000 02138cam a22003858i 4500
999 _c16736
_d16736
001 20453542
003 AUCL
005 20200110121557.0
008 180416s2018 flu b 001 0 eng
010 _a 2018017262
020 _a9780815378686 (hardback : acid-free paper)
020 _z9781351231794 (ebook)
040 _aDLC
_beng
_erda
_cAUI
042 _apcc
050 0 0 _aTJ211.35
_b.A73 2018
082 0 0 _a629.892632 ARA
_223
100 1 _aArana-Daniel, Nancy,
_eauthor.
245 1 0 _aNeural networks for robotics : an engineering perspective
_ban engineering perspective /
_cNancy Arana-Daniel, Carlos Lopez-Franco, Alma Y. Alanis.
263 _a1808
264 1 _aBoca Raton, FL :
_bCRC Press/Taylor & Francis Group,
_c2019.
300 _axvii;209 p.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
500 _a"A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc."
504 _aIncludes bibliographical references and index.
520 _aThe book offers the reader the insight on artificial neural networks for giving a robot a high level of autonomy tasks such as navigation, object recognition, and clustering, with real-time implementations. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures to solve different kinds of problems encountered in autonomous navigation and object recognition problems. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control--
_cProvided by publisher.
650 0 _aRobots
_xControl systems.
650 0 _aNeural networks (Computer science)
700 1 _aLopez-Franco, Carlos,
_eauthor.
700 1 _aAlanis, Alma Y.,
_eauthor.
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK