000 08999cam a2200601Mi 4500
001 11712385
003 AUCL
005 20201012143121.0
008 130204t20132013enka e b 001 0 eng
010 _a 2013936358
015 _aGBB314959
_2bnb
016 7 _a016279786
_2Uk
020 _a9780199680764 (hardback)
020 _a0199680760 (hardback)
020 _a9780199680771 (paperback)
020 _a0199680779 (paperback)
035 _a(OCoLC)ocn859577633
035 _a(OCoLC)859577633
_z(OCoLC)828890978
_z(OCoLC)853504907
_z(OCoLC)855838532
_z(OCoLC)858074783
035 _a(NNC)11712385
040 _aAU@
_beng
_erda
_cAU@
_dUKMGB
_dOCLCO
_dYDXCP
_dUAT
_dBTCTA
_dCDX
_dDLC
_dBDX
_dMEAUC
_dVRC
_dDGU
_dOCLCF
_dMEU
_dHLS
_dUNBCA
_dGBVCP
050 0 0 _aQC176
_b.S488 2013
082 0 4 _a530.41 STE
_223
100 1 _aSimon, Steven H.,
_eauthor.
245 1 4 _aThe Oxford Solid State Basics /
_cSteven H. Simon.
246 3 0 _aSolid State Basics
250 _aFirst edition.
264 1 _aOxford
_bOxford University Press,
_c2013.
264 4 _c©2013
300 _axiii, 290 pages :
_billustrations ;
_c26 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
500 _aFormerly CIP.
_5Uk
504 _aIncludes bibliographical references and index.
505 0 _a1.About Condensed Matter Physics -- 1.1.What Is Condensed Matter Physics -- 1.2.Why Do We Study Condensed Matter Physics? -- 1.3.Why Solid State Physics? -- I.Physics of Solids without Considering Microscopic Structure: The Early Days of Solid State -- 2.Specific Heat of Solids: Boltzmann, Einstein, and Debye -- 2.1.Einstein's Calculation -- 2.2.Debye's Calculation -- 2.2.1.Periodic (Born-von Karman) Boundary Conditions -- 2.2.2.Debye's Calculation Following Planck -- 2.2.3.Debye's "Interpolation" -- 2.2.4.Some Shortcomings of the Debye Theory -- 2.3.Appendix to this Chapter: (Si(B(4) -- Exercises -- 3.Electrons in Metals: Drude Theory -- 3.1.Electrons in Fields -- 3.1.1.Electrons in an Electric Field -- 3.1.2.Electrons in Electric and Magnetic Fields -- 3.2.Thermal Transport -- Exercises -- 4.More Electrons in Metals: Sommerfeld (Free Electron) Theory -- 4.1.Basic Fermi-Dirac Statistics -- 4.2.Electronic Heat Capacity --
505 0 _a4.3.Magnetic Spin Susceptibility (Pauli Paramagnetism) -- 4.4.Why Drude Theory Works So Well -- 4.5.Shortcomings of the Free Electron Model -- Exercises -- II.Structure of Materials -- 5.The Periodic Table -- 5.1.Chemistry, Atoms, and the Schroedinger Equation -- 5.2.Structure of the Periodic Table -- 5.3.Periodic Trends -- 5.3.1.Effective Nuclear Charge -- Exercises -- 6.What Holds Solids Together: Chemical Bonding -- 6.1.Ionic Bonds -- 6.2.Covalent Bond -- 6.2.1.Particle in a Box Picture -- 6.2.2.Molecular Orbital or Tight Binding Theory -- 6.3.Van der Waals, Fluctuating Dipole Forces, or Molecular Bonding -- 6.4.Metallic Bonding -- 6.5.Hydrogen Bonds -- Exercises -- 7.Types of Matter -- III.Toy Models of Solids in One Dimension -- 8.One-Dimensional Model of Compressibility, Sound, and Thermal Expansion -- Exercises -- 9.Vibrations of a One-Dimensional Monatomic Chain -- 9.1.First Exposure to the Reciprocal Lattice --
505 0 _a9.2.Properties of the Dispersion of the One-Dimensional Chain -- 9.3.Quantum Modes: Phonons -- 9.4.Crystal Momentum -- Exercises -- 10.Vibrations of a One-Dimensional Diatomic Chain -- 10.1.Diatomic Crystal Structure: Some Useful Definitions -- 10.2.Normal Modes of the Diatomic Solid -- Exercises -- 11.Tight Binding Chain (Interlude and Preview) -- 11.1.Tight Binding Model in One Dimension -- 11.2.Solution of the Tight Binding Chain -- 11.3.Introduction to Electrons Filling Bands -- 11.4.Multiple Bands -- Exercises -- IV.Geometry of Solids -- 12.Crystal Structure -- 12.1.Lattices and Unit Cells -- 12.2.Lattices in Three Dimensions -- 12.2.1.The Body-Centered Cubic (bcc) Lattice -- 12.2.2.The Face-Centered Cubic (fcc) Lattice -- 12.2.3.Sphere Packing -- 12.2.4.Other Lattices in Three Dimensions -- 12.2.5.Some Real Crystals -- Exercises -- 13.Reciprocal Lattice, Brillouin Zone, Waves in Crystals -- 13.1.The Reciprocal Lattice in Three Dimensions --
505 0 _a13.1.1.Review of One Dimension -- 13.1.2.Reciprocal Lattice Definition -- 13.1.3.The Reciprocal Lattice as a Fourier Transform -- 13.1.4.Reciprocal Lattice Points as Families of Lattice Planes -- 13.1.5.Lattice Planes and Miller Indices -- 13.2.Brillouin Zones -- 13.2.1.Review of One-Dimensional Dispersions and Brillouin Zones -- 13.2.2.General Brillouin Zone Construction -- 13.3.Electronic and Vibrational Waves in Crystals in Three Dimensions -- Exercises -- V.Neutron and X-Ray Diffraction -- 14.Wave Scattering by Crystals -- 14.1.The Laue and Bragg Conditions -- 14.1.1.Fermi's Golden Rule Approach -- 14.1.2.Diffraction Approach -- 14.1.3.Equivalence of Laue and Bragg conditions -- 14.2.Scattering Amplitudes -- 14.2.1.Simple Example -- 14.2.2.Systematic Absences and More Examples -- 14.2.3.Geometric Interpretation of Selection Rules -- 14.3.Methods of Scattering Experiments -- 14.3.1.Advanced Methods -- 14.3.2.Powder Diffraction --
505 0 _a14.4.Still More About Scattering -- 14.4.1.Scattering in Liquids and Amorphous Solids -- 14.4.2.Variant: Inelastic Scattering -- 14.4.3.Experimental Apparatus -- Exercises -- VI.Electrons in Solids -- 15.Electrons in a Periodic Potential -- 15.1.Nearly Free Electron Model -- 15.1.1.Degenerate Perturbation Theory -- 15.2.Bloch's Theorem -- Exercises -- 16.Insulator, Semiconductor, or Metal -- 16.1.Energy Bands in One Dimension -- 16.2.Energy Bands in Two and Three Dimensions -- 16.3.Tight Binding -- 16.4.Failures of the Band-Structure Picture of Metals and Insulators -- 16.5.Band Structure and Optical Properties -- 16.5.1.Optical Properties of Insulators and Semiconductors -- 16.5.2.Direct and Indirect Transitions -- 16.5.3.Optical Properties of Metals -- 16.5.4.Optical Effects of Impurities -- Exercises -- 17.Semiconductor Physics -- 17.1.Electrons and Holes -- 17.1.1.Drude Transport: Redux -- 17.2.Adding Electrons or Holes with Impurities: Doping --
505 0 _a17.2.1.Impurity States -- 17.3.Statistical Mechanics of Semiconductors -- Exercises -- 18.Semiconductor Devices -- 18.1.Band Structure Engineering -- 18.1.1.Designing Band Gaps -- 18.1.2.Non-Homogeneous Band Gaps -- 18.2.p-n Junction -- 18.3.The Transistor -- Exercises -- VII.Magnetism and Mean Field Theories -- 19.Magnetic Properties of Atoms: Para- and Dia-Magnetism -- 19.1.Basic Definitions of Types of Magnetism -- 19.2.Atomic Physics: Hund's Rules -- 19.2.1.Why Moments Align -- 19.3.Coupling of Electrons in Atoms to an External Field -- 19.4.Free Spin (Curie or Langevin) Paramagnetism -- 19.5.Larmor Diamagnetism -- 19.6.Atoms in Solids -- 19.6.1.Pauli Paramagnetism in Metals -- 19.6.2.Diamagnetism in Solids -- 19.6.3.Curie Paramagnetism in Solids -- Exercises -- 20.Spontaneous Magnetic Order: Ferro-, Antiferro-, and Ferri-Magnetism -- 20.1.(Spontaneous) Magnetic Order -- 20.1.1.Ferromagnets -- 20.1.2.Antiferromagnets -- 20.1.3.Ferrimagnets --
505 0 _a20.2.Breaking Symmetry -- 20.2.1.Ising Model -- Exercises -- 21.Domains and Hysteresis -- 21.1.Macroscopic Effects in Ferromagnets: Domains -- 21.1.1.Domain Wall Structure and the Bloch/Neel Wall -- 21.2.Hysteresis in Ferromagnets -- 21.2.1.Disorder Pinning -- 21.2.2.Single-Domain Crystallites -- 21.2.3.Domain Pinning and Hysteresis -- Exercises -- 22.Mean Field Theory -- 22.1.Mean Field Equations for the Ferromagnetic Ising Model -- 22.2.Solution of Self-Consistency Equation -- 22.2.1.Paramagnetic Susceptibility -- 22.2.2.Further Thoughts -- Exercises -- 23.Magnetism from Interactions: The Hubbard Model -- 23.1.Itinerant Ferromagnetism -- 23.1.1.Hubbard Ferromagnetism Mean Field Theory -- 23.1.2.Stoner Criterion -- 23.2.Mott Antiferromagnetism -- 23.3.Appendix: Hubbard Model for the Hydrogen Molecule -- Exercises -- A.Sample Exam and Solutions -- B.List of Other Good Books -- Indices -- Index of People.
520 _aThe study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deep underlying concepts.
546 _aText in English.
650 0 _aSolid state physics.
650 7 _aSolid state physics.
_2fast
_0(OCoLC)fst01125456
650 7 _0(DE-601)106331558
_0(DE-588)4016921-2
_aFestkörperphysik
_2gbv
942 _2ddc
_cBK
990 _aQC
999 _c25684
_d25684