000 | 00823 a2200157 4500 | ||
---|---|---|---|
005 | 20250521105158.0 | ||
020 | _a9781098140250 | ||
082 |
_a005.133 _bFAC-C |
||
100 | _aFacure, Matheus | ||
245 |
_aCausal Inference in Python : _bApplying Causal Inference in the Tech Industry / |
||
260 |
_aUSA: _bO'Reilly Media press, _c2023. |
||
300 |
_axix, 385p _c20.5 x 27cm |
||
500 | _aIncludes index. | ||
650 | _aIn this book, author Matheus Facure, senior data scientist at Nubank, explains the largely untapped potential of causal inference for estimating impacts and effects. Managers, data scientists, and business analysts will learn classical causal inference methods like randomized control trials (A/B tests), linear regression, propensity score, synthetic controls, and difference-in-differences. | ||
942 | _cBK | ||
999 |
_c34950 _d34950 |