Welcome to Air University Central Library and Fazaia Medical College Library. (Sign in with Your email. Your user name is the same as your student ID number or Employee ID number for password, please contact Circulation Staff)

Amazon cover image
Image from Amazon.com

Quantum computing : from linear algebra to physical realizations / Mikio Nakahara, Tetsuo Ohmi.

By: Contributor(s): Material type: TextTextPublication details: [S.l.] : Taylor & Francis, 2008.Edition: 1st edDescription: 440 p. ; 24 cmISBN:
  • 0750309830 (hardcover)
  • 9780750309837 (hardcover)
Online resources: Summary: Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspects of quantum computing and the second focused on several candidates of a working quantum computer, evaluating them according to the DiVincenzo criteria. Topics in Part I Linear algebra Principles of quantum mechanics Qubit and the first application of quantum information processing���quantum key distribution Quantum gates Simple yet elucidating examples of quantum algorithms Quantum circuits that implement integral transforms Practical quantum algorithms, including Grover���s database search algorithm and Shor���s factorization algorithm The disturbing issue of decoherence Important examples of quantum error-correcting codes (QECC) Topics in Part II DiVincenzo criteria, which are the standards a physical system must satisfy to be a candidate as a working quantum computer Liquid state NMR, one of the well-understood physical systems Ionic and atomic qubits Several types of Josephson junction qubits The quantum dots realization of qubits Looking at the ways in which quantum computing can become reality, this book delves into enough theoretical background and experimental research to support a thorough understanding of this promising f
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Barcode
Book Book Air University Central Library Islamabad NFIC 621.391 N1453Q (Browse shelf(Opens below)) Available P8716

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspects of quantum computing and the second focused on several candidates of a working quantum computer, evaluating them according to the DiVincenzo criteria. Topics in Part I Linear algebra Principles of quantum mechanics Qubit and the first application of quantum information processing���quantum key distribution Quantum gates Simple yet elucidating examples of quantum algorithms Quantum circuits that implement integral transforms Practical quantum algorithms, including Grover���s database search algorithm and Shor���s factorization algorithm The disturbing issue of decoherence Important examples of quantum error-correcting codes (QECC) Topics in Part II DiVincenzo criteria, which are the standards a physical system must satisfy to be a candidate as a working quantum computer Liquid state NMR, one of the well-understood physical systems Ionic and atomic qubits Several types of Josephson junction qubits The quantum dots realization of qubits Looking at the ways in which quantum computing can become reality, this book delves into enough theoretical background and experimental research to support a thorough understanding of this promising f

There are no comments on this title.

to post a comment.
Air University Sector E-9, Islamabad Paksitan
Email: librarian@au.edu.pk  Tel : +0092 51 9262612 Ext: 631