have a
reserved and retentive attitude towards it. Management, in particular, still has a lot
of restraints and objections towards OSS. In the following, the major problems and
risks mentioned by companies concerning open source software are enumerated.
They are divided into three groups. The first group of problems affects both end-
users and intermediaries. The second group mainly refers to the end-users, and the
third group applies primarily to the intermediaries (distributors, system integrators,
and software provider companies).

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 237

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Main restraints affecting both end-users and intermediaries:

• Legal aspects, warranty, and liability questions, patent law, and copyright (who
takes the responsibility concerning warranty and liability for damages caused
by open source software) (BMWi, 2001).

• License model (more developer- than user-oriented license models).

The additional disadvantages for end-users with OSS are: insufficient docu-
mentation (Raymond, 1999), no guarantee of ongoing support and regular update
(Lieder, 2003), bad usability and user-friendliness (DiBona, Ockman & Stone, 1999)
such as the lack of comfort for installation and configuration, insufficient compat-
ibility with other software and hardware, absence of daily maintenance and support
security (Lieder, 2003), high initial costs for migration from proprietary software
to OSS, insufficient qualification of employees for OSS (Wichmann, 2002b), lack
of availability of drivers, and problems with hardware support.

Additional problems and concerns of intermediaries are:

• Business models that are promising and profitable still have to be found.
• They are afraid to give away their new and innovative technologies to their

competitors and thus to reduce their competitive advantage by publishing the
source code of the software—or even giving back the advancements to the
community.

• Bad marketing support.

One of the main questions today is the warranty—who can be prosecuted?
This is of major interest for the using companies as well as the intermediaries. A
lack of specific laws and regulations brings this case to common regulations of li-
ability and warranty. But this means a wide range of interpretation and dependency
on national laws.

As long as this uncertainty prevails, the following questions will often be
dominated by legal aspects: Which alternative is cheaper, more efficient, more pro-
ductive, and by which option can a lower Total Costs of Ownership be achieved?
How can open source software promote and accelerate the software development?
Shall the company distribute its software products as open source software or as
commercial software?

In the NOW survey, the legal aspects also turned out to be the first priority
problem for users. Warranty and liability still seem to be an unsolved problem, and
nobody seems to be responsible for damages caused by OSS. The second biggest
concern is the lack of OSS applications in the desktop area. Until now, OSS is
strongly represented in the server-area (like Linux), but in the desktop area, it is still
underrepresented, and there is a great deficiency in office applications, customer
relationship software, personal information manager, and management information

TLFeBOOK

238 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

systems. Other disadvantages are the lack of compatibility with other software and
deficits in the qualification of personnel, consequently training is necessary. The
aspects insufficient documentation, bad usability, and missing user-friendliness
were also criticized.

Recapitulating this means legal aspects have to be solved. Most other aspects are
a question of investment—such as development of desktop applications, revision of
code and compiling releases, documentation, etc. Intermediaries will be found—new
companies offering this or “bricks-and-mortar” companies discovering a new busi-
ness segment—when the business opportunities are clear. That means a clear demand
with a relevant market volume, clear product and service elements to provide, and
a sustainable market structure—including the developing community.

Elaborated, revised, and tested business models covering the different roles and
especially their interactions are still missing. The legal basis and interdependencies
have to be clarified, and acceptable concepts have to be designed taking into account
the requirements of all roles. The system integrators are just defining their position
in this market segment. They are needed to fill the gap between distributors and/or
open communities to make open source practicably usable in common business.

CONCLUSIONS
OSS has a lot to offer to software portfolios in commercial projects and can

contribute to the improvement of software development strategies. The culture of
OSS projects is usually characterized by leadership through competence, but also
by acceptance of random contributors. Strict planning of time and budget as is
common and necessary in commercial projects is widely unknown. Case studies
show that this is one of the main challenges for integration of OSS components into
commercial development.

But the OSS hype ensnares commercial vendors and users to underestimate
the necessary steps to capitalize from this. The current resentments mostly do not
go back to real threats but, rather, to doubts and uncertainty. A lot of questions have
to be answered and a lot of solutions—mainly un-technical—have to be derived.
As our study shows, legal aspects are regarded as the biggest problem for users.
Warranty and liability still seem to be an unsolved problem, and nobody seems to
be responsible for damages caused by OSS. Surprisingly, the second biggest con-
cern is the lack of enterprise OSS applications in the desktop area. With increasing
adoption of OSS in business and industry, both problems will certainly be targeted
and managed. Interesting business models, also for system integrators, software and
hardware companies, and distributors, are at least available.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 239

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ACKNOWLEDGMENTS
Parts of this work were supported by the German Federal Ministry of Education

and Research (BMBF) in project “NOW – Nutzung von Open Source in Wirtschaft
und Industrie.” The authors would like to thank BMBF for the funding, as well as
the other partners, namely, Siemens AG and Technical University of Munich, for
the constructive and cooperative work and fruitful discussions.

REFERENCES
Beck, K. (1999). Extreme programming explained. Reading, MA: Addison-Wes-

ley.
Behlendorf, B. (1999). Open source as a business strategy. In C. DiBona, S. Ockman

& M. Stone (Eds.), Open sources: Voices from the open source revolution,
Sebastopol, CA: O’Reilly.

BMWi (2001). Open-source software: A guideline for small and middle-sized enter-
prises. 1st edition. German Federal Ministry for Economy and Technology.

DiBona, C., Ockman, S., & Stone, M. (1999). Open sources: Voices from the open
source revolution, Sebastopol, CA: O’Reilly.

Feller, J. & Fitzgerald, B. (2002). Understanding open source software development,
London: Addison-Wesley.

Free Software Foundation (1999). Licenses of free software. Retrieved March 31,
2003, from: http://www.gnu.org/licenses/.

Hars, A., & Ou, S. (2000). Why is open source viable? A study of intrinsic motiva-
tion, personal needs and future returns. In Proceedings of the 2000 Americas
Conference on Information Systems (AMCIS 2000), August 10-13, Long
Beach, CA, pp. 486-490.

Hars, A. & Ou, S. (2001). Working for free? - Motivations for participating in open
source projects. In Proceedings of the 34th Hawaii International Conference
on System Sciences (HICSS-34), January 3-6.

Hecker, F. (1999). Setting up shop: The business of open source software. Retrieved
March 19, 2003, from: www.hecker.org/writings/setting-up-shop.html.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers
in open source projects: An Internet-based survey of contributors to the Linux
kernel. Research Policy, 32, 1159-1177, special issue on OSS.

Holmes, W. N. (2000). The evitability of software patents. Computer, 33(3), 30-
34.

House, R. (1999). Uniting the open-source and commercial software worlds.
Retrieved March 21, 2003, from: http://www.sci.usq.edu.au/staff/house/ipl/
ppunite.htm.

JGraph (2003). The JGraph Software Project. Retrieved March 30, 2003, from:
http://jgraph.sourceforge.net/

TLFeBOOK

240 Hang, Hohensohn, Mayr and Wieland

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Lieder, H. (2003). Die Sicherheit von Software wird nicht allein durch deren Quell-
code bestimmt. Wirtschaftsinformatik 45(4), 478-479.

McGovern, P. (2003). SourceForge Sitewide Update, June 20. Email correspond-
ence to all SourceForge users.

META Group (2003). Linux – operating system landscape in change, results of a
META Group study. Germany [press conference, January 30, 2003].

Mockus, A., Fielding. R., & Herbsleb, J. (2000). A case study of open source soft-
ware development: The Apache server. In Proceedings of the 22nd Interna-
tional Conference on Software Engineering (ICSE 2000). 263-272. Limerick,
Ireland: ACM Press.

Mockus, A., Fielding, R., & Herbsleb, J. (2002). Two case studies of open source
software development: Apache and Mozilla. Technical report, Avaya Labs.
Retrieved July 25, 2003, from: http://www.research.avayalabs.com/techre-
port/ALR-2002-003-paper.pdf.

Open Source Initiative (2003). The open source definition (Version 1.9). Retrieved
March 14, 2003, from: http://www.opensource.org/docs/definition/php.

Pavlicek, R. (2000). Embracing insanity: Open source software development. In-
dianapolis, IN: Sams Publishing.

Raymond, E.S. (1999). The cathedral and the bazaar: Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O’Reilly

Sandred, J. (2001). Managing open source projects. New York: Wiley Computer
Publishing

Scacchi, W. (2001). Understanding the requirements for developing open source
software systems. IEE Proceedings Software, Paper number 29840.

Seifert, T. & Wieland, T. (2003). Prerequisites for enterprises to get involved in
open source software development. In Proceedings of 1st Workshop on Open
Source Software in an Industrial Environment at Net.ObjectDays 2003, Sep-
tember 22-25, Erfurt, Germany. Retrieved August 20, 2003, from: http://www.
netobjectdays.org/pdf/03/papers/ws-ossie/457.pdf.

Sharma, S., Sugumaran, V., & Rajagopalan, B. (2002). A framework for creating
hybrid-open source software communities. Information Systems Journal, 12,
7-25.

Sieckmann, J. (2001). Bravehack: Technische, wirtschaftliche und gesellschaftliche
Aspekte von freier Software und Open Source; ihr Wesen, ihre Geschichte, ihre
Organisationen und Projekte. Retrieved March 19, 2003, from: http://www.
bravehack.de/html/nodel.html.

Tippmann, D. (2001). Open source und zope: Eine Einführung in Freie Software.
Retrieved July 31, 2003, from: http://userpage.fu-berlin.de/~danitipp/daniel/
opensource.html.

University of Dortmund (2002). Entrepreneurial evaluation of open source software.
An online-survey carried out by the University of Dortmund in cooperation
with MATERNA GmbH. Retrieved April 30, 2003, from: http://www.it-sur-
veys.de/itsurvey/pages/studie_oss_executive_summary.html.

TLFeBOOK

Benefits and Pitfalls of Open Source in Commercial Contexts 241

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Wichmann, T. (2002a). Free/Libre Open Source Software: Survey and Study, Basics
of Open Source Software Markets and Business Models. FLOSS Final Report
– Part 3. Berlin: Berlecon Research.

Wichmann, T. (2002b). Free/libre open source software: Survey and study, Use of
open source software in firms and public institutions, Evidence from Germany,
Sweden and UK. FLOSS Final Report – Part 1. Berlin: Berlecon Research.

Wieland, T. (2001). Open source im Unternehmen. In A.von Raison & R. Schönfeldt
(Eds.): Linux im Unternehmen. Heidelberg: dpunkt.verlag.

Wieland, T. (2000). Linux als Geschäftsfaktor. Linux Enterprise, 2. Retrieved
March 24, 2003, from: http://www.drwieland.de/articles/Linux_Geschaefts-
faktor.html.

ENDNOTES
1 The survey had an explorative approach. The findings have to be classified

as hints but lack statistical validity because of the low rate of return. Thus
statistics have been left out here.

2 Additional roles like, e.g., platform or portal providers for open source com-
munities, etc., can be considered. But to understand the interrelations and
options of the open source market, the analysis has focused on the five roles
as described.

3 Most of the surveys and studies are focused on end-users, some on develop-
ers. The intermediary roles are usually not discussed. Some studies like the
Meta Group Study mentioned are not focusing on open source in general but
on Linux.

4 The Total Costs of Ownership (TCO) contains the costs for implementation,
operation, and support of the software.

5 This aspect is controversial, because there are also studies stating that OSS is
more expensive than proprietary software under special constraints.

6 This aspect is controversial, because there are also studies stating the oppo-
site.

7 A remarkable aspect, because it is listed under pros as well as cons of open
source.

TLFeBOOK

242 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Chapter XI

Experiences Enhancing
Open Source Security in the

POSSE Project
Jonathan M. Smith, University of Pennsylvania, USA

Michael B. Greenwald, University of Pennsylvania, USA

Sotiris Ioannidis, University of Pennsylvania, USA

Angelos D. Keromytis, Columbia University, USA

Ben Laurie, AL Digital, Ltd., USA

Douglas Maughan, Defense Advanced Research Projects Agency, USA

Dale Rahn, University of Pennsylvania, USA

Jason Wright, University of Pennsylvania, USA

ABSTRACT
This chapter reports on our experiences with POSSE, a project studying “Portable
Open Source Security Elements” as part of the larger DARPA effort on Composable
High Assurance Trusted Systems. We describe the organization created to manage
POSSE and the significant acceleration in producing widely used secure software
that has resulted. POSSE’s two main goals were, first, to increase security in open
source systems and, second, to more broadly disseminate security knowledge, “best
practices,” and working code that reflects these practices. POSSE achieved these

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 243

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

goals through careful study of systems (“audit”) and starting from a well-positioned
technology base (OpenBSD). We hope to illustrate the advantages of applying
OpenBSD-style methodology to secure, open-source projects, and the pitfalls of
melding multiple open-source efforts in a single project.

INTRODUCTION
Posse - a group of people summoned by a sheriff to aid in law enforcement.

A variety of reasons, ranging from marketplace ignorance to a perceived trade-
off between usability and security, have driven modern operating systems into the
undesirable role of a potential lever with which system security can be breached.
The use of any common operating system platform across an organization can
make this lever effective, independent of the organization, its security policy, and
security practices.

This problem has been exacerbated by the commercial success of the Internet
over the last decade, as the Internet’s “end-to-end” (Clark, 1988; Saltzer, Reed, &
Clark, 1984) design implicitly relies on host security as the basis of security for
the overall system. An example of this reliance and its consequence is the advent
of Distributed Denial of Service (DDoS) attacks, effected by multiple computers
bombarding one or more target hosts with traffic and disabling these targets.

As the commercial marketplace, and to a large degree the government mar-
ketplace, have converged towards a common platform (the dominant commercial
operating system, Microsoft Windows), these organizations increasingly rely on
the platform to be trustworthy, whether it is so or not. Further, the use of the Inter-
net and computer systems in the functions of all of these organizations has made
systems software, as a whole, “critical infrastructure.” At the same time, a single
point of vulnerability and failure has been created for systems dependent on this
software.

The Open Source Alternative
Concurrent with the growth of the Internet, an alternative software development

paradigm began emerging. This paradigm had roots in the research UNIX com-
munity and its USENET, with some philosophical roots later added with the “Free
Software” principles of Stallman. The mid-1960s MULTICS (Daley & Dennis,
1968; Organick, 1972) project, part of the U.S. Defense Advanced Research Projects
Agency (DARPA)-supported Project MAC (Fano & David, 1965) at MIT, gave rise
to the original UNIX system (Ritchie & Thompson, 1974, 1978; Thompson, 1978)
(the name UNIX is in fact a pun on MULTICS) as a reaction to MULTICS system
complexity. Unfortunately, in rejecting much of MULTICS, the UNIX system
was not able to avail itself of the extensive effort devoted to developing protection
models and security kernels (Schroeder, 1975; Schroder, Clark, & Saltzer, 1977) for

TLFeBOOK

244 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

MULTICS. McKusick, Bostic, Karels, and Quarterman (1996) provide historical
details on the emergence of UNIX.

UNIX, as an important consequence of its university base, boasted platform
portability of much of the software and easy availability. These, in turn, meant that
UNIX became the dominant platform for experimental operating systems research,
and the availability of several good books explaining the system internals (Bach,
1986; Lions, 1977a, 1977b; McKusick et al., 1996) meant that the system could
be taught. The result, entering the 1990s, was a substantial number of people who
understood the ins and outs of most of the operating system. Thus, as the PC became
the dominant platform in the mid-1990s, UNIX became the dominant model for
“open source” operating systems projects, where system source was fully available
for examination and modification. The dominant commercial platform, Microsoft’s
Windows, is not UNIX based; it has accreted (Cusumano & Selby, 1997) features
and technologies starting with a simple microcomputer software platform.

UNIX-based platforms have presumed “shared use” since their inception, were
early platforms for network software deployment and refinement, have sizeable and
talented user communities, and are available to all for scrutiny. There is a belief
in this community (Raymond, 1999) that “many eyes” lead to faster discovery
and repair of flaws in software. While “open source” enables scrutiny (Raymond,
1999), it does not cause it.

The following (quoted with permission) was posted to the “Robust Open
Source” mailing list by Peter Gutmann:

I can provide a data point on this based on a disk encryption device driver I wrote
about 8-9 years ago. For various reasons too boring to go into here, I never released
the source code (AFAIK it’s the only thing I’ve ever written where I haven’t published
the source). At various times I’d get people sending me mail asking me why I hadn’t
released the code so it could be reviewed. When I offered to send it to them, they
replied that they didn’t want to review it themselves, they expected someone else to
review it for them. That is, even the people who went so far as to express an interest
in the source code admitted they’d never look at it (and furthermore that they’d be
quite happy to have some complete stranger tell them it was OK based on the claim
that they’d reviewed it)... As an experiment I also planted a comment which should
raise eyebrows in some code I released years ago and which is fairly widely used
just to see if I’d get any reaction from anyone... No one has ever asked me about this,
from which I assume that no one’s ever looked at the code they’re using. That’s kind
of scary, because the comment isn’t in there just to annoy people, you really could
build a rather nasty backdoor in there. There may actually be products out there
which are released in binary-only form where the vendor has built in a backdoor
at that point, although I saw a posting from foo@anon.org in alt.2600 saying he’d
looked at the product and it was fine, so it must be OK.”

That is, many eyes do not help if they are all looking at something else.

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 245

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The most important contribution, therefore, is the fact that discoveries are
shared and can, in some domains (such as networking code), influence commercial
code whether these influences are visible or not.

The Marketplace
Concurrent with the emergence of open source has been a drive by some por-

tions of the U.S. Government (notably the U.S. Department of Defense) to develop
and/or procure a “trusted” operating system. A major problem with modified com-
mercial operating systems has been the difference in priorities between the mar-
ketplace and a knowledgeable, specialized consumer such as the U.S. Government.
In particular, the security features and development processes and documentation
required have resulted, when the vendors have been engaged, in multiple develop-
ment efforts—one driven by commercial considerations and the other(s) driven by
specific considerations such as security, an audit process, etc.

Separate development of the secure version inevitably results in a TOAD
(Technically Obsolete At Delivery) version of the operating system, since the audit
process, among other factors, inhibits introduction of new features while underway.
The obvious and only cost-effective way to solve these problems is to ensure that
no separation occurs, requiring that security considerations be “mainstreamed.”

As open source systems are developed by volunteers and often driven by aes-
thetics (such as a desire for a “secure” system) rather than market considerations,
a potential opportunity was identified by author Douglas Maughan of the U.S. De-
fense Advanced Research Projects Agency and embodied in a smallish (by DARPA
standards) program called Composable High Assurance Trusted Systems (CHATS).
The goal, at a high level, is to introduce required security features into open source
operating systems such as Linux, FreeBSD, and OpenBSD such that they will be in
whatever mainstream version exists and that they will be present in commercially
supported versions of these operating systems, allowing their procurement by gov-
ernments and other interested parties.

The initial goals of the DARPA Composable High Assurance Trusted Systems
program included adding new security functionality to existing open source operat-
ing systems, as well as the political/community effect of demonstrating the value
of useful security and analysis tools and techniques to the open source community.
This approach by DARPA to work “directly” with the open source community was
seen as a risky endeavor by both parties. The open source community was leery of
DARPA’s commitment to open source, and DARPA was unsure of this new role of
research partner and the uncertainty of product delivery. However, DARPA felt that
these open source technologies are critical for systems of the future to be protected
from imminent attack. The CHATS program has focused on developing the tools
and technology that enable core information infrastructure systems and network
services to protect themselves from the introduction and execution of malicious
code and other attack techniques and methods (Sullivan & Dubik, 1994). These

TLFeBOOK

246 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

tools and technologies are intended to provide the high assurance trusted operating
systems need to achieve comprehensive, secure, highly distributed, mission critical
information systems. The CHATS program intended to fundamentally change the
existing approach to development and acquisition of high assurance trusted operat-
ing systems technology by dramatically improving the state of assurance in current
open source operating systems and, further, developing an architectural framework
for future trusted operating systems. Such technologies have broad applicability to
many programs within DARPA and the DoD (MITRE, 2003).

A most important consequence of the CHATS approach is that technologies
developed under the program are demonstrated and evaluated on a large number
of open source system platforms, for all to see and use. The open source develop-
ment model provides a conduit for technology transition directly into products and
services that will employ and support trusted operating system technology.

POSSE: TOWARD AN OPEN SOURCE
SECURITY COMMUNITY

The Portable Open Source Security Elements (POSSE) Project at the University
of Pennsylvania is an example of a DARPA Composable High Assurance Trusted
Systems (CHATS) project. In this section, we will describe the goals of the POSSE
project (such as supporting widespread availability of high quality cryptographic
systems) and the project organization we have used to accomplish these goals. The
project organization has generally worked, although several challenges have arisen
over time. Nonetheless, as we detail here, the project has been successful both in
its internal goals and in its goals of influencing both other open source projects and
commercial vendors.

A major goal of POSSE is the development of a (growing) community of in-
dividuals interested in and capable of enhancing the security of operating systems.
Open source systems serve three purposes towards achieving this goal:

1. They provide a natural diversity, avoiding the “single point of failure” noted
above.

2. They provide a basis through which a community of developers can express
their knowledge about secure systems.

3. The “open source” characteristic of the software allows the knowledge to
be freely shared, even with those who might not themselves choose to share
knowledge.

Our model is illustrated in Figure 1. What the model shows is that the POSSE
project not only generates its own portable security technologies, but takes a stronger
social engineering stance than the “chuck wagon” approach of putting the technolo-
gies out and shouting “come and get it.” Rather, meetings of developers (at the

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 247

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

“waist” of the diagram) build up the strengths of the security community, cutting
across project boundaries, and raise all boats on the same tide.

POSSE Project Goals
An abstract view of the overarching project goal is to create and grow a com-

munity of open source developers with security as a major focus. Without getting
into debates of software engineering “religion,” our team studied open source op-
erating projects and found that the OpenBSD project had many of the properties we
desired. In particular, it had a very strong focus on security issues, had a small but
extremely capable group of developers—several of whom were extremely interested
in the technical contributions we wanted to make—and the project leader, Theo de
Raadt, was interested in the basic proposition of community building.

Much of the project focus beyond the technological developments has, in fact,
been on community building. Important sub-goals have been:

a. Propagating technologies such as the OpenSSH secure shell, which is now
distributed with, among other platforms, the Apple Macintosh OS-X, as well
as maintaining the multiplatform portability of the OpenBSD system itself
(see OpenBSD.org).

Figure 1: The POSSE synchronize and synthesize process model.

FreeBSD
TrustedBSD OpenBSD

LinuxTrusted
Linux

SE Linux

POSSE Methods/Interactions

Portable
Software

Security Training/
Audit Training

Development of a
Security Community

TLFeBOOK

248 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

b. Exporting methodologies such as OpenBSD audit to multi-OS security in-
frastructures such as OpenSSL, and investigating the strength of tool-based
versus expert audit in this task.

c. Collaborating with other open source and free software efforts on security
projects of common interest, such as an Extended Attribute File System with
TrustedBSD (part of FreeBSD), an open source secure bootstrap with the
University of Maryland, and an IPSEC for Linux (Keromytis, Ioannidis, &
Smith, 1997).

d. Large face-to-face developer meetings, typically before or after major confer-
ences that attract developers such as USENIX. These meetings have proven
surprisingly successful, resulting in, for example, a new packet-filtering firewall
for OpenBSD, called “pf.”

e. Collaborating with security hardware vendors to rapidly generate support
software for their devices, such as cryptographic acceleration hardware.

While we will say more in the section in this chapter on POSSE outcomes, in
the Spring of 2003 we feel that, on the whole, these goals have been and continue
to be met.

POSSE Project Organization
One of the first questions is how one would organize such a project. While

the usual challenges of distributed organizations were all present (decision-mak-
ing, personnel changes, control of resources, etc.) some particular challenges we
faced were raised by the combination of goals and the fact that the CHATS program
was funded by DARPA, an agency that is part of the United States Department of
Defense.

a. Many of the OpenBSD volunteers were working on their own time but were
employed by commercial enterprises.

b. The work we envisioned for POSSE demanded essentially full-time com-
mitments for the OpenBSD and OpenSSL developers responsible for certain
sub-projects.

c. Many of the OpenBSD and OpenSSL participants are non-U.S. nationals.
d. Open Source projects do not have a corporate or non-profit corporate structure

with which contracts can be negotiated.

We have worked out a solution that has largely been successful. The University
of Pennsylvania has contracted to DARPA to perform the items in a statement of
work more or less covering the POSSE goals, with some more details as laid out
here in the section on POSSE Project Management Challenges. Several U.S.-based,
OpenBSD developers became Penn employees. Subcontracts were used for one
other U.S.-based developer, and subcontracts were created for Columbia University,
as well as subcontracts in Canada and the U.K.

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 249

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Universities in general, and the University of Pennsylvania in particular,
provide an ideal structure with which to carry out such arrangements, since it is a
U.S. entity with a structure capable of contracting, has many modes and methods
for employing and contracting, and has intellectual property policies for software
that are extremely attractive for a funded open source project. DARPA’s only re-
quest has been an acknowledgement that DARPA funding was used to create the
software; the BSD license rights are completely preserved. It is interesting to note
how frequently DARPA is acknowledged in the OpenBSD source tree—many of
the acknowledgments are in the original Berkeley source, but more and more (53
in OpenBSD 3.3) are showing the POSSE agreement number!

Our project takes a broader view of what we must do than technology alone. We
see that the important tech transition is first among the small number of individuals in
each open source effort who are security-focused and second among the core teams
of each effort. While these groups are one and the same in the OpenBSD effort, and
it is unique in this respect, the important intellectual “customers” are developers
who should have their “security” thinking caps stapled to their “developer” think-
ing caps, so that security is a first-class consideration in every open source effort.
Our effort to document the OpenSSL auditing process, to involve many people in
development activities, and our aggressive outreach to other projects, enabled by
the DARPA resources, raised everyone’s standards by several notches.

POSSE Project Management Challenges and Solutions
We outline here four major challenges we faced and our approaches.

1. Decentralized development. The OpenBSD and OpenSSL development com-
munities are worldwide and mainly volunteer. POSSE hired two developers
(authors Rahn and Wright) at Penn as senior software engineers, residing in the
Midwest and Middle Atlantic regions of the U.S., and structured a subcontract
with AL Digital, Ltd., a UK firm through which Ben Laurie’s services (Laurie
is an OpenSSL developer and an author of this chapter) were made avail-
able. Such geographic distribution means there must be good communication
channels (for example, Internet Relay Chat and Instant Messaging), people
must be familiar with and trust each other (frequent communication for trivial
matters can be annoying), and tasks must be neatly separated so people can
work independently as much as possible.

2. Integration with existing working methods. There are already cultural
mechanisms and protocols to build consensus among members of the devel-
oper community. These mechanisms and protocols can be leveraged by using
developers who are already aware of the processes and culture (e.g., Keromytis,
Rahn, and Wright), although a certainly degree of friction will always occur
because of potentially conflicting goals—this is the overhead of developing a
consensus.

TLFeBOOK

250 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

3. Minimize administrative overheads. We used the structure and specialized
skills effectively. In particular, the university has significant resources for
purchasing, sub-contracting, and reporting. As academics must typically both
perform and report on research, it was natural for the academics on the project
(Smith, Greenwald, and Keromytis) to write quarterly reports, aggressively
report on technical progress in the academic literature, and inject scientific
rigor where appropriate. This had the benefit of focusing the developer’s at-
tention on development.

4. “Light-touch” management. From the start of POSSE, we worked very hard
to identify capable and highly motivated people and gave them interesting
problems to work on. Not surprisingly, they have implemented clever solu-
tions with a great degree of autonomy.

Management of the project, as anticipated, has been challenging. As we noted
in the original POSSE proposal,1 there are the challenges of distributed management,
strong personalities, and knitting together of sometimes quite distinct development
cultures. For example, the OpenSSL system must work across many operating sys-
tems and its collaboration is much looser, less structured, etc., than the OpenBSD
development team, which is tightly integrated and led by Theo de Raadt. In some
ways, the development culture of OpenBSD resembles the “Surgical Team” model
of hierarchy developed by Brooks (1975), while the OpenSSL development model
is more analogous to the “Programming Group” model of Weinberg (1974). The
OpenBSD methodology is driven by biannual releases that incorporate whatever
software is ready for “prime time,” while the OpenSSL releases are more event-
driven than periodic release-driven. Thus, the OpenBSD model for what OpenSSL
should look like and when it should look that way is clear, while achieving larger
scale consensus for OpenSSL took more time, leading to some tension.

In particular, one focus of our work had been the support of hardware crypto-
graphic acceleration, as discussed in the next section, and, further, its integration
with SSL to accelerate use of cryptography. Our belief was that cryptographic
operations should be perceived by users to be fast (as we have recounted else-
where—see Miltchev, Ioannidis, and Keromytis, 2002, for example), as this would
encourage their use. OpenSSL modifications were necessary to accommodate some
of these changes and, based on discussions at an early developer meeting, these
changes were undertaken by the OpenSSL community. However, the pace and
development style of the two teams clashed, as the OpenSSL release and consensus
model did not mesh smoothly with the aggressive release cycles of OpenBSD, and
some tempers flared, with many telephone exchanges to and from the University
of Pennsylvania people acting as intermediaries.

The seriousness of the culture clash should not be underestimated, and dealing
with such potential clashes must be dealt with in any management plan intending
to meld multiple open source projects. During the lifetime of the POSSE project,

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 251

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

an unhealthy and somewhat permanent rift opened up between the OpenBSD and
OpenSSL communities. Major management effort was required to prevent a “fork”
of OpenSSL (one for OpenBSD and one for the rest of the world), and this effort was
and continues to be successful. Within the POSSE project, this rift was smoothed
by project-level successes. These included the many OpenSSL fixes, patches, and
enhancements that have emerged from both the OpenSSL auditing efforts and the
OpenBSD cryptographic framework as well as cryptographic accelerator support,
and modifications to OpenSSL to run on OpenBSD. These features are discussed
next.

POSSE:
OUTCOMES AND SUCCESS EXAMPLES

The next three sections provide examples of the progress made as a result of
the POSSE project. The first of these covers the cryptographic framework, the basis
of hardware cryptography support in OpenSSL. The second covers the extended at-
tribute file system, intended to provide controls similar to those of security enhanced
Linux (www.nsa.gov/selinux). The third covers audit of the OpenSSL system and
some of the important consequences for Internet security.

Hardware Cryptography Support
The OpenBSD cryptographic framework (OCF) (Keromytis, Wright, & de

Raadt, 2003) uses a service virtualization model that provides access to cryptographic
services while hiding details of specific cryptographic hardware accelerator cards
(cryptographic providers) behind a kernel-internal API. User-level applications such
as the OpenSSL library or the SSH daemon can access the hardware through the
/dev/crypto device, which acts as another kernel application to the framework. While
the implementation details of the framework are outside the scope of this chapter,
we provide sufficient detail to both understand the measurement methodology and
at least to first order, reproduce our experiments.

Inside the operating system kernel, the framework presents two interfaces:
one to device drivers, which register with the framework and specify what algo-
rithms and modes of operations they support; and one to applications (e.g., IPsec
or /dev/crypto), which create “sessions.” Sessions create context in specific driver
instances selected by the framework based on a best-match basis with respect to the
algorithms used. Applications queue requests on sessions, and the cryptographic
framework, running as a kernel thread and periodically processing all requests,
routes them to the appropriate driver. Once the request has been processed, a
callback function provided by the application is invoked that continues process-
ing. A software pseudo-driver registers with the framework as a default when no
hardware acceleration is available. Public key operations are modeled in the same
way, although no session is created.

TLFeBOOK

252 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

In summary, the framework provides asynchronous operation, load balancing,
application and cryptographic provider independence, and support for both sym-
metric and public key operations. For our discussion, the most important attribute
of the framework is that it provides an identical common path to the cryptographic
providers available in the system, regardless of their nature (hardware vs. software)
or other characteristics (performance, details of the card interface, etc.).

The framework is implemented and has been in use with IPsec since OpenBSD
2.8, although it continues to evolve in response to new requirements. Public key
support and the /dev/crypto API were introduced in subsequent versions of Open-
BSD. The OpenSSL crypto library uses this API by default since OpenBSD version
3.1. The OCF has also been ported to FreeBSD, and we are working on Windows
and Linux versions.

Extended Attribute File System
The Extended Attributes work from TrustedBSD is an extension to the BSD

UFS layer that allows new meta-data to be persistently associated with filesystem
objects (files and directories). These meta-data are arbitrary (name, value) pairs and
can be used to implement Access Control Lists, Sensitivity Labels, POSIX process
capabilities, SubOS user IDs (Ioannidis, Bellovin, & Smith, 2002), etc. Besides the
obvious extensions to UFS, there are API modifications to accommodate handling
of Extended Attributes, as well as the necessary userland tools to manage them.

This work was introduced for TrustedBSD (Watson, 2000), but given the
similarity of the kernels, it was believed to be fairly straightforward to import it to
OpenBSD and integrate it with the rest of our security architecture. The combina-
tion of the /dev/policy interface (Ioannidis, Keromytis, Bellovin, & Smith, 2000),
Security-enhanced Linux features, and Extended Attributes should result in a very
flexible security enforcement mechanism.

The enhanced file system has been designed and implemented by author Dale
Rahn in concert with Robert Watson of NAI Labs/TrustedBSD. The implementation
effort has been kept completely synchronized with that of TrustedBSD.

The /dev/policy policy device has been implemented for OpenBSD and con-
tinues to be refined. As a major goal of this work was support for SE-Linux, we
also undertook an effort (by Tom Langan of Penn) to provide SE-Linux features.
For example, the extensions included checking permission on every I/O system
call related to files, networks, etc. Conventional BSD systems check just once on
open or equivalent. This extension was successful and is available, but not in the
OpenBSD release. The /dev/policy notions, including the use of advanced policy
specification languages, were applied directly.

OpenSSL Audit
OpenSSL is used as a technical building block of the secure Apache (Laurie &

Laurie, 1999) web server. Web servers are, with considerable accuracy, considered

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 253

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the operating systems of the WWW. Apache is the dominant web server, widely
used by commercial and industry sites, and has a greater than 70% market share.
Apache provides an operating environment for concurrent transaction processing,
script execution, and any other requests that arrive on an HTTP (80) or HTTPS (443)
port. The server keeps multiple threads running concurrently to overcome disk and
other latencies and provide high performance. A number of services are provided,
such as perl scripting, that can help process client PUTs and GETs. When secure
Apache is used, the SSL protocol ensures that the transactions with the server are
authenticated and encrypted; this behavior is selected, for sites which support it,
by prefacing the site name with https: to indicate that the security features are to
be used.

The OpenSSL Project is a collaborative effort to develop a robust, commer-
cial-grade, full-featured, and open source toolkit implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a
full-strength general purpose cryptography library. The project is managed by a
worldwide community of volunteers that uses the Internet to communicate, plan,
and develop the OpenSSL toolkit and its related documentation.

A major research issue addressed by POSSE was the portability of the effective
OpenBSD audit methodology to other open source efforts. As an experiment, apply-
ing the audit methodology to OpenSSL seemed appropriate, given the importance
of the OpenSSL software and Apache to electronic commerce. OpenSSL had never
been audited, had accreted code from many programmers, and had many patches,
and thus was an ideal candidate for the careful scrutiny of a code audit. The strategy
we chose was to start the audit with tools, to see what “low-hanging fruit” could be
picked by these tools and eliminated in the code base. For example, John Viega’s
RATS tool (Viega & McGraw, 2001) can help with fixed-size buffers and detected
over 500 instances of fixed-size buffers (which can be exploited for buffer overflow
attacks). After some poor initial experiences with RATS, we found that creating
search patterns was reasonably powerful. While we looked at Splint (Larochelle &
Evans, 2001), we did not end up using it. We were able to detect some errors using
a tool supplied by David Wagner (Wagner, Foster, Brewer, & Aiken, 2000).

An important observation about the OpenSSL auditing process is that pub-
licized holes in other systems (for example, on security mailing lists) suggested
analogous code in OpenSSL to check, and a variety of problems were identified in
this fashion. This suggests that experience can play a large role in code auditing,
since problematic code will often follow a pattern, which can both be exploited by
an experienced attacker and repaired by an experienced auditor. The conclusion
at this stage is that tools are an effective way of both pruning low-hanging fruit
and identifying chunks of code that need attention. However, many problems still
require insight and experience in the auditor.

The OpenSSL audit discovered and fixed holes in OpenSSL identified on the
Internet. The holes in OpenSSL were fixed just before Defcon and were totally
due to CHATS funding. A patch of over 3,000 lines of code secures a host of

TLFeBOOK

254 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

problems of lesser severity and generally hardens OpenSSL against future attacks.
The OpenSSL audit was largely performed by Ben Laurie of AL Digital, Ltd. AL
Digital’s auditing efforts proved prescient; the fixes in OpenSSL illustrated a potential
hole in other systems that was exploited to write the Sapphire/Slammer worm.2 The
worm exploited people who had failed to patch a persistent problem with available
security updates (Arbaugh, Fithen, & McHugh, 2000).

A large body of auditing notes and an outline of a book on the OpenSSL audit
have been produced, but it is unclear what the final disposition of this information
will be. Our operating assumption is that some cleanup and publication on the
WWW would extract the maximum value from these unique notes describing both
the use of audit tools (such as John Viega’s RATS) as well as the manual audit.

Discussion
Almost 37,000 lines of new code are directly attributable to this project (as

measured by a scan of the OpenBSD 3.2 source tree), and the POSSE project has
directly contributed to the 3.0, 3.1, 3.2 and 3.3 releases of OpenBSD.

In addition, a variety of creative new work has been done. An example of
this is the W^X (for Write XOR eXecute) project. This goal of this project is to
modify the executable and shared library layout so that the a typical program had
no regions of memory that were both writable and executable.

This change prevents one of the common attacks where a buffer overflow is
used to write code into the address space of a program, then execute that code. This
change was introduced with OpenBSD 3.3 on several architectures: alpha, sparc,
sparc64. Changes are in progress to add support for this protection to i386 and
macppc (PowerPC) architectures with OpenBSD 3.4.

In addition, a modification to GCC called ProPolice written by Etoh was in-
tegrated. ProPolice rewrites the layout of stack allocated data including a logical
“canary” to detect buffer overruns. This change, coupled with W^X mappings
and a randomized stack gap, greatly reduces the chance of a buffer overrun attack
being successful.

CONCLUSIONS
The freedom of open source development has led to a plethora of UNIX-derived

and UNIX-like source trees. Each tree has, at best, partially instantiated security
features, although OpenBSD has the advantage of audited code. Inadequate resources,
insufficient motivation for portable solutions, and too few security experts for all
trees have been major barriers. POSSE helps to surmount these barriers and more
closely match the resources to the requirements.

We have created a project that has been having a substantial impact on the
open source community, and beneficiaries have included a variety of commercial
vendors who examine or incorporate features from open source systems directly in

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 255

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

their own systems. For example, many security appliance vendors use OpenBSD
or a minimized version of OpenBSD as the platform for their systems. OpenSSH
is shipped with Apple’s machines and is extremely widely used.

This has proven a challenging project to manage. There are distributed de-
velopers, many distractions, and strong personalities. Nonetheless, we continue to
believe that the university is an ideal model for a management entity for this type
of effort. By design, its “loose coupling” and open style of discourse provide an
easy means by which the long-term goals addressed in the CHATS program can
be effectively addressed. Producing a new generation of security-conscious (and
capable) developers is a natural enterprise for a university.

ACKNOWLEDGMENTS
This work was supported by the Defense Advanced Research Projects Agency

(DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-01-2-0537. Statements made herein are neither
explicit nor implied positions of the U.S. Government.

The authors thank Theo de Raadt, the founder and leader of the OpenBSD
Project, for his persistence and technical vision.

REFERENCES
Arbaugh, W. A., Fithen, W. L., & McHugh, J. (2000). Windows of vulnerability: A

case study analysis. IEEE Computer, 33(12): 52-59.
Bach, M. J. (1986). The design of the UNIX operating system. Englewood Cliffs,

NJ: Prentice Hall.
Brooks, F. P. (1975). The mythical man-month. Reading, MA: Addison-Wesley.
Clark, D. D. (1988). The design philosophy of the DARPA Internet protocols. In

Proceedings of SIGCOMM 1988, 106-114.
Cusumano, M. A. & Selby, R. W. (1997). How Microsoft builds software. Com-

munications of the ACM, 40(6): 53-61.
Daley, R. C. & Dennis, J. B. (1968). Virtual memory processes and sharing in

MULTICS. Communications of the ACM, (5): 306-312.
Fano, R. M. & David, E. E. (1965). On the social implications of accessible com-

puting. In AFIPS Conference Proceedings 27, 243-247.
Ioannidis, S., Keromytis, A., Bellovin, S., & Smith, J. (2000). Implementing a dis-

tributed firewall. In Proceedings of Computer and Communications Security
(CCS) 2000, 190-199.

Ioannidis, S., Bellovin, S., & Smith, J. M. (2002). Sub-operating systems: A new
approach to application security. In Proceedings of the 10th SIGOPS European
Workshop, pp. 108-115.

TLFeBOOK

256 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Keromytis, A., Wright, J., & de Raadt, T. (2003). The design of the OpenBSD
cryptographic framework. In Proceedings of the USENIX Conference, pp.
181-196.

Keromytis, A. D., Ioannidis, J., & Smith, J. M. (1997). Implementing IPsec. In
Proceedings of Global Internet (GlobeCom) ’97, 1948-1952.

Larochelle, D. & Evans, D. (2001). Statically detecting likely buffer overflow vul-
nerabilities. In Proceedings of the 2001 USENIX Security Symposium.

Laurie, B. & Laurie, P. (1999). Apache: The definitive guide. Sebastopol, CA:
O’Reilly.

Lions, J. (1977a). A commentary on the UNIX operating system. Bell Laborato-
ries.

Lions, J. (1977b). UNIX operating system source code, Level Six. Bell Laborato-
ries.

McKusick, M. K., Bostic, K., Karels, M. J., & Quarterman, J. S. (1996). The de-
sign and implementation of the 4.4 BSD operating system. Reading, MA:
Addison-Wesley.

Miltchev, S., Ioannidis, S., & Keromytis, A. (2002). A study of the relative costs
of network security protocols. In Proceedings of USENIX Annual Technical
Conference (Freenix track), 41-48.

MITRE (2003). Use of Free and Open-Source Software (FOSS) in the U.S. Depart-
ment of Defense. MITRE Report MP 02 W0000101, Version 1.2.04.

Organick, E. I. (1972). The MULTICS system. Cambridge, MA: MIT Press.
Raymond, E. S. (1999). The cathedral and the bazaar: Musings on Linux and

open source by an accidental revolutionary. Sebastopol, CA: O’Reilly and
Associates.

Ritchie, D. & Thompson, K. (1974). The UNIX operating system. Communications
of the ACM, 17: 365-375.

Ritchie, D. M. &Thompson, K. L. (1978). The UNIX Time-Sharing System. The
Bell System Technical Journal, 57(6): 1905-1930.

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4): 277-288.

Schroder, M. D., Clark, D. D., & Saltzer, J. H. (1977). The MULTICS kernel design
project. In Proceedings of the 6th ACM SOSP, 43-56.

Schroeder, M. D. (1975). Engineering a security kernel for MULTICS. In Proceed-
ings of the 5th ACM SOSP, 125-132.

Sullivan, G. R. & Dubik, J. M. (1994). War in the information age. U.S. Army War
College: Strategic Studies Institute (SSI), (23 pages).

Thompson, K. (1978). UNIX Implementation. The Bell System Technical Journal,
57(6): 1931–1946.

Viega, J. & McGraw, G. (2001). Building secure software. Reading, MA: Addison-
Wesley.

TLFeBOOK

Experiences Enhancing Open Source Security in the POSSE Project 257

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Wagner, D., Foster, J. S., Brewer, E. A., & Aiken, A. (2000). A first step towards
automated detection of buffer overrun vulnerabilities. In Proceedings of the
Symposium on Network and Distributed Systems Security, 3-17.

Watson, R. (2000). Introducing supporting infrastructure for trusted operating system
support in FreeBSD. In the Proceedings of BSDCon 2000.

Weinberg, G. (1974). The psychology of computer programming. New York: Van
Nostrand.

ENDNOTES
1 See http: //www.cis.upenn.edu/~dsl/POSSE/
2 See http: //www.cs.berkeley.edu/~nweaver/sapphire/

TLFeBOOK

258 Smith, Greenwald, Ioannidis, Keromytis, Laurie, Maughan, Rahn and Wright

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

SECTION VI:

Implications of the
F/OSS Development Model –

“The Broad Picture”

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 259

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter XII

The Impact of Open
Source Development on the

Social Construction of
Intellectual Property

Bernd Carsten Stahl, De Montfort University, UK

ABSTRACT
This chapter discusses the impact that open source software has on our perception and
use of intellectual property. The theoretical foundation of the paper is constructionist
in that it holds intellectual property to be a social construction that is created and
legitimized by narratives. In a first step, the chapter recounts the narratives that are
usually found in the literature to justify the creation and protection of intellectual
property. The two most important streams of narratives are the utilitarian and the
natural rights arguments. In a second step, the paper proceeds to the impact that
the use of information and communication technology (ICT) has on the narratives
of intellectual property. From there, the chapter progresses to a discussion of the
impact of open source software on these narratives. It will be argued that open
source software changes our perception of intellectual property because it offers
evidence that some of the classical narratives are simplistic. At the same time it
will become clear that open source is not a frontal assault on intellectual property
because it is partly based on ownership of intellectual artefacts. The conclusion
discusses how this change of narratives caused by open source software may reflect
on our institutions, laws, and regulations of intellectual property.

TLFeBOOK

260 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

INTRODUCTION
There can be little doubt that the way we regulate intellectual property is of

high importance for the oft-cited information society. Intellectual property regula-
tions affect the way we do business on the Web, but they also go the heart of other
developments in fields such as education, recreation, or government. In this chapter,
I will take a narrative approach to intellectual property, with the aim of studying
how new developments such as open source software impact on it. The central idea
is that intellectual property is a social construction that is based on the acceptance
of narratives. These narratives form the basis of the regulations that societies adopt.
The main thesis is that open source software brings with it new narratives that con-
flict with the established ones and that this will lead to consequences in the way we
perceive, regulate, and enforce intellectual property.

In order to render this hypothesis plausible, the chapter will start out by re-
counting the narratives that are used to justify and legitimize property in general. It
will proceed to the stories that are used to constitute intellectual property and how
these differ from physical property narratives. The subsequent section will discuss
the influence that information and communication technologies have on intellectual
property, and it will give an account of the development of intellectual property
regulations based on these narratives. The following section will then discuss the
impact that open source software has on this debate. It will relate how the stories
upon which open source is based conform to or contradict the traditional justifica-
tions of intellectual property. The conclusion will then attempt an outlook on how
these changing narratives may be reflected in intellectual property regulations.

THE NARRATIVE OF
INTELLECTUAL PROPERTY

The plausibility of this chapter hinges on the acceptance of the hypothesis that
intellectual property is a set of rules that are based on narratives. It should be clear
that the stories that we associate with social norms and their believability determine
the effectiveness of these norms. Only if this starting point is accepted will it make
sense to tell these stories, which will be done for the remainder of this section.

What are stories, what are narratives, which narratives are good, which are
not, who tells them, who receives them? All of these are questions that cannot be
answered exhaustively, especially not in one chapter. Narratives are those stories
that we use to make sense of the world on an individual as well as a collective
level (Ricoeur, 1994). These stories are transmitted by a multitude of channels,
they can be contradictory, they change over time and between geographical areas,
and they are very hard to pin down. Nevertheless, they are the stuff of which our
culture and identity are made (Stahl, 2003). And like most concepts that have to
do with culture, identity, personality, meaning, and understanding, they are highly

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 261

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

fuzzy at the edges and therefore tend frustrate analytically minded scholars. This
fuzziness need not concern us at this stage, however, because it is not the purpose
of this chapter to prove, disprove, analyze, or scientifically validate narratives. This
chapter aims to tell a narrative about narratives. It is a story about the stories that
are told about intellectual property. As such, it cannot claim to be objective or true.
At best, it will be plausible and believable to the reader. The point of the exercise is
to look at the effects that a new narrative, namely, that of open source software, has
on older narratives of intellectual property. The reason for doing so is to see how far
these narratives are compatible and where they may need to change. This is a very
broad exercise that can absolutely not do justice to all of the aspects involved. It
is nevertheless useful because it may help us refocus on what intellectual property
means to us, why we value it, and how we want to use it.

The Story of Property
Since intellectual property is one aspect of a wider field of rights that are sum-

marized under the heading of “property,” it is a good starting point to look at the
stories that justify property. First of all, property can be described as a “bundle of
rights” (Donaldson & Preston, 1995). As such, property is always embedded in a
framework of other rights and part of a social practice (DeGeorge, 1999). The bundle
of rights that constitutes property contains several clearly specified rights. First,
property confers on the owner the right to use something. This includes production,
exchange, and consumption (Gauthier, 1986). Second, property gives the owner the
right to exclude others from use (DeGeorge, 1999; Spinello, 2000).

There are two groups of narratives used to justify property: the natural rights
and the utility narratives. Natural rights stories hold that property is something that
originates in nature, some “intrinsic quality” (Warwick, 2001), that only needs to be
expressed in human terms. Among the natural rights arguments, one can distinguish
between two groups of such inalienable rights which are developed in Lockean labor
arguments and Heglian personality arguments.

The labor arguments go back to Locke, who held that everybody has an in-
alienable right to their own labor and that therefore one has property rights in those
things that are the result of one’s labor. When one mixes one’s labor with something,
then one acquires property. This view has raised the reputation of labor to the high
standard where it is now held in market economies (cf. Arendt, 1958).

The personality argument is similar and related to the labor argument but it
carries a different emphasis. It is also based on the inalienable right everybody has
to themselves, but instead of pointing out the necessity of compensation for onerous
work, it sees property as an extension of one’s body that represents an extension of
one’s rights to oneself (Höffe, 1996).

Nowadays, natural rights theories are quite difficult to sustain. While it is plau-
sible that we all have a right to property in ourselves, it is hard to see what status
this right would have. Is it a moral right or a legal one? Who will enforce natural

TLFeBOOK

262 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

rights and what happens when they are breached? Relatively few philosophers today
would argue for natural rights, but they still have importance for approaches such
as this one. In this chapter, natural rights are not accepted as naturally binding but
as important stories that explain adherence, acceptance, and legitimacy of social
rules.

Due to the inherent problems of natural rights, stories the second group of nar-
ratives about property, namely, the utilitarian stories, have gained prominence. These
stories stress the fact that by instituting property rights overall utility is increased.
There are several reasons why personal property is seen as useful. First, it appears
to be one of the main motivators for people to work. It is thus the basis of effort,
productivity, and consequently of social welfare (Donaldson & Dunfee, 1999). When
people own means of production, they make careful use of them and treat them
parsimoniously which leads to efficiency. At the same time, property that is linked
to individuals ensures that owners feel responsible and can be held accountable
(Nozick, 1974). Apart from these immediate advantages that aim at the improve-
ment of production, property can also be said to have more far-reaching benefits.
Among them there are economic and political arguments, such as Hayek’s which
views property as a necessary condition of individual freedom (Hayek, 1994).

The Story of Intellectual Property
While traditional theories and justifications implicitly refer to the ownership of

tangible physical goods, intellectual property aims at something different, namely, at
“invention of the mind—original ideas, expressions, and their ‘ownership’” (Law-
rence, 1996). An important question is in which respects traditional and intellectual
property differ (Ladd, 2000). Some authors hold that the old concepts of property
cannot be applied to non-physical objects (Barlow, 1995). There are several reasons
why the classical concept of property changes when applied to ideas. Chief among
them one can find the fact that the sale or distribution of an idea does not affect
the original creator’s ability to use it (Johnson, 2001a; Kuflik, 1995; Weckert &
Adeney, 1997). Also, it is much easier to reproduce or copy items that are subject
to intellectual property (Johnson, 2001b), and it is consequently often hard to dis-
tinguish between the original and the copy, rendering the very distinction between
original and copy meaningless (Hinman, 2002). The right to exclude others from use
therefore takes on a new meaning and requires new justification. At the same time,
the notion of intellectual property is continuously gaining in importance because
it defines the way we deal with the most important resources of the knowledge
society, with knowledge, ideas, information, and the results of creativity (Mason,
1986; Mason, 2000).

It is therefore important to understand how intellectual property can be justi-
fied. A look at the existing literature shows us that the same types of arguments are
used that we have already encountered with regard to physical property. On the one
hand, there are the natural rights approaches drawing on the labor or personality

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 263

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

argument. In terms of software, for example, this means that a programmer has the
right to the product of her efforts (Johnson, 2001a). At the same time the program
can be seen as an extension of the self of the programmer and thus naturally hers
(McFarland, 2001; Nissenbaum, 1995). On the other hand, there are utility-based
justifications. The creation of exclusive rights to intellectual creations is supposed
to advance social utility by opening a source of revenue to the authors and thus
motivating them to create things of social use (Weckert & Adeney, 1997). This line
of thought can be summarized by stating that the institution of intellectual property
produces more utility—be it in the form of money, knowledge, art, or anything
else—than its absence.

Limits of Intellectual Property
It should be noted that independent of the stories used to justify it, there are

always limits to intellectual property. The exact form of these limits, however, de-
pends on the original justification. Generally, property ends where it collides with
equal rights. In the case of natural rights this can refer to other rights that are also
perceived to be natural, such as the right to life, the pursuit of happiness, or freedom
(Halévy, 1995). The limits of property can refer to the entire bundle of rights. A
property owner may not have the right to do certain things with her property or she
may not have the right to exclude others from use. Similarly, in the case of utility-
based justifications, intellectual property finds its limits in those situations where
it no longer produces utility (cf. Boyle, 2001; Forester & Morrison, 1994; Ladd,
2000; Snapper, 1995).

The limits of copyright as the probably most important expression of intellec-
tual property are often discussed under the heading of “fair use.” According to fair
use, copyright can often be broken for educational or non-commercial uses. Patents
as another expression of intellectual property also know exceptions. Exceptions to
intellectual property are important in our context because they indicate the point to
which legitimizing narratives are deemed acceptable and where their limits are.

INTELLECTUAL PROPERTY AND ICT
One of the reasons why questions of intellectual property have been hotly de-

bated during the last few years is the impact that information and communication
technology (ICT) had on it. In this section, I will briefly review what the specific
consequences of the introduction of ICT on intellectual property are, the develop-
ments in the area of intellectual property protection, and where they seem to be
heading. Toward the end of the section, I will discuss some arguments that are
critical of these developments.

TLFeBOOK

264 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Narratives of Intellectual Property in ICT
While ICT does not pose fundamentally new problems regarding intellectual

property, it nevertheless changes our way of dealing with items of intellectual
property in a basic way. Computers and networks allow the dissemination and
copying of material, they allow new forms of collecting and collating ideas and
texts, they allow new types of analysis and use of data and information. Comput-
ers have “greased” (Moor, 2000) information and accentuated those areas where
intellectual property produced problems before. Original and copy have become
indistinguishable. At the same time, intellectual property gains in importance as a
basis of the knowledge-based society, as a commodity and also as a social resource.
The financial value of intellectual property is already in the hundreds of billions of
dollars and continues to grow (Boyle, 2001; Delong, 2000). This has propelled the
question of the justification of intellectual property in the information age to the
forefront of legal, political, and social debates.

The classical justifications of property discussed in the last section can be
found again in this area. For the following discussion, I will limit the debate to
intellectual property in computer programs in order to facilitate the contrast with
open source software, but it should be noted that similar arguments can be found
on both sides regarding the other big problematic area, namely, that of content such
as texts, music, or films.

Ownership in computer programs can be justified by looking at natural rights,
and one can find the argument that programs belong to the programmer because
of a Lockean labor theory or because of a Hegelian personality theory. In the one
case, the emphasis is on the work the programmer invested; in the other case, it is
on the fact that the program is some kind of extension of the programmer’s mind
(Nissenbaum, 1995).

More common than natural rights arguments, however, are arguments that
justify ownership in computer programs by pointing at the utility aspect. Owner-
ship in computer programs is supposed to “stimulate creativity, innovation and
entrepreneurship” (Mason, 2000), to motivate programmers (cf. Stallman, 1995)
and thereby improve the well-being of society.

The Development of Intellectual Property Protection in the
Knowledge Society

On the basis of the stories recounted so far, a strong consensus has developed
that intellectual property is important in modern societies and that it needs to be
protected by legal measures. At the same time, the threats to intellectual property
are becoming more pronounced and clear in the public perception. The ease of
access and reproduction of digitized material facilitates breaches of intellectual
property by the average individual as well as the professional. Such breaches have
been called “piracy,” an interesting term that shows how serious these problems
are deemed to be. It also shows that breaches of intellectual property are seen to be

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 265

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

equivalent to breaches of normal property rights, such as theft or maybe even rob-
bery. At the same time that such strong feelings about intellectual property develop,
the legal protection is becoming more and more difficult. This is caused, on the one
hand, by technical problems and, on the other hand, by the international nature of
modern information technology which defies the national character of legal rights
(O’Rourke, 2001).

The result of this is that attempts to protect intellectual property are increasing
in scope and scale. This development is mainly driven by those who have a strong
commercial interest in intellectual property, mostly the big media and software
companies (Lipinski & Rice, 2002). For example, it has been argued that the posi-
tion of intellectual property rights holders has continuously been strengthened by
extending legal constructs to software (cf. de Laat, 2002; Syme & Camp, 2002) and
creating new ones such as the American Digital Millennium Copyright Act.

It should be noted that this development, albeit initiated and lobbied for by
very strong groups, does not proceed without protest. Most of the voices that have
been raised against it say that the strengthening of intellectual property protections
goes against the grain of the moral narratives that were used to justify it in the first
place (Birrer, 2001).

The strongest opposition to the strengthening of intellectual property protec-
tion argues that it is a form of economic dominance of business interests over other
legitimate stakeholders in society. Big companies are seen to form legislation to
their own interests (Benkler, 2001; McFarland, 2001; Smiers, 2001). This can be
seen as a victory of the law over ethics (DeGeorge, 1998) or, worse, as an expression
of cultural imperialism (Weckert, 2000). The strengthening of intellectual property
rights eliminates recognized exceptions and fair use (Lowe-Petraske, 2002) which
are an integral part of its legitimacy.

More fundamentally, many authors doubt the moral narratives used to justify the
strengthening of intellectual property. Many of them believe that software “piracy”
does not produce social damages because most pirated software would never have
been bought anyway (Weckert & Adeney, 1997) or because using software without
permission does not deprive the original owner of its use (Siponen & Vartiainen,
2002). Finally, there are arguments that refer to competing narratives such as that
regarding freedom of information, and one can find the contention that from an
ethical point of view freedom of information is a higher good than the protection of
intellectual property (Ladd, 2000). This argument can again be supported by differ-
ent ethical narratives. This clash of narratives—supporting either the strengthening
or weakening of intellectual property protection—is where open source software
becomes interesting for the debate.

TLFeBOOK

266 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

OPEN SOURCE SOFTWARE AND
NARRATIVES OF INTELLECTUAL PROPERTY

In this section, I will first outline what open source software is in order to then
analyze how it impacts on intellectual property narratives.

Open Source Software
Open source software can be defined as software for which users have access to

the source code that distinguishes it from most commercially published software that
allows users only access to the object code (Madey, Freeh, & Tynan, 2002). Apart
from the accessibility of the source code, open source software is also characterized
by the organization of its development, which can be described as self-organizing,
collaboration, and social networks. It is based on a different paradigm of devel-
opment when compared with proprietary software. It is based on the principle of
continuous improvement through frequent releases, collaboration among developers
and users, and adherence to open standards through open source licenses (Mishra,
Prasad, & Raghunathan, 2002).

Open source software should not be misunderstood to stand for a complete
lack of ownership. In fact, it tends to be distributed with licenses. Unlike proprietary
licenses, these OSS licenses allow users to modify and improve the source code,
to further distribute code, whether modified or not. Within the OSS realm there are
different types of licenses that allow users different degrees of freedom (de Laat,
2002). Some licenses, such as those promoted by the Open Source Initiative, follow
ideological goals and are described as a “bill of rights for the computer user” or are
used for outright political goals (Syme & Camp, 2002). Other forms of open source
software licenses are meant to be clear countermeasures to copyrighted software. The
example here is “copyleft” that originates with Richard Stallman’s Free Software
Foundation and which explicitly aims at keeping software in the free domain.

Open source software is also sometimes called “free software” and some authors
argue that it should be made available free of charge (Syme & Camp, 2002). Most
authors agree, however, that the term “free software” (“libre software”) means that
the user is free to read the source code, to modify it, and to use the software accord-
ing to her own devices (Feller & Fitzgerald, 2000). This means that open source
software and products that are based on it can be bought and sold. For most of the
OSS available today, the latter view seems to apply. OSS licenses are not meant to
preclude programmers and companies from making money, but they aim to keep
the knowledge behind the software in the public realm. For our topic it is interesting
to note that OSS does not fundamentally question the idea of intellectual property.
In fact, it is based on the assumption that one can determine the use of the fruits of
one’s mental efforts. This is of course one of the central ideas of intellectual property.
Even such far-reaching attacks against intellectual property as the copyleft movement
are only possible on the assumption that the copyleft license is binding and that the
authors of source code have the right to determine that it remain open.

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 267

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Open Source Challenges to Intellectual Property Narratives
The development and unexpected success of OSS have led to several chal-

lenges to traditional intellectual property narratives. One of the central stories used
to defend intellectual property protection is that it is necessary to provide immediate
financial incentives so that able individuals will dedicate their time to producing
valuable ideas. This story has simply been proven wrong by open source software.
Programmers in OSS projects typically do not get paid directly for their partici-
pation. So why do they do it? Basically, one can distinguish two answers to this
question, an altruistic one and an egoistic one. The altruists hold that programmers
participate in OSS for the greater good of things. They are in it for the knowledge,
for the understanding, in order to provide a better service. Not surprisingly, some
authors therefore stress the importance of shared norms or ideologies as the basis
of OSS (Stewart & Gosain, 2001). As a consequence, OSS has the image of being
“more ethical” than other software (cf. Faldetta, 2002; Garfinkel, 2003).

On the other hand, one can also find narratives that explain the lack of finan-
cial rewards for programmers in less altruistic economic terms. According to those
narratives, programmers participate because they see a chance of increasing their
personal market value, their human capital. Given that OSS is often thought to be
as good if not better than proprietary software, the social processes (such as peer
review) that allow programmers to participate are such that they only admit the
best. This means that programming in a prestigious OSS project can be taken as a
sign of high competence and aptitude. Indeed, empirical research has shown that
participation in OSS is correlated to higher salary in the programmer’s normal job
(Hann, Roberts, Slaughter, & Fielding, 2002). OSS can thus have the function of
a signal that programmers use to demonstrate to potential employers that they are
talented (Mishra et al., 2002).

OSS also threatens other utility-based narratives. While intellectual property
defenders hold that intellectual property protection is necessary to produce good and
reliable software, albeit at a steep price, OSS defenders contend that open sources
projects are not only cheaper, they are also more productive. Stallman (1995) names
four reason why open source software has a higher productivity than proprietary
software: the programs find a wider usage, they can be adapted and customization
need not start from scratch, programmers get a better education, and efforts do not
have to be duplicated. The self-referential process of OSS development also finds
it easier in many cases to employ large amounts of resources to the solution of
complex problems such as programming or, maybe more importantly, debugging
(cf. Raymond, 2001).

This implies that another point in favor of OSS is its quality. When compared
with proprietary software, OSS seems to be at least as good. It is of course a difficult
endeavour to make general statements comparing the quality of different types of
software. However, research suggests that neither OSS nor proprietary software is
unequivocally better than the other (Mishra et al., 2002). Feller and Fitzgerald (2000)

TLFeBOOK

268 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

observe that the market share that OSS has achieved is a good indicator of its quality.
Especially the flagships of OSS such as Linux or Apache have been successfully
established in the market, which can best be explained by superior quality.

One can summarize that the success of OSS renders the utility-based defenses
of intellectual property problematic. What about the other group of narratives, those
based on natural rights? Due to the problems associated with them, they play a less
prominent role. While natural rights are seldom the focus of OSS stories, they nev-
ertheless play an implicit role because they are usually taken for granted. We have
seen that OSS is based on the idea that creators have rights over their creation, even
though they may waive the right to use them for immediate financial advantages. Ac-
cording to the economic explanation, programmers who participate in OSS projects
in order to increase their human capital rely on being recognizable as contributors
to the joint effort. That means that their contribution must be identifiable, which in
turn requires a clear and unalterable relationship between creator and creation. While
programmers may renounce the copyright to their work, they clearly retain what is
sometimes called “moral rights,” the right to be identified as an author (Warwick,
2001). These rights are part of the natural rights tradition because they do not seem
to require any utility justification and are generally accepted.

CONCLUSIONS
Due to the complexity of the subject and space restraints, this chapter could

not do justice to all of the narratives and all of the aspects involved in the discus-
sion concerning intellectual property. For example, it did not distinguish sufficiently
between different types of intellectual property that are based on the same narratives
but have developed their own narratives building on these. It may similarly have
missed some of the finer points of OSS. Nevertheless, it claims to mirror the most
important aspects of the current debate as well as their narrative history.

The reason why this development of stories may be interesting to the reader
despite its limitations is that these narratives have very strong and manifest conse-
quences in our social world, most importantly in the development of intellectual
property regulation, be it national or international. These rules and regulations are
of central importance for the development of the knowledge society, and they will
have a huge influence on how we will be able to access data and information, on
how we teach and learn, on how we entertain ourselves, and, more generally, on
how we interact.

It is part of the nature of the approached chosen in this chapter that no hard
and fast conclusions in the sense of managerial strategies or governmental policy
recommendations can result. This chapter has portrayed intellectual property as a
collection of stories, and in this framework must itself be viewed as just one more
story among many others. For the reader who found this story believable, however,
some conclusions might be drawn. The narratives that are used to widen the scope

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 269

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

of intellectual property protection have lost some of their credibility. Open source
software shows that good software can come into existence without the strong
measures proposed by many laws. Furthermore, there are plausible arguments
that from a societal point of view open source software may be more desirable
than proprietary software. Given that intellectual property is a social construction,
societies may want to explore these possibilities and change the way they attribute
property rights. This can of course only happen as the result of a huge national and
international debate, which will take time. This debate will have to consider eco-
nomic, political, social, ethical, and related matters and it will produced winners and
losers. Lately, the winners seem to have been the owners of intellectual property,
mostly the big software and entertainment companies. The success of open source
software may be a good argument in the debate that will change the tide and see
users and consumers as winners.

REFERENCES
Arendt, H. (1958). The human condition. 2nd edition. Chicago, IL: University of

Chicago Press.
Barlow, J. P. (1995). Coming into the country. In D.G. Johnson & H. Nissenbaum

(Eds..) Computers, ethics & social values. 15-18. Upper Saddle River, NJ:
Prentice Hall.

Benkler, Y. (2001). The battle over the institutional ecosystem in the digital environ-
ment. Communications of the ACM (44:2): 84-90.

Birrer, F. A. J. (2001). Applying ethical and moral concepts and theories to IT
contexts: Some key problems and challenges. In R.A. Spinello & H.T. Tavani
(Eds.), Readings in cyberethics. 91-97. Sudbury, MA: Jones and Bartlett.

Boyle, J. (2001). A politics of intellectual property: Environmentalism for the Net?
In R.A. Spinello & H.T. Tavani (Eds.), Readings in cyberethics. 231-251.
Sudbury, MA: Jones and Bartlett.

Burk, D. (2002). Lex genetica: The law and ethics of programming biological code.
Ethics and Information Technology (4:2):109-121.

Currie, W. (2000). The global information society. Chichester, UL: John Wiley &
Sons.

Davis, J.C. (2000). Protecting intellectual property in cyberspace. In R.M. Baird, R.
Ramsower, & S.E. Rosenbaum (Eds.), Cyberethics - Social and moral issues
in the computer age. 243-256. New York: Prometheus Books.

De George, R. T. (1999). Business ethics. 5th edition. Upper Saddle River, NJ:
Prentice Hall.

de Laat, P. B. (2002). Open source networks in industry. In I. Alvarez et al. (Eds.),
The transformation of organisations in the information age: Social and ethi-
cal implications. Proceedings of the sixth ETHICOMP Conference, 13 - 15
November 2002, Lisbon, Portugal. 403-415. Lisbon: Universidade Lusiada.

TLFeBOOK

270 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Delong, J. V. (2000). Mind over matter. In R.M. Baird, R. Ramsower, & S.E,
Rosenbaum (Eds.), Cyberethics - Social and moral issues in the computer
age. 234-242. New York: Prometheus Books.

Donaldson, T. & Dunfee, T. W. (1999). Ties that bind: A social contracts approach
to business ethics. Boston, MA: Harvard Business School Press.

Donaldson, T. & Preston, L. E. (1995).The stakeholder theory of the corporation:
Concepts, evidence, and implications. Academy of Management Review
(20:1): 65–91.

Faldetta, G. (2002). The content of freedom in resources: The open source model.
Journal of Business Ethics 39:179–188.

Feller, J. & Fitzgerald, B. (2000).A framework analysis of the open source software
development paradigm. In Proceedings of the International Conference on
Information Systems. 58-69.

Forester, T. & Morrison, P. (1994). Computer ethics - Cautionary tales and ethical
dilemmas in computing. 2nd edition. Cambridge, MA / London: MIT Press.

Garfinkel, S. (2003). The free-software imperative. Technology Review (106:1),
February: 30.

Gauthier, D. (1986). Morals by agreement. Oxford, UK: Clarendon.
Halévy, E. (1995). La formation du radicalisme philosophique I - La jeunesse de

Bentham, 1776 - 1789. Paris: Presses universitaires de France.
Hann, I.-H, Roberts, J, Slaughter, S., & Fielding, R. (2002). Economic incentives for

participating in open source software projects. In Proceedings of the Twenty-
Third International Conference on Information Systems. 365-372.

Hayek, F. A. von (1994). The Road to Serfdom. 50th Anniversary Edition. Chicago,
IL: University of Chicago Press.

Hinman, L., M. (2002). The impact of the Internet on our moral lives in academia.
Ethics and Information Technology (4:1): 31–35.

Höffe, O. (1996). Immanuel Kant. 4. Auflage, München: Becksche Reihe Denker
506.

Johnson, D. G. (2001a). Computer Ethics. 3rd edition. Upper Saddle River, NJ:
Prentice Hall.

Johnson, D. G. (2001b). Ethics on-line. In R.A. Spinello & H.T. Tavani, Herman
(Eds.), Readings in cyberethics. 26-35. Sudbury, MA: Jones and Bartlett

Kuflik, A. (1995). Moral foundation of intellectual property rights. In D.G. Johnson
& H. Nissenbaum (Eds.), Computers, ethics & social values. 169-180. Upper
Saddle River, NJ: Prentice Hall.

Ladd, J. (2000). Ethics and the computer world – A new challenge for philosophers. In
R.M. Baird, R. Ramsower, & S.E. Rosenbaum, (Eds.), Cyberethics - Social and
moral issues in the computer age. 44-55. New York: Prometheus Books.

Lawrence, J. (1996). Intellectual property future: The paper club and the digital
commons. In: C. Ess (Ed.), Philosophical perspectives on computer-mediated
communication. 95-114. Albany, NY: State University of New York Press.

TLFeBOOK

Open Source Development on the Social Construction of Intellectual Property 271

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Lipinski, T. A. & Rice, D. A. (2002).Organizational and individual responses to
legal paradigm shifts in the ownership of information in digital media. In I.
Alvarez et al. (Eds.), The transformation of organisations in the information
age: Social and ethical implications. Proceedings of the sixth ETHICOMP
Conference, November 13-15, Lisbon, Portugal. 417-430. Lisbon: Univer-
sidade Lusiada.

Lowe-Petraske, A. (2002). CD copy-protection: Proprietary stealth and the ethics
of the just war on piracy. In I. Alvarez et al. (Eds.), The transformation of
organisations in the information age: Social and ethical implications. Proceed-
ings of the sixth ETHICOMP Conference, 13 - 15 November 2002, Lisbon,
Portugal. 433-444. Lisbon: Universidade Lusiada .

Madey, G., Freeh, V., & Tynan, R. (2002). The open source software development
phenomenon: An analysis based on social network theory. In Proceedings of
the Eighth Americas Conference on Information Systems . 1806-813.

Mason, R. O. (1986). Four ethical issues of the information age. MIS Quarterly
10: 5-12.

Mason, R. O. (2000). Intellectual property and open systems. In Proceedings of the
33rd Hawaii International Conference on System Sciences.

McFarland, M. C. (2001). Intellectual property, information, and the common good.
In R.A. Spinello & H.T. Tavani, Herman (Eds.), Readings in cyberethics. 252-
262. Sudbury, MA: Jones and Bartlett.

Mishra, B., Prasad, A., & Raghunathan, S. (2002). Quality and profits under open
source versus closed source. In Proceedings of the Twenty-Third International
Conference on Information Systems. 349–363.

Moor, J. H. (2000). Toward a theory of privacy in the information age. In R.M. Baird,
R. Ramsower, & S.E. Rosenbaum, (Eds.), Cyberethics - Social and moral is-
sues in the computer age. 200-212. New York: Prometheus Books.

Nissenbaum, H. (1995). Should I copy my neighbor’s software? In D.G. Johnson
& H. Nissenbaum (Eds.), Computers, ethics & social values. 201-213. Upper
Saddle River, NJ: Prentice Hall.

Nozick, R. (1974). Anarchy, state, and utopia. New York: Basic Books.
O’Rourke, M. A. (2001). Is virtual trespass an apt analogy? Communications of the

ACM (44:2): 98–103.
Raymond, E. (2001). The cathedral and the bazaar. In R.A. Spinello & H.T. Tavani,

Herman (Eds.), Readings in cyberethics. 309-338. Sudbury, MA: Jones and
Bartlett.

Ricoeur, P. (1994). Entretien avec Paul Ricoeur. In J.-C. Aeschlimann (Ed.), Ethique
et responsabilité - Paul Ricoeur. 11-34. Boudry-Neuchâtel: Editions de la
Baconnière.

Siponen, M. & Vartiainen, T. (2002). Teaching end-user ethics: Issues and a solution
based on universalizability. Communications of the Association for Informa-
tion Systems 8: 422–443.

TLFeBOOK

272 Stahl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Smiers, J. (2001). La propriété intellectuelle, c’est le vol! Le Monde Diplomatique
570, September: 3.

Snapper, J. W. (1995). Intellectual property protections for computer software. In
D.G. Johnson & H. Nissenbaum (Eds.), Computers, ethics & social values.
181-190. Upper Saddle River, NJ: Prentice Hall.

Spinello, R. (2000). Cyberethics: Morality and law in cyberspace. London: Jones
and Bartlett.

Spinello, R. A. & Tavani, Herman T. (2001). Note on the DeCSS trial. In R.A.
Spinello & H.T. Tavani, Herman (Eds.), Readings in cyberethics. 226-230.
Sudbury, MA: Jones and Bartlett.

Stahl, B. C. (2003). Cultural universality versus particularity in CMC. In Proceed-
ings of the Ninths Americas Conference on Information Systems, Tampa, 04-06
August 2003.1018-1026.

Stallman, R. (1995). Why software should be free. In D.G. Johnson & H. Nis-
senbaum (Eds.), Computers, ethics & social values. 190-200. Upper Saddle
River, NJ: Prentice Hall.

Stead, B. A. & Gilbert, J. (2001). Ethical issues in electronic commerce. Journal
of Business Ethics 34: 75-85.

Stewart, K. & Gosain, S. (2001). An exploratory study of ideology and trust in open
source development groups. In Proceedings of the Twenty-Second International
Conference on Information Systems. 507-512.

Syme, S. & Camp, L. J. (2002). The governance of code: Open land vs. UCITA land.
Computers and Society (32)3. Retrieved January 13, 2003, from: http://www.
computersandsociety.com.

Velasquez, M. (1998). Business ethics: Concepts and cases. 4th edition. Upper Saddle
River, NJ: Prentice Hall.

Warwick, S. (2001). Is copyright ethical? An examination of the theories, laws, and
practices regarding the private ownership of intellectual work in the United
States. In R.A. Spinello & H.T. Tavani, Herman (Eds.), Readings in cybereth-
ics. 263-279. Sudbury, MA: Jones and Bartlett.

Weckert, J. (2000). What is new or unique about Internet activities? In D. Langford
(Ed.), Internet ethics. 47-63. London: McMillan.

Weckert, J. & Adeney, D. (1997). Computer and information ethics. Westport,
CT/London: Greenwood Press.

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 273

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter XIII

The Social Production of
Ethics in Debian and Free
Software Communities:

Anthropological Lessons
for Vocational Ethics

E. Gabriella Coleman, University of Chicago, USA

Benjamin Hill, Debian Project, USA

ABSTRACT
This chapter examines the way that participation in Free software projects increases
commitments to information freedom among participants. With the Debian project
as its core case study, it argues that in Free and Open Source software communi-
ties, ethics are reinforced through the sustained collaborative development of code
and discussions and decisions around Free software licenses and project policy. In
the final section, the chapter draws on the ethnographic analysis of ethical cultiva-
tion in Debian to describe a model of ethical volunteerism based on institutional
independence, volunteer labor, and networks of trust that is applicable to a range
of vocations.

TLFeBOOK

274 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

INTRODUCTION
Free and Open Source software (F/OSS) development projects have been

investigated from a number of perspectives with an emphasis on (1) F/OSS pro-
duction techniques and legal codes, (2) developers’ motivation to participate in
projects, and (3) F/OSS’ social and economic impact. We believe that one of the
most novel dimensions to the networked and open production of code is its role
as a socio-educational site for the cultivation of a more ethically dense practice of
programming. In this way, we feel that F/OSS projects are institutions for ethical
development through the practice and application of ethics in the same way that they
are sites for the development of code. In our ethical examination of F/OSS developer
communities, we move away from a typical account of “hacker ethics’’ toward a
discussion of the rise and cultivation thereof. Participation in free software projects
substantially deepens commitments to information freedom common among hackers.
As a result, ethics are reinforced through the sustained collaborative development
of code and, to a greater degree, through the discussions and decisions around free
software licenses and project policy.

This piece utilizes an in-depth case study of the Debian project. Debian is one
of the largest F/OSS projects, although it is also one that has received very little
academic analysis to date. Debian is a non-commercial version of the GNU/Linux
operating system maintained by over 900 volunteer developers who package2 a wide
variety of software applications. With the possible exception of the Free Software
Foundation’s (FSF) GNU project, Debian demonstrates the most overt commitment
to the principles of free software as originally expressed by the FSF and the GNU
General Public License (GPL) of any large F/OSS project. Debian developers
have modified and extended these principles in their social contract and Debian
Free Software Guidelines (DFSG).3 While in some respects, Debian is unique in
its explicit ethical codes, its uniqueness should not obscure its wider relevance. The
type of moral cultivation that forms an important facet of the Debian social sphere
is a component of many other F/OSS projects in less accentuated forms. Debian is
ideal to analyze because it brings into clear relief the subtle yet significant processes
of ethical socialization that occur in most F/OSS projects. Though we focus on the
domain of F/OSS, this case study also serves as an example of the unique ways in
which an ethical social order is built and sustained in the “immaterial’’ setting of
the Internet.

We feel that an analysis of F/OSS communities’ social lives is best served by
a qualitative, ethnographic methodology. As a result, we have employed a “clas-
sic’’ anthropological model of participant-observation that combines audiotaped
interviews with the examination of the “everyday’’ speech and discursive practices
of Debian developers. This chapter is based on and references a number of sources,
including text from Internet Relay Chat, mailing lists, published Debian documents,
and Debian events and conferences. The chapter pulls from several years of data
collection and fieldwork paired with survey data collected during interviews with

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 275

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Debian developers from the U.S., Canada, Europe, and South America, including
45 audiotaped developer life histories and 12 email interviews. This ethnographic
data is complimented by direct participation by one of the authors in each of these
areas as a Debian developer, Debian applicant, and New Maintainer process ap-
plication manager.

Through an application of our ethnographic knowledge of Debian and F/OSS,
we posit a theoretical model of ethical volunteerism applicable to a wide range of
vocations. We argue that institutional independence, volunteer labor, and networks of
trust can act as key elements in facilitating moral development within occupational
groups. With a deeper ethical practice, professionals can be more self-reflexive of
their vocational values and, as a result, better situated to respond to external social,
political, and economic forces. These responses, grounded in a more ethical form
of labor, can provide an important foundation for political response and social
change.

THE SOCIAL LIFE OF ETHICS
Approaching Ethics Socially

Western philosophy in the tradition of Kant approaches ethics as a realm of
behavioral possibilities describing the ways that one ought to be behave given
abstract, universal conditions.4 This philosophy assumes that virtuous actions are
determined by individuals through intellectual deliberation and adoption of ethical
codes or laws. In contrast to this tradition, social theorists including M. M. Bakhtin5
have rejected this model for the individualistic adoption of formal and universal rules
and suggested that a “social life of ethics’’ is created and embodied in community-
based social practice and lived experience.6 For Bakhtin, socially conditioned life
events and historical contexts frame ethical choices and give rise to social moral
orders. Cultivation and adoption of ethical standards and behaviors arise and are
under constant consideration, engagement, and reformulation through socialization,
education, and lived experience. As a result, ethics are neither simply imposed by
obligations determined through top-down structures nor individually chosen. Con-
sistency of ethical form is achieved through the relative stability of social practices.
However, there remains a possibility for transformation as “events’’ and their social
context change over time. It is through this process of socially defined pedagogy
and community-based self-fashioning that the sociological, historical, and economic
context of ethics plays a far more decisive role than do static “codes’’ of conduct.

While the social cultivation of ethics in Free software communities is new
academic terrain, a number of anthropological works on medicine and science have
provided compelling studies of the way that individuals adopt values and make
moral choices through embodied action influenced by institutions, technologies,
and historically informed activities (Galison, 1997; Good, 1994; Gusterson, 1996;

TLFeBOOK

276 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Lurhmann, 2000; Rapp, 1999). In these studies, social experiences act to bolster or
thwart ethical practice, shape the nature of ethical relationships between individu-
als, and frame a community’s ethical orientation. We feel that this analysis is best
served by de-emphasizing moral philosophy in favor of a short review of examples
from sociological and anthropological literature that demonstrates both the way
that ethics are adopted and the role that they play in shaping individual identity,
behavior, and action.

The medical field is profoundly embedded in an extremely complex ethical
terrain, as doctors routinely face difficult ethical situations. Doctors are expected
to navigate these situations with the help of intensive training and a professed al-
legiance to the Hippocratic Oath. The Oath affirms the commitment doctors hold,
both as individuals and as a vocational group, to do everything possible to heal and
assuage the emotional and bodily suffering caused by disease. Morally saturated,
the Oath unambiguously affirms the importance of linking care and compassion
with skill and science in the management of illness.

Yet a number of analysts (Good, 1994; Lantos, 1997; Lurhmann, 2000; Scheper-
Hughes and Lock, 1987) question the “moral competence’’ of American doctors.
Claiming that medical school teaching has “a strong central element of institutional-
ized sadism,’’ they argue that doctors’ training hinders the “the art of medicine’’ by
socializing students into an ethic of stoicism and detachment that ultimately leads
to a deeply ambivalent patient-doctor relationship (Lantos, 1997, p. 77). Doctors’
internship and residency periods cement this ethic, as overworked and poorly treated
interns and residents see patients as “the source of physical exhaustion, danger,
humiliation, and that doctors are superior and authoritative by virtue of their role’’
(Lurhmann, 2000, p. 91). Additionally, critics describe how many physicians come
to perceive bodies as divorced from the personal and emotional traits that shape ill-
ness through an overemphasis on the biological and material dimensions of disease
during training (Good, 1994; Lurhmann, 2000; Sheper-Hughes and Lock, 1987).
The health care market erects even more “ethical barriers’’ by restricting the time
doctors spend with patients and the types of services given. The Hippocratic Oath
simply cannot undo years of training during which physicians are mistreated and
overworked while the “person’’ drops from their patients bodies.

Gusterson’s (1996) study of nuclear scientists at Berkeley’s Lawrence Livermore
Lab is a compelling ethnography of ethical contextualization and transformation.
Gusterson demonstrates how politically liberal scientists, many of whom were un-
comfortable with the existence of nuclear technologies before they were employed
at Lawrence Livermore, became full-fledged and passionate supporters of nuclear
weapons while working in the laboratory. These scientists came to see their work
as meaningful and important contributions to the United States’ nuclear defense
program which, in turn, they came to see as essential to national defense and social
welfare. Gusterson describes how scientists used collective joking and identifica-
tion with machinery to eclipse and bypass some of the more morally uncomfortable
issues surrounding nuclear weapons use and proliferation.

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 277

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The experiences of doctors and nuclear physicists exemplify the way that ethi-
cal considerations can arise out of socialization, institutional conditions, technolo-
gies, class and ethnic backgrounds, and socio-economic forces. Though individuals
ultimately hold ethical views and make moral choices, a wider set of factors shape
the way that social actors come to hold and exercise ethics. In considering the eth-
ics of “hacking,’’ it is essential to leave behind the individualized view of ethics
in favor of a more socially grounded analysis to examine the role that institutional
conditions and social practices play in shaping ethics.

Ethical Cultivation in F/OSS Projects
For many hackers, an explicit practice of ethics grows alongside direct participa-

tion in various hacker activities, such as attending conferences, reading interactive
news websites, and attending local hacker meetings. While ethical social orders
are the product and process of communities, they unfold dynamically according
to individuals’ life circumstances. As a result, there are a diverse number of ways
through which ethics are considered and fostered by different hacker groups. These
are often defined by an institutional context (the university, the BBS, “the under-
ground,’’ F/OSS projects, the business sphere), a particular hacking community
(gaming, phone phreaking, security hackers, the hacker underground, UNIX), and
historical factors (the arrest of certain hackers, specific battles over intellectual
property, new technologies, the development of Linux, etc.).

One such hacker community is the F/OSS community formed around the
production of high quality software whose source code is “freely’’ accessible.7
Through everyday informal acts that include software development, debate, in-
formal discussion, joking, trust building among developers, and the experience of
sharing and learning, Free software projects sustain a vibrant ethic of information
freedom.8 The community is divided into many projects of varying sizes and has
been lauded for bringing collaboration to new productive heights and introducing
novel legal schemes to protect the free use, reuse, and distribution of knowledge.
However, the importance of F/OSS projects as a site for the cultivation of ethics
has been, up until this point, egregiously overlooked.

For F/OSS and for the Debian project in particular, these social and legal ele-
ments play an important role in contextualizing the cultivation of ethics. F/OSS
developers’ ethical and political aesthetic is defined in contrast to the predominant
market-based styles of software production and intellectual property. F/OSS uses
software licenses like the GNU GPL (the GPL is an example of what F/OSS de-
velopers call a “copyleft’’ license) to materially and symbolically reterritorialize
knowledge and, as a result, eliminate the need to engage in illegal activity to gain
total access to and control over source code or knowledge.

Copyleft licenses use law to make source code permanently accessible. As a
result, no illegal act is necessary for those seeking to “hack on’’ a copylefted idea or
piece of software. Richard Stallman, the father of and philosopher behind the Free

TLFeBOOK

278 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

software movement and ideology, devised a license, the GNU GPL, and a political
organization, the FSF, to confront the issue of restricted knowledge and to create
the conditions for a transparent domain for the creation and distribution of computer
software.9 Through participation in this realm, hackers contrast their experience with
closed and proprietary development with the social and legal context of F/OSS. This
contrast, paired with the ethical practices internal to many projects, are the means
by which social actors come to adopt clearly understood and well-formulated ethi-
cal stances in favor of transparency and openness. Participation in F/OSS projects
like Debian contributes to the solidification of a pre-existent ethical commitment
to information freedom.

Ethical Cultivation in the Hacker Public Sphere
While F/OSS hackers are most easily associated with an individual project,

like Debian, they participate in a hacker sphere that serves to substantiate freedom
as a concept with moral relevance beyond technological issues. This public sphere
exists in a number of online and offline channels and consistently provides a space
for rational argument and discussion around a multitude of political and legal is-
sues. It often involves discussions framed by news articles, legal cases, editorials,
and community-generated commentary. This nascent public sphere can be traced
back to the 1980s in (Bulletin Board Systems (BBSs), the hacker conference scene,
Usenet groups, and mailing lists. The rise of large-scale free software projects like
Debian, the growth of large hacker conferences like USENIX, Defcon, HAL, and
HOPE, the use of blogging for personal editorialization, and the central role that
interactive web news sites like Slashdot and Kuro5hin have provided hacker com-
munities with conditions for a more inclusive and dynamic public sphere. In these
forums, discussions about censorship, politics, technology, intellectual property,
and the media help define certain social trends as ethically important to hackers and
bring social concerns into the realm of hacking.

Large hacker conferences and the widely read daily interactive news websites
like Slashdot play particularly important roles in the constitution of a public sphere
that allows for acute moral reflection in distinct and complementary ways. Interactive
news sites are visited many times daily and help foster a constant interchange of
information within F/OSS communities. Hacker conferences are infrequent but highly
charged, allowing pleasure, politics, learning, and hacking to closely intermingle.
More than in any other space, conferences allow hackers to see themselves as part
of a wider moral, cultural, and increasingly political community. They explore the
ways that their ethical goals extend beyond hacking, as conferences frame hacker
ethics in relation to questions of freedom of speech, democracy, and scientific pro-
duction during panels, talks, and informal conversations. At conferences, hackers
often hear speeches by influential and charismatic political or cultural figures like
Richard Stallman, Lawrence Lessig, or Jello Biafra, who overtly frame “hacker
issues’’ as something with much larger political importance.

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 279

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Online collaborations and interaction within a hacker public sphere constitutes
a realm of “ethical doing’’ that establishes and furthers the value for information
freedom. Developers might “practice ethics’’ by attempting to convince another
F/OSS programmer to license his or her software under a DFSG-compliant license;
others participate in a flame-war over the nature of transparency in the Debian proj-
ect; others attend hacker conferences and informally discuss ethics; others write
politically charged articles in local Linux publications. Even humor, such as the
jokes over the existence of a “closed-door’’ cabal of leaders in Debian, contributes
to the ethical consideration of transparency, openness, and universality. For most
developers, these mundane acts combine over time to prompt ethical enlargement
in a collective and informal fashion.

Ethical Cultivation in Debian
F/OSS developers’ attitudes toward freedom, set in broad terms in the larger

F/OSS community and reinforced through the broad hacker public sphere, are par-
ticularized and reinforced in the context of individual F/OSS projects. By analyz-
ing the particularities of ethical cultivation within the Debian project, we can gain
insight into the ways in which these ethical social orders are built. Our data shows
that over the course of participating in the Debian project, developers move toward
a more vigorous and overt ethical stance toward the uniqueness of their project and
the importance of free software than when first joining. This stance is captured in
the following quote:

We are hard core about being free. Red Hat will bundle non-free. What Debian
throws into the mix is that we are free and we are serious about being free. Certainly,
you don’t have to have such a devotion to it but the fact is that there is a group of
people that are so dedicated to freedom and openness.

While the nature of this position is clear, the source of this devotion is less
obvious. Many assume that this passionate adherence to freedom and openness is
an ethical belief that developers bring to the project. Many people assume Debian
self-selects those who are already extremely committed to freedom. Although most
Debian developers approach the project with at least a fundamental version of this
position, it is through participation over time that this ethical skeleton is given flesh.
What was originally limited to a functional, “engineering ethic’’ of producing high
quality software is transformed into a wider moral position as sharing and openness
become ethical ends in themselves.

In this way, a general ethical consciousness permeates the underlying spirit
of the project and is promulgated by developers through everyday acts of sociabil-
ity. Debian acts as a moral refinery that enlarges the ethical inclinations of many
developers in substantial ways; developers learn about legal issues and the differ-
ences between F/OSS licenses, as well as Debian social and technical policy in the

TLFeBOOK

280 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

process of their Debian work. Despite the variant ethical orientations that Debian
developers hold prior to joining, participation usually contributes to the creation of
a more explicit moral commitment to information freedom or substantially deepens
existing commitments to freedom. For some, Debian’s primarily engineering- and
production-based ethic evolves to include other, non-technological issues related
to freedom.

Prospective developers valuing information freedom are often attracted by
Debian’s reputation as the F/OSS project with the strongest and most explicit ethical
commitment. This commitment is instantiated in Debian’s Social Contract and in
the DFSG and is implicit in mailing list and IRC (Internet Relay Chat) discussions.
Other Debian developers are motivated more by pragmatic concerns including the
desire to package a piece of software in Debian or the need to “give something
back’’ to the Debian community whose software they use and enjoy. Despite these
non-ethical orientations, and usually in combination with them, prospective Debian
developers almost unanimously agree that open methods for software development
produce better, higher quality software. Nonetheless, participation in Debian over
time represents a form of ethical learning and socialization in which new values are
adopted while others are refined and enlarged.

Developers’ formal entry into Debian, The New Maintainer Process that is
discussed in detail later in this chapter, marks a rite of passage into a project where
ethics are made manifest through discussions, writings, and technical procedures.
In this way, experiences that begin with the New Maintainer Process shape ethical
sensibilities, influence the desire to continue participating, and form the basis for
more overt forms of political engagement.

After entry into the project, ethical expansion continues through everyday acts
that often include legal discussion on mailing lists and conversations on IRC. In
interviews, many developers claim that although they were always committed to
freedom, their knowledge of the legal issues surrounding software was bare until
they began participating in Debian. Given the importance of licensing in the domain
of F/OSS, and Debian in particular, it is not surprising that an ethical consciousness
is instilled in Debian developers through the discussion of software licensing. This
discussion is constant and complex; the debate engages with the fundamental mean-
ing of software freedom and immerses it in a larger moral context. The following
message from a mailing list demonstrates the way in which many developers equate
and understand the role of free software as a meta-guarantor of freedom:

Free software should create a sort of economy in which things are the way they
would be if there were no copyrights at all. That’s the intuition. In other words, when
I write free software, I renounce the ability to control the behavior of the recipient
as a condition of their [sic] making copies or modifying the software. The most
obvious renunciation is that I don’t get to demand money for copies. But I also don’t
get to demand that the person not be a racist; I don’t get to demand that the person
contribute to the Red Cross; I don’t get to demand that the recipient contribute to

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 281

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

free software. I renounce that little bit of control over the other person which the
copyright law gives me, and in that way, I enhance their [sic] freedom. I enhance
it to what it would be without the copyright law. You might say that public domain
is good enough. But free software is about creating an economy of such freedom.

The Debian developer IRC chat channel, where a series of topics are set each
day, is another space where hundreds of developers connect. While many topics
relate to technical issues, political and legal issues are almost equally frequent.
These political topics often follow the form of the following example: “Topic
for#debian-devel is SSL Patented? - http://www.theinquirer.net/?article=8029.’’
Many developers follow the “topic link of the day,’’ which becomes a shared con-
cern for Debian developers.

While most developers contribute infrequently to mailing list discussions, many
follow the higher traffic lists that pertain to Debian development, legal issues, and
policy. On these lists, developers frequently raise questions about licensing and
intellectual property in a way exemplified by the following message.

Perhaps we need to be thinking about alternative ways to uphold the “protection
of the moral and material interests resulting from...scientific, literary or artistic
production[s]’’? Surely existing copyright, trademark, and patent regimes, to say
nothing of “work-for-hire,” “paracopyright,” and “trade secret’’ concepts, are
not the only ways to give Article 27 force and meaning. In other words, I don’t
think it necessarily follows from Article 27 that we must have a global oligarchic
hegemony of media corporations dictating to us what we shall and shall not read,
watch, perceive, write, and share with our fellow human being[s].

For this developer and for many others, F/OSS development blurs into a moral
reflection on intellectual property. While the ethical strength and orientation of
developers varies among individuals, ethical deepening plays a consistent role in
many of the everyday acts that constitute participation in the project.

Licensing discussions are quite amenable to ethical reflection. However, it is
not just “talk’’ about licensing, intellectual property, and transparency that forms the
basis of ethical cultivation in Debian. The social experience of sharing and learning
is another area where ethics are honed. As developers learn, they develop dedica-
tion to the organization and to its method of open collaboration. As they volunteer
their time and skills, many feel that they gain tremendously through participation.
These gains include material benefits such as free technical tools and more abstract
social benefits like the satisfaction of building a quality product, peer respect and
admiration, new collaborative abilities, technical skills and knowledge, and a sense
of belonging in the Debian community. One long-time participant expressed this
feeling during an interview in the following way:

TLFeBOOK

282 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

I’ve learned about the intricacies and history and every detail of the Debian distri-
bution, how its disparate components fit together, how its packaging system works.
I’ve learned all sorts of little oddities of technical lore, and I’ve picked up a few
programming languages and a lot of general programming knowledge. I’ve learned
how to collaborate with folks spread out over the world and across time zones. I’ve
learned how to argue effectively online, and I’ve learned that even though I tend to
shy away from arguments, there are things that are worth arguing for. I’ve learned
how to think about the large effects work can have on a project, and how to take
responsibility for and plan out those effects before hand.

Given the penchant for learning and knowledge in the hacker community,
it is not surprising that many developers come to value Free software projects as
educational spaces. They feel that meaningful learning is grounded in the type of
openness and transparency exemplified by Debian. Though many hackers are able to
learn a tremendous amount on their own, mailing lists and IRC provide a means for
developers to tap into the collective knowledge of their community. The experience
of learning and sharing technical and non-technical skills contributes to the strong
allegiance to Debian held by many developers and plays a role in the cultivation of
ethics. During interviews, many developers claim that they have learned at least as
many technical skills through developing free software as in more formal learning
environments. In this educational space, the stereotypical geek qualities of elitism
and bravado give way to a desire to help others. The fundamental hacker pursuit of
knowledge becomes an endeavor that is recognized as a fully non-technical social
process.10 Although we can conceptually separate hackers’ moral drive from their
“engineering ethic,’’ the two drives intermingle and interact to bolster each other.
The technical success of free software projects and the personal gains from partici-
pation jointly reinforce the hacker belief in openness and information sharing with
relevance and applicability in other domains of social and political life.

The Debian New Maintainer Process: Trust in Virtuality
The incredible explosion of online communities, a broad term referring to

grounds ranging from MUDs and MOOs to IRC, blogging, online activist organiz-
ing, and F/OSS, has been voraciously met by various theories and analyses about
the “authenticity,’’ “realness,’’ and “nature’’ of such communities. The overarching
goal of these analyses has been to determine whether Internet-based social orders,
forms of identity, political engagements, and other types of community building
are “really real’’ given the lack of bodily interaction and material presence of things
and objects; theorists ask whether moral orders, empathetic care, political engage-
ments, and meaningful relationships can exist when bodies rarely meet and text is
the primary mode of communication and interaction.

Opinion and research on this subject varies greatly, although three major
positions have emerged over the last 10 years. One is the opinion that social life

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 283

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

on the Net reflects authentic forms of human identity, interaction, sociality, and
political engagement (Doheny-Farina, 1996; Gulia & Wellman, 1999; Mitra, 2000;
Negroponte, 1995; Rheingold, 1993). Supporters of this position believe that a
real community is imagined to sustain emotional ties, be morally deep, or exhibit
other forms of human closeness. Some of this work is Utopian in spirit and, in the
opinion of skeptics, reflects a “need to authenticate,’’ to “prove’’ that certain online
spatial communities are meaningful and real. Some arguing this position go as far
as claiming that online communities are more substantial than urban modern com-
munities because they offer a form of emotional closeness and deep connections
that are rare in modern urban settings (Rheingold, 1993).

In contrast is a more critical and, at times, even dystopian group that claims that
online communities are socially thin and fake and can even act as a form of political
misrecognition and domination. Some argue that without face-to-face interaction,
true moral concern for others and communities, as a result, are impossible (Ostwald,
2000; Robins, 2000; Robins & Webster, 1999; Willson, 2000;). There are some in
this group that argue that virtual spaces are too utterly synthetic and neutral to be
authentic in a way that is not unique to cyberspace. They define virtual sociality as
a manifestation of postmodern and hyper-capitalist polyesterization and compare it
to extreme commodification and the proliferation of fake urban spaces best repre-
sented by Disneyworld and shopping malls (Otwald, 2000; Robins, 2000; Robins
& Webster, 1999; Terranova, 1996).

Though these two sets of opposing positions differ dramatically in their descrip-
tion of online communities, both share certain key assumptions. They are concerned
with what the authentic nature of community is (or should be) and are informed by
a very primordialist sense of community in which a universal self psychology is
assumed. A third position offers an alternative to such bi-polar treatments of online
communities. Less concerned with what a community “ought to be,’’ this litera-
ture calls for and offers a more refined analysis of the ways that sociality, politics,
and community are sustained virtually (Danet, 2001; Fisher, 1999; Hakken, 1999;
Hand & Sandywell, 2002; Kirshenblatt-Gimblett, 1996; Slater, 2002). Noting that
the Internet is not a unitary space for interaction and politics (Hand & Sandywell,
2002; Miller & Slater, 2000), calling attention to historical conditions and the unit
of analysis (Fisher, 1999; Hakken, 1999) and highlighting the ways that micro-so-
ciological forms of interaction build materiality, relationships, and forms of play
(Danet, 2001; Kirshenblatt-Gimblett, 1996; Miller & Slater, 2000; Slater, 2002),
these studies provide a more compelling way to approach the subject of social
interaction in virtual spaces. Authors arguing this position throw out the quest “to
authenticate’’ (to prove the realness of interactions) and focus on how social orders
are built and sustained and the ways that virtual and non-virtual interactions act in
concert to produce unique forms of social expression and life.

Our research into the primarily virtual communities of Debian and F/OSS
supports this final position. Comparing the reality of “virtual’’ ethical orders to of-
fline orders is irrelevant in the context of our analysis. To gain insight into ethical

TLFeBOOK

284 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

cultivation in F/OSS, we must focus on the way that values are built and sustained
through different social and technological practices within Debian and the hacker
public sphere. One of the most relevant dimensions of the “collective’’ nature of
ethical cultivation in F/OSS projects is the manner in which “embodied’’ ethical
learning and the rise of social values occur in largely disembodied virtual spaces.
As a prerequisite to the cultivations of ethics within any community, trust plays
an essential role in Debian and in F/OSS more generally. Set in virtual space, the
cultivation of trust must assume new forms and an increased importance.

A micro-sociological analysis of Debian’s New Maintainer (NM) Process pro-
vides additional insight into the way that Debian attempts to facilitate trust building
in “virtuality’’ and the way that trust helps facilitate the meaningful cultivation of
ethics within the project. In our examination of the system, we focus on the creation
of cryptographic trust and the role that explicit ethical engagement with the Social
Contract and DFSG plays in the NM procedure. We highlight the way that virtual
trust building retains connections to non-virtual interactions and the way that techni-
cal and social aspects of development intertwine to create socially productive forms
of trust. Trust building in Debian demonstrates the flexible and innovative ways that
social practices unfold in what are mostly virtual domains of practice.

When the Debian project was young, it was a close-knit community where
most project members were familiar and interacted with a majority of other active
members. As a result of this constant interaction, trust grew that enabled verifica-
tion of identity, integration into Debian’s ethical community, consistent familiarity
with Debian project policy, and standardized technical competence. Prospective
members needed only to informally demonstrate their technical competence and to
claim knowledge and adherence to the project’s social contract and policy before
being admitted to the project. Socialization occurred organically and inter-developer
trust was built almost wholly through personal and group-wide interactions.

During Debian’s growth in size from about one hundred developers to nearly
one thousand, the project found itself in a crisis. New members were admitted at
rates faster than the project’s ad hoc social systems could integrate them, and the
group grew to a point where close interaction among many members was no longer
possible. In reaction, Debian halted the acceptance of new maintainers until the
project could develop a system to build trust—cryptographically, ethically, and
technically—in a systemic and reliable manner.

The procedure developed was Debian’s New Maintainer (NM) Process that
aims to consistently facilitate and build trust in a virtual space among a very large
group of developers from around the world. Sustaining trust among this large, cultur-
ally and linguistically diverse group poses unique challenges that the NM process
is designed to remedy. The NM process creates a standard that all developers must
meet - Richard Stallman, a Debian NM applicant, is held to the same standard as
developers younger than the Free Software Movement. NM is structured not only
as a test, but as a process for learning, mentoring, and integration into the project
where prospective developers work closely with at least one older, “trusted’’ project

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 285

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

member. While we emphasize some of the ethical and social elements of NM, it is
important to note that it is just as much a method of displaying technical proficiency
and a process of technical mentoring.

Before prospective developers even apply, they are first asked to identify the
contributions they plan to make to the project. They are encouraged to demonstrate
their commitment to Debian, to express why they want to join, and to display some
level of technical proficiency. For most developers, this involves making a package
and, because only existing developers can integrate a piece of software into the
larger GNU/Linux distribution, they need to find an existing developer to “spon-
sor’’ their work. New maintainers work closely with their sponsors, who check their
work for common errors and take partial responsibility for the new maintainer. This
step is important because, in addition to technical skills, the new volunteer begins
integrating into the social sphere of the project. Prospective developers are encour-
aged to join mailing lists and IRC channels that provide the medium for technical
communication and an important piece of the Debian public sphere.

An NM’s sponsor often acts as the new developer’s advocate when the main-
tainer applies for membership in the project. Advocates are existing developers who
vouch for new developers and their history of and potential for contributions to the
community. After advocation comes the assignment of an application manager,
an existing Debian developer, who handles the rest of the new maintainer process
acting in a complex role that is mentor, teacher, examiner, and evaluator. The NM
process that follows consists of three major steps. The three stages attempt to ascer-
tain and confirm the new maintainer’s identity, knowledge of and position on free
software philosophy, and their technical expertise and knowledge. In terms of the
social cultivation of trust and ethics, the first two steps are particularly significant
within the Debian community.

The act of proving identity is accomplished through a complex hybridization
of social and technical mechanisms involving cryptographic trust-building with
Pretty Good Privacy (PGP) or, in Debian’s case, its free software clone, the GNU
Privacy Guard (GPG). This step is designed around the fact that each developer has
control over a carefully controlled and fully unique cryptographic key attached to its
owner’s name and email address. These keys are used to generate “signatures’’ that
can be used to verify that a particular message, text, or piece of software originated
with the possessor of a particular key. When key owners meet in person, they prove
their identity to each other by exchanging pieces of government-issued picture
identification and identifying information about the key they use. Having traded
this information, developers later place their unique cryptographic “signature’’ on
each other keys to verify the fact that the developer signing has connected the key
being signed with the name on the key with the individual in possession. In the first
step of the new maintainer process, prospective developers use this cryptographic
method to “prove’’ their identity to their application manager; to accomplish this,
they must obtain the cryptographic signature of at least one existing developer.

TLFeBOOK

286 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

As nearly every hacker within Debian has a key signed by at least one existing
developer, and as many developers have keys signed by numerous others, nearly
all maintainers are connected by what they call a cryptographic “web of trust.’’
In the manner of the famous “six degrees of separation’’ model, Debian can use
cryptographic algorithms to prove that—while it is now clearly impossible for
every developer to have met each other developer—every developer can have met
a developer, that has met a developer, that has met a developer, etc., until every
developer is connected. Of the 963 keys in Debian official “keyring,’’ 857 can trace
a connection to every other developer through an average of less than five other
developers; no key is more than an average of nine links away from any other key.
Debian’s administrative software depends heavily on these keys to identify users for
the purposes of integrating software into the distribution, for controlling access to
machines, for allowing access to a database with sensitive information on develop-
ers, and for restricting publication to announce-only email lists.

The development of this web of trust in the NM Process plays an essential role
in Debian. A story illustrates this point: When it became clear that a developer who
occupies an important technical position was unconnected to Debian’s web of trust,
a large number of developers expressed alarmed concern and anger on a Debian
mailing list. Developers’ strong and uniform reactions demonstrated the essential
nature of these infrequent face-to-face interactions. Within three days, three near-
by developers had driven to meet the individual in question and had succeeded in
bringing him into the cryptographic web.

Integration into Debian’s web of trust is an essential first step in new maintain-
ers’ integration into the Debian project. However, because this method of proving
identity requires face-to-face networking with existing members of the project, it
helps to foster the close-knit community feeling that the NM Process attempts to
replicate or replace. These key-signing meetings, usually long social meetings over
drinks or coffee and often with a number of Debian hackers, allow new maintainers
to discuss Debian, its policies, its software, and its philosophies with other devel-
opers in a face-to-face manner and with a strong community feeling. This process
connects and leads into the second, and often the most rigorous, part of the NM
Process—philosophy.

During the “philosophy’’ step of the NM Process, application managers ask
prospective developers a series of questions on Debian and Free Software philoso-
phy. While general knowledge of the definition and philosophy related to F/OSS
is essential, the questions usually revolve around Debian’s Social Contract and the
DFSG. New maintainers are asked a series of questions, which often vary substan-
tially between application managers, to demonstrate their familiarity with the texts
of these documents, their ability to apply and synthesize the concepts encapsulated
within them, and to articulate their commitment and agreement. While each NM
must agree to the social contract, the philosophy test is not used to ensure that all
developers approach free software identically, but rather to ensure that all Debian
developers are knowledgeable of, interested in, and committed to Free software

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 287

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

discourse. Open-ended questions often turn into longer email conversations between
application managers and NMs. While dynamic and heterogeneous, the process
ensures both a common familiarity with ethical issues in F/OSS development and
a consistent level of commitment to a set of ethical beliefs. The process aims to
create consistency in developers’ critical ability to dialog around a common phi-
losophy, as opposed to prompting the individual adoption of a prescribed approach
to Debian’s moral code.

Many developers claim that writing answers to the philosophy section of
their New Maintainer application was one of the first times that they coherently
and explicitly compiled their ethical beliefs on software development. The act of
externalizing ethics made some consider the wider social issues of freedom related
to transparency, openness, and democracy. Although some developers focus on the
moral implications of “freedom’’ in relation to technical questions, other developers
use their NM application as an opportunity to enlarge the moral scope of questions
of freedom. This is evidenced by the following excerpt from a New Maintainer
application essay submitted by a prospective Debian developer:

The Social Contract and the DFSG represent a very unique idea. In this day and age
where society (at least in the U.S. and some other first-world countries) encourages
individualism and tries to divide the people and control them, it is very refreshing to
read the Debian Social Contract. Proprietary software made by commercial software
companies/developers is exactly that, commercial. Those companies/developers
are only about profit or advancing their agenda and will do what they need to in
order to maximize that. Often this conflicts with doing the right thing for the user
and here are some examples.

In this short excerpt, it is clear that this developer reflects on the differences
of moral code contained within the Debian Social Contract and those that are
developed in society, as well as the differences between proprietary and Free soft-
ware development. In contrast with other realms of hacker social life, including
the corporate sphere, Debian’s NM process represents an important nexus for the
expression of ethics.

In the final step of the New Maintainer Process, applicants must demonstrate
that they have the technical wherewithal to be trusted with the ability to integrate
software into the Debian archive and to represent Debian to the world. This test is
often filled with the presentation of a clean, policy-compliant, and bug-free example
of the type of work the applicant aims to do within Debian (e.g., a package), although
this is increasingly complemented by a series of technical questions.

In these ways, NM fulfills a community-forming function by establishing a
common denominator of social, philosophical, and technical principles and by
introducing the prospective member to the Debian hacker sphere and initiating the
NM into Debian’s critical dialog culture. Additionally, the process does not merely

TLFeBOOK

288 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

decide who can be trusted and who cannot. Rather, it establishes trust with the
prospective Debian maintainer and integrates them in a social network of peers.

The significance of the F/OSS project as a site for ethical cultivation is not just
that ethics “exist’’ but how they are made visible and accessible to wider groups of
people. Ethics, much like other forms of cultural values, emerge through socializa-
tion and practice and are also shaped by socio-economic forces and considerations.
Lived experience motivates action; spaces are needed to transform ethical inclina-
tions into social realities. Free software demonstrates the importance and strength
of cultivating ethics through everyday acts that constitute a sort of ethical habitus
and prompts us to ask how ethical cultivation might be developed in other domains
of professional or subcultural activity.

Understanding the internal dynamics of how to achieve ethical cultivation
allows for more clear and realistic thinking on the creation of sustained ethical
practices among other vocational groups where ethical actions have an immense
social and political impact - like medicine and science. What F/OSS offers is not
just new models for collaboration and novel ways to protect knowledge but a model
for independent and volunteer associations in which ethics can be given fuller con-
sideration among members of a vocational group.

ETHICS AND THE CRISIS IN SCIENCE
AND MEDICINE, NEW MODELS FOR

VOCATIONAL ASSOCIATION
In a piece that asks whether F/OSS is like science, Chris Kelty (2001) con-

cludes that F/OSS “is in fact part of science — and increasingly an essential part
of it.’’ In fact, as scientific knowledge and processes are increasingly affected by
commercialization and privatization, Kelty implies that F/OSS may be more “sci-
entific’’ than much of contemporary science.11 We understand the second half of
his article’s title, “Free Science,’’ as more than a description; it is an impassioned
plea to sustain the standards, mores, and practices that guarantee openness and
accessibility in science. Kelty warns that information sharing is essential, but not
“intrinsic,’’ to science and that it must be cultivated through a combination of social,
literary, and moral techniques that include the open publication of work, conference
participation, and active collaboration. Kelty (2001) concludes: “Openness can not
be assumed, it must be asserted in order to be assured.’’

Like Science, the “art of medicine’’ has been affected by adverse institutional
and economic conditions. As discussed earlier in this essay, the medical profession
is marked by the problematic nature of socialization in modern medical training.
This is compounded by expensive and controversial courting of physicians by phar-
maceutical industry representatives. The enforcement of drug patents, especially
in countries where average individual yearly salaries can not cover even a month

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 289

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

of many pharmaceutical treatments, are particularly disconcerting. In the case of
patents and drug costs, human lives are ultimately at stake; on the whole, physicians
have been quiet on these issues.

Many doctors and scientists are alarmed in feeling that their professions have
moved toward privatization and clinical stoicism with few vocal objections; the
Hippocratic Oath in medicine and the traditions of openness and sharing in science
are designed to protect against such shifts. In response, several scientists and doc-
tors have attempted to raise awareness and response in their communities.12 This
response, however, has been limited and piecemeal. We believe that this silence
signals the need for more active avenues of ethical socialization internal to medicine
and science that form an ethical basis for engagement in collective responses to
important political issues in their fields.

We can not attempt to offer a prescription for assuring openness in science and
creating a more ethically active medical practice. We are aware of the number and
complexity of considerations that must be taken into account in an exhaustive discus-
sion of the democratization and ethicalization of science and medicine.13 However,
we feel that F/OSS’ avenues for ethical socialization act as a model that provides
one important step toward more ethically dense scientific and medical practices.

As scientists’ opportunities to engage in “closed’’ forms of academic, corpo-
rate, and governmental science increase, and as medical and scientific production
are increasingly affected by market pressures, it is increasingly important that sci-
entists, doctors, and the full range of professions related to science and medicine
are afforded opportunities to participate in vocational and volunteer spaces at least
partially independent of academic, governmental, and corporate ties.14 Meaningful
change in a vocational field cannot be prescribed from the top-down or outside-in
but must be instigated by the field’s practitioners. It is the practitioners who are
most familiar with the moral, political, and social issues relevant to their practices
and with the ways that their activities might affect the societies in which they are
situated. Their vocational knowledge, guided by an ethical vision, can form the
basis for a more substantial political response.

F/OSS demonstrates how institutional independence, volunteer labor, and the
cultivation of trust act as three fundamental pillars in the facilitation of ethically
active vocations. In F/OSS, institutional independence is often framed in terms of
“freedom’’; while inherently ambiguous, its role is tremendously productive. In the
scope of Free software licenses, “freedom’’ refers to individual rights as a producer,
user, and distributor of software. In discussions among developers, the term morphs
dynamically into a broad, but rich, social concept. During ethnographic interviews,
Debian developers describe a rich diversity of approaches to freedom, yet, for most,
freedom means that individuals should be able to create and learn without significant
technical or legal barriers.

Ultimately, Free software is “free’’ because it allows hackers to creatively
innovate and collectively create. It achieves a form of productive freedom that is

TLFeBOOK

290 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

rooted in conventions, values, techniques, and methods constituted around the act
of writing code. Programmers in F/OSS projects have the freedom to collectively
determine technical imperatives, styles of development, modes for the inclusion of
members, ethical mores, and codes of behavior. Institutional independence allows
for the collective body of social actors to decide what the nature of a certain activity
should be and to practice the ethical codes and norms that are best suited to achieve
the goals of such activity.

While absolute institutional independence is difficult, many F/OSS projects
exhibit a high degree of productive independence for the internal cultivation of
technical and ethical codes.15 Additionally, the contrasting experience of working
in both proprietary and F/OSS settings creates a space for a critical awareness of
technical and ethical standards, the ways they function, and their relationship to
social forces. With this critical awareness, F/OSS practitioners hold a clear sense
of how social, economic, and legal conditions alter their vocation, understand how
their own work might affect others, and feel strongly about what should or could
be done as a result. It is only with critical reflection that a socially situated response
to dynamic socio-economic and institutional conditions is garnered.

Associational independence already exists in organizations like the American
Medical Association and other scientific and vocational groups. However, active,
sustained volunteer work is rarely a feature of membership. This type of indepen-
dence without labor dilutes the potential for active ethical practice among voca-
tional practitioners. It is labor that realizes vocational goals — whether it is caring
for the sick, making software, or building bridges — and it is labor that forms the
basis for both the cultivation of standards and the corresponding ethical codes that
uphold such activities. As we have argued in this chapter, action is motivated by
lived experience and supportive spaces are essential to cultivate the social practice
of ethical life. F/OSS demonstrates how the volunteer nature of certain vocational
associations help to ensure independence, while labor allows for a more sustained
ethical practice to emerge.

In addition, trust between participants is essential to realize the forms of collab-
orative labor needed to foster the application of ethical values; trust is dialectically
reinforced through sharing, working, and learning. Even in F/OSS projects with
clearly defined leaders, many decisions are made through a collective enterprise
arising through a slow process of debate and discussion over mailing lists and IRC.
Trust builds respect, understanding, and affinity in groups, which allows collabo-
ration to flourish and makes consent in diverse groups possible. Trust turns fierce
discussion and debate into a potential consensus-based decision-making process.
This consensus facilitates groups’ productive freedom to collaboratively determine
the nature and content of their activities and underlying ethics.

F/OSS projects provide innovative examples of long-distance collaborations that
have used the Internet to create a common space for the cultivation of ethics. The
“location’’ of F/OSS volunteer associations within the technologies of the Internet

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 291

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

makes sense among a vocational and cultural group whose life-world is intertwined
with these technologies. While communication technologies important in F/OSS
development facilitate long-distance labor, coordination, and identity building, they
might be deployed differently to achieve other goals by other volunteer associations
that may be more effectively situated in physical space.

In the wake of the widespread success of F/OSS software in recent years, F/OSS
communities have garnered significant attention from groups outside the software
development community. Researchers, activists, and corporations have been seduced
by the wide applicability of F/OSS development methods, organizational models,
collaborative models and licensing schemes to non-technical domains of activity. At
the same time, F/OSS is confounding to many because classical economic models
struggle with the complex and atypical nature of F/OSS’ social practices, exchanges,
and values. These same processes, when approached as a social practice, can reveal
some of the diverse and culturally situated ways that humans collectively organize,
create, share, and give.

It is in this spirit that we approach F/OSS as a domain of practice, the hacker
public sphere and Debian as sites within this domain, and the establishment of trust
through Debian’s New Maintainer Process as a micro-sociological example of the
mechanics of ethical cultivation in virtual F/OSS communities. It is in this way that
we find insight into ethical cultivation as another important model of F/OSS activity
applicable to the world beyond software.

REFERENCES
Bakhtin, M. M. (1984). Rabelais and his world. Bloomington, IN: Indiana University

Press. Translator: Helene Iswolksy.
Bakhtin, M. M. (1993). Toward a philosophy of the act. Austin, TX: University of

Texas Press. Translator: Vadim Liapunov.
Danet, B. (2001). Cyberplay: Communicating online. Oxford, UK: Berg Publish-

ers.
Dickson, D. (1988). The new politics of science. Chicago, IL: University of Chicago

Press.
Doheny-Farina, S. (1996). The wired neighborhood. New Haven, CT: Yale Uni-

versity Press.
Fischer, M. (1999). Worlding cyberspace: Toward a critical ethnography in time,

space, and theory. In G. Marcus (Ed.), Critical anthropology now: Unex-
pected contexts, shifting constituencies, changing agendas. Santa Fe, NM:
SAR Press.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago,
IL: University of Chicago Press.

Good, B. J. (1994). Medicine, rationality, and experience: An anthropological
perspective. Cambridge, UK: Cambridge University Press.

TLFeBOOK

292 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Gulia, M. & Welmman, B. (1999). Virtual communities as communities: Net surfers
don’t ride alone. In M. Smith & P. Kollack (Eds.), Communities in cyberspace.
London and New York: Routledge.

Gusterson, H. (1996). Nuclear rites. Berkeley, CA: University of California
Press.

Hakken, D. (1999). Cyborgs@cyberspace. New York and London: Routledge.
Hand, M. & Sandywell, B. (2002). E-topia as cosmopolis or citadel: On the democ-

ratizing and de-democratizing logics of the Internet, or toward a critique of the
new technological fetishism. Theory, Culture, and Society, 19(1-2): 197225.

Kelty, C. (2001). Free software/free science. First Monday, 6(12). Available Online:
http://www.firstmonday.dk/issues/issue6_12/kelty/.

Kirshenblatt-Gimblett, B. (1996). The electronic vernacular. In G. E. Marcus (Ed.),
Connected: Engagements with media. Chicago, IL: University of Chicago
Press, late edition: 3.

Lantos, J. D. (1999). Do we still need doctors? A physician’s personal account of
practicing medicine today. New York: Routledge.

Lurhmann, T. M. (2000). Of two minds: The growing disorder in American psy-
chiatry. New York: Alfred A. Knopf.

Miller, D. & Slater, D. (2000). The Internet: An ethnographic approach. London:
Berg.

Mirowski, P. & Sent, E.-M., Eds. (2002). Science bought and sold: Essays in the
economics of science. Chicago, IL: University of Chicago Press.

Mitra, A. (2000). Virtual commonality: Looking for India on the Internet. In D.
Bell & B.M. Kennedy, The cybercultures reader. New York and London:
Routledge.

Moody, G. (2001). Rebel code: Inside Linux and the open source revolution. Cam-
bridge, MA: Perseus Publishing.

Negroponte, N. (1995). Being digital. New York: Alfred A. Knopf.
Ostwald, M. (2000) Virtual urban spaces. In D. Bell & B.M. Kennedy, The cyber-

cultures reader. New York and London: Routledge.
Rapp, R. (1999). Testing women, testing the fetus: The social impact of amniocen-

tesis in America. New York: Routledge.
Rawls, J. (1971). A theory of justice. Cambridge, MA: Harvard University Press.
Rheingold, H. (1993). The virtual community. New York: HarperPerennial.
Robins, K. (2000). Cyberspace and the world we live. In D. Bell & B.M. Kennedy,

The cybercultures reader. New York and London: Routledge.
Robins, K. & Webster, F. (1999). Times of technoculture. New York and London:

Routledge.
Scheper-Hughes, N. & Lock, M. (1987). The mindful body: A prolegomena to future

work in medical anthropology. Medical Anthropology Quarterly, 1(1): 641.
Slater, D. (2002). Making things real: Ethics and order on the internet. Theory,

Culture, and Society, 19(5/6): 227245.

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 293

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Terranova, T. (2000). Post-human unbounded: Artificial evolution and high-tech
subcultures. In D. Bell & B.M. Kennedy, The cybercultures reader. New York
and London: Routledge.

Wayner, P. (2000). Free for all: How Linux and the free software movement undercut
the high-tech titans. New York: Harper Business.

Willson, M. (2000). Community in the abstract: A political and ethical dilemma? In
D. Bell & B.M. Kennedy, The cybercultures reader. New York and London:
Routledge.

ENDNOTES
1 Research for this chapter was made possible by a Social Science Research

Council grant for the study of Philanthropy and the Nonprofit Sector and a
National Science Foundation Grant (Award #0217470).

2 Packaging is the systematic compartmentalization, customization, and stan-
dardization of existing software. Packaging forms the bulk of most Debian
volunteers’ work for the project.

3 Debian’s social contract and the DFSG are available online at http://www.
debian.org/social_contract.

4 This philosophical orientation has a long history in Western thought evident in
such writers as Pascal and Descartes and is an approach that enjoys continued
popularity in contemporary philosophical works on ethics and politics. John
Rawls’ theories of a just state in A Theory of Justice (1971) and Peter Singer’s
descriptions of a utilitarian, universalist stance towards life, death, and dis-
ability exemplify the continued salience of the treatment of ethics as abstract,
deontological concepts created through individual choice and the imposition
of codes of conduct.

5 Various works of the Russian literary theorist Bakhtin engage with the ques-
tion of ethics. Two of the most relevant are Toward a Philosophy of the Act
(1993) and Rabelais and His World (1984). Toward a Philosophy of the Act
deals explicitly with the question of morality and is written as a response to
Kant’s formulation of the categorical imperative. Avoiding absolutist or rela-
tivist views of ethics, Bakhtin argues that responsibility forms the particular
situations that call for an ethical response. In Rabelais and His World Bakhtin
situates the aesthetics and ethics of popular culture within particular historical
periods, places, and events. In discussing medieval feasts, fairs, and markets,
Bakhtin describes how medieval folk culture embodied and fostered certain
genres of the grotesque and laughter that served to render visible, through
inversion and parody, official and political ideologies and liberated people
from other forms of moral condemnation.

TLFeBOOK

294 Coleman and Hill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

6 There is a long tradition in Western social theory and philosophy, from Aristotle
to Marx, Weber to Durkheim, and Bourdieu to Foucault, that has emphasized
the way in which norms and values are cultivated through embodied social
action within institutions and practice. We single out Bakhtin because he ex-
plicitly argues against the Kantian tradition in The Philosophy of the Act. His
dialogical model of social creation is one in which social forms arise out of
response, not rules, and is well suited to our analysis of F/OSS.

7 Many F/OSS hackers remind their users that they mean free as in “free speech’’
(libre), although often as in “free beer’’ (gratis) as well.

8 The concept of freedom within F/OSS communities takes on a broad, inclusive,
and nuanced quality whose nature and history falls outside the scope of this
chapter.

9 The copyleft and other such licenses have been integral for the free and open
source production of software. However, many other social and technical
conditions were necessary to really open up a vibrant space for the networked
long distance and open collaboration of code. See Moody (2001) and Wayner
(2000), among others, for accounts of the different factors that contributed to
the constitution of this field of legal and technical production.

10 Granted, how one goes about learning from others is a highly stylized practice.
There are culturally correct and incorrect ways by which one learns from other
developers on mailing lists and IRC. We mention it to note that learning and
sharing is uniquely deployed in hacker circles.

11 See Dickson (1998) and Mirowski and Esther-Mijarm (2002) on the trend toward
increased commercialization in science. For a comprehensive bibliographic
list of empirical studies that examine how commercialization and sustained
industry involvement have shifted the practices of science and medicine see
Integrity in Science’s selected bibliography at http://www.cspinet.org/integ-
rity/bibliography.html.

12 For example, No Free Lunch: http://www.nofreelunch.org, Doctors without
Borders, Integrity in Science: http://www.cspinet.org/integrity/, Center for Sci-
ence in the Public Interest: http://www.cspinet.org/ are all organizations who
aim to shift the current ethical direction of their vocation. With the exception
of Doctors without Borders, these organizations don’t combine forms of active
vocational labor with their politics.

13 See the last chapter in Dickson (1998) on some recommendations on how to
democratize science in America. Though written in the 1980s, many of his
insights are still relevant.

14 We are not claiming that F/OSS is fully independent from industry involve-
ment or the government. Academic institutions such as Berkeley and MIT
have historically played crucial roles in the development of key F/OSS appli-
cations; the Internet, where most development occurs, would not be possible
without government funding and private research and development; many free

TLFeBOOK

The Social Production of Ethics in Debian and Free Software Communities 295

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

software developers have high paying jobs that give them the financial luxury
to volunteer time; and corporations like I.B.M and Hewlett Packard have
contributed significant funds to F/OSS projects. Despite these and many other
connections (which we do not want to mystify as insignificant), it is arguable
that F/OSS projects do have a degree of independence from the institutions
and social structures that give them different forms of underlying technical
and financial support. If HP files for bankruptcy, Debian will still exist as a
project.

15 Different F/OSS projects have different types of ties and relationships with
governmental, corporate, and academic institutions that shape the degree and
kind of independence. For example, many of the top kernel developers are
employed by technology companies, and thus the Linux kernel exhibits a dif-
ferent type of relationship to the corporate sphere than that of other projects
like Debian in which a much smaller percentage of its developers work on
Debian for corporations.

TLFeBOOK

296 About the Editor

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

About the Editor

Stefan Koch is assistant professor of Information Business at the Vienna University
of Economics and Business Administration in Austria. He received an M.B.A. in
Management Information Systems from Vienna University and Vienna Technical
University, and a Ph.D. from Vienna University of Economics and Business Ad-
ministration. Currently, he is involved in the undergraduate and graduate teaching
program, especially in software project management and ERP packages. His research
interests include cost estimation for software projects, the open source development
model, software process improvement, the evaluation of benefits from information
systems and ERP systems.

TLFeBOOK

About the Authors 297

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

About the Authors

L. Angelis received a B.Sc. and a Ph.D. in Mathematics from the Aristotle Univer-
sity of Thessaloniki (AUTh), Greece. Since 1999, he has been a faculty member
(currently he is a lecturer) in the Department of Informatics, AUTh. His research
interests include statistical methods with applications to information systems, simu-
lation methods, and algorithms for optimization problems.

I.P. Antoniades is a postdoctoral fellow at the Aristotle University of Thessaloniki,
Department of Informatics, Greece. He received a B.A. in Physics from the Uni-
versity of Chicago, and a Ph.D. in numerical and simulation methods in Solid State
Physics from the Aristotle University of Thessaloniki Physics Department (2000).
He teaches undergraduate level courses in programming, mathematics, and theo-
retical informatics. His research interests include simulation methods in software
development processes and quantum computing.

Thomas Basset is a student in sociology from the Ecole Normale Superieure de
Chachan (France) and a doctoral student from the Centre de Sociologie des Organisa-
tions (Paris, France). After having completed a monograph of VideoLAN —an open
source project—for his master’s degree, he is working under Erhard Friedberg’s
supervision on a Ph.D. devoted to the social construction of a free software market.
Thomas Basset has also been a student at the Institut d’Etudes Politiques in Paris. His
email address is t.basset@cso.cnrs.fr and his website is http://thomasbasset.net.

G.L. Bleris is a full-time professor at the Aristotle University of Thessaloniki,
Department of Informatics, Greece. He is head of the Programming Languages and
Software Engineering Laboratory (PlaSE) of the department. He received a B.Sc.
degree in Mathematics from Aristotle University of Thessaloniki and his Ph.D.
degree in Solid State Physics from the Aristotle University of Thessaloniki Physics

TLFeBOOK

298 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Department. He teaches undergraduate level courses in mathematics, electronics, and
theoretical informatics. His current research interests include simulation methods,
empirical software measurement, evaluation, and management.

Eva Castro-Barbero earned an M.Sc. in Telecommunication Engineering from
Universidad Politécnica de Madrid, Spain (1997). She is currently working toward
a Ph.D. in Telecommunication Engineering at the same university. In 1997, she
joined the ISABEL developer team. ISABEL is a distributed multimedia applica-
tion that runs over heterogeneous networks and provides a customizable environ-
ment to define CSCW services. Her responsibilities included ISABEL application
software design and implementation. Since 2002, she is a Teaching Assistant at the
Rey Juan Carlos University, Madrid, Spain. Her current research interests include
IPv6 at application level.

José Centeno-González teaches and researches at the Universidad Rey Juan Car-
los, Móstoles, Spain. He joined the Computer Science Department of Carlos III
University of Madrid in 1993, where he worked until 1999. His research interests
include distributed systems programming, and protocols for distributed systems and
mobility. He is also interested in the impact of Libre software on computer science
teaching and industry. He graduated from Universidad Politécnica of Madrid with
an M.S. in Electrical Engineering and expects to receive a Ph.D. in Computer Sci-
ence from the same university in 2003.

E. Gabriella Coleman is an anthropology graduate student at the University of
Chicago (USA) focusing on the anthropology of science, medicine, and technology.
She has just recently completed her research on the ethics and politics of free software
in the San Francisco Bay area. During this period, she also served on the board of
the Online Policy Group and interned at the Electronic Frontier Foundation.

Margaret S. Elliott is a research specialist at the Institute for Software Research
(ISR) and the University of California, Irvine, USA. She received her Ph.D. in In-
formation and Computer Science (2000) and joined ISR in 2001. Prior to entry into
graduate school, she worked for 10 years in software development for consulting
firms and aerospace engineering, and in research and development for aerospace
engineering. Her research interests include open source software development, virtual
organizations, computer-supported cooperative work, occupational communities,
organizational culture, court technology, and failures of large-scale software systems.
She is an active researcher with more than 25 published papers.

Vincent Freeh is assistant professor of Computer Science at North Carolina State
University (NCSU) (USA). He received his Ph.D. in 1996 from the University of
Arizona. His research focus is system software, with concentrations in file systems,
operating systems, and distributed systems. Professor Freeh has received an NSF

TLFeBOOK

About the Authors 299

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

CAREER Award and an IBM Faculty Development Award. He was a captain in
the U.S. Army Corps of Engineers before entering graduate school for his M.S. He
worked at IBM in the Storage System Division until he returned to school to earn
his Ph.D. Professor Freeh was on the faculty at the University of Notre Dame prior
to coming to NCSU.

Jesús M. González-Barahona teaches and researches in Universidad Rey Juan
Carlos, Madrid (Spain). He started to work in the promotion of Libre software in
1991, in PDSOFT (later Sobre). Since then, he has carried on several activities in
this area, such as organization of seminars and courses, and the participation in
working groups on Libre software. He participated in the Working Group on Libre
Software promoted by the DG-INFO of the European Commission. Currently, he
collaborates on several Libre software projects (including Debian), participates in,
collaborates with associations like Hispalinux and EuroLinux, writes in several
media about topics related to Libre software, and consults for companies on topics
related to their strategy on these topics. His research interests include Libre software
engineering and, in particular, quantitative measures of Libre software development
and distributed tools for collaboration in libre software projects.

Michael B. Greenwald received an S.B. degree in Mathematics from MIT, and a
Ph.D. in Computer Science from Stanford University. He worked at Symbolics Inc.,
at MIT’s Laboratory for Computer Science (USA), and as an assistant professor in
the Computer and Information Science Department of the University of Pennsylvania
(USA). His main research areas are in networking, security, distributed systems,
and performance evaluation.

Michael Hahsler is assistant professor in the Department of Information Business
at the Vienna University of Economics and Business Administration, Austria. He
teaches object-oriented programming and current topics in information business.
His current research interests are object-oriented analysis and design methodolo-
gies and data mining.

Jiayin Hang has been an employee at Siemens Business Services GmbH & Co
OHG C-LAB since September 2002, as a member of the “Business Challenges”
team that was founded by Dr. Heidi Hohensohn in 2000. At the moment, she is
working in the research project “NOW: Utilization of the open source concept
in business and industry,” funded by BMBF. Her major fields of work are also
mobile services, information and collaboration, etc., with the objective to identify
profitable use cases for technological topics. Before her employment, she studied
business administration for four years with a focus on computer science while at
the University of Applied Sciences in Berlin. There, she graduated with a diploma
in Business Administration.

TLFeBOOK

300 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Pedro de-las-Heras-Quirós teaches at Universidad Rey Juan Carlos (Spain), and
is a collaborator at BarraPunto.Com. Since the early 1990s, he has been a user of
Libre software and has collaborated in the Sobre group, devoted to Libre software,
since its foundation. He has worked in the organization of congresses, expos, and
seminars related to Libre software, and has been editor and author for several pub-
lications on that topic.

Benjamin Hill is active in the Debian Project (USA) as a package maintainer, ap-
plication manager for new maintainers, leading member of the Debian Non-Profit
Custom Distribution, and as Debian’s accountant and hardware donation manager.
Additionally, he serves on the Board of Directors of Software in the Public Inter-
est, Inc. and works as a Free/Open Source consultant for companies and NGOs in
North America and Europe. Hill has authored a number of important documents
on Free/Open Source Software development, including the Free Software Project
Management HOWTO. He is an active researcher in the fields of intellectual prop-
erty, communications studies, and science and technology studies.

Heidi Hohensohn is the head of Group “Business Development” of SBS C-LAB
(Germany). Dr. Hohensohn has a Diploma in Business Administration (1992) and
a Ph.D. (1997). She was the Scientific employee of the University of Paderborn
at the Chair of Marketing (1993-1997), where she conducted several projects in
market research and consumer-oriented communication for different companies
and sectors of business. Since 1997, she has been responsible for Siemens C-LAB
Marketing and Business Development, and, in 2000, founded the research team
“Business Challenges” with the focus on concepts for IT-based services and solu-
tions supporting changing market structures and processes.

Jesper Holck holds a Master of Science from the Danish Technical University
(Denmark), with a Ph.D. in Computer Science from Roskilde University. After
several years of teaching computer science at the Business College in Ballerup, he
is currently an assistant professor at Copenhagen Business School, where his main
research areas are information systems and systems development.

Sotiris Ioannidis is a Ph.D. candidate at the CIS Department, University of Penn-
sylvania, USA. He received his B.S. in Mathematics and his M.S. in Computer
Science from the University of Crete, Greece (1994 and 1996, respectively). His
main research areas are in operating system and network security and distributed
systems.

Niels Jørgensen started as associate professor at Roskilde University in 2001, com-
ing from Copenhagen Business School. Before that he was a software developer at
Nokia. He completed his Ph.D. studies at Roskilde University, Denmark (1992). He
has a master’s degree in Math and Computer Science and a minor degree in Cul-

TLFeBOOK

About the Authors 301

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

tural Sociology. His main interests are open source, distributed systems (especially
security), and optimized compilation.

Angelos D. Keromytis has been an assistant professor with the Department of
Computer Science at Columbia University (USA) since 2001, and director of the
Network Security Laboratory. He received his B.Sc. in Computer Science from
the University of Crete, Greece, and his M.Sc. and Ph.D. from the Computer and
Information Science (CIS) Department, University of Pennsylvania. His current
research interests revolve around systems and network security, and cryptography.
Previous research interests include active networks, trust management systems, and
systems issues involving hardware cryptographic acceleration. His recent work has
been on survivable system and network architectures.

Kouichi Kishida is director of SRA Key Technology Laboratory (Tokyo, Japan).
His major interests are conceptual models of software development environments
and the philosophical foundation of software engineering. He is now serving as the
secretary general of the Software Engineering Association of Japan.

Ben Laurie is a director of the Apache Software Foundation and core team member
of the OpenSSL team. He wrote Apache-SSL and “Apache: The Definitive Guide.”
He is also technical director of AL Digital, Ltd. (USA) and The Bunker, a secure
hosting company. He specializes in security, privacy, and cryptography.

Gregory Madey is associate professor of Computer Science & Engineering at the
University of Notre Dame (USA). His current research interests include free/open
source software, agent-based modeling, chaos and complexity, data mining, e-Sci-
ence, e-commerce, and neural computing. He has published in various journals
including the Communications of the ACM, several IEEE journals, The Journal
of MIS, Decision Sciences, The European Journal of OR, Omega, The Journal of
Systems Management, Expert Systems with Applications, International Journal of
Electronic Commerce, Information Resources Management Journal, and Expert
Systems. He is a member of IEEE, ACM, Informs, and AIS.

Vicente Matellán-Olivera works as an assistant professor at Rey Juan Carlos Uni-
versity (Madrid, Spain). He has been involved in various activities related to “libre”
software, among them the creation of OpenResources.com and BarraPunto.com.

Douglas Maughan is a program manager in the Advanced Technology Office
(ATO) of the Defense Advanced Research Projects Agency (DARPA) in Arlington,
Virginia (USA). His research interests are in the areas of networking and security.
He manages research programs in active networks, fault tolerant networks, dynamic
coalitions, trusted operating systems, and secure wireless networks. He has served

TLFeBOOK

302 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

on various program committees, including the Internet Society Network and Dis-
tributed System Security (NDSS) symposium and the International Conference
for Distributed Computing Systems (ICDCS). While at DARPA, he has organized
several large conferences to demonstrate DARPA technology

Klaus Mayr got his Diploma in 1990 and his Ph.D. at the Technical University of
Munich in 1996. He currently works as a project leader at IFS IT GmbH (Germany),
a company that develops specialized software for car diagnostics and automotive
computing. Before he changed to IFS in 2003, he coordinated the research project
NOW at 4Soft GmbH, which began in 2002. He worked as a programmer, software
engineering expert, architect, and designer in several projects at sd&m from 1997
to 2001. His active engagement in open source originated with the development of
“SHORE,” an XML-based hypertext repository. The project started at sd&m and
was finally donated to the open source community at www.openSHORE.org.

Kumiyo Nakakoji received a B.A. in Computer Science from Osaka University,
Japan (1986) and an M.S. (1990) and Ph.D. (1993), both in Computer Science from
the University of Colorado, Boulder. She is currently a professor at the Research
Center for Advanced Science and Technology (RCAST), University of Tokyo, Japan,
and directs the Knowledge Interaction Design Laboratory. Her research interests
include human-computer interaction, specifically knowledge interaction design, which
is a framework for the design and development of computational tools for creative
knowledge work, and cognitive and social factors in software engineering.

Alessandro Narduzzo is assistant professor at the School of Economics, University
of Bologna (Italy) and member of the ROCK (Research on Organizations, Coor-
dination and Knowledge) Lab at the University of Trento. He has been a visiting
scholar at the Organization Studies Department of Boston College, and studied at
the Cognitive Science Department of the University of California, San Diego, and
at the CREW (Collaboratory for Research on Electronic Work) of the University
of Michigan. His research focuses on organizational routines, learning and artifacts
design. In his empirical studies, he integrates both behavioral and cognitive analysis
within an evolutionary perspective.

Miguel Ortuño-Pérez is a computer engineer and teaches in Universidad Rey Juan
Carlos (Madrid, Spain), where he does research in mobile computing and Libre
software. He has worked in Universidad de Oviedo on several projects related to
distance learning systems.

Dale Rahn is an Open Source developer with OpenBSD. He is currently working
for the DARPA-funded POSSE Project, adding security features to OpenBSD.
These features include W^X (an effort to insure that no memory is both writable
and executable at the same time) and dynamic loader changes to load libraries in

TLFeBOOK

About the Authors 303

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

random order and protect some vulnerable data sections of shared libraries. He also
supports and develops portions of the PowerPC-based, OpenBSD/macppc platform.
He has previously worked on cycle approximate simulations using ARM and other
embedded processors at Motorola.

Gregorio Robles is a Ph.D. candidate at the Universidad Rey Juan Carlos in Ma-
drid, Spain. His main research interest lies in Libre Software Engineering, focused
on acquiring knowledge of Libre Software and its development through the study
of quantitative data. As part of his work, he has developed or maintained many of
the tools that are used for research in this area (CODD, codd-cluster, CVSStats,
etc.) He formerly was involved in the FLOSS Project, an European Commission
IST-program sponsored project, centered on researching Free/Libre/Open Source
Software economic, social, and political consequences as well as gathering hard
data about Libre Software developers (through a survey and automated authorship
tracking in source code). In this area, he also took part in the WIDI survey during
his stay at the Technical University in Berlin. He also worked for BerliOS at GMD
(later Fraunhofer) FOKUS, a German Open Source mediator, where he did his di-
ploma thesis. Gregorio is member of GNOME Hispano, the GNOME Foundation,
and HispaLinux.

Luis Rodero-Merino teaches and does his Ph.D. work at the Universidad Rey Juan
Carlos in Spain. His research interest lies basically in the study and implementation
of peer-to-peer (p2p) networks. Luis has been researching JXTA, a p2p platform
launched by SUN that offers many p2p services as well as a set of p2p protocols.
Before joining GSyC, he worked at Ericsson España on services over telephone
networks (Intelligent Networks) and in Telefonica I+D (Research + Development)
on VoiceXML. Currently, he is also researching IP multimedia transmissions over
multicast IP in mobile IP networks.

Alessandro Rossi is assistant professor at the Faculty of Economics, University of
Trento (Italy) and a member of the ROCK (Research on Organizations, Coordina-
tion and Knowledge) Lab of the University of Trento. His research interests cover
topics of coordination, division of labor, and management of innovation in the
design and production of complex artifacts. He is also interested in applications of
experimental economics as a tool for organizational design.

I. Samoladas holds a B.Sc. in Informatics from the Department of Informatics at
the Aristotle University of Thessaloniki, Greece. Currently, he is a Ph.D. candidate
at the same department, working in the area of Free/Open Source Software Engi-
neering. Specifically, he focuses on the quality of the software produced in this way
and various quantitative issues including empirical measurements of the process,
modelling, and simulation. Other research interests include the analysis and design
of e-Learning systems.

TLFeBOOK

304 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Walt Scacchi is a senior research scientist and research faculty member at the Institute
for Software Research at the University of California, Irvine (USA). He received his
Ph.D. in Information and Computer Science in 1981. He joined ISR in 1999, after
serving on the faculty of the University of Southern California for 18 years. His
interests include open source software development, software process engineering,
software acquisition and electronic commerce, and organizational studies of system
development. He is an active researcher with more than 100 research papers, and
consults widely to clients in industry and government agencies.

Jonathan M. Smith is the Olga and Alberico Pompa professor of Engineering
and Applied Science at the University of Pennsylvania (USA), and a professor in
Penn’s CIS Department. His research is centered on advanced communication and
computer networking systems, with special interests in programmable networking,
network security, and privacy. He is a member of ACM and Sigma Xi, a fellow of
IEEE, and has consulted extensively for industry and government.

Bernd Carsten Stahl (Dr. rer. pol., Dipl.-Wi.-Ing., M.A., D.E.A) has studied me-
chanical engineering, business, economics, and philosophy in Hamburg, Hagen,
Bordeaux, and Witten. From 1987 to 1997, he was an officer of the German Armed
Forces. From 2000 to 2003, he lectured in the Department of MIS and the German
Department of University College, Dublin, Ireland. Since 2003, he has been working
as a Senior Lecturer in the Faculty of Computer Sciences and Engineering and as
a Research Associate at the Centre for Computing and Social Responsibility of De
Montfort University, Leicester, UK. His area of research consists of philosophical,
more specifically of normative, questions arising from the use of information and
communication technology. The emphasis in this area is on the notion of respon-
sibility. He researches the application of such normative questions in economic
organizations and also educational and governmental institutions. His second area
of interest consists of epistemological questions in Information Systems research.

I.G. Stamelos is an assistant professor of Computer Science at the Aristotle Uni-
versity of Thessaloniki (Greece), Department of Informatics. He received a degree
in Electrical Engineering from the Polytechnic School of Thessaloniki (1983) and
a Ph.D. in Computer Science from the Aristotle University of Thessaloniki (1988).
He teaches graduate level courses in language theory, object-oriented programming,
software engineering, and enterprise information systems. He also teaches software
project management at the post-graduate level. His research interests include empiri-
cal software measurement, evaluation and management, and open source software
engineering. He is a member of the IEEE Computer Society.

Renee Tynan received her B.S. in Cognitive Science from the Massachusetts In-
stitute of Technology, and her master’s and Ph.D. in Social Psychology at Harvard
University. She is assistant professor in the Department of Management in the

TLFeBOOK

About the Authors 305

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Mendoza College of Business at the University of Notre Dame (USA). Her research
examines the role of identity threats and identity motivation in conflict, negotiation,
and group behavior. She has published in various journals including the Journal
of Applied Social Psychology, the Journal of Applied Psychology, and the Journal
of Communication.

Thomas Wieland is professor for Telematics, Mobile Computing, and Computer
Graphics at the University of Applied Sciences, Coburg, Germany, since 2002.
After receiving his diploma in Mathematics (1994) and his Ph.D. (1996) from the
University of Bayreuth, Germany, he worked for the German Aerospace Center
(DLR) on large software systems for ground processing of satellite data and for
Siemens Corporate Technology. At Siemans, he led the research team on flexible
service networking and mobile computing. Moreover, Dr. Wieland was the found-
ing editor-in-chief of the German magazine Linux Enterprise (2000-2001). He is
author of four books on Windows and Linux programming, as well as of numerous
papers and articles.

Jason Wright has been a developer with the OpenBSD project since 1997. He
received a bachelor’s degree in Computer Science from the University of North
Carolina at Greensboro in 1999. Shortly after graduation, he went to work for
Network Security Technologies, Inc. (NETSEC) as director of VPN Technologies,
where the initial work for the OpenBSD Cryptography Framework (OCF) took
place. He left NETSEC to devote full time to the POSSE Project and to continue
working on drivers for cryptographic devices. He lives in Chantilly, Virginia, with
his wife and two cats.

Yasuhiro Yamamoto received his Ph.D. in Computer Science from the Nara Institute
of Science and Technology. He has been interested in information philosophy and
interaction design. He has been working as an interaction designer for the last several
years for a series of innovative systems supporting creative processes. His research
interests in open source include developing a taxonomy for OSS communities based
on the communication and interaction patterns among their members.

Yunwen Ye received his B.Sc. and M.S. in Computer Science from Fudan University,
Shanghai, China, and his Ph.D. in Computer Science from University of Colorado
at Boulder. He is currently a research associate at Center for LifeLong Learning
(L3D), University of Colorado at Boulder (USA). He is also a Chief Researcher at
SRA Key Technology Laboratory (Tokyo, Japan). His research interests include free
and open-source software, software reuse, human-centered software development
environments, and human-computer interaction.

TLFeBOOK

306 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

Index

A
active developer 65
address space 254
advice 138
advice network 139
agent-based modeling 213
analysis of the CVS6 127
anarchy 2
Apache 253
Apple Macintosh OS-X 247
appropriability 97
architecture 87
audit 245
audit process 245
authorities 138
authority score 139

B
“Brooks’ Law” 87
Bakhtin5 275
Baldwin 87
bazaar 127
bazaar style 73
betweenness centrality 141
broken-build 8
Brooks 87
buffer overflow 254

bug-tracking 7
bug reporter 66
business models 226

C
case study 223
Cathedral 127
cathedral style 73
Clark 87
closed process 76
co-evolution of systems and communi-

ties 71
COCOMO model 47
collaboration networks 205
collegial organizations 128
committer 7, 13
community 152
community of practice 60
community structure 60
complex artifacts 85
computer-mediated communication

152
computer-supported cooperative 158
continuous integration 2
contributor 14
control 2
Conway’s law 94
coordination 85

TLFeBOOK

Index 307

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

copyleft 277
core member 65
council style 75
cryptographic acceleration hardware

248
cryptography 250
CVS 6

D
DARPA 245
Debian 274
Debian free software guidelines 274
decomposition 85
Defcon 254
design patterns 104
development cultures 250
development effort 48
development version 6
distributed denial of service (DDoS)

243
distribution of work 127
division of labor 85
doctors 276
don contre-don model 126

E
Ecole Centrale Paris (ECP) 130
educational 282
electronic mail 155
Emacs 97
embedded 128
embeddedness 130
embedded relationships 131
empirical research 153
encryption 244
estimation 47
ethical development 274
ethical doing 279
ethical learning 280
ethnographic observation 130
ethnography 153
evolution 29
evolution of F/OSS systems 60
evolution of the associated F/OSS

communities 60

evolution paths 68
exploration-oriented 60
extended attribute file system 248

F
“free science’’ 288
firewall 248
forking 97
FreeBSD 1,245
FreeBSD core team 12
FreeBSD project 85
Freenet 96
friendship 130

G
GCC 254
GNU/Linux 29
GNU/Linux2 distributions 28
GNU/Linux kernel 85
GNU General Public License (GPL)

96, 277
GNU project 85
governance structure 96
Gutmann, Peter 244

H
hacker meetings 277
hacker public sphere 278
hacking community 277
hierarchy 127
high assurance 246
Hippocratic Oath 276
hubs 138
HURD microkernel 85

I
identity 285
individual incentives 126
information freedom 274
information hiding 85
institutional independence 289
integration 87
intellectual property 249,260
interdependencies 88
interface 87

TLFeBOOK

308 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permis-
sion of Idea Group Inc. is prohibited.

IPSEC 248
IRC 130

J
“joining script” 62
Java 109

L
layered structure of F/OSS communi-

ties 67
legitimate peripheral participation 70
libre software 28
license rights 249
lines of source code 33
Linus Torvalds 93
Linux 245

M
mailing lists 9
management plan 250
many eyes 244
modularity 85
modularization 95
modular architectures 85,94
monolith 94
Mozilla 1
Mozilla.org staff 12

N
“no hiding” principle 96
narratives 260
natural product evolution 60
network 127
network analysis 130
network of advice 139
Newsgroups 9
new maintainer process 275
nuclear scientists 276

O
online communities 282
OpenBSD 245
OpenSSH 247
OpenSSL 248
open development 76

open process 77
open release 76
open source 223
open source software 260
operating systems 243
organizational culture 152

P
packages 30
Parnas 88
passive user 66
peripheral developer 65
philosophy 285
portability 253
preferential attachment 206
programming group 250
programming languages 30
project organization 248
ProPolice 254
public goods 126

Q
qualitative research 154

R
reader 66
Red Hat Linux 29
Red Hat Package Manager (RPM) 32
release 31
release cycles 250
release level process models 15
repositories 6
reviewers 13
role transformation 64

S
“surgical team” 88
SE-Linux 252
secure sockets layer 253
security 242
security kernels 244
security policy 243
security practices 243
self-organizing system 204
service-oriented 60

TLFeBOOK

Index 309

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

sharing 279
signature 285
Simon 86
slammer worm 254
social construction 260
social contract 280
social movements 127
social network theory 205
social variables 131
software design 153
software development 223
SourceForge 204
Splint 253
sponsor 285
SSH 251
stakeholders 66
Stallman 243
super reviewers 13
surgical team 250

T
technical expertise 128
technical skills 129
tech transition 249
tinderboxes 8
tinkering 94
tournament style 74
transaction costs 127
transparent process 76
transport layer security 253
trunk 6
trust 282
trusted 245
TrustedBSD 248

U
U.S. Department of Defense 245
UNIX 85,243
USENET 243
utility-oriented 60

V
verification machines 9
version control data 106
virtual community 167

virtual organization 155
VLC 130
VLS 130
volunteer labor 289

W
web server 253
WWW 253

X
XEmacs 97

TLFeBOOK

	Cover
	Table of Contents
	Preface
	Section 1
	Index

