000 02769nam a2200193 a 4500
001 ASIN0471772550
005 20190522114408.0
008 120220s2006 xxu eng d
020 _a0471772550 (hardcover)
_c$140.00
020 _a9780471772552 (hardcover)
100 1 _aStaszewski, Robert B.
245 1 0 _aAll-digital frequency synthesizer in deep-submicron cmos /
_cRobert B. Staszewski, Poras T. Balsara.
250 _a1st ed.
260 _a[S.l.] :
_bWiley-Interscience,
_c2006.
300 _a261 p. ;
_c24 cm.
520 _aA new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
700 1 _aBalsara, Poras T.
856 4 0 _3Amazon.com
_uhttp://www.amazon.com/exec/obidos/ASIN/0471772550/chopaconline-20
999 _c1940
_d1940