Welcome to Air University Central Library and Fazaia Medical College Library. (Sign in with Your email. Your user name is the same as your student ID number or Employee ID number for password, please contact Circulation Staff)

Amazon cover image
Image from Amazon.com

Semiconductor nanostructures Dieter Bimberg.

Contributor(s): Material type: TextTextSeries: Nanoscience and technoloPublication details: Berlin Springer, 2014.Description: xxi; 357 p. ; 25 cmISBN:
  • 3540778985 (hardcover)
  • 9783540778981 (hardcover)
Online resources: Summary: Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such ���quantum dots��� are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the wor
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Notes Barcode
Book Book Air University Central Library Islamabad NFIC 621.38152 SEM (Browse shelf(Opens below)) Available Program Relevancy: BEE; Course Relevancy: Semiconductor P10923

Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such ���quantum dots��� are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the wor

There are no comments on this title.

to post a comment.
Air University Sector E-9, Islamabad Paksitan
Email: librarian@au.edu.pk  Tel : +0092 51 9262612 Ext: 631