Welcome to Air University Central Library and Fazaia Medical College Library. (Sign in with Your email. Your user name is the same as your student ID number or Employee ID number for password, please contact Circulation Staff)

Amazon cover image
Image from Amazon.com

Deep learning : a practitioner's approach / a practitioner's approach / Josh Patterson and Adam Gibson.

By: Contributor(s): Material type: TextTextPublisher: Sebastopol, CA : O'Reilly Media, Inc., 2017Copyright date: 2017Description: 507 p. color illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781491914250
Subject(s): Genre/Form: Additional physical formats: Print version:: Deep learning.DDC classification:
  • 006.31 PAT 23
LOC classification:
  • QA325.5 .P38 2017eb
Online resources:
Contents:
A review of machine learning -- Foundations of neural networks and deep learning -- Fundamentals of deep networks -- Major architecture of deep networks -- Building deep networks -- Tuning deep networks -- Tuning specific deep network architectures -- Vectorization -- Using deep learning and DL4J on Spark -- What is artificial intelligence? -- RL4J and reinforcement learning -- Numbers everyone should know -- Neural networks and backpropagation: a mathematical approach -- Using the ND4J API -- Using DataVec -- Working with DL4J from source -- Setting up DL4J projects -- Setting up GPUs for DL4J projects -- Troubleshooting DL4J installations.
Summary: How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Barcode
Book Book Air University Central Library Islamabad Electrical Engineering Electrical Engineering 006.31 PAT (Browse shelf(Opens below)) Available P5794

Includes index.

A review of machine learning -- Foundations of neural networks and deep learning -- Fundamentals of deep networks -- Major architecture of deep networks -- Building deep networks -- Tuning deep networks -- Tuning specific deep network architectures -- Vectorization -- Using deep learning and DL4J on Spark -- What is artificial intelligence? -- RL4J and reinforcement learning -- Numbers everyone should know -- Neural networks and backpropagation: a mathematical approach -- Using the ND4J API -- Using DataVec -- Working with DL4J from source -- Setting up DL4J projects -- Setting up GPUs for DL4J projects -- Troubleshooting DL4J installations.

How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.

Online resource; title from PDF title page (EBSCO, viewed August 24, 2017).

There are no comments on this title.

to post a comment.
Air University Sector E-9, Islamabad Paksitan
Email: librarian@au.edu.pk  Tel : +0092 51 9262612 Ext: 631